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Abstract

We introduce a definition of long range dependence of random
processes and fields on an (unbounded) index space T ⊆ R

d in terms
of integrability of the covariance of indicators that a random function
exceeds any given level. This definition is particularly designed to
cover the case of random functions with infinite variance. We show
the value of this new definition and its connection to limit theorems
on some examples including subordinated Gaussian as well as random
volatility fields and time series.

AMS Subj. Class.: Primary 60G10; Secondary 60G60, 60G15,
60F05.

1 Introduction

Let X = {Xt, t ∈ T} be a stationary random field on an unbounded index
subset T of Rd, d ≥ 1, defined on an abstract probability space (Ω,F , P ). If
X0 is square integrable then the classical definition of long range dependence
is ∫

T

|CX(t)| dt = +∞, (1)

where CX(t) = Cov(X0, Xt), t ∈ T . There are also other definitions e.g. in
terms of spectral density of X being unbounded at zero, growth comparison
of partial sums (Allan sample variance), the order of the variance of sums
going to infinity, etc., see the modern reviews in [15], [5], [35] for processes
and [20] for random fields. All these approaches are not equivalent to each
other.

More importantly, there is no unified approach to define long memory
property if X is heavy tailed, that is with infinite variance. Many authors use
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the phenomenon of phase transition in certain parameters of the field (such
as stability index, Hurst index, heaviness of the tails, etc.) regarding their
different limiting behaviour. To give just a few examples, we mention [40] for
the subordinated heavy-tailed Gaussian time series whereas [34], [32], [31],
[27], [37] consider the extreme value behaviour of partial maxima of stable
random processes and fields and a connection with their ergodic properties.
In [12, p. 76], the short or long memory for stationary time series is defined
by using different limits in functional limit theorems. Papers [10, 28] analyze
different measures of dependence (such as α-spectral covariance) for linear
random fields with infinite variance lying in the domain of attraction of a
stable law. Those are used to define various types of memory and prove
corresponding limit theorems for partial sums.

The main goal of our paper is to give a simple uniform view into long range
dependence which applies to any stationary (light or heavy tailed) random
field X ; see Definition 3.1. In Section 3.2 we show that all rapidly mixing
random fields are short range dependent in the sense of the new definition.
No moment assumptions are needed there. In Section 3.3, the sufficient con-
ditions for a subordinated Gaussian (possibly heavy-tailed) random field to
be short or long range dependent are given. We show that the transition from
short to long memory occurs at the same boundary for both finite and infi-
nite variance random fields; see Theorem 3.6 and Example 3.9. This cannot
be achieved using the classical definitions based on second-order properties.
In the next section, the same is done for stochastic volatility random fields
of the form Xt = G(Yt)Zt. Different sources of long range dependence are
described. Conditions for long or short memory of α–stable moving averages
and certain max–stable processes are discussed in the forthcoming paper [25].

As indicated above, one can approach long memory from two different
perspectives: through the distributional properties of the process or limiting
behaviour of suitable statistics. Our definition falls into the first category.
Thus, as the next step, we attempt to link the definition with limit theo-
rems. In this context, the appropriate statistic to study appears to be the
volume of level sets of the field. This is done in Section 4. First, we consider
subordinated Gaussian random fields and show the agreement between our
definition and the limiting behaviour. See Section 4.1.1. In the following
section we indicate that our definition is not suitable to capture limiting be-
haviour of the empirical mean. In Section 4.2 we consider the corresponding
problems for random volatility models. In order to do so, we have to develop
limiting theory for integral functionals of random volatility models, including
the case of limit theorems for the volume of level sets of X . These results
are of independent interest.

For better readability, proofs of the most of results are moved to Ap-
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pendix.

2 Preliminaries

Recall that T is an unbounded subset of Rd. Let N0 = N∪{0}, and let νd(·) be
the d–dimensional Lebesgue measure. We denote by R± either R+ = [0,+∞)
or R− = (−∞, 0], depending on the context. For instance, G : R → R±

means that G maps R either to R+ or to R−. Let ‖ · ‖ be a norm in the
Euclidean space R

d. For two functions f, g : R → R we write f(x) ∼ g(x),
x→ a if limx→a f(x)/g(x) = 1, where g(x) 6= 0 in a neighbourhood of a. Let
〈f, g〉 =

∫
R
f(x)g(x) dx be the inner product in the space L2(R) of square

integrable functions. Additionally, we shall make use of the inner product
〈f, g〉ϕ =

∫
R
f(x)g(x)ϕ(x) dx in the space L2

ϕ(R) of functions which are square
integrable with the weight ϕ, where ϕ is the standard normal density. For a
finite measure µ on R, let supp(µ) be its support, i.e., the compliment of the
largest measurable subset of µ-measure zero in R.

Let (Ω,F , P ) be a probability space. We say that {Xt, t ∈ T} is a white
noise if it consists of i.i.d. random variables Xt.

For any random variableX let FX(x) = P (X ≤ x) and F̄X(x) = 1−FX(x)
be the cumulative distribution function and the tail distribution function of
X , respectively. Let FX,Y (x, y) = P (X ≤ x, Y ≤ y), x, y ∈ R be the bivariate
distribution function of a random vector (X, Y ). Later on we make use of
the known formula

Cov(X, Y ) = E (Cov(X, Y |A)) + Cov (E(X|A),E(Y |A)) (2)

for any σ–algebra A ⊂ F .
A random field X = {Xt, t ∈ T} is called associated (A) if

Cov (f (XI) , g (XI))) ≥ 0

for any finite subset I ⊂ T and for any bounded coordinatewise non–decreasing
Borel functions f, g : R

|I| → R, where XI = {Xt, t ∈ I}. X is called
positively associated (PA) or negatively associated (NA) if

Cov (f (XI) , g (XJ))) ≥ 0 (≤ 0),

respectively for all finite disjoint subsets I, J ⊂ T , and for any bounded
coordinatewise non–decreasing Borel functions f : R|I| → R, g : R|J | → R,
see e.g. [7].

We use the notation B ∼ Sα (σ, 1, 0) for an α-stable subordinator B with
scale parameter σ > 0, cf. [36].
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3 Long range dependence

Consider a real–valued stationary random field X = {Xt, t ∈ T}. Introduce

CovX(t, u, v) = Cov (1(X0 > u), 1(Xt > v)) , t ∈ T, x, v ∈ R.

It is always defined as the indicators involved are bounded functions.

Definition 3.1. A random field X = {Xt, t ∈ T} is called short range
dependent (s.r.d.) if for any finite measure µ on R

σ2
µ,X :=

∫

T

∫

R2

|CovX(t, u, v)|µ(du)µ(dv) dt < +∞.

X is long range dependent (l.r.d.) if there exists a finite measure µ on R such
that σ2

µ,X = +∞. For discrete parameter random fields (say, if T ⊆ Z
d), the∫

T
dt above should be replaced by

∑
t∈T :t6=0.

3.1 Motivation

Assume that X is stationary with marginal distribution function FX(x) =
P (X0 ≤ x), x ∈ R, covariance function C(t) = Cov(X0, Xt), t ∈ T , and
moreover,

CovX(t, u, v) ≥ 0 or ≤ 0 for all t ∈ T, u, v ∈ R. (3)

Examples of X with this property are all PA or NA- random functions.
Applying [21, Lemma 2], we have (the equality is originally attributed to
Hoeffding (1940))

CX(t) =

∫

R2

CovX(t, u, v) du dv. (4)

Then, X is long range dependent if
∫

T

|CX(t)| dt =
∫

T

∫

R2

|CovX(t, u, v)| du dv dt = +∞, (5)

which agrees with the classical definition.
However, in Definition 3.1 we integrate |CovX(t, u, v)| with respect to a

finite measure µ × µ instead of Lebesgue measure du dv. First, in case of
the infinite variance the right-hand side in (5) is often infinite, regardless
of a dependence structure. As such, the classical definition of long memory
is irrelevant in the infinite variance case. Second, our definition will have
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a natural link with the asymptotic behavior of volumes of excursions of X
above levels u, v. Recall the functional central limit theorem (CLT) for
normed volumes of excursion sets of X at level u proven in [26] (see also [41,
Theorem 9, p. 234] for a generalization of this result to fields without a finite
second moment). Namely, for a large class of weakly dependent stationary
random fields X on R

d, the function

∫

Rd

CovX(t, u, v) dt , u, v ∈ R

is the covariance function of the centered Gaussian process which appears as
a limit of

νd
(
{t ∈ [0, n]d : Xt > u}

)
− ndF̄X(u)

nd/2
, u ∈ R, n→ ∞ (6)

in D(R) equipped with the J1 Skorokhod topology. If in particular the ran-
dom field is PA or NA, then by the continuous mapping theorem, it holds

∫
R
νd
(
{t ∈ [0, n]d : Xt > u}

)
µ(du)− nd

∫
R
F̄X(u)µ(du)

nd/2

d−→ N(0, σ2
µ,X) (7)

as n → ∞ for any finite measure µ with σ2
µ,X as in Definition 3.1. So X is

s.r.d. if the asymptotic covariance σ2
µ,X in the central limit theorem (7) is

finite for any finite integration measure µ prescribing the choice of levels u.
On the contrary,

σ2
µ,X = +∞ (8)

for µ = δ{u0} means that a different normalization is needed in (6) and a
non-Gaussian limit may arise.

Let us point out at a possible interpretation of Definition 3.1 in financial
context. Assume X = {Xt, t ∈ Z} to be a time series representing the stock
price for which an American option at price u0 > 0, t ∈ [0, n], n ∈ N is
issued. The customer may buy a call at price u0 whenever Xt > u0 for some
t ∈ [0, n]. Relation (7) with µ = δ{u0} writes here

ν1 ({t ∈ [0, n] : Xt > u0})− nF̄X(u0)√
n

d−→ N(0, σ2
δ{u0},X

).

Then the long range dependence in the sense of Definition 3.1 of the stock
price X (i.e., σ2

δ{u0},X
= +∞) means that the amount of time within [0, n]

at which the option may be exercised is not asymptotically normal for large
time horizons n. On the contrary, the s.r.d. of stock X means asymptotic
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normality of this time span for any price u0 for which the option was issued
provided that X satisfies conditions of papers [26] or [41].

In terms of potential theory, the value σ2
µ,X in Definition 3.1 is the energy

of measure µ with symmetric kernel K(u, v) =
∫
T

|CovX(t, u, v)| dt, cf. [19, p.
77 ff.].

Self–similar random fields. We conclude this section with the formula-
tion of the long range dependence in a special case of self–similarity.

Let X = {Xt, t ∈ R
d
+} be a real valued multi–self–similar random field.

By definition, it is stochastically continuous and there exist numbersH1, . . . , Hd >
0 such that for a diagonal matrix A = diag(a1, . . . , ad) with a1, . . . , ad > 0 it
holds

{XAt, t ∈ R
d
+}

d
= {aH1

1 . . . aHd
d Xt, t ∈ R

d
+} .

Introduce the notation 1 = (1, . . . , 1) ∈ R
d
+ and es = (es1 , . . . , esd) for s =

(s1, . . . , sd) ∈ R
d. By [11, Proposition 6], the field

Y = {Ys = e−
∑d

j=1
sjHjXes, s ∈ R

d}
is stationary. Using Definition 3.1 for Y together with the substitution ti =
esi , i = 1, . . . , d, we say that X is s.r.d. if for any finite measure µ on R it
holds
∫

Rd
+

∫

R2

∣∣∣∣∣Cov
(
1
(
X1 > u

)
, 1
(
Xt > v ·

d∏

j=1

t
Hj

j

))∣∣∣∣∣
µ(du)µ(dv) dt
∏d

j=1 tj
< +∞,

where dt = dt1 . . . dtd means integration with respect to Lebesgue measure
in R

d
+. On the contrary, X is l.r.d. if the above integral is infinite for some

finite measure µ on R.

3.2 Checking the short or long range dependence

Denote by Pµ(·) = µ(·)/µ(R) the probability measure associated with the
finite measure µ on R. Let U, V be two independent random variables with
distribution Pµ. Then the variance σ2

µ,X from Definition 3.1 becomes

σ2
µ,X

µ2(R)
=

∫

T

E|CovX(t, U, V )| dt =
∫

T

E|FX0,Xt(U, V )− FX0
(U)FXt(V )| dt.

(9)
This relation is useful to check the s.r.d. of X by showing the finiteness of
σ2
µ,X for any i.i.d. random variables U and V . Definition 3.1 is equivalent to

the following lemma.
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Lemma 3.2. A stationary real–valued random field X with marginal distri-
bution function FX is s.r.d. in the sense of Definition 3.1 if

∫

T

∫

(ImFX)2

|C0,t(x, y)− xy|P0(dx)P0(dy) dt < +∞

for any probability measure P0 on ImFX where C0,t is the copula of the
bivariate distribution of (X0, Xt), t ∈ T , and ImFX = FX(R̄) ⊆ [0, 1] is
the range of FX on R̄ = R ∪ {+∞} ∪ {−∞}. X is l.r.d. in the sense of
Definition 3.1 if there exists a probability measure P0 on ImFX such that the
above integral is infinite.

Proof. By relation (9) and Sklar’s theorem (cf. e.g. [14, Theorem 2.2.1]) we
have for any finite measure µ on R

σ2
µ,X = µ2(R)

∫

T

∫

R2

|C0,t(FX(u), FX(v))− FX(u)FX(v)|Pµ(du)Pµ(dv) dt.

The choice of C0,t is unique on ImFX , cf. [14, Lemma 2.2.9]. Applying the
substitution x = FX(u), y = FX(v) we get that

σ2
µ,X = µ2(R)

∫

T

∫

(ImFX)2

|C0,t(x, y)− xy|P0(dx)P0(dy) dt,

where the probability measure P0 has a cumulative distribution function
µ
(
(−∞, F−

X (x))
)
, x ∈ [0, 1], and F−

X is the generalized inverse for FX . �

Lemma 3.2 implies that the new definition of memory is marginal–free,
i.e., independent of the distribution of marginals FX , if ImFX = [0, 1], which
is the case for absolutely continuous FX . It essentially involves only the
bivariate dependence structure encoded in the copula C0,t.

If condition (3) holds then application of the Fubini–Tonelli theorem leads
to

σ2
µ,X = µ2(R)

∫

T

Cov (Fµ(X0), Fµ(Xt)) dt,

where Fµ(x) = Pµ((−∞, x)) is the (left–side continuous) distribution func-
tion of probability measure Pµ. In this case, the s.r.d. condition σ2

µ,X < +∞
reads as a classical covariance summability property of the subordinated ran-
dom field Yt = Fµ(Xt), t ∈ T .

By stationarity of X , it holds CovX(t, u, v) = CovX(−t, u, v) for any
t,−t ∈ T , u, v ∈ R. Hence, in order to show l.r.d. for T = R it is enough to
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check that
∞∫

0

|CovX(t, u0, u0)| dt = +∞

for some u0 ∈ R. For T = Z it is sufficient to consider
∑∞

t=1 |CovX(t, u0, u0)| =
+∞.

3.2.1 The short-range dependence for mixing random fields

Let U ,V be two sub-σ−algebras of F . Introduce the z–mixing coefficient
z(U ,V) (where z ∈ {α, β, φ, ψ, ρ}) as in [13, p.3]. For instance, it is given for
z = α by

α(U ,V) = sup {|P (U ∩ V )− P (U)P (V )| : U ∈ U , V ∈ V} .

Let X = {Xt, t ∈ T} be a random field. Let XC = {Xt, t ∈ C}, C ⊂ T , and
σXC

be the σ−algebra generated by XC . If |C| is the cardinality of a finite
set C then the z-mixing coefficient of X is given by

zX(k, u, v) = sup{z(σXA
, σXB

) : d(A,B) ≥ k, |A| ≤ u, |B| ≤ v},

where u, v ∈ N and d(A,B) is the Hausdorff distance between finite subsets
A and B generated by the metric on R

d. The interrelations between dif-
ferent mixing coefficients zX , z ∈ {α, β, φ, ψ, ρ} are given e.g. in [13, p.4,
Proposition 1].

We state the result that links mixing properties and the short-range de-
pendence. The field X may be non–Gaussian and have infinite variance.

Theorem 3.3. Let X = {Xt, t ∈ T} be a stationary random field with
z−mixing rate satisfying

∫
T
zX(‖t‖, 1, 1) dt < +∞ where z ∈ {α, β, φ, ψ, ρ}.

Then X is s.r.d. in the sense of Definition 3.1 with

∫

T

∫

R2

|CovX(t, u, v)|µ(du)µ(dv) dt≤ 8

∫

T

zX(‖t‖, 1, 1) dt · µ2(R) < +∞.

Proof. Without loss of generality, we prove the result for α-mixing X . In-
troduce random variables ξ(u) = 1(X0 > u), η(v) = 1(Xt > v), where
t ∈ T , u, v ∈ R. Then, by the covariance inequality in [13, p. 9, Theorem
3] connecting the covariance of random variables with their mixing rates we
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have
∫

T

∫

R2

|CovX(t, u, v)|µ(du)µ(dv)dt =
∫

T

∫

R2

|Cov(ξ(u), η(v))|µ(du)µ(dv)dt

≤ 8

∫

T

α(σX0
, σXt)dt

∫

R2

‖ξ(u)‖∞‖η(v)‖∞µ(du)µ(dv)

≤ 8

∫

T

αX(‖t‖, 1, 1)dt · µ2(R) < +∞,

where ‖Y ‖∞ = Ess-sup(Y ). �

To illustrate the above theorem, we let Y = {Yt, t ∈ N} to be a stationary
a.s. non-negative ψ−mixing random sequence with univariate cumulative
distribution function FY and

∫
Rd ψY (‖t‖, 1, 1) dt < +∞. Examples of ψ–

mixing random sequences can be found e.g. in [13, Example 4, p. 19] (see
also references therein), [16, Theorem 2.2], [29, Proof of Claim 2.5], [6], [38,
p. 54-55]. Let F−1

Z be the quantile function of a random variable Z with
EZ2 = +∞. Set G(x) = F−1

Z (FY (x)), x ≥ 0, then Xt = G(Yt), t ∈ N is
ψ–mixing as well. Moreover, it is s.r.d. by the last theorem and has infinite

variance because of X0
d
= Z.

Remark 3.4. For a Gaussian φ–mixing random field X, the statement of
Theorem 3.3 is trivial, since such X is m–dependent [17, Theorem 17.3.2],

and the integral
∞∫
0

|CovX(t, u, v)| dt in Definition 3.1 is bounded by 2m for

any u, v ∈ R.

3.3 Subordinated Gaussian random fields

Recall that ϕ(x) is the density of the standard normal law. We use the
notation Φ(x) for its c.d.f. Introduce the Hermite polynomials Hn of degree
n ∈ N0 by

Hn(x) = (−1)nϕ(n)(x)/ϕ(x)

where ϕ(n) is the n-th derivative of ϕ. Clearly, it holds

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, . . .

For even orders n, Hermite polynomials are even functions, whereas for odd
n they are odd functions. It is well known that Hermite polynomials form
an orthogonal basis in L2

ϕ(R). For any function f ∈ L2
ϕ(R) with 〈f, 1〉ϕ = 0

let
rank (f) = min{n ∈ N : 〈f,Hn〉ϕ 6= 0}

9



be the Hermite rank of f . Furthermore, the Hermite rank can also be defined
for functions f 6∈ L2

ϕ(R), as long as 〈|f |1+θ, ϕ〉 < ∞ for some θ ∈ (0, 1); see
[40] or [5, Section 4.3.5].

Let Y = {Yt, t ∈ T} be a stationary centered Gaussian real-valued ran-
dom field with Var Yt = 1 and CY (t) = Cov(Y0, Yt), t ∈ T . The subordi-
nated Gaussian random field X is defined by Xt = G(Yt), t ∈ T, where
G : R → Im(G) ⊆ R is a measurable function.

Assume first that X is square integrable. The following lemma is proven
in [33, Lemma 10.2]:

Lemma 3.5. Let Z1, Z2 be standard normal random variables with ρ =
cov(Z1, Z2), and let F , G be functions satisfying EF 2(Z1),EG

2(Z1) < +∞.
Then

Cov(F (Z1), G(Z2)) =
∞∑

k=1

〈F,Hk〉ϕ〈G,Hk〉ϕ
k!

ρk.

Let CX(t) = Cov(X0, Xt), t ∈ T . Assuming CY (t) ≥ 0 for all t ∈ T and
applying this lemma to our subordinated process X = G(Y ) we get that it
is s.r.d. in the sense of Definition 3.1 if

∫

T

|CX(t)| dt =
∞∑

k=1

〈G,Hk〉2ϕ
k!

∫

T

Ck
Y (t) dt < +∞. (10)

We shall see that an analogous result holds also if X has no finite second
moment. Introduce the condition

(ρ) |CY (t)| < 1 for all t 6= 0 if T is countable and for νd–almost every t ∈ T
if T is uncountable.

The following result gives the conditions for s.r.d of a subordinated Gaussian
random field, without a moment assumption. Its proof is given in Appendix.

Theorem 3.6. Let Y be a Gaussian random field introduced above. Let X be
a subordinated Gaussian random field defined by Xt = G(Yt), t ∈ T, where G
is a right-continuous strictly monotone (increasing or decreasing) function.
Assume that the condition (ρ) holds. Let

bk(µ) =
(∫

Im(G)

Hk(G
−(u))ϕ(G−(u))µ(du)

)2
(11)

where G− is the generalized inverse of G if G is increasing or of −G if G is
decreasing. Then X is s.r.d. in the sense of Definition 3.1 if and only if

∞∑

k=1

bk−1(µ)

k!

∫

T

|CY (t)|Ck−1
Y (t) dt < +∞ (12)

for any finite measure µ on R.
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Corollary 3.7. Assume that the conditions of Theorem 3.6 hold.

(i) Let µ(dx) = f(x) dx for f ∈ L1(R) such that f(x) ≥ 0 for all x ∈ R.
If G ∈ C1(R) and Im(G) = R then bk(µ) = 〈G′f(G), Hk〉2ϕ, k ∈ N.
In this case, all coefficients bk(µ) are finite if for some θ ∈ (0, 1) it
holds E[|G′(Y0)f(G(Y0))|1+θ] < +∞. If G′f(G) is an even function
then bk(µ) = 0 for all natural odd k.

(ii) If Xt = G(|Yt|), t ∈ T, then the s.r.d. condition (12) simplifies to

∞∑

k=1

b2k−1(µ)

(2k)!

∫

T

C2k
Y (t) dt < +∞. (13)

Remark 3.8. Based on Theorem 3.6 and Corollary 3.7, the l.r.d. in the
sense of Definition 3.1 can also be formulated as follows:

(i) X = G(Y ) is l.r.d. if ∃u0 ∈ R : bk(δ{u0}) < +∞ for all k and the series
(12) diverges to +∞.

(ii) If the initial process Y is s.r.d. then all powers of CY are integrable on
T and the long memory of X = G(|Y |) can only come from function G.
This can happen e.g. if its coefficients bk(µ) decrease to zero slowly
enough. Conversely, assume that Y is l.r.d., 0 < b2k−1(µ) < +∞
for all k ∈ N and some finite measure µ. If there exists k ∈ N s.t.∫
T
C2k

Y (t) dt = +∞ then X is l.r.d.

Let us illustrate the last point of Remark 3.8 by an example.

Example 3.9. Let G(x) = ex
2/(2α), α > 0, T = R

d. Then it is easy to see
that

P (|X0| > x) = L(x)x−α,

where L(x) =
√

2/(π log x). For α ∈ (1, 2], it holds EX0 <∞, EX2
0 = +∞.

To compute b2k−1(µ), we notice that

√
b2k−1(µ) =

1√
2π

∞∫

1

u−αH2k−1(
√

2α log u)µ(du), k ∈ N.

Using the upper bound |H2k−1(x)| ≤ xex
2/4(2k − 1)!!/4, x ≥ 0 from [1, p.

787] one can show that

b2k−1(µ) ≤
α

16π
[(2k − 1)!!]2

(∫ ∞

1

u−α/2
√

log u µ(du)

)2

≤ α

4π
µ2
(
[1,+∞)

)
[(2k − 1)!!]2 < +∞

11



for all k ∈ N.
We note that the use of the finite measure µ is crucial here, since e.g.

in case of the Lebesgue measure the integral
∫∞

1
u−α/2

√
log uµ(du) is infinite

for α ≤ 2.
Now by Stirling’s formula [4, Theorem 1.4.2], we get

[(2k − 1)!!]2

(2k)!
∼ c3√

k
, k → +∞ (14)

for c3 > 0, so
b2k−1(µ)

(2k)!
= O

(
1√
k

)
, k → +∞. (15)

Assume that CY (t) ∼ ‖t‖−η as ‖t‖ → +∞, η > 0. Then X = eY
2/(2α),

α > 0, is

• l.r.d. if η ∈ (0, d/2] since then

∞∑

k=1

b2k−1(µ)

(2k)!

∫

T

C2k
Y (t) dt = +∞.

• s.r.d. if η > d/2 since then we have

∫

Rd

C2k
Y (t) dt = O(k−1) as k → +∞,

and the series (13) behaves as
∞∑
k=1

1
k3/2

< +∞.

Here the source of long memory of X is the l.r.d. field Y . If α > 2 the
variance of X0 is finite, and our results agree with the definition in (1) by
relation (10) if we notice that rank (G) = 2. However, the main point of this
example is that we have the same transition from short to long memory (that
is η = d/2) for both finite- and infinite variance fields.

Note that for η ∈ (d/2, d) the Gaussian field Y is l.r.d. but the subordi-
nated field X = eY

2/(2α) is s.r.d. This agrees with the classical theory in case
of finite variance, but is novel in case of infinite variance.

3.4 Stochastic volatility models

We present a way of constructing random fields with long memory by intro-
ducing a random volatility G(Yt) (being a deterministic function of a random
scaling field Y = {Yt, t ∈ T}) of a random field Z = {Zt, t ∈ T}. We assume
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that Y and Z are independent. An overview of random volatility models and
their applications in finance can be found in e.g. [39] and [3, Part II]. For
each t ∈ T , Xt = G(Yt)Zt is a scale mixture of G(Yt) and Zt, see [42, Chapter
VI, p. 345]. Let F̄Z = 1 − FZ be the marginal tail distribution function of
Zt for stationary Z.

For a finite measure µ, introduce the functional

Dµ (G(Y ), Z0) =

∫

T

∫

R2

Cov
(
F̄Z

(
u/G(Y0)

)
, F̄Z

(
v/G(Yt)

))
µ(du)µ(dv) dt.

The next lemma follows trivially from relation (2), independence of Y and
Z and Tonelli theorem.

Lemma 3.10. Let a random field X = {Xt, t ∈ T} be given by Xt = G(Yt)Zt

where Y = {Yt, t ∈ T} and Z = {Zt, t ∈ T} are independent stationary
random fields, Z has property (3), G : R → R± and P

(
G(Yt) = 0

)
= 0 for

all t ∈ T . Then

∫

T

∫

R2

CovX(t, u, v)µ(du)µ(dv) dt = Dµ (G(Y ), Z0)

+

∫

T

∫

R2

E [CovZ(t, u/G(Y0), v/G(Yt))] µ(du)µ(dv) dt. (16)

Let us illustrate the use of Lemma 3.10.

Corollary 3.11. Let the random field X be given by Xt = AZt, t ∈ T ,
|T | = +∞ where A > 0 a.s., A and Z are independent and Z ∈ PA is
stationary. Then X is l.r.d. in the sense of Definition 3.1 if there exists
u0 ∈ R: F̄Z

(
u0/A

)
6= const a.s.

The above corollary evidently holds true if e.g. Z0 ∼ Exp(λ), A ∼
Frechet(1) for any λ > 0. It also clearly applies to a subgaussian random

field X where A =
√
B, B ∼ Sα/2

((
cos πα

4

)2/α
, 1, 0

)
, α ∈ (0, 2), and Z is a

centered stationary Gaussian random field with covariance function C(t) ≥ 0
for all t ∈ T and a non–degenerate tail F̄Z .

The following corollary describes the situation where light-tailed Y is
responsible for the l.r.d. of X , while Z – for heavy tails.

Corollary 3.12. For the random field X = {Xt, t ∈ T} given by Xt = YtZt,
t ∈ T , assume that random fields Y = {Yt, t ∈ T} and Z = {Zt, t ∈ T} are
stationary and independent. Assume that Z0 has a regularly varying tail, that
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is, P (Z0 > x) ∼ L(x)/xα as x → +∞ for some α > 0 where the function
L is slowly varying at +∞. For Y0 > 0 a.s. assume that EY δ

0 < ∞ and
E
(
Y δ
0 Y

δ
t

)
< ∞ for some δ > α and all t ∈ T . Let Y, Z ∈ PA(NA). Then

X is l.r.d. if Y α = {Y α
t , t ∈ T} is l.r.d.

Now we scale a l.r.d. (possibly heavy–tailed) random field Z by a random
volatility G(Y ) being a subordinated Gaussian random field.

Lemma 3.13. Let Xt = G(Yt)Zt be a random field as in Lemma 3.10. As-
sume additionally that Y is a centered Gaussian random field with unit vari-
ance and covariance function ρ(t) ≥ 0 satisfying condition (ρ). Then

Dµ (G(Y ), Z0) =

∞∑

k=1

(∫
R
〈F̄Z(u/G(·)), Hk(·)〉ϕ µ(du)

)2

k!

∫

T

ρk(t) dt.

The following example illustrates our definition of l.r.d. in the context of a
popular long memory stochastic volatility model that is used in econometrics
to model log–returns of stocks, see [5, p.70ff] and references therein.

Example 3.14. Assume that X = {Xt, t ∈ Z} has a form Xt = eY
2
t /4Zt,

where Zt is a sequence of i.i.d. random variables with finite moment of order
2 + δ for some δ > 0, while Yt is a centered stationary Gaussian PA long
memory sequence with unit variance and covariance function CY satisfying
condition (ρ). Both sequences Zt and Yt are assumed to be independent from
each other. From Example 3.9 we know that eY

2
0
/4 is regularly varying with

index α = 2. By Breiman’s lemma the tail distribution function of |X0| is
also regularly varying with index α = 2 and hence X0 has infinite variance.
Choose µ = δ{u0} for some u0 ∈ R. Lemmas 3.10 and 3.13 yield

∞∑

t=1

∫

R2

CovX(t, u, v)µ(du)µ(dv) =

∞∑

k=1

〈F̄Z(u0/G), Hk〉2ϕ
k!

∞∑

t=1

Ck
Y (t), (17)

where G(x) = ex
2/4. Since F̄Z(u0/G) is symmetric, monotone nondecreasing

and bounded we get 〈F̄Z(u0/G), Hk〉ϕ = 0 for all odd k, and it is finite for all
even k ∈ N. Moreover, by Lemma 4.1, 2) we have rank (F̄Z(u0/G)) = 2. It is
clear then that X is l.r.d. if

∑∞
t=1 ρ

2(t) = +∞. In particular, if CY (t) ∼ |t|−η

as |t| → ∞, then l.r.d. occurs if η ∈ (0, 1/2]. Again, similarly to Example
3.9, the point here is that we obtain long memory in case of both finite and
infinite variance.
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4 Limit theorems

In this section, we investigate connections between Definition 3.1 and limit
theorems for random volatility and subordinated Gaussian random fields. In
order to do so, we have to specify the statistic whose limiting behaviour we
consider. We focus on the volume of the excursion sets.

In Section 4.1 we consider subordinated Gaussian random fields. In Sec-
tion 4.1.1 we show by a natural example that our definition of long memory
is in agreement with the existing limiting behaviour of the volume of excur-
sions of X over some levels u. On the other hand, in Section 4.1.2, we will
indicate that the limiting behaviour of the empirical mean cannot be directly
related to our definition. The latter is not surprising.

In Section 4.2 we consider related problems for stochastic volatility ran-
dom fields.

From now on, we assume the random field X to be measurable. In what
follows, L will indicate a slowly varying function at infinity, that can be
different at each of its occurrences.

We start with the following lemma that will play a major role.

Lemma 4.1. Let Y, Z be independent random variables such that Y ∼
N(0, 1). For any monotone right-continuous non–constant function G : R →
R± with ν1 ({x ∈ R : G(x) = 0}) = 0, consider the functions G̃(y) = G(|y|)
and

ζG,Z,u(y) = E[1{G(y)Z > u}]− P (G(Y )Z > u) , y ∈ R (18)

for a fixed u > 0 if G ≥ 0 and u < 0 if G ≤ 0. Then the following holds:

(i) Let G : R → R± be as above such that E|G(Y )|1+θ < +∞ for some
θ ∈ (0, 1]. Then rank (G) = rank (ζG,1,u) = rank (ζG,Z,u) = 1.

(ii) Let G : R+ → R± be as above such that E|G̃(Y )|1+θ < +∞ for some
θ ∈ (0, 1], G−(u) 6= 0, where G− is the generalized inverse of G. Then

rank (G̃) = rank (ζG̃,1,u) = rank (ζG̃,Z,u) = 2.

Remark 4.2. (i) If Z ≡ 1 the assertion of Lemma 4.1(i) holds under
milder assumptions on G and u. Thus, let G : R → R be a monotone
right–continuous non–constant function such that E|G(Y )|1+θ < +∞
for some θ ∈ (0, 1]. Then for any u ∈ R rank (G) = rank (ζG,1,u) = 1.

(ii) The assumption of nonnegative or nonpositive G is essential to the
statement rank (ζG,Z,u) = 1 of Lemma 4.1(i) since for G(y) = y and
symmetric Z we have E[Y 1{Y Z > u}] = 0, so the Hermite rank of
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ζG,Z,u is greater than 1. Similarly, one can construct examples of func-
tions G with rank (ζG̃,Z,u) > 2 for some u ∈ R if the assumptions
of Lemma 4.1(ii) do not hold. For instance, G−(u) = 0 means that
rank (ζG̃,Z,u) ≥ 4.

(iii) If G is nonnegative or nonpositive and u = 0 then it is easily seen that
ζG,Z,0 ≡ 0 and, formally speaking, its Hermite rank is infinite.

4.1 Limit theorems for subordinated Gaussian processes

Let X = {Xt, t ∈ R
d} where Xt = G(Yt) and Y = {Yt, t ∈ R

d} is a station-
ary isotropic l.r.d. centered Gaussian random field with covariance function
CY (t) = ‖t‖−ηL(‖t‖), η ∈ (0, d/q) (cf. [18, 22, 23]). Here EG2(Y0) < +∞
and q is the Hermite rank of G. Under some technical assumptions on the
spectral density f(λ) of Y (cf. [23, Assumption 2]) it holds

nqη/2−dL−q/2(n)

∫

Wn

G(Yt) dt
d−→ R , n→ +∞, (19)

where

R = (γ(d, η))q/2
∫ ′

Rdq

∫

W

ei〈λ1+...+λq ,u〉du
B̃(dλ1) . . . B̃(dλq)

(‖λ1‖ · . . . · ‖λq‖)(d−η)/2
, (20)

γ(d, η) =
Γ ((d− η)/2)

2ηπd/2Γ(η/2)
,

and
∫ ′

Rdq is the multiple Wiener–Ito integral with respect to a complex Gaus-

sian white noise measure B̃ (with structural measure being the spectral mea-
sure of Y , cf. [18, Section 2.9]). It is easy to see that in case q = 1 the
distribution of R is Gaussian. However, the normalization nη/2−dL−1/2(n)
differs from the CLT–common normalizing factor n−d/2 which agrees with
the fact that X is l.r.d. in the sense of the usual definition as in (1). For
q ≥ 2, one gets a q–Rosenblatt–type distribution for R, see [43, 24] and
references therein for its properties in the case q = 2.

4.1.1 Volume of level sets

We specify the above situation to the level sets. Assume G : R → R to
be a monotone right–continuous function such that E|G(Y )|1+θ < +∞ with
θ ∈ (0, 1). Let the variance of X0 be infinite. For any u ∈ R introduce the
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function gu(x) = ζG,1,u(x), where ζG,1,u is given in (18). By Remark 4.2(i),
the Hermite ranks of G and gu are equal to one. If η ∈ (0, d) then

∫
Wn

gu(Yt) dt

nd−η/2L1/2(n)
=

∫
Wn

1 (G(Yt) > u) dt− νd(Wn)P (G(Y0) > u)

nd−η/2L1/2(n)

d−→ R

as n→ +∞ where R is given in (20). The normalization in this limit theorem
is not of CLT-type n−d/2 which should be attributed to the l.r.d. case. Let
us compare this behavior with Definition 3.1. As an example, we consider

G(x) = sgn(x)
(
ex

2/β2 − 1
)
, x ∈ R

for some β >
√
2(1 + θ). Note that it is possible that the variance of

X = G(Y ) is infinite. Set µ = δ{0}. By Remark 3.8, 1) we get bk(µ) =
H2

k(0)/(2π) < +∞ for any k ≥ 0, b0 > 0, b1 = 0, etc. By the choice
CY (t) = ‖t‖−ηL(‖t‖), η ∈ (0, d) we get that

∫
Rd |CY (t)| dt = +∞, and the se-

ries (12) diverges. Then X is l.r.d. in the sense of Definition 3.1 for η ∈ (0, d)
which is in accordance with the above limit theorem.

4.1.2 Empirical mean: infinite variance case

In this section we show that Definition 3.1 cannot be linked the behavior of
integrals or partial sums of the field X if X has infinite variance. For that, we
use the framework of time series X = {Xt, t ∈ Z} where many more models
have been widely explored, as compared to (continuous-time) random fields.

Consider (similarly as in Section 3.3) a subordinated time series Xt =
G(|Yt|), t ∈ Z, where {Yt, t ∈ Z} is a centered Gaussian long memory linear
time series with nondecreasing covariance function CY (t) = Cov(Y0, Yt) ∼
|t|−ηL(t), t → +∞, η ∈ (0, 1), and such that P (|X0| > x) ∼ x−αL(x),
α ∈ (0, 2). It is further assumed that G has Hermite rank q. By Corollary
3.7(ii), X is short range dependent in the sense of Definition 3.1 whenever
for any finite measure µ on R

∞∑

k=1

b2k−1(µ)

(2k)!

∞∑

t=1

C2k
Y (t) < +∞. (21)

We note that

∞∑

t=1

C2k
Y (t) ≤ c0

∞∫

1

L2k(t)

t2kη
dt ≤

∞∫

1

c1 dt

t2k(η−δ)
, k ∈ N, (22)

where δ > 0 is arbitrary and c0, c1 > 0 are some constants. The second
inequality holds since L(t) ≤ c2t

δ for t ≥ t0 where t0 > 0 is large enough and
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Parameter range Limit of normalized sums Sn

1− 1/α < η < 1 α–stable
0 < η < 1− 1/α Rosenblatt

Table 1: Short or long memory of Xt = eY
2
t /(2α) in the infinite variance case

α ∈ (1, 2) in dependence of the long memory parameter η of Y according to
paper [40].

c2 = c2(δ, t0) = (1+ δ)L(t0)/t
δ
0 ≤ 1 for large t0, cf. [30, Proposition 2.6]. The

right–hand side of (22) is finite and equal to O(1/k) whenever η ∈ (1/2, 1)
since δ > 0 can be chosen arbitrarily small. The series in (22) diverges if
η ∈ (0, 1/2). If η = 1/2 the summability of the series in (22) depends on the
particular form of the slowly varying function L and will not be discussed
here.

Thus, for η ∈ (1/2, 1) X is s.r.d. whenever

∞∑

k=1

b2k−1(µ)

(2k)!k
< +∞ (23)

for any finite measure µ.
Now we have to consider a special example of function G in order to

get more explicit results for the s.r.d. case. As in Example 3.9, set G(x) =
ex

2/(2α), α ∈ (0, 2]. By relation (15), condition (23) is satisfied for η ∈ (1/2, 1),
hence X is s.r.d. in the sense of Definition 3.1 if η ∈ (1/2, 1) and l.r.d. if
η ∈ (0, 1/2).

Let us compare this result with the limiting behaviour of the partial sums
Sn =

∑n
t=1(Xt − E[Xt]) as given in [40] and [5, Section 4.3.5], cf. Table 1.

There, some discrepancies are seen, that is Definition 3.1 does not agree with
the asymptotic behaviour of Sn.

4.2 Limit theorems for the integrals of functionals of
l.r.d. random volatility fields

In this section we will justify that our definition of l.r.d. is in agreement with
limit theorems for volumes of level sets for random volatility models. Unlike
as in the subordinated Gaussian case where the limiting results are known,
a general asymptotic theory has to be developed.

Let X be a random volatility field of the form Xt = G(Yt)Zt, t ∈ Z
d,

where
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• {G(Yt), t ∈ R
d} is a subordinated Gaussian measurable random field,

which is sampled at points t ∈ Z
d,

• {Zt, t ∈ Z
d} is a white noise,

• the random fields Y and Z are independent.

Our goal is to prove limit theorems for
∑

t∈Wn
g(Xt) as n → ∞, where

Wn = [−n, n]d ∩ Z
d and g is a real valued Borel–measurable function such

that

E[g(X0)] = 0, E[g2(X0)] > 0 . (24)

Introduce the function

ξ(y) = E[g(G(y)Z0)] .

It follows from (24) that for ν1–almost every y ∈ R

ξ(y) <∞ . (25)

By (24) we also have E[ξ(Y0)] = 0. Let

J(m) = 〈ξ,Hm〉ϕ = E[Hm(Y0) g(G(Y0)Z0)]

be the mth Hermite coefficient of ξ. We recall that a sufficient condition for
the finiteness of J(m) is

E[|g(X0)|1+θ] = E[|ξ(Y0)|1+θ] = E

[
|E[g(G(Y0)Z0) | Y ]|1+θ

]
<∞ (26)

for some θ ∈ (0, 1], where Y is a sigma-field generated by the entire sequence
Y . Let rank (ξ) = q. Furthermore, set

m(y, Zt) = g(G(y)Zt)− E[g(G(y)Zt)] = g(G(y)Zt)− ξ(y) ,

which is almost everywhere finite by (25), and χ(y) = E[m2(y, Z0)] . We also
assume

E[χ3(Y0)] <∞ . (27)

Note that under (27), using Lyapunov inequality on a space of finite measure
and the stationarity of Yt, we have for any finite subset I ⊂ Z

d that

E



(
∑

t∈I

χ(Yt)

)3

 <∞ .

The following result shows that the limiting behaviour is primarily deter-
mined by the function ξ, with ξ ≡ 0 being the boundary case.

19



Theorem 4.3. Assume that random field Xt = G(Yt)Zt, t ∈ Z
d, is as above,

where additionally

• Y is a homogeneous isotropic centered Gaussian random field with the
covariance function CY (t) = E[Y0Yt] = ‖t‖−ηL(‖t‖), η ∈ (0, d/q) and
L is slowly varying at infinity,

• Y has a spectral density f(λ) which is continuous for all λ 6= 0 and
decreasing in a neighborhood of 0.

Assume that (24), (26) with θ = 1, (27) hold.

1. If ξ(y) ≡ 0 then

n−d/2
∑

t∈Wn

g(Xt)
d−→ N (0, σ2) , n→ +∞, (28)

where σ2 = E[g2(X0)]2
d > 0.

2. If ξ(y) 6≡ 0 then

nqη/2−dL−q/2(n)
∑

t∈Wn

g(Xt)
d−→ R , n→ +∞, (29)

where the random variable R is given in (20) with W = [−1, 1]d.

Example 4.4. Assume that g(y) = y, E[G2(Y0)] <∞ and E[Z0] = 0. Then
ξ(y) = G(y)E[Z0] = 0 and (28) always holds. In this case, there is no
contribution from the long memory of the random field Yt.

Example 4.5. Assume that g(y) = y − E[G(Y0)Z0], E[Z0] 6= 0. Then
ξ(y) = E[Z0] {G(y)− E[G(Y0)]}. Condition (27) is satisfied if E[|Z0|3] < +∞,
E[G4(Y0)] < +∞. In this case ξ(y) 6≡ 0, and (29) always holds.

Example 4.6. Assume that g(y) = gu(y) = 1{y > u} − P (G(Y0)Z0 > u)
where G is nonnegative or nonpositive ν1–a.e. Then

ξ(y) = E[1{G(y)Z0 > u}]− P (G(Y0)Z0 > u) 6≡ 0

if u 6= 0, so case (29) applies. If u = 0 then ξ(y) ≡ 0 (compare Remark
4.2(iii)), so case (28) holds true.

Example 4.7. Let the random volatility field Xt = G(|Yt|)Zt, t ∈ Z
d be as

in Lemma 3.13 where {Zt} is a heavy–tailed white noise, EZ2
0 = +∞. Let

Y satisfy the assumptions of Theorem 4.3. Choose G(x) ≥ 0 as in Lemma
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4.1(ii), and CY (t) ∼ ‖t‖−η as ‖t‖ → +∞ be nonnegative. Similarly to
Example 3.14, an analogue of relation (17) holds true: for µ = δ{u0}, u0 > 0
we have

∑

t∈Zd, t6=0

∫

R2

CovX(t, u, v)µ(du)µ(dv) =
∞∑

k=1

〈F̄Z(u0/G̃), Hk〉2ϕ
k!

∑

t∈Zd, t6=0

Ck
Y (t),

where G̃(y) = G(|y|), y ∈ R. Since rank (F̄Z(u0/G̃)) = 2, X is l.r.d. in the
sense of Definition 3.1 if

∑
t∈Zd, t6=0C

2
Y (t) = +∞, that is, if η < d/2.

Consider function ξ from Example 4.6 with u = u0 > 0 and G̃ instead of
G. By Lemma 4.1, 2) rank (ξ) = 2. By Theorem 4.3 and Example 4.6, the
asymptotic behavior of the cardinality of the level sets of X at niveau u0 is
of l.r.d.-type if η ∈ (0, d/2) which is in agreement with our definition.

Remark 4.8. We would like to connect the assumption ξ ≡ 0 to our defini-
tion. Let g, h be functions such that E[g(X0)] = E[h(X0)] = 0. If E[g(X0)h(Xt)] <
∞ for all t, and E[g(G(y)Z0)] = E[h(G(y)Z0)] = 0 for all y, then for t 6= 0

Cov(g(X0), h(Xt)) =

∫ ∫
E[g(G(y0)Z0)]E[h(G(yt)Zt)]PY0,Yt(dy0, dyt) = 0 ,

(30)

where PY0,Yt is the joint law of (Y0, Yt). In particular, take

g(x) = gu(x) = 1(x > u)−P (X0 > u) , h(x) = hv(x) = 1(x > v)−P (X > v) .

Then

σ2
µ,X =

∑

t∈Zd, t6=0

∫

R2

|Cov(gu(X0), hv(Xt))| dudv = 0,

and the random field X is s.r.d. according to Definition 3.1 in case ξ ≡ 0.

5 Summary and outlook

We proposed a new definition of long memory for stationary random fields X
indexed by any set T ⊂ R

d which works also for heavy tailed X . We showed
that this definition fits well the asymptotic behavior of the volume of the
excursion set of X at a level u ∈ R in a unboundedly growing observation
window Wn. This connection to non–central limit theorems was proven for a
class of random volatility fields with a subordinated l.r.d. Gaussian volatility.
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6 Appendix: Proofs

Proof of Theorem 3.6. If X is a centered stationary unit variance Gaussian
random field with covariance function CY (t),

CovX(t, u, v) =
1

2π

∫ CY (t)

0

1√
1− r2

exp

{
−u

2 − 2ruv + v2

2 (1− r2)

}
dr, (31)

see [8, Lemma 2].
Consider representation (31). Since the density f(U,V ) of a bivariate nor-

mal distribution with zero mean, unit variances and correlation coefficient
∓r equals

1

2π
√
1− r2

exp

{
−x

2 ± 2rxy + y2

2(1− r2)

}
≥ 0

then it is easy to see that

|CovY (t, x, y)| =
1

2π

|CY (t)|∫

0

1√
1− r2

exp

{
−x

2 − 2sign(CY (t))rxy + y2

2(1− r2)

}
dr.

Since G is strictly monotone, by properties of the generalized inverse of G
we have

∫

T

+∞∫

−∞

+∞∫

−∞

|CovX(t, u, v)|µ(du)µ(dv)dt =

∫

T

∫

(Im(G))2

|CovY (t, G−(u), G−(v))|µ(du)µ(dv)dt =

∫

T

∫

(Im(G))2

|CY (t)|∫

0

exp

(
−(G−(u))2 − 2sign(CY (t))rG

−(u)G−(v) + (G−(v))2

2(1− r2)

)
drµ(du)µ(dv)dt

2π
√
1− r2

.

By [9, Formula (21.12.5)] for the density f(U,V ) with correlation coefficient
sign(CY (t))r ∈ (−1, 1) it holds

fU,V (x, y) =
∞∑

k=0

Φ(k+1)(x)Φ(k+1)(y)

k!
(sign(CY (t))r)

k, x, y ∈ R. (32)

By condition νd({t ∈ T : |CY (t)| = 1}) = 0, the above series converges
uniformly for r ∈ (−1, 1), so integration over r ∈ [0; |CY (t)|] and summation
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with respect to k can be interchanged. Then the above triple integral reads

∫

T

∫

Im(G)2

|CY (t)|∫

0

∞∑

k=0

Φ(k+1)(G−(u))Φ(k+1)(G−(v))

k!
(sign(CY (t))r)

kdrµ(du)µ(dv)dt

=

∫

T

∫

Im(G)2

ϕ(G−(u))ϕ(G−(v))
∞∑

k=0

Hk(G
−(u))Hk(G

−(v))

k!
sign(CY (t))

k

×|CY (t)|k+1

k + 1
µ(du)µ(dv)dt

=

∫

T

∫

Im(G)2

|CY (t)|ϕ(G−(u))ϕ(G−(v))

∞∑

k=0

Hk(G
−(u))Hk(G

−(v))

(k + 1)k!
CY (t)

kµ(du)µ(dv)dt.

Abel’s uniform convergence test allows us to interchange the sum and the
integral over Im(G)2. Since bk ≥ 0 we get

∫

T

∞∑

k=0

∫

Im(G)2

ϕ(G−(u))ϕ(G−(v))
Hk(G

−(u))Hk(G
−(v))

(k + 1)!
|CY (t)|CY (t)

kdrµ(du)µ(dv)dt

=

∫

T

∞∑

k=0

1

(k + 1)!

( ∫

Im(G)

ϕ(G−(u))Hk(G
−(u))µ(du)

)2
|CY (t)|CY (t)

kdt

=

∫

T

∞∑

k=0

bk(µ)

(k + 1)!
|CY (t)|CY (t)

kdt =
∞∑

k=1

bk−1(µ)

k!

∫

T

|CY (t)|ρk−1(t)dt,

where the integral over T and the sum are interchangeable by Tonelli’s the-
orem subdividing T into parts T+ = {t ∈ T : CY (t) ≥ 0} and T− = {t ∈ T :
CY (t) < 0}. Then X = G(Y ) has short memory if

∞∑

k=1

bk−1(µ)

k!

∫

T

|CY (t)|ρk−1(t)dt < +∞

for any finite measure µ on R. �

Proof of Corollary 3.7. 1. It follows from relation (11) using the change
of variables u = G(x) and by [5, Lemma 4.21].

2. W.l.o.g. assume G to be an increasing function. Since the probabil-
ity density of the centered uni- and bivariate Gaussian distribution is
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invariant under transformation x 7−→ −x, y 7−→ −y we get

CovX(t, u, v) = P (|Y0| > G−(u), |Yt| > G−(v))

− P (|Y0| > G−(u))P (|Yt| > G−(v))

= 2
(
P (Y0 > G−(u), Yt > G−(v))− P (Y0 > G−(u))P (Yt > G−(v))

+ P (Y0 > G−(u), Yt < −G−(v))− P (Y0 > G−(u))P (Yt < −G−(v))
)
.

Denote Z = −Yt, x = G−(u), y = G−(v). It holds

P (Y0 > x, Yt > y)− P (Y0 > x)P (Yt > y) = Cov(1(Y0 ≥ x), 1(Yt ≥ y)),

P (Y0 > x, Yt < −y)−P (Y0 > x)P (Yt < −y) = Cov(1(Y0 > x), 1(Z > y)).

Since Cov(Y0, Z) = −CY (t) and xy = G−(u)G−(v) ≥ 0 we have by
formula (31) that

|CovX(t, u, v)| =
2

2π

∣∣∣∣∣∣

CY (t)∫

0

1√
1− r2

exp

(
−x

2 − 2rxy + y2

2(1− r2)

)
dr

+

−CY (t)∫

0

1√
1− r2

exp

(
−x

2 − 2rxy + y2

2(1− r2)

)
dr

∣∣∣∣∣∣

=

|CY (t)|∫

0

(
exp

(
−x

2 − 2rxy + y2

2(1− r2)

)
− exp

(
−x

2 + 2rxy + y2

2(1− r2)

))
dr

π
√
1− r2

.

Similarly to the proof of Theorem 3.6, we use representation (32) to
write

∫

T

+∞∫

−∞

+∞∫

−∞

|CovX(t, u, v)|µ(du)µ(dv)dt

= 2

∫

T

∫

Im(G)2

∞∑

k=0

1− (−1)k

(k + 1)!
Hk(x)Hk(y)ϕ(x)ϕ(y)|CY (t)|k+1µ(du)µ(dv)dt

=

∫

T

∞∑

k=1

4

(2k)!



∫

Im(G)

H2k−1(G
−(u))ϕ(G−(u))µ(du)




2

|CY (t)|2kdt

= 4
∞∑

k=1

b2k−1(µ)

(2k)!

∫

T

ρ2k(t)dt.

�
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Proof of Corollary 3.11. Choose µ = δ{u0}, u0 ∈ R and write

∫

T

∫

R2

CovX(t, u, v)µ(du)µ(dv) dt =

∫

T

Cov
(
F̄Z

(
u0/A

)
, F̄Z

(
u0/A

))
dt

+

∫

T

E [CovZ(t, u0/A, u0/A)] dt ≥
∫

T

Var
(
F̄Z

(
u0/A

))
dt = +∞

since Z ∈ PA, F̄Z

(
u0/A

)
is non-degenerate and bounded. �

Proof of Corollary 3.12. Without loss of generality assume Z, Y ∈ PA. Then
Y α ∈ PA, too, and the second term in (16) is nonnegative. Denote

Au,v(t) = Cov
(
F̄Z

(
u/Y0

)
, F̄Z

(
v/Yt

))
, u, v ∈ R+, t ∈ T.

Since Y ∈ PA and the function F̄Z

(
u/ ·

)
is bounded and nondecreasing

for u > 0 we get Au,v(t) ≥ 0 for all u, v ∈ R+, t ∈ T. Using the regular
variation of the tail of Z0, the independence of Y and Z and Potter bound
[30, Proposition 2.6] one can easily show that under the above assumptions
on the integrability of Y it holds

Au,v(t) ∼ F̄Z(u)F̄Z(v)Cov (Y
α
0 , Y

α
t ) , u, v → +∞,

for any t ∈ T . Then for sufficiently large N > 0 there exists u0 > N such
that for the Dirac measure µ = δ{u0} and some ε ∈ (0, 1) we have

∫

T

∫

R2

CovX(t, u, v)µ(du)µ(dv)dt ≥
∫

T

Au0,u0
(t)dt ≥ εF̄ 2

Z(u0)

∫

T

Cov (Y α
0 , Y

α
t ) dt

which is infinite if Y α is l.r.d. Thus, X = Y Z is l.r.d. if Y α is l.r.d. �

Proof of Lemma 3.13. Without loss of generality, assume G to be nonnega-
tive. By Lemma 3.5, Fubini and Tonelli theorems for Gu(y) = F̄Z (u/G(y))
we get

Dµ (G(Y ), Z0) =

∫

T

∫

R2

Cov (Gu(Y0), Gv(Yt))µ(du)µ(dv) dt

=
∞∑

k=1

(∫
R
〈Gu, Hk〉ϕ µ(du)

)2

k!

∫

T

ρk(t) dt.
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The change of order of the sum and integrals is justified by Weierstrass
uniform convergence test since for almost all t ∈ T

∞∑

k=1

|〈Gu, Hk〉ϕ〈Gv, Hk〉ϕ|
k!

ρk(t) ≤
∞∑

k=1

〈1, |Hk|〉2ϕ
k!

ρk(t) ≤
∞∑

k=1

ρk(t) <∞

due to 〈1, |Hk|〉ϕ ≤
√
k! by Cauchy–Schwarz inequality and due to condition

(ρ). �

Proof of Lemma 4.1. 1. If G : R → R is monotone then rank (G) = 1 due
to

〈G,H1〉ϕ = E[Y G(Y )] =

∫ ∞

0

(G(y)−G(−y)) yϕ(y)dy 6= 0. (33)

What is the Hermite rank of ζG,Z,u? First consider Z ≡ 1. Since the
Hermite rank of y 7→ 1{y > u} − F̄Y (u) is one we can write

〈ζG,1,u, H1〉ϕ = E[Y 1{G(Y ) > u}] = E[Y 1{Y > G−(u)}] 6= 0,

where G is non–decreasing w.l.o.g. Hence, rank (ζG,1,u) = 1 for any
u ∈ R. Now let G : R → R± and Z be arbitrary. W.l.o.g. assume G to
be nonnegative. Then

〈ζG,Z,u, H1〉ϕ =

∫

R

F̄Z

(
u/G(y)

)
yϕ(y) dy 6= 0,

since for any u 6= 0 the function y 7→ F̄Z (u/G(y)) is monotone, and we
can use the reasoning (33). For nonpositive G replace F̄Z above by FZ .

2. W.l.o.g. assume that G is nonnegative and nondecreasing. We prove
that rank (G̃) = 2.

Clearly, since y 7→ G(|y|) is even, we have E[Y G(|Y |)] = 0. Now,

E[H2(Y )G(|Y |)] = 2

∫ ∞

0

G(y)(y2 − 1)ϕ(y)dy .

We note that ∫ ∞

0

(y2 − 1)ϕ(y)dy = 0 (34)

and hence by symmetry
∫ 1

0
(y2−1)ϕ(y)dy = −

∫∞

1
(y2−1)ϕ(y)dy. Also,

by the mean value theorem, due to monotonicity of non–constant G,
there exists y0 ∈ [0, 1) such that

∫ 1

0

G(y)(y2 − 1)ϕ(y)dy = G(y0)

∫ 1

0

(y2 − 1)ϕ(y)dy .
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Therefore,
∫ ∞

0

G(y)(y2 − 1)ϕ(y)dy

≥ G(y0)

∫ 1

0

(y2 − 1)ϕ(y)dy +G(1)

∫ ∞

1

(y2 − 1)ϕ(y)dy

= −G(y0)
∫ ∞

1

(y2 − 1)ϕ(y)dy +G(1)

∫ ∞

1

(y2 − 1)ϕ(y)dy

= (G(1)−G(y0))

∫ ∞

1

(y2 − 1)ϕ(y)dy > 0 .

For nonnegative nonincreasing G, we can use the estimate
∫ ∞

0

G(y)(y2 − 1)ϕ(y)dy ≤ G(y0)

∫ 1

0

(y2 − 1)ϕ(y)dy

+G(1)

∫ ∞

1

(y2 − 1)ϕ(y)dy = (G(y0)−G(1))

∫ 1

0

(y2 − 1)ϕ(y)dy < 0 .

If G(y) ≤ 0 just multiply it by −1. This proves that the Hermite rank
of G(|y|) is 2.
Now compute the Hermite rank of ζG̃,1,u for any u ∈ R. Since ζG̃,1,u is
even, rank (ζG̃,1,u) > 1. Assuming w.l.o.g. that G is nonnegative and
nondecreasing we calculate

〈ζG̃,1,u, H2〉ϕ = E[(Y 2 − 1)1{G(|Y |) > u}]

=

∫

R

(y2 − 1)1{|y| > G−(u)}ϕ(y) dy = 2

∫ ∞

G−(u)

(y2 − 1)ϕ(y) dy 6= 0

due to (34) and G−(u) 6= 0. So rank ζG̃,1,u = 2. For general Z, we note
that ζG̃,Z,u is even, so rank (ζG̃,Z,u) > 1. If G is non–negative then

〈ζG̃,Z,u, H2〉ϕ =

∫

R

F̄Z

(
u/G(|y|)

)
H2(y)ϕ(y) dy 6= 0

by the first part of the proof of 2) since F̄Z

(
u/G(|y|)

)
is a monotone even

function of y. Modifications of the proof for G ≤ 0 or G nonincreasing
are obvious.

�

Proof of Theorem 4.3. Let Y be the σ–algebra generated by the entire ran-
dom field {Yt, t ∈ Z

d}. Then
∑

t∈Wn

g(Xt) =
∑

t∈Wn

(g(Xt)− E[g(Xt) | Y ]) +
∑

t∈Wn

E[g(Xt) | Y ] =Mn +Kn ,
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where
Mn =

∑

t∈Wn

(g(Xt)− E[g(Xt) | Y ]) =
∑

t∈Wn

m(Yt, Zt)

and
Kn =

∑

t∈Wn

E[g(Xt) | Y ] =
∑

t∈Wn

ξ(Yt) .

The above decomposition is allowed by (25). The limiting behaviour of the
sum depends on an interplay betweenMn andKn. First, we state the limiting
results for Mn and Kn separately.

Lemma 6.1. Under the assumptions of Theorem 4.3, it holds

M̃n := n−d/2Mn
d−→ N (0, σ2) ,

where σ2 = E[χ(Y0)]2
d > 0.

Proof. We calculate

E

[
exp{izM̃n} | Y

]
= E

[
exp

{
iz

nd/2

∑

t∈Wn

m(Yt, Zt)

}
| Y
]

=: E

[
exp

{
iz

nd/2

∑

t∈Wn

Vt

}
| Y
]
,

where Vt = m(Yt, Zt). Note that, due to stationarity of Y and Z, the random
variables Vt are identically distributed and conditionally independent, given
Y . Therefore,

E

[
exp{izM̃n} | Y

]
= E

[
exp

{
iz

nd/2

∑

t∈Wn

Vt

}
| Y
]

=
∏

t∈Wn

E

[
exp

{
iz

nd/2
Vt

}
| Y
]
.

The standard inequality,

| exp(itz)− (1 + itz − t2z2/2)| ≤ min{|tz|2, |tz|3}

yields
∣∣∣∣E
[
exp

{
iz

nd/2
Vt

}
| Y
]
− E

[(
1 +

izVt
nd/2

− 1

2

z2Vt
nd

)
| Y
]∣∣∣∣

≤ E

[
min

{ |z|2V 2
t

nd
,
|z|3|Vt|3
n3d/2

}
| Y
]
=: E[Vt,n | Y ] .
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For complex numbers z1, . . . , zm, w1, . . . , wm of modulus at most 1, we have
∣∣∣∣∣

m∏

i=1

zi −
m∏

i=1

wi

∣∣∣∣∣ ≤
m∑

i=1

|zi − wi| .

Hence

An(Y) :=

∣∣∣∣∣
∏

t∈Wn

E

[
exp

{
iz

nd/2
Vt

}
| Y
]
−
∏

t∈Wn

E

[(
1 +

izVt
nd/2

− 1

2

z2V 2
t

nd

)
| Y
]∣∣∣∣∣

≤
∑

t∈Wn

∣∣∣∣E
[
exp

{
iz

nd/2
Vt

}
| Y
]
− E

[(
1 +

izVt
nd/2

− 1

2

z2V 2
t

nd

)
| Y
]∣∣∣∣

≤
∑

t∈Wn

E[Vt,n | Y ] .

We argue that

An(Y) → 0 (35)

in probability. If this is the case, then the conditional characteristic function

E

[
exp{izM̃n} | Y

]

and

Bn(Y) :=
∏

t∈Wn

E

[(
1 +

izVt
nd/2

− 1

2

z2V 2
t

nd

)
| Y
]

have the same limit in probability. Applying the log to the above expression
and log(1− x) = −x+O(x3) we have

logBn(Y) =
∑

t∈Wn

logE

[
1 +

izVt
nd/2

− z2V 2
t

2nd
| Y
]

=
iz

nd/2

∑

t∈Wn

E[Vt | Y ]− z2

2nd

∑

t∈Wn

E[V 2
t | Y ]

+O(1)
|z|3
n3d/2

∑

t∈Wn

(|E[Vt | Y ]|)3 +O(1)
z6

n3d

∑

t∈Wn

(
E[V 2

t | Y ]
)3

.

The expression in the last line is oP (1) by (27). By the definition, E[m(y, Zt)] =
0 and hence E[Vt | Y ] = 0. We have E[V 2

t | Y ] = χ(Yt) and therefore

logBn(Y) = − z2

2nd

∑

t∈Wn

χ(Yt) + op(1) .
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Since χ is measurable, the ergodic theorem ([44, p. 339]) implies that

1

nd

∑

t∈Wn

χ(Yt)
P−→ E[χ(Y0)]2

d, n→ +∞,

whenever the covariance of the field χ(Yt) goes to zero as ‖t‖ → +∞. To
check the latter property, we use Lemma 3.5 to conclude

|Cov(χ(Y0), χ(Yt))| ≤ |CY (t)|
∞∑

k=1

〈χ,Hk〉2ϕ
k!

→ 0

as ‖t‖ → +∞, since the infinite series in the last expression is finite due to
Var(χ(Y0)) < ∞; cf. (27). Hence, logBn(Y) → −z2σ2/2 in probability. By
continuous mapping theorem, it holds

E

[
exp{izM̃n} | Y

]
P−→ e−z2σ2/2, n→ +∞ .

Since
∣∣∣E
[
exp{izM̃n} | Y

]∣∣∣ ≤ 1 for all n ∈ N this sequence is uniformly

integrable. Using the property of L1–convergence of uniformly integrable
sequences we get

E

[
exp{izM̃n}

]
→ e−z2σ2/2, n→ +∞,

and we are done. �

Lemma 6.2. Under the assumptions of Theorem 4.3, it holds

nqη/2−dL−q/2(n)Kn
d−→ R , n→ ∞.

Proof. Consider the random variable

Kn(q) =

∞∑

m=q

J(m)

m!

∫

[−n,n]d
Hm(Yt)dt .

According to [23, Theorem 4] and [2, Theorem 4.3] the random variables

Kn√
VarKn

,
Kn(q)√
VarKn(q)

have the same limiting distributions as n→ +∞. Furthermore, if η ∈ (0, d/q)
we have by [23, Theorem 5] that

nqη/2−dL−q/2(n)

∫

[−n,n]d
Hq(Yt)dt

converges in distribution to random variable R. �

If ξ(y) ≡ 0, the long memory part Kn is not present and we apply Lemma
6.1. If ξ(y) 6≡ 0, we note that the rate of convergence in Lemma 6.2 is slower
than in Lemma 6.1, whenever η ∈ (0, d/q). �
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Boston, Boston, MA, 2002, pp. 3–113.

[13] P. Doukhan, Mixing, Lecture Notes in Statistics, vol. 85, Springer-
Verlag, New York, 1994, Properties and examples.

[14] F. Durante and C. Sempi, Principles of copula theory, CRC Press, Boca
Raton, FL, 2016.

[15] L. Giraitis, H. L. Koul, and D. Surgailis, Large sample inference for long
memory processes, Imperial College Press, London, 2012.

[16] L. Heinrich, Mixing properties and central limit theorem for a class
of non-identical piecewise monotonic C2-transformations, Math. Nachr.
181 (1996), 185–214.

[17] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary
sequences of random variables, Wolters-Noordhoff Publishing, Gronin-
gen, 1971.

[18] A. V. Ivanov and N. N. Leonenko, Statistical analysis of random fields,
Kluwer, Dordrecht, 1989.

[19] N. S. Landkof, Foundations of modern potential theory, Die
Grundlehren der mathematischen Wissenschaften in Einzeldarstellun-
gen, vol. 180, Springer, Berlin, 1972.

[20] F. Lavancier, Long memory random fields, Dependence in probability
and statistics, Lecture Notes in Statist., vol. 187, Springer, New York,
2006, pp. 195–220.

[21] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37
(1966), 1137–1153.

[22] N. Leonenko, Limit theorems for random fields with singular spectrum,
Mathematics and its Applications, vol. 465, Kluwer Academic Publish-
ers, Dordrecht, 1999.

[23] N. Leonenko and A. Olenko, Sojourn measures of Student and
Fisher-Snedecor random fields, Bernoulli 20 (2014), no. 3, 1454–1483.

32



[24] N. N. Leonenko, M. D. Ruiz-Medina, and M. S. Taqqu, Rosenblatt
distribution subordinated to Gaussian random fields with long-range
dependence, Stoch. Anal. Appl. 35 (2017), no. 1, 144–177.

[25] V. Makogin, M. Oesting, A. Rapp, and E. Spodarev, Long
range dependence for stable random processes, Preprint, 2019,
arXiv:1908.11187.

[26] D. Meschenmoser and A. Shashkin, Functional central limit theorem
for the volume of excursion sets generated by associated random fields,
Statist. Probab. Lett. 81 (2011), no. 6, 642–646.

[27] T. Owada and G. Samorodnitsky, Maxima of long memory stationary
symmetric α-stable processes, and self-similar processes with stationary
max-increments, Bernoulli 21 (2015), 1575–1599.

[28] V. Paulauskas, Some remarks on definitions of memory for stationary
random processes and fields, Lith. Math. J. 56 (2016), no. 2, 229–250.

[29] A. Rapaport, A dimension gap for continued fractions with independent
digits — the non–stationary case, Preprint, 2017, arXiv:1703.03164v1.

[30] S. I. Resnick, Heavy-tail phenomena, Springer Series in Operations Re-
search and Financial Engineering, Springer, New York, 2007, Probabilis-
tic and statistical modeling.

[31] P. Roy, Nonsingular group actions and stationary SαS random fields,
Proc. Amer. Math. Soc. 138 (2010), no. 6, 2195–2202.

[32] P. Roy and G. Samorodnitsky, Stationary symmetric α-stable discrete
parameter random fields, J. Theoret. Probab. 21 (2008), no. 1, 212–233.

[33] Yu. A. Rozanov, Stationary random processes, Translated from the Rus-
sian by A. Feinstein, Holden-Day, Inc., San Francisco, Calif.-London-
Amsterdam, 1967.

[34] G. Samorodnitsky, Extreme value theory, ergodic theory and the
boundary between short memory and long memory for stationary stable
processes, Ann. Probab. 32 (2004), no. 2, 1438–1468.

[35] , Stochastic processes and long range dependence, Springer Se-
ries in Operations Research and Financial Engineering, Springer, Cham,
2016.

33

http://arxiv.org/abs/1908.11187
http://arxiv.org/abs/1703.03164


[36] G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random
processes, Stochastic Modeling, Chapman & Hall, New York, 1994,
Stochastic models with infinite variance.

[37] G. Samorodnitsky and Y. Wang, Extremal theory for long range
dependent infinitely divisible processes, Ann. Probab. 47 (2019), no. 4,
2529–2562.

[38] J. D. Samur, On some limit theorems for continued fractions, Trans.
Amer. Math. Soc. 316 (1989), no. 1, 53–79.

[39] N. Shephard, ed., Stochastic volatility: selected readings, Oxford Uni-
versity Press, 2005.

[40] A. Sly and C. Heyde, Nonstandard limit theorem for infinite variance
functionals, Ann. Probab. 36 (2008), no. 2, 796–805.

[41] E. Spodarev, Limit theorems for excursion sets of stationary random
fields, Modern stochastics and applications, Springer Optim. Appl.,
vol. 90, Springer, Cham, 2014, pp. 221–241.

[42] F. W. Steutel and K. van Harn, Infinite divisibility of probability
distributions on the real line, Monographs and Textbooks in Pure and
Applied Mathematics, vol. 259, Marcel Dekker, Inc., New York, 2004.

[43] M. S. Veillette and M. S. Taqqu, Properties and numerical evaluation of
the Rosenblatt distribution, Bernoulli 19 (2013), no. 3, 982–1005.

[44] A. M. Yaglom, Correlation theory of stationary and related random
functions. Vol. I, Springer Series in Statistics, Springer-Verlag, New
York, 1987, Basic results.

34


	1 Introduction
	2 Preliminaries
	3 Long range dependence
	3.1 Motivation
	3.2 Checking the short or long range dependence
	3.2.1 The short-range dependence for mixing random fields

	3.3 Subordinated Gaussian random fields
	3.4 Stochastic volatility models

	4 Limit theorems
	4.1 Limit theorems for subordinated Gaussian processes
	4.1.1 Volume of level sets
	4.1.2 Empirical mean: infinite variance case

	4.2 Limit theorems for the integrals of functionals of l.r.d. random volatility fields

	5 Summary and outlook
	6 Appendix: Proofs

