Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T09:39:30.329Z Has data issue: false hasContentIssue false

An upper bound for the bond percolation threshold of the cubic lattice by a growth process approach

Published online by Cambridge University Press:  16 September 2021

Gaoran Yu*
Affiliation:
Johns Hopkins University
John C. Wierman*
Affiliation:
Johns Hopkins University
*
*Postal address: Department of Applied Mathematics and Statistics, Wyman Park Building, Fourth Floor, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA.
*Postal address: Department of Applied Mathematics and Statistics, Wyman Park Building, Fourth Floor, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA.

Abstract

We reduce the upper bound for the bond percolation threshold of the cubic lattice from 0.447 792 to 0.347 297. The bound is obtained by a growth process approach which views the open cluster of a bond percolation model as a dynamic process. A three-dimensional dynamic process on the cubic lattice is constructed and then projected onto a carefully chosen plane to obtain a two-dimensional dynamic process on a triangular lattice. We compare the bond percolation models on the cubic lattice and their projections, and demonstrate that the bond percolation threshold of the cubic lattice is no greater than that of the triangular lattice. Applying the approach to the body-centered cubic lattice yields an upper bound of 0.292 893 for its bond percolation threshold.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, J. (1984). A second look at a controversial percolation exponent – Is $\eta$ negative in three dimensions? Z. Phys. B 55, 227229.Google Scholar
Argolo, C., Tenorio, V. and Lyra, M. L. (2019). Stationary and dynamical critical behavior of the three-dimensional diffusive epidemic process. Physica A 517, 422430.CrossRefGoogle Scholar
Benjamini, I. and Schramm, O. (1996). Percolation beyond $\mathbb{Z}^d$ , many questions and a few answers. Electron. Commun. Prob. 1, 7182.CrossRefGoogle Scholar
Bollobás, B. and Riordan, O. (2006). Percolation. Cambridge University Press.CrossRefGoogle Scholar
Broadbent, S. R. and Hammersley, J. M. (1957). Percolation processes. Math. Proc. Camb. Phil. Soc. 53, 629641.CrossRefGoogle Scholar
Campanino, M. and Russo, L. (1985). An upper bound on the critical percolation probability for the three-dimensional cubic lattice. Ann. Prob. 13, 478491.CrossRefGoogle Scholar
Cotar, C., Holroyd, A. E. and Revelle, D. (2009). A percolating hard sphere model. Random Structures Algorithms 34, 285299.CrossRefGoogle Scholar
Dammer, S. M. and Hinrichsen, H. (2004). Spreading with immunization in high dimensions. J. Statist. Mech. 2004, P07011.CrossRefGoogle Scholar
Damron, M., Hanson, J. and Sosoe, P. (2017). On the chemical distance in critical percolation. Electron. J. Prob. 22, 75.CrossRefGoogle Scholar
de Magalhães, A. C., Tsallis, C. and Schwachheim, G. (1980). Probability renormalisation group treatment of bond percolation in square, cubic and hypercubic lattices. J. Phys. C 13, 321330.CrossRefGoogle Scholar
Doh, J., Park, S. I., Yang, Q. and Raghavan, N. (2019). The effect of carbon nanotube chirality on the electrical conductivity of polymer nanocomposites considering tunneling resistance. Nanotechnology 30, 465701.CrossRefGoogle ScholarPubMed
Don, H. (2015). New methods to bound the critical probability in fractal percolation. Random Structures Algorithms 47, 710730.CrossRefGoogle Scholar
Dong, S., Wu, X., Wang, E. H. and Wang, X. J. (2019). Reduced percolation threshold of multi-walled carbon nanotubes/polymer composites by filling aligned ferromagnetic particles. J. Intell. Mater. Syst. Struct. 31, 187197.CrossRefGoogle Scholar
Gaunt, D. S. and Sykes, M. F. (1983). Series study of random percolation in three dimensions. J. Phys. A 16, 783799.CrossRefGoogle Scholar
Grassberger, P. (1986). Surface and edge exponents for the spreading of 3D percolation. J. Phys. A 19, L241L246.CrossRefGoogle Scholar
Grassberger, P. (1992). Numerical studies of critical percolation in three dimensions. J. Phys. A 25, 58675888.CrossRefGoogle Scholar
Grimmett, G. R. (1999). Percolation. Springer, New York.CrossRefGoogle Scholar
Grimmett, G. R. and Manolescu, I. (2013). Inhomogeneous bond percolation on square, triangular and hexagonal lattices. Ann. Prob. 41, 29903025.CrossRefGoogle Scholar
Grimmett, G. R. and Manolescu, I. (2014). Bond percolation on isoradial graphs: Criticality and universality. Prob. Theory Relat. Fields 159, 273327.CrossRefGoogle Scholar
Heermann, D. W. and Stauffer, D. (1981). Phase diagram for three-dimensional correlated site-bond percolation. Z. Phys. B 44, 339344.CrossRefGoogle Scholar
Hughes, B. D. (1995). Random Walks and Random Environments, Vol. 2. Oxford University Press.Google Scholar
Kallikragas, D. T. and Svishchev, I. M. (2019). Percolation transitions of physically and hydrogen bonded clusters in supercritical water. J. Molec. Liq. 290, 111213.CrossRefGoogle Scholar
Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals $1/2$ . Commun. Math. Phys. 74, 4159.CrossRefGoogle Scholar
Kesten, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston.CrossRefGoogle Scholar
Lin, J. J., Zhang, W. L., Chen, H. S., Zhang, R. L. and Liu, L. (2019). Effect of pore characteristic on the percolation threshold and diffusivity of porous media comprising overlapping concave-shaped pores. Int. J. Heat Mass Transfer 138, 13331345.CrossRefGoogle Scholar
Lorenz, C. D. and Ziff, R.M. (1998). Precise determination of the bond percolation thresholds and finite-size scaling corrections for the SC, FCC, and BCC lattices. Phys. Rev. E 57, 230236.CrossRefGoogle Scholar
May, W. D. and Wierman, J. C. (2003). Recent improvements to the substitution method for bounding percolation thresholds. Congr. Numer. 162, 526.Google Scholar
May, W. D. and Wierman, J. C. (2005). Using symmetry to improve percolation threshold bounds. Combinatorics Prob. Comput. 14, 549566.CrossRefGoogle Scholar
Men’shikov, M. V. and Pelikh, K.D. (1989). Percolation with several defect types. An estimate of critical probability for a square lattice. Math. Notes 46, 778785.Google Scholar
Odagaki, T. and Chang, K. C. (1984). Real-space renormalization-group analysis of quantum percolation. Phys. Rev. B 30, 16121614.CrossRefGoogle Scholar
Pan, Z. C., Wang, D. L., Ma, R. J. and Chen, A. R. (2018). A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles. Comput. Concr. 22, 551561.Google Scholar
Sahimi, M., Hughes, B. D., Scriven, L. E. and Davis, H. T. (1983). Real-space renormalization and effective-medium approximation to the percolation conduction problem. Phys. Rev. B 28, 307311.CrossRefGoogle Scholar
Schram, R. D., Barkema, G. T. and Bisseling, R. H. (2011). Exact enumeration of self-avoiding walks. J. Statist. Mech. Theory Exp. 2011, P06019.CrossRefGoogle Scholar
Stauffer, D., Adler, J. and Aharony, A. (1994). Universality at the three-dimensional percolation threshold. J. Phys. A 27, L475L480.CrossRefGoogle Scholar
Stauffer, D. and Zabolitzky, J. G. (1986). Re-examination of 3D percolation threshold estimates. J. Phys. A 19, 37053706.CrossRefGoogle Scholar
Sykes, M. F. and Essam, J. W. (1964). Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys. 5, 11171127.CrossRefGoogle Scholar
Tsallis, C. (1982). Phase diagram of anisotropic planar Potts ferromagnets: A new conjecture. J. Phys. C 15, L757L764.CrossRefGoogle Scholar
van den Berg, J. and Ermakov, A. (1996). A new lower bound for the critical probability of site percolation on the square lattice. Rand. Struct. Algorithms 8, 199212.3.0.CO;2-T>CrossRefGoogle Scholar
van der Marck, S. C. (1997). Percolation thresholds and universal formulas. Phys. Rev. E 55, 15141517.CrossRefGoogle Scholar
Vyssotsky, V. A., Gordon, S. B., Frisch, H. L. and Hammersley, J. M. (1961). Critical percolation probabilities (bond problem). Phys. Rev. 123, 15661567.CrossRefGoogle Scholar
Wang, J., Zhou, Z., Zhang, W., Garoni, T. M. and Deng, Y. (2013). Bond and site percolation in three dimensions. Phys. Rev. E 87, 052107.CrossRefGoogle ScholarPubMed
Wierman, J. C. (1981). Bond percolation on honeycomb and triangular lattices. Adv. Appl. Prob. 13, 293313.CrossRefGoogle Scholar
Wierman, J. C. (1990). Bond percolation critical probability bounds for the kagomé lattice by a substitution method. In Disorder in Physical Systems, eds Grimmett, G. and Welsh, D.. Oxford University Press, pp. 349360.Google Scholar
Wierman, J. C. (1995). Substitution method critical probability bounds for the square lattice site percolation model. Combinatorics Prob. Comput. 4, 181188.CrossRefGoogle Scholar
Wierman, J. C. (2002). Bond percolation critical probability bounds for three Archimedean lattices. Rand. Struct. Algorithms 20, 507518.CrossRefGoogle Scholar
Wierman, J. C. (2003). Upper and lower bounds for the kagome lattice bond percolation critical probability. Combinatorics Prob. Comput. 12, 95111.CrossRefGoogle Scholar
Wierman, J. C. (2015). An improved upper bound for the bond percolation threshold of the cubic lattice. In Proc. 2015 Joint Statistics Meetings. American Statistical Association.Google Scholar
Wierman, J. C. (2016). Tight bounds for the bond percolation threshold of the $(3,12^2)$ lattice. J. Phys. A 49, 475002.CrossRefGoogle Scholar
Wierman, J. C. and Ziff, R. M. (2011). Self-dual planar hypergraphs and exact bond percolation thresholds. Electron. J. Combinatorics 18, 61–80.CrossRefGoogle Scholar
Wierman, J. C., Yu, G. and Huang, T. (2015). A disproof of Tsallis’ bond percolation threshold conjecture for the kagome lattice. Electron. J. Combinatorics 22, P2.52.CrossRefGoogle Scholar
Wilke, S. (1983). Bond percolation threshold in the simple cubic lattice. Phys. Lett. A 96, 344346.CrossRefGoogle Scholar
Yu, G. (2018). Rigorous bounds for bond percolation thresholds of three-dimensional lattices. Doctoral dissertation. Johns Hopkins University, Baltimore.Google Scholar
Ziff, R. M. (2006). Generalized cell–dual-cell transformation and exact thresholds for percolation. Phys. Rev. E 73, 016134.CrossRefGoogle ScholarPubMed
Ziff, R. M. and Scullard, C. R. (2006). Exact bond percolation thresholds in two dimensions. J. Phys. A 39, 15083.CrossRefGoogle Scholar
Ziff, R. M., Scullard, C. R., Wierman, J. C. and Sedlock, M. R. (2012). The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices. J. Phys. A 45, 494005.CrossRefGoogle Scholar