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Abstract

This paper investigates the random horizon optimal stopping problem for measure-
valued piecewise deterministic Markov processes (PDMPs). This is motivated by
population dynamics applications, when one wants to monitor some characteristics
of the individuals in a small population. The population and its individual charac-
teristics can be represented by a point measure. We first define a PDMP on a space
of locally finite measures. Then we define a sequence of random horizon optimal
stopping problems for such processes. We prove that the value function of the prob-
lems can be obtained by iterating some dynamic programming operator. Finally
we prove on a simple counter-example that controlling the whole population is not
equivalent to controlling a random lineage.
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1 Introduction

Piecewise deterministic Markov processes (PDMPs) form a general class of non diffusion
processes that was introduced by M. Davis in the 80’s [9, 10]. Such processes have
deterministic trajectories punctuated by random jumps. They belong to the family
of hybrid processes with a discrete component called mode or regime interacting with a
Euclidean component. PDMPs can model a wide area of phenomena from insurance and
queuing problems [10], finance [1], reliability [11] to neuroscience [14, 19], population
dynamics [2, 7] and many other fields. In this paper we are especially interested in
population dynamics applications. In this area, special cases of PDMPs include for
instance growth-fragmentation processes for one or several interacting species [5, 6, 8, 12].
In that case, commonly, the deterministic part is the growth process that may depend
e.g. on the age of the individual, on its size, on the quantity of available nutriment
and the jumps correspond to fragmentation or division (for cells), birth or death events,
abrupt changes in the environment,. . .

In Davis’ original construction, PDMPs are defined on subsets of R
d, for some di-

mension d that may change when the process jumps. In this paper we are interested in
extending the definition of PDMPs to measure-valued state spaces. Infinite dimensional
PDMPs have already been introduced in [4] (see also [14, 19]). In those papers, PDMPs
take values in a separable Hilbert space and model spatio-temporal phenomena occurring
on neuronal membranes. Our approach differs as we are interested in measure-valued
PDMPs to deal with population dynamics models. Instead of modeling the dynamics of
only a single individual by a finite-dimensional PDMP, we aim at taking into account
simultaneously the dynamics of all the individuals in the branching population when the
population remains small and the stochastic approach is relevant and large scale approx-
imations do not hold. Such a population can be represented by a point measure, hence
the need to define measure-valued PDMPs. The measure-valued process representation
in population dynamics is used e.g. in [3, 13], with fragmentation-type processes. It is
a particular case of measure-valued PDMPs, with no deterministic dynamics between
jumps and exponential distributions for the jump times.

After constructing measure-valued PDMPs, we define a sequence of random horizon
optimal stopping problems for measure-valued PDMPs and prove that the value func-
tions can be obtained by iterating some dynamic programming operator. We also exhibit
a sequence of ε-optimal stopping times. Our approach is based on [15] that solved the
optimal stopping problem for finite-dimensional PDMPs.

When dealing with a branching population, some important characteristics of the
global population, e.g. laws of large numbers for functionals of the individuals, can be
obtained by simply studying a suitably weighted random tagged lineage, by means of
many-to-one formulas, see e.g. [3, 12, 16]. Here, we prove that this property does not
hold true for the optimal stopping problem. We provide a simple counter-example of
cell division where stopping a suitably chosen tagged cell and the whole population yield
different value functions.

The paper is organized as follows. In Section 2, we construct measure-valued PDMPs.
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In Section 3, we state and solve the optimal stopping problem for such processes. Finally
in Section 4 we compare the value functions of the optimal stopping problems for the
whole population and a tagged lineage.

2 Construction of measure-valued PDMPs

This section is dedicated to the construction of piecewise deterministic Markov processes
taking values in some measure space. Our construction of measure-valued PDMPs fol-
lows the same lines as in [9]: we first define the hybrid state space in which the process
evolves, then we define the local characteristics giving the dynamics of trajectories be-
tween jumps, the jump times and the post-jump locations, and prove that a strong
Markov process with such characteristics can be constructed. Finally we provide some
toy example of such processes. We start by setting some notation that will be used
throughout the paper.

2.1 Notation

Let d be a positive integer. We denote by B the σ-field of Borel sets on R
d and Bb its

subset of bounded Borel sets. More generally, For any topological space E, we denote
by B(E) its Borel σ-field, B(E) its set of measurable bounded real-valued functions, E
its closure, and ∂E its boundary.

Let M be the set of locally finite measures on (Rd, B) and N = {µ ∈ M; ∀B ∈ Bb,
µ(B) ∈ N} be the set of locally finite point measures. Note that any µ in N can be
expressed as a (possibly infinite) sum of Dirac distributions; the Dirac distribution with
point mass at x, for x in R

d, will be denoted by δx.
Let Cc(R

d) be the set of continuous real-valued functions with compact support on
R

d. For any measure µ ∈ M and function f ∈ Cc(R
d) set

µf :=

∫

Rd
f(x)µ(dx).

We endow M with the vague topology. Recall that the vague convergence for a sequence
of measures (µn)n ⊂ M to a measure µ ∈ M is defined by

µnf −−−→
n→∞

µf, ∀f ∈ Cc(R
d).

We denote it µn
v

−−−→
n→∞

µ. It is easily seen that that N is a closed subset of M for the

vague topology.

For any real numbers a and b, a ∨ b and a ∧ bdenote the maximum and minimum
respectively between a and b.
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2.2 State space of measure-valued PDMPs

Let K be a finite set called modes or regimes space. For any mode v ∈ K, let Ev be
an open subset of M, representing the state space in mode v. The global state space is
then

E = {(v, ζ) ∈ K × M | v ∈ K, ζ ∈ Ev}.

We endow this set E with the σ-field E generated by sets of the form A = {v} × Av

for all Borel sets Av ∈ B(Ev). For instance, if one can consider the temporal evolution
of a cell population characterized by state variables such as age, size, growth, maturity,
protein content... Then the quantity ζ ∈ N represents such state variables and the mode
can be the experiment conditions. In the following example, we consider a simple case
with only one mode and the variable state corresponds to the cell size.

Example 2.1. Consider a population of 3 individuals at a given time. Their sizes are
denoted by (xi)16i63. This population is identified with the measure

ζ =
3∑

i=1

δxi
∈ N.

It gives a complete view of the population: all the information is contained in ζ. As time
goes by, the number of individuals may increase or decrease leading to more or less terms
in this Dirac sum representation but it will remain a measure in N. This representation
is then easier to manipulate than a changing-dimension vector.

On the measure space M, we introduce a particular metric ρ for the vague topology
in order to have a Polish space (i.e. a separable completely metrizable topological space).
This property will be used in Section 2.3, for the explicit construction of the stochastic
process. As shown in [17, Appendix], a suitable choice for ρ is constructed as follows.
Let C be a countable basis of open bounded subsets in R

d closed under finite unions.
For all C in C, it exists a sequence (Cn)n in Bb and an increasing sequence (fC,n)n in
Cc(R

d) such that
fC,n −−−→

n→∞
1C and 1Cn 6 fC,n 6 1C .

Since C is countable, the set {fC,n | C ∈ C, n ∈ N} is also countable, and we then
number f1, f2, . . . those functions. Any measure µ is completely determined by the set
{µfk, k ∈ N}. Now, for all µ and µ′ in M, we define the distance ρ by

ρ(µ, µ′) :=
∑

k>1

1

2k

(
1 − exp(−|µfk − µ′fk|)

)
.

From this metric on M, we define a metric on E related to its hybrid structure: any
two points in E with different modes must be arbitrarily far away from each other. For
all x = (v, ζ) and x′ = (v′, ζ ′) in E set

ρ0(x, x′) :=





2

π
arctan(ρ(ζ, ζ ′)) if v = v′,

1 otherwise.
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Thus ρ0(x, x′) equals 1 if and only if x and x′ have different modes. With this metric, a
sequence (xn)n = (vn, ζn)n converges to x = (v, ζ) in (E, ρ0) if and only if it exists some
m in N such that: 




vn = v for n > m,

ζm+k −−−→
k→∞

ζ in (Em, ρ).
(2.1)

We thus denote
E = {(v, ζ) ∈ K × M | v ∈ K, ζ ∈ Ev},

the closure of E for the distance ρ0. The following statement is then straightforward.

Lemma 2.1. The metric space (E, ρ0) is a Polish space.

2.3 Construction of measure-valued PDMPs

We now introduce the three local characteristics of the PDMP specifying the dynamics
of trajectories between jumps, the jump times and the post-jump locations.

• The flow Φ is defined by (x, t) 7→ Φ(x, t) = (v, Φv(ζ, t)) for all x = (v, ζ) in E and
non-negative t, where the functions Φv : M × R → M are continuous and have a
semi-group property: for all s, t > 0, we have Φv(·, t + s) = Φv(Φv(·, s), t). The
flow describes the deterministic trajectory of the process between jumps. Let

t∗(x) = inf{t > 0, Φv(t, ζ) ∈ ∂Ev}

be the deterministic time the flow takes to reach the boundary of the domain
starting from x = (v, ζ) ∈ E, with the usual convention inf ∅ = +∞. An infinite
exit time t∗ means that the process cannot reach the boundary in finite time.

• The jump intensity λ : E → R+ is a mesurable function, with a local integrability
property: for all x = (v, ζ) ∈ E there exists some ε > 0 such that

∫ ε

0
λ(v, Φv(ζ, s))ds < ∞.

It determines the frequency of the jumps.

• The Markov kernel Q : E × B(E) → [0, 1] selects the post-jump locations. It has
the following property:

∀x ∈ E, Q(x, {x}) = 0,

meaning that he process cannot have a no-move jump.

From these local characteristics, one can construct a stochastic process similarly to
[10, Section 24] as follows. Let (Ω, F ,P) be the canonical space for a sequence (Un)n>1

of independent random variables with uniform distribution on [0, 1]. The sample path
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of an E-valued PDMP (Xt(ω))t>0 starting from a fixed initial point x = (v, ζ) ∈ E and
for some ω ∈ Ω is defined iteratively. Let

F (x, t) = 1{t<t∗(x)} exp

(
−
∫ t

0
λ(v, Φv(ζ, s))ds

)
(2.2)

for (x, t) = (v, ζ, t) ∈ E ×R+ and Ψ1 be the function from E × [0, 1] onto R+ defined by

Ψ1(x, u) = inf{t > 0; F (x, t) 6 u},

and define S1(ω) = T1(ω) = Ψ1(x, U1(ω)) the first jump time of the process. Thus
F (x, ·) is the survivor function of T1.

As the spaces M and E are Polish, one can use [18, p. 6] to obtain that {Q(x, ·)}x∈E

is a collection of probability measures on E, with a measurable dependence on the
parameter x in E. Then there is a measurable function Ψ2 : E × [0, 1] → E such that the
distribution of Ψ2(y, U) is Q(y, ·) for any random variable U with uniform distribution
on [0, 1]. Hence, one can then define

Xt(ω) = Φv(ζ, t), for 0 6 t < T1,

XT1(ω) = Ψ2
(
(v, Φv(ζ, T1(ω))), U2(ω)

)
.

Hence the trajectory Xt follows the deterministic flow starting from X0 = x until the
first jump time T1. At T1 a new location Z1 = XT1 is drawn according to the Markov
kernel Q. Namely, the law L(Z1 | T1) of Z1 conditionally on T1 is

L(Z1 | T1) = Q(Φ(x, S1), ·), (2.3)

The process now restarts from XT1 following the same steps. Define

S2(ω) = Ψ1(XT1(ω), U3(ω)), T2(ω) = S1(ω) + S2(ω),

and set

Xt(ω) = Φ(XT1(ω), t − T1(ω)), for T1(ω) 6 t < T2(ω),

XT2(ω) = Ψ2
(
(v, Φ(XT1 (ω), S2(ω))), U4(ω)

)
,

and so on. In order to avoid explosion issues, the following assumption will hold through-
out the paper.

Assumption 2.1. For all (x, t) in E × R+, Ex[
∑∞

n=1 1(Tn<t)] < ∞.

Hence the trajectories of (Xt) are well defined for all t > 0.

The positive random variables S1, S2, . . . are the times between two consecutive jumps
or inter-jump times. For notational convenience, we set T0 = S0 = 0 and Tn :=

∑n
i=1 Sn

the nth jump time of the process. Note that we have T1 = S1 and Sn+1 = Tn+1 − Tn.
The sequence (Zn)n with Zn = XTn describes the post jump locations of the process.
By construction, all the randomness of the continuous-time process (Xt)t>0 is contained
in the discrete-time process (Zn, Sn)n>0.
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2.4 Structure of stopping times and Markov property

The aim of this section is to prove that the special structure of stopping times for fi-
nite dimensional PDMPs given in [10, Theorem A2.3] still holds in the measure space
context. This yields the Markov property and will be important for the study of the
optimal stopping problem in Section 3.

Let DE [0, +∞) be the set of unctions on R+ with values in E that are right-
continuous with left limits. Denote by X̃t the coordinate function X̃t(f) = f(t) for
f ∈ DE [0, +∞). Let (F0

t )t>0 denote the natural filtration of (x̃t) and F0 = ∨t>0F0
t .

Under Assumption 2.1, for each starting point x ∈ E, the construction in the pre-
vious section defines a measurable mapping Ψx from Ω onto DE [0, +∞) such that
X̃t(Ψx(ω)) = Xt(ω). Let Px denote the image measure of P by Ψx. This defines
a family of measure (Px)x∈E on DE[0, +∞). In the sequel, we identify X̃t and Xt.
For any probability measure ν on E define the measure Pν on (DE [0, +∞), F0) by
Pν(· · · ) =

∫
E Px(·)ν(dx). Now let Fν

t be the completion of F0
t with all Pν-null sets of

F0 and define Ft = ∩ν∈P(E)F
ν
t , where P(E) is the set of probability measures on E.

We can now state a crucial result on the structure of stopping-times for our process.

Theorem 2.1. A non-negative random variable τ is a (Ft)t>0 stopping-time if and only

if there exists a sequence (Rn)n∈N of non-negative (FTn)n∈N-adapted random variables

such that

τ =
∞∑

n=1

Rn−1 ∧ Sn.

Proof. The proof follows the same lines as in [11, Section 1.7]. It is based on Theorem
A2.3 in [10] that is valid for any right-continuous piecewise constant process taking
values in a Borel set and the one-to-one correspondence between our process (Xt) and
the right-continuous piecewise constant E × N-valued process (ηt) defined by

ηt = (X0, 0), t < T1, ηt = (XTn , n), Tn 6 t < Tn+1,

see [10, (25.1)].

Theorem 2.2. The process (Xt)t>0 on (DE [0, +∞), F , (Ft), (Px)x∈E) is a strong Markov

process.

Proof. The strong Markov property is proved in the same way that in [10, Section
25], using Theorem 2.1 and the one-to-one correspondence with the piecewise constant
process (ηt) defined above.

2.5 Toy example

We now develop Example 2.1 into a more generic model for some cells population.
Typically, cells grow and divide into two daughter-cells that start growing and then
divide and so on.
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2.5.1 Single cell model

We first define a single-cell model that follows standard final dimensional PDMP dy-
namics, where one randomly selects a single daughter cell at each division. This model
was further studied in [12]. We consider a model with a single mode, hence the state
space is simply R+. For ξ in R+ and t > 0, the size at time t for a cell with initial size ξ
is given by φ(ξ, t) = ξ exp(rt), where r > 0 is the common growth rate for all the cells.
The jump intensity giving the division dates is given by l(ξ) = ξα, for some positive
number α. This is simplified model consistent with the statistical evidence that division
is triggered by the cell size rather than its age, see [20]. The jump kernel is simply a
division by two Q(x, A) = δx/2(A) for any Borel subset A of R+.

2.5.2 Population model

We now consider the previous cell growth-division dynamics but for the whole population
instead of a single randomly selected cell. Again we consider a single mode so that he
space E is simply N.

Let ζ =
∑n

i=1 δxi
be in N be an initial state of n cells with respective sizes (xi)16i6n.

Each cell grows following the previous dynamics, so that globally the flow is

Φ : N × R+ → N

(ζ, t) 7→
∑n

i=1 δφ(xi,t).

The first jump time corresponds to the first split ie the minimum between n exponentially
distributed random variables. Thus, the jump intensity is:

λ : N → R

ζ 7→
∑n

i=1 l(xi).

Given that the jth cell is the one which split, the post-jump location is

Z1 =
n∑

i=1
i6=j

δxi
+ 2δxj/2,

where celle number j was removed and two new cells are added with half the size of cell
j. For notational convenience, we set

ζ(j) := ζ − δxj
+ 2δxj/2.

Thus, for A in E , the Markov jump kernel of the PDMP is given by

Q(ζ, A) =
n∑

j=1

l(xj)
∑n

i=1 l(xi)
1A(ζ(j)).
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2.5.3 Time-augmented population model

Sometimes, it is convenient to add time in the state variable of a PDMP, for instance
when one wants to use time-dependent jump intensity, or trigger some jump when a
certain lapse of time has passed, or to study control problems with time-dependent
reward functions. In [10, Section 31] Davis proves that for finite dimensional PDMPs,
the time-augmented process is still a PDMP. The same property holds in the framework
of our toy example.
We consider the time-augmented process X̃t : defined as the PDMP on N starting from
the initial state ζ̃ =

∑n
i=1 δ(xi,0). The flow is now given by

Φ̃ : N × R+ → N

(ζ̃ , t) 7→
∑n

i=1 δ(φ(xi,t),u+t),

for any ζ̃ in N of the form ζ̃ =
∑n

i=1 δ(xi,u). The jump intensity is

λ̃ : N → R

ζ̃ =
∑n

i=1 δ(xi,u) 7→
∑n

i=1 l(xi),

and the jump kernel is simply

Q̃(
n∑

i=1

δ(xi,u), A) =
n∑

j=1

l(xj)
∑n

i=1 l(xi)
1A(

n∑

i=1

δ(xi,u) − δ(xj ,u) + 2δ(xj/2,u)).

We will further study this toy example in Section 4 to prove that controlling the whole
population is not equivalent to controlling a suitably chosen random lineage.

3 Optimal stopping problem

We now turn to the main aim of this paper: defining and solving the optimal stop-
ping problem for measure-valued PDMPs. Roughly speaking, one wants to stop the
process at the best time in order to maximize some reward depending on the state
of the process when stopped. More precisely, let (Xt)t>0 be an E-valued PDMP on
(DE [0, +∞), F , (Ft)t>0, (Px)x∈E) and g ∈ B(E) be some non-negative reward function.
Denote by M the set of stopping-times with respect to the filtration (Ft)t>0 and for all
positive integer N , let MN be the set of stopping-times bounded by the N th time jump
TN of the PDMP

MN = {τ ∈ M; τ 6 TN }.

For all x ∈ E, set
V(x) := sup

τ∈MN

E[g(Xτ ) | X0 = x]. (3.1)

Thus V(x) is the best possible (average) performance when stopping a PDMP starting
from X0 = x before its N -th jump. Function V is called the value function of the optimal
stopping problem. Solving an optimal stopping problem consists in characterizing the
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value function as the solution of some recursive equations called dynamic programming

equations and exhibiting a family of ε-optimal stopping times τε ∈ MN such that

V(x) − ε 6 E[g(Xτε) | X0 = x] 6 V(x).

In this section, we first define some suitable dynamic programming operators and a
family of stopping times. Then we prove that the value functions can be constructed
by iteration of the dynamic programming operators and that the stopping times are
ε-optimal. This section is inspired from the study of the optimal stopping problem for
finite (fixed) dimension PDMPs derived in [15].

3.1 Dynamic programming operators

We start with some additional notation and assumption. For w in B(E), x in E and l
a measurable real-valued function on E, we denote in short

lQw(x) := l(x) × Qw(x) = l(x)

∫

E
w(y)Q(x, dy).

The following assumption is made for simplicity reasons. It is satisfied in most real-life
examples for instance when monitoring a population until some finite horizon time.

Assumption 3.1. The exit time t∗ is in B(E).

We now define some operators on B(E). Let H and I be the operators from B(E)
onto B(E × R+) defined for all w in B(E), x in E and t ∈ R+, by

Hw(x, t) = w (Φ(x, t ∧ t∗(x))) e−Λ(x,t∧t∗(x)),

Iw(x, t) =

∫ t∧t∗(x)

0
λQw(Φ(x, s)) e−Λ(x,s)ds,

where

Λ(x, t) =

∫ t

0
λ(Φ(x, s))ds.

We also introduce operator K from B(E) onto B(E), defined for all w in B(E) and x
in E as

Kw(x) =

∫ t∗(x)

0
λQw(Φ(x, s)) e−Λ(x,s)ds + Qw(Φ(x, t∗(x)))e−Λ(x,t∗(x)).

It is straightforward to see that these operators can be expressed as expectations involv-
ing the embedded Markov chain (Zn, Sn) defined in Section 2.3.

Proposition 3.1. For all w in B(E), x in E and t > 0 one has:

Hw(x, t) = Ex

[
w(Xt∧t∗(x)) 1S1>t∧t∗(x)

]
= w (Φ(x, t ∧ t∗(x)))Px (S1 > t ∧ t∗(x)) ,

Iw(x, t) = Ex

[
w(Z1) 1S16t∧t∗(x)

]
,

Kw(x) = Ex[w(Z1)].
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Finally we denote by J and L the operators from B(E) onto B(E × R+) and B(E)
respectively defined for all w in B(E), x in E and t ∈ R+ by

J(w, g)(x, t) = Hg(x, t) + Iw(x, t),

L(w, g)(x) = sup
t>0

{J(w, g)(x, t)} ∨ Kw(x),

where g is the reward function of the optimal stopping problem. Roughly speaking,
operator L represents the best compromise between stopping at the best location along
the deterministic trajectory following the flow (supt>0 J part) or waiting until the next
jump (K part).

3.2 Family of stopping-times

Now we introduce a family of random variables and prove they are stopping times. They
will be candidates ε-optimal stopping times for our optimal stopping problem. For all
x ∈ E, n ∈ N and ε > 0 set

rn,ε(x) =

{
t∗(x) if KVn(x) > supt>0 J(Vn, g)(x, t),

inf{s > 0 ; J(Vn, g)(x, s) > supt>0 J(Vn, g)(x, t) − ε} otherwise.

For all ε > 0 and n > 2 also set

R1,ε = r0,ε(Z0),

Rε
n,0 = rn−1,ε/2(Z0),

Rε
n,k = rn−k−1,ε/2k(Zk)1(Rε

n,k−1
>Sk), 1 6 k 6 n − 1.

Then Rε
n,k is clearly FTk

-measurable for 0 6 k 6 n − 1. Finaly, define S1,ε := r0,ε(Z0) ∧
T1 = Rε

1,0 ∧ S1, and by iteration,

Sn,ε :=

{
Rε

n,0 T1 > Rε
n,0,

T1 + θ(T1)Sn−1,ε/2 T1 6 Rε
n,0,

where θ(t) is the shift operator with lag t on DE [0, +∞), namely for f ∈ DE [0, +∞),
θ(t)f(·) = f(t + ·).

In order to prove that the Sn,ε are stopping-times in Mn, we first study the effect of
the shift operator on Rε

n,k.

Lemma 3.1. For all ε > 0 and n > 2 and 1 6 k 6 n − 1, on the set (T1 6 Sn,2ε), one

has

R2ε
n,k = θ(T1)(Rε

n−1,k−1).

Proof. For n = 2, by definition, one has Rε
1,0 = r0,ε(Z0) hence θ(T1)(Rε

1,0) = r0,ε(Z1)
and R2ε

2,1 = r0,ε(Z1) on (T1 6 S2,2ε) = (T1 6 Rε
2,0). Hence the result holds.

For n > 3 we prove the result by induction on k using similar arguments and the fact
that (T1 6 Sn,ε) = (R2ε

n,0 > T1).

12



We now prove that Sn,ε is a stopping-time using the characterization of Theorem 2.1.

Lemma 3.2. For all ε > 0 and n ∈ N
∗ one has

Sn,ε =
n∑

k=1

Rε
n,k−1 ∧ Sk.

In particular, Sn,ε is a stopping time and Sn,ε 6 Tn.

Proof. We proceed by induction on n. For n = 1, by definition S1,ε = r0,ε(Z0) ∧ T1 =
Rε

1,k−1 ∧ S1 and the result is true.
Suppose the result holds for n − 1. From the definition, on the event (rn−1,ε/2(Z0) =
Rε

n,0 < S1), one has Sn,ε = Rε
n,0 and Rε

n,1 = 0 < S2, Rε
n,2 = 0 < S3, and so on, so that∑n

k=1 Rε
n,k−1 ∧ Sk = Rε

n,0 and the result is valid.
On the event (Rε

n,0 > S1), by definition Sn,ε = T1 + θ(T1)Sn−1,ε/2. Now, the induction
hypothesis and the previous lemma yield

T1 + θ(T1)Sn−1,ε/2 = S1 +
n−1∑

k=1

Rε
n,k ∧ Sk+1 =

n∑

k=1

Rε
n,k−1 ∧ Sk,

on (Rε
n,0 > S1). Hence the result.

3.3 Characterization of the value function

We can now propose an iterative construction of value functions by iterating operator
L. For all x ∈ E, set

{
V0(x) = g(x),

Vn(x) = L(Vn−1, g)(x) for all n > 1.
(3.2)

Clearly the functions Vn are in B(E). We can now state and prove our main result,
namely that the value function V of the optimal stopping problem (4.2) equals the N -th
iterate VN and that SN,ε is an ε-optimal stopping time.

Theorem 3.1. Let x be in E and n ∈ N. Then one has, for all ε > 0, Sn,ε is a

stopping-time in Mn and

Vn(x) = sup
S∈Mn

Ex[g(XS)], (3.3)

Ex[g(XSn,ε )] > Vn(x) − ε. (3.4)

Proof. By an induction argument we will prove Equation (3.4) and the following in-
equality

∀S ∈ M, ∀n ∈ N, Ex[g(XS∧Tn)] 6 Vn(x). (3.5)

These two equations imply (3.3). Indeed, for all S in M∞, we have S ∧ Tn ∈ Mn then
for all S in M∞, n in N and x in E, (3.4) and (3.5) yield

Vn(x) − ε 6 Ex[g(XSn,ε )] 6 sup
S∈Mn

Ex[g(XS)] = sup
S∈Mn

Ex[g(XS∧Tn)] 6 Vn(x),

13



which is valid for all positive ε, hence the result.

It remains now to prove (3.5) and (3.4) by induction.

The case n = 1 is based on Theorem 2.1. Indeed, we obtain Ex[g(XS∧T1 )] =
Ex[g(XR0∧T1)], for some F0-measurable random variable R0. From this, we deduce

Ex[g(XS∧T1 )] = Ex[g(XR0 )1T1>R0] + Ex[g(Z1)1T16R0 ]

= Hg(x, R0) + Ig(x, R0) = J(g, g)(x, R0)

6 sup
t>0

{J(g, g)(x, t)} 6 V1(x);

which proves (3.5) for n = 1. To prove (3.4), we distinguish two cases:
• if Kg(x) > supt>0 J(g, g)(x, t), then V1(x) = Kg(x) = Ex[g(Z1)] and also

S1,ε = t∗(x) ∧ T1 = T1.

Thus Ex[g(XS1,ε
)] = Ex[g(Z1)] = V1(x) > V1(x) − ε.

• otherwise, V1(x) = supt>0 J(g, g)(x, t) and, by definition of J,

Ex[g(XS1,ε
)] = Ex[g(Xr0,ε(x)∧T1

)] = Ex[g(Xr0,ε(x))1T1>r0,ε(x)] + Ex[g(Z1)1T16r0,ε(x)]

= J(g, g)(x, r0,ε(x)).

We then deduce, by definition of r0,ε:

Ex[g(XS1,ε
)] > sup

t>0
{J(g, g)(x, t)} − ε = V1(µ) − ε.

This completes the proof of (3.4) for n = 1.

Now, let N > 1, suppose that (3.5) and (3.4) hold true for all n 6 N and prove that
they hold for n = N + 1.

Begin by proving (3.5). Again, this is based on Theorem 2.1. As S is a stopping-time,
it can be decomposed as

S =
∞∑

n=1

Rn−1 ∧ Sn.

where (Rn)n∈N are non-negative (FTn)n∈N-adapted random variables. In particular, on
(S > T1) one has

S = S1 +
∞∑

n=2

Rn−1 ∧ Sn = T1 + θ(T1)(S′),
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for some stopping-time S′. Thus one has

Ex[g(XS∧Tn+1)] = Ex[g(XS∧T1)1S<T1] + Ex[g(XS∧Tn+1 )1S>T1]

= Ex[g(XR0∧T1)1R0<T1 ] + Ex[g(XS∧Tn+1 )1R0>T1]

= Ex[g(XR0 )1R0<T1 ] + Ex[Ex[g(X(T1+θ(T1)(S′))∧Tn+1
)|F1]1R0>T1 ]

= Ex[g(XR0 )1R0<T1 ] + Ex[EZ1 [g(XS′∧Tn
)]1R0>T1 ] (3.6)

6 Ex[g(XR0 )1R0<T1 ] + Ex[Vn(Z1)1R0>T1] (3.7)

6 sup
r>0

Ex[g(Xr)1r<T1] + Ex[Vn(Z1)1r>T1]

6 sup
r>0

J(Vn, g)(x, r) ∨ KVn(x) = Vn+1(x).

Line (3.6) is obtained thanks to the strong Markov property. The induction hypothesis
is applied in line (3.7). This achieves the induction for (3.5).

Let us now prove (3.4). One has

Ex[g(XSn+1,2ε
)] = Ex[g(XSn+1,2ε

)1Rε
n,0<T1 ] + Ex[g(XSn+1,2ε

)1Rε
n,0>T1]

= Ex[g(XRε
n,0

)1Rε
n,0<T1 ] + Ex[g(XT1+θ(T1)Sn,ε

)1Rε
n,0>T1 ]

= Ex[g(XRε
n,0

)1Rε
n,0<T1 ] + Ex[EZ1[g(XSn,ε )]1Rε

n,0>T1 ]

> Ex[g(XRε
n,0

)1Rε
n,0<T1 ] + Ex[Vn(Z1)1Rε

n,0>T1] − ε × Px(Rε
n,0 > T1)

> Ex[g(XRε
n,0

)1Rε
n,0<T1 ] + Ex[Vn(Z1)1Rε

n,0>T1] − ε.

From the definition of Rn,ε one readily obtains
• if KVn(x) > supt>0 J(Vn, g)(x, t), then Vn+1(x) = KVn(x) = Ex[Vn(Z1)] and Rε

n,0 =
t∗(x). So the previous inequality becomes

Ex[g(XSn+1,2ε
)] > Ex[g(Xt∗(x))1t∗(x)<T1

] + Ex[Vn(Z1)1T16t∗(x)] − ε

= KVn(x) − ε = Vn+1(x) − ε.

• Otherwise, Vn+1(x) = supt>0 J(Vn, g)(x, t), and the previous inequality becomes

Ex[g(XSn+1,2ε
)] > J(Vn, g)(x, r0,ε(x)) − ε

> sup
t>0

J(Vn, g)(x, t) − ε − ε = Vn+1(x) − 2ε.

Thanks to these two cases, we prove (3.4) and we end the proof.

4 Comparaison between the tagged cell and measure-valued

process

In this section, we investigate wether stopping a single well chosen individual is equiv-
alent to stopping the whole population. When dealing with a branching population,
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some important characteristics of the global population, e.g. laws of large numbers for
functionals of the individuals, can be obtained by simply studying a suitably weighted
random tagged lineage, by means of many-to-one formulas, see e.g. [3, 6, 12, 16]. We
prove that this property does not hold true for the optimal stopping problem. We use
the simple toy example of cell division from Section 2.5 to show that stopping a suitably
chosen tagged cell and the whole population yield different value functions.

4.1 Tagged cell and many-to-one formula

Let us rapidly describe the many-to-one formula and the definition of the tagged as
presented in [12]. Heuristically, picking a branch uniformly at random along the ge-
nealogical tree describe the path of a tagged cell whose the behaviour is similar to the
one of an individual picked at time t.

More precisely, for any measurable positive function h and any t > 0 we have the
following formula, commonly called many-to-one formula

Ex

[
∑

u∈U

Xt(h)e−rt

]
=

n∑

i=1

Exi

[
h(χt)

χt

]
× xi, (4.1)

where x = µ =
∑n

i=1 δ(xi,0), (Xt)t>0 is the measure-valued PDMP of Section 2.5.2, and
(χt)t>0 is the tagged process, representing the evolution of the size of the tagged cell.
Its dynamics is as a real-valued PDMP described in Section 2.5.1 but whose parameters
are different from those of (Xt)t>0; see [3, 6, 12] for details.

To compare the value functions of the tagged cell and the measure-valued process,
we will impose the form of our reward functions based on Equation 4.1. For the tagged
cell, we choose a bounded nonnegative function f continuous along the flow. For the
process (Xt)t, the reward function g has the form

g :
n∑

i=1

δ(xi,t) ∈ E 7→
n∑

i=1

f(xi)e
−rt, (4.2)

where we used the time-augmented process defined in Section 2.5.3 to take the time
dependence into account.

4.2 Comparison of the value functions

Numerically computing the value function VN is very demanding, as for each iteration
of the dynamic programming operators, one needs to compute the functions on the
whole state space E, at least at first sight. Actually, when dealing with the optimal
stopping problem with horizon N , the dynamic programming recursion on functions Vn

can be rewritten as a recursion on the random variables Vk(ZN−k). Still, the recursion is
numerically intractable as one needs to compute conditional expectations at each step.
In order to avoid such intricacies, we simply consider the optimal stopping problem with
horizon N = 1 jump.

16



We thus have to compute

V0(Z1) = g(Z1),

V1(Z0) = sup
t>0

{EZ0[V0(Z1)1T16t] + g ◦ Φ(Z0, t) × PZ0(T1 > t)} ∨ EZ0 [V0(Z1)].

The only quantities to look at are V0(Z1) = g(Z1) and V1(Z0) = V1(µ). Moreover, this
last expression is deterministic if we choose a deterministic Z0. More specifically, one
has

V0(Z1) = e−rT1




∑

i6=I1

(xie
rT1 − γ)1xi<γe−rT1 + (xI1erT1 − 2γ)1xI1

<2γe−rT1 + (n + 1)γ



 ,

(4.3)
and

V1(Z0) =

sup
t>0




Ex


e−rt



∑

i6=I1

(xie
rT1 − γ)1xi<γe−rT1 + (xI1erT1 − 2γ)1xI1

<2γe−rT1 + (n + 1)γ


1T16t




+ e−rt

(
∑

i

(xie
rt − γ)1xi<γe−rt + nγ

)
exp

(
−
∑

(xα
i )

ertα − 1

αr

)}
∨ Ex[V0(Z1)],

(4.4)
where the first jump time T1 is distributed as (2.2) and the random variable I1 is the rank

of the split cell. Its distribution is given by Pµ(I1 = j) =
xα

j

xα
1 +...+xα

n
. We can numerically

simulate V0(Z1). For V1(µ), we fix a (large enough) maximum time and discretize the
time interval in order to compute (an approximation of) the supremum. In the same
way, the value function for the tagged cell is given by:

V1(x) = sup
t60

{[
(xert − γ)1xert<γ + γ

]
exp

(
−

xα

αr
(erαt − 1)

)

+ Ex

[(
(xerT1/2 − γ)1xerT1 <2γ + γ

)
1T16t

]}
∨ Ex [V0(Z1)] .

For the numerical results, we use the following parameters: α = 1, r = 2, γ = 1.
For the discretization step, we evaluate the maximum value of T1 by the Monte-Carlo
simulations and we divide it by nbpt which corresponds to the number of discretization
points for the evaluation of the supremum. Here, nbpt = 10000 and the Monte Carlo
sample size is N = 100000. We obtain the following approximation

V1(3) = 1.0018 ± 2.54 × 10−4

V1(δ3) = 1.3447 ± 3.6034 × 10−4.
(4.5)

Hence, even on this simple toy example where the cost functions g and h match and
with a short one-step horizon, the optimal performance for the global population and
the tagged cell differ. It will be the object of future work to design specific numerical
approximations of the value function of the global measure-valued population.
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