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Abstract

Perron-Frobenius theory developed for irreducible non-negative kernels deals with
so-called R-positive recurrent kernels. If kernel M is R-positive recurrent, then the
main result determines the limit of the scaled kernel iterations RnMn as n → ∞. In
the Nummelin’s monograph [10] this important result is proven using a regeneration
method whose major focus is on M having an atom. In the special case when M = P is
a stochastic kernel with an atom, the regeneration method has an elegant explanation
in terms of an associated split chain.

In this paper we give a new probabilistic interpretation of the general regeneration
method in terms of multi-type Galton-Watson processes producing clusters of particles.
Treating clusters as macro-individuals, we arrive at a single-type Crump-Mode-Jagers
process with a naturally embedded renewal structure.

Keywords: irreducible non-negative kernels, multi-type Galton-Watson process, R-positive
recurrent kernel

1 Introduction

A Galton-Watson (GW) process describes random fluctuations of the numbers of indepen-
dently reproducing particles counted generation-wise, see [1]. Given a measurable type space
(E, E), the multi-type GW process is defined as a measure-valued Markov chain {Ξn}∞n=0,
where Ξn(A) gives the number of n-th generation particles whose types lie in the set A ∈ E ,
see [6, Ch 3]. Given a current state

Ξn =
Zn∑
i=1

δxi , δx(A) := 1{x∈A},

where Zn = Ξn(E) is the number of particles in the n-th generation and x1, x2, . . . are the
types of these particles, the next state of the Markov chain is determined in terms of the
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offspring to Zn particles

Ξn+1 =
Zn∑
i=1

Ξ
(xi)
i,n , Ξ

(xi)
i,n

d
= Ξ(xi).

The random measure Ξ
(xi)
i,n , describing the allocation of a group of siblings over the type

space E, is assumed to be independent of everything else except for the maternal type xi.
A key characteristic of the multi-type GW process is its reproduction kernel M defining

the expected number of offspring found in a given subset of the type space

M(x,A) = E[Ξ(x)(A)], x ∈ E, A ∈ E , (1)

as a function of the maternal type x. Denote by Mn the iterations of the reproduction kernel:

M0(x,A) = δx(A), Mn(x,A) =

∫
Mn−1(y, A)M(x, dy), n ≥ 1, (2)

here and elsewhere in this paper, the integrals are taken over the whole type space E, unless
specified otherwise. Then, for the multi-type GW process with the initial state Ξ0, we get

E[Ξn(A)] =

∫
Mn(x,A)µ0(dx), µ0 = E[Ξ0].

The asymptotic properties of the multi-type GW processes are studied on the basis of
the Perron-Frobenius theorem dealing with the limiting behaviour of the expectation kernels
and producing an asymptotic formula of the form

Mn(x,A) ∼ ρn
h(x)π(A)∫
h(y)π(dy)

, n→∞,

see [8, Ch 6]. In the classical case of finitely many types, M is a matrix and ρ is its largest,
the so-called Perron-Frobenius eigenvalue. Depending on whether ρ < 1, ρ = 1, or ρ > 1, we
distinguish among subcritical, critical, or supercritical GW processes.

The Perron-Frobenius theory for the irreducible non-negative kernels is build around the
so-called regeneration method, see [2] and especially [10]. A key step of the regeneration
method deals with M having an atom, see Section 2 for key definitions. In the special case,
when M = P is a stochastic kernel with an atom, one can write

P (x,A) = p(x,A) + g(x)γ(A), (3)

where γ(E) = 1, 0 ≤ g(x) ≤ 1 and p(x,E) = 1 − g(x) for all x ∈ E. The transition
probabilities defined by such a kernel P (x, dy) describe a split chain, whose transition from
a given state x is governed either by γ(dy) or p(x, dy)/(1 − g(x)) depending on a random
outcome of a g(x)-coin tossing [10, Ch. 4.4]. After each γ-transition step, the future evolution
of the split chain becomes independent from the past and present states, so that the sequence
of such regeneration events forms a renewal process with a delay. Then, it remains to apply
the basic renewal theory to establish the Perron-Frobenius theorem for stochastic kernels.
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In this paper we suggest a probabilistic interpretation of the general regeneration method
(when kernel M is not necessarily stochastic) in terms of a certain class of multi-type GW
processes which we call GW processes with clusters, see Section 3. In Section 4 we show that
a GW process with clusters has an intrinsic structure of the single-type Crump-Mode-Jagers
(CMJ) process with discrete time [5]. In Sections 5 and 6 we give a proof of a suitable version
of the Perron-Frobenius theorem for the kernels with an atom, see Theorem 13, using the
regeneration property of the renewal process embedded into the CMJ process. Section 7
contains an illuminating example of a GW process with clusters.

2 Irreducible kernels

In this section we give a summary of basic definitions and results presented in [10], including
Theorems 2.1, 5.1, 5.2, and Propositions 2.4, 2.8, 3.4.

Consider a measurable type space (E, E) assuming that σ-algebra E is countably gen-
erated. We denote by M+ the set of σ-finite measures φ on (E, E), and write φ ∈ M+ if
φ ∈M+ and φ(E) ∈ (0,∞].

Definition 1 A (non-negative) kernel on (E, E) is a map M : E×E → [0,∞) such that for
any fixed A ∈ E, the function M(·, A) is measurable, and on the other hand, M(x, ·) ∈ M+

for any fixed x ∈ E. For a pair (x,A) ∈ (E, E), we write x→ A if

Mn(x,A) > 0 for some n ≥ 1.

Kernel M is called irreducible, if there is such a measure φ ∈ M+, that for any x ∈ E, we
have x→ A whenever φ(A) > 0. Measure φ is then called an irreducibility measure for M .

If measure φ′ ∈ M+ is absolutely continuous with respect to an irreducibility measure φ,
then φ′ is itself an irreducibility measure. For an irreducible kernel M , there always exists
a maximal irreducible measure ψ such that any other irreducibility measure φ is absolutely
continuous with respect to ψ.

For an irreducible kernel M with a maximal irreducible measure ψ, there is a decompo-
sition of the form

Mn0(x,A) = m(x,A) + g(x)γ(A), for all x ∈ E,A ∈ E , (4)

where

γ is an irreducibility measure for M ,
g is a measurable non-negative function such that

∫
g(x)ψ(dx) > 0,

m is a another kernel on (E, E),
n0 is a positive integer number.

Definition 2 If (4) holds with n0 = 1, so that

M(x,A) = m(x,A) + g(x)γ(A), x ∈ E, A ∈ E , (5)

then the kernel M is said to have an atom (g, γ).
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Given (4), put

F (s) =
∞∑
n=1

Fns
n, Fn =

∫∫
g(y)Mn−1(x, dy)γ(dx). (6)

Definition 3 Define the convergence parameter R ∈ [0,∞) of the irreducible kernel M by

F (s) <∞ for s < R, and F (s) =∞ for s > R.

If F (R) < ∞, then kernel M is called R-transient, if F (R) = ∞, then kernel M is called
R-recurrent.

Definition 4 A non-negative measurable function h which is not identically infinite is called
R-subinvariant for M if

h(x) ≥ R

∫
h(y)M(x, dy), for all x ∈ E.

An R-subinvariant function is called R-invariant if

h(x) = R

∫
h(y)M(x, dy), for all x ∈ E.

A measure π ∈M+ such that
∫
g(y)π(dy) ∈ (0,∞) is called R-subinvariant for M if

π(A) ≥ R

∫
M(x,A)π(dx), for all A ∈ E .

An R-subinvariant meaure is called R-invariant if

π(A) = R

∫
M(x,A)π(dx), for all A ∈ E .

Suppose M is R-recurrent. The function h and the measure π defined by

h(x) =
∞∑
n=1

Rnn0

∫
g(y)mn−1(x, dy), π(A) =

∞∑
n=1

Rnn0

∫
mn−1(x,A)γ(dx) (7)

are R-invariant for M , scaled in such a way that∫
h(x)γ(dx) =

∫
g(y)π(dy) = 1. (8)

For any R-subinvariant function h̃ satisfying
∫
h̃(x)γ(dx) = 1, we have

h̃ = h ψ-everywhere and h̃ ≥ h everywhere.

The measure π is the unique R-subinvariant measure satisfying (8).
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Definition 5 An R-recurrent kernel M is called R-positive recurrent if the R-invariant
function and measure (h, π) satisfy

∫
h(y)π(dy) < ∞. If

∫
h(y)π(dy) = ∞, then M is

called R-null recurrent.

Definition 6 Kernel M has period d if d is the smallest positive integer such that there is
a sequence of non-empty disjoint sets (D0, D1, . . . Dd−1) having the following property

if x ∈ Di, then M(x,E \Dj) = 0 for j = i+ 1 (mod d), i = 0, . . . , d− 1.

We call kernel M aperiodic if its period d = 1.

In the periodic case with d ≥ 2, provided M is irreducible and satisfies (4), there is an index
i, 0 ≤ i ≤ d− 1, such that g = 0 over all Dj except Di. Furthermore,

γ(E \Dj) = 0 for j = i+ n0 (mod d).

3 GW processes with clusters

As will be explained later in this section, the following definition yields the above mentioned
split chain construction in the particular case when P(Ξ(x)(E) = 1) = 1.

Definition 7 Consider a multi-type GW process {Zn}∞n=0 whose reproduction measure can
be decomposed into a sum of a random number of integer-valued random measures

Ξ(x) = ξ(x) +
N(x)∑
i=1

τi. (9)

Let each τi be independent of everything else and have a common distribution τi
d
= τ .

(i) Such a multi-type GW process will be called a GW process with clusters.
(ii) Each group of particles behind a measure τi in (9) will be called a cluster, so that

N (x) gives the number of clusters produced by a single particle of type x. Simple clusters
correspond to the case P(τ(E) = 1) = 1.

(iii) A multi-type GW process with the reproduction measure ξ(x) will be called a stem
process.

Given (9) and
Eξ(x)(A) = m(x,A), EN (x) = g(x), Eτ(A) = γ(A), (10)

by the total expectation formula, we see that the kernel (1) satisfies (5). Note that we allow
for dependence between ξ(x) and N (x). Definition 7 puts no restrictions on the reproduction
kernel m of the stem process. The example from Section 7 presents a case with E = [0,∞),
where the kernel m is reducible, in that for any ordered pair of types (x, y), where x < y,
type x particles (within the stem process) may produce type y particles but not otherwise.
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Consider a GW process with simple clusters such that

P(ξ(x)(E) = 0) = g(x), P(ξ(x)(E) = 1) = 1− g(x), g(x) ∈ [0, 1],

N (x) = 1{ξ(x)(E)=0}, x ∈ E,
τ = δY , P(Y ∈ A) = γ(A).

In this case each particle produces exactly one offspring, and the GW process tracks the type
of the regenerating particle. Using (5), we find that M = P is a stochastic kernel satisfying
(3) with

p(x,A) = (1− g(x))P(ξ(x)(A) = 1|ξ(x)(E) = 1).

As a result we get a split chain corresponding to a stochastic kernel. Notice that the associ-
ated stem process is a pure death multi-type GW process.

An important family of GW processes with simple clusters is formed by linear-fractional
multi-type GW processes, see [7, 11]. This family is framed by the following additional
conditions

P(ξ(x)(E) = 0) + P(ξ(x)(E) = 1) = 1,

N (x) = N · 1{ξ(x)(E)=1}, where N has a geometric distribution,

τ = δY .

In this case (5) holds with

m(x,A) = P(ξ(x)(A) = 1), g(x) = EN · P(ξ(x)(A) = 1), γ(A) = P(Y ∈ A).

Here again, the stem process is a pure death multi-type GW process.

4 Embedded CMJ process

The key assumption of Definition 7 guarantees that the procreation of particles constituting
a cluster is independent of the other parts of the GW process with clusters. The main
idea of this paper is to treat each cluster as a newborn CMJ individual, which reminds the
construction of macro-individuals in the sibling dependence setting of [9].

Consider the stem process starting from a single cluster at time 0 and denote by L ∈ [1,∞]
its extinction time. Put X0 = 1 and let Xn stand for the number of new clusters generated
at time n by the particles in the stem process born at time n− 1, n ≥ 1. Observe that

fn := E(Xn) =

∫∫
g(y)mn−1(x, dy)γ(dx).

We treat the random vector (X1, . . . , XL) as the life record of the initial individual in an
embedded CMJ process, see Figure 1. A CMJ individual during its life of length L at different
ages produces random numbers of offspring, cf [5]. Such independently reproducing CMJ
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Figure 1: Embedding a CMJ individual into a multi-type GW process stemming from a
single cluster of size Z0 = 3. Left panel. Solid lines represent the lineages of the stem process
which dies out by time L = 6. Dashed lines delineate the daughter clusters directly generated
by the stem process. We see that X1 = 3 with τ1(E) = 0, τ2(E) = 1, τ3(E) = 3. Right panel.
The summary of the individual life: (X1, . . . , XL) = (3, 2, 2, 0, 2, 1).

individuals build a population with overlapping generations (in contrast to GW particles
living one unit of time, so that there is no time overlap between generations).

Throughout this paper we assume

f(s0) ∈ (0,∞) for some s0 > 0, where f(s) =
∞∑
n=1

fns
n, (11)

so that on one hand, that fn > 0 for some n ≥ 1, and on the other hand, the radius of
convergence

r = inf{s ≥ 0: f(s) =∞}
is positive. The assumption r > 0 prohibits very fast growing sequences of the type fn = en

2
.

Definition 8 Given (11), define a parameter R ∈ (0,∞) as R = r if f(r) < 1, and as the
unique positive solution of the equation f(R) = 1 if f(r) ≥ 1.

Since f(R) ≤ 1, the sequence (fnR
n) can be viewed as a (possibly defective) distribution on

the lattice {1, 2, . . .}. This is the distribution of the inter-arrival time for the renewal process
naturally embedded into the CMJ process defined above. The renewal process is interpreted
as the consecutive ages at childbearing as one tracks a single ancestral lineage backwards in
time. Given f(R) = 1, the mean inter-arrival time for the embedded renewal process equals

∞∑
n=1

nfnR
n = Rf ′(R),
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and is interpreted as the average age at childbearing or the mean generation length for the
CMJ process, see [4].

Focussing on the current waiting time of such a discrete renewal process, we get an irre-
ducible Markov chain with the state space {0, 1, . . .}. The following observation concerning
this Markov chain is straightforward.

Proposition 9 The embedded renewal process is transient if f(r) < 1, and recurrent if
f(r) ≥ 1. Let R be defined by Definition 8. If f(r) > 1, then R ∈ (0, r), f ′(R) < ∞, and
the embedded renewal process is positive recurrent. If f(r) = 1, then the embedded renewal
process is either positive recurrent or null recurrent depending on whether f ′(r) < ∞ or
f ′(r) =∞.

Let Wn be the number of newborn individuals at time n in the embedded CMJ process
started from a single newborn individual, or in other words, the total number of clusters
emerging at time n in the original GW process starting from a single cluster. Clearly,

Fn := E(Wn) =

∫∫
g(y)Mn−1(x, dy)γ(dx).

Theorem 10 Consider a kernel M with atom (g, γ). Parameter R from Definition 8 coin-
cides with the convergence parameter of the kernel M . Moreover,

(i) if f(r) < 1, then R = r, f(R) < 1, and F (R) <∞, so that M is R-transient,
(ii) if f(r) ≥ 1, then f(R) = 1 and F (R) =∞, so that M is R-recurrent,
(iii) if f(R) = 1, then either f ′(R) =∞ so that M is R-null recurrent, or f ′(R) ∈ (0,∞),

so that M is R-positive recurrent.

Proof. Using the law of total expectation it is easy to justify the following recursion

Fn = fn + fn−1F1 + . . .+ f1Fn−1.

This leads to the equality for generating functions

F (s) = f(s) + f(s)F (s),

which yields

F (s) =
f(s)

1− f(s)
for s such that f(s) < 1. (12)

From here and in view of Definition 3, it is obvious that the first statement is valid. Parts
(i) and (ii) follow immediately. Part (iii) is proven in Section 5. �

Remark. For a general starting configuration of particles Z0, putting µ0 = EZ0, we get

f̃n := EXn =

∫∫
g(y)mn−1(x, dy)µ0(dx),

F̃n := EYn =

∫∫
g(y)Mn−1(x, dy)µ0(dx).
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The corresponding generating functions

f̃(s) =
∞∑
n=1

f̃ns
n, F̃ (s) =

∞∑
n=1

F̃ns
n,

are connected by

F̃ (s) =
f̃(s)

1− f(s)
for s such that f(s) < 1. (13)

(To obtain this relation, observe that

F̃n = f̃n + f̃n−1F1 + . . .+ f̃1Fn−1,

which gives F̃ (s) = f̃(s)(1 + F (s)), and it remains to apply (12).)

As mentioned above, under the special initial condition Z0
d
= τ , the embedded CMJ

process starts from a single newborn individual. For a general Z0, the embedded CMJ
process has an immigration component characterised by the generating function f̃(s). By
immigration we mean the inflow of new clusters generated by the stem process starting from
Z0 particles.

5 Null and positive recurrence of a kernel with atom

Consider a non-negative kernel M with atom (g, γ), and put

Ms(x,A) =
∞∑
n=1

snMn−1(x,A), ms(x,A) =
∞∑
n=1

snmn−1(x,A), s ≥ 0,

so that the earlier introduced generating functions F and f can be presented as

F (s) =

∫∫
g(y)Ms(x, dy)γ(dx), f(s) =

∫∫
g(y)ms(x, dy)γ(dx).

Denote

hs(x) =

∫
g(y)ms(x, dy), πs(A) =

∫
ms(x,A)γ(dx), (14)

and observe that∫
hs(x)γ(dx) =

∫
g(y)πs(dy) = f(s),

∫
hs(y)πs(dy) = s2f ′(s).

The latter equality requires the following argument∫
hs(x)πs(dx) =

∫∫∫
g(y)ms(x, dy)ms(z, dx)γ(dz)

=

∫∫
g(y)m2

s(z, dy)γ(dz) =
∞∑
n=1

nsn+1fn = s2f ′(s),

9



where we used the relation

s−2m2
s(y, A) =

∫
s−1ms(x,A)s−1ms(y, dx) =

∞∑
n=0

∞∑
k=0

∫
snmn(x,A)skmk(y, dx)

=
∞∑
n=0

∞∑
k=0

sn+kmn+k(y, A) =
∞∑
j=0

(j + 1)sjmj(y, A).

Lemma 11 Consider a kernel with atom (5). If a positive s is such that f(s) ≤ 1, then the
function hs and the measure πs, defined by (14), satisfy∫

hs(y)M(x, dy) = s−1hs(x)− (1− f(s))g(x), (15)∫
M(y, A)πs(dy) = s−1πs(A)− (1− f(s))γ(A), (16)

so that they are s-subinvariant function and measure for the kernel M .

Proof. By (5), we have∫
ms(y, A)M(x, dy) =

∞∑
n=1

snmn(x,A) + g(x)

∫
ms(y, A)γ(dy)

= s−1ms(x,A)− δx(A) + g(x)πs(A),

which implies relation (15):∫
hs(y)M(x, dy) =

∫∫
g(w)ms(y, dw)M(x, dy) = s−1hs(x)− g(x) + g(x)f(s).

Similarly, from∫
M(y, A)ms(x, dy) =

∞∑
n=1

snmn(x,A) + γ(A)

∫
g(y)ms(x, dy)

= s−1ms(x,A)− δx(A) + γ(A)hs(x),

we arrive at relation (16). �

Lemma 11 yields the following statement which in turn provides the proof of part (iii) of
Theorem 10 (recall Definition 5).

Corollary 12 Consider an R-recurrent kernel M with atom (g, γ). If f(R) = 1, then
h = hR and π = πR are R-invariant function and measure satisfying relation (7) with
n0 = 1, relation (8), as well as ∫

h(y)π(dy) = R2f ′(R).

10



Observe that

h(x) =
∞∑
n=1

Rn

∫
g(y)mn−1(x, dy) (17)

is the expected R-discounted number of clusters ever produced by the stem process starting
from a single particle of type x. From this angle, h(x) can be interpreted as the reproductive
value of type x. On the other hand,

π(A) =
∞∑
n=1

Rn

∫
mn−1(x,A)γ(dx). (18)

is the expected R-discounted number of particles whose type belongs to A and which appear
in the stem process starting from a single cluster of particles. As shown next, see Theorem
13, the measure π can be viewed as an asymptotically stable distribution for the types of
particles in the GW process with clusters.

6 Perron-Frobenius theorem for kernels with atom

Theorem 13 Consider an aperiodic R-positive recurrent kernel M with atom (g, γ). Let h
and π be given by (17) and (18). If (x,A) are such that

Rnmn(x,A)→ 0, n→∞, (19)

then

RnMn(x,A)→ h(x)π(A)

R2f ′(R)
, n→∞. (20)

If h(x) <∞, then condition (19) holds for any A such that

A ⊂ {y : g(y) ≥ ε} for some ε > 0. (21)

To prove this result we need two lemmas. In the end of this section we give a remark
addressing condition (19).

Lemma 14 Consider a kernel M with atom (g, γ). If s > 0 is such that f(s) < 1, then

Ms(x,A) = ms(x,A) +
hs(x)πs(A)

1− f(s)
for all x ∈ E,A ∈ E . (22)

Proof. By (5), we have the recursion

Mn(x,A) = g(x)

∫
Mn−1(y, A)γ(dy) +

∫
Mn−1(y, A)m(x, dy)

= g(x)

∫
Mn−1(y, A)γ(dy) +

∫
g(y)m(x, dy)

∫
Mn−2(z, A)γ(dz)

+

∫
Mn−2(z, A)m2(x, dz)

=
n∑
i=1

∫
g(y)mi−1(x, dy)

∫
Mn−i(y, A)γ(dy) +mn(x,A),

11



which in terms of generating functions gives

Ms(x,A) = ms(x,A) + hs(x)

∫
Ms(y, A)γ(dy),

and after integration, ∫
Ms(x,A)γ(dx) =

πs(A)

1− f(s)
.

Combining the last two relations we get (22). Observe also that the last formula yields (12).
�

Lemma 15 Let

a(s) =
∞∑
n=0

ans
n, b(s) =

∞∑
n=0

bns
n, c(s) =

∞∑
n=0

cns
n,

be three generating functions for non-negative sequences connected by

c(s) =
b(s)

1− a(s)
.

If sequence {an} is aperiodic with a(1) = 1, a′(1) ∈ (0,∞), then

cn →
b(1)

a′(1)
, n→∞.

Proof. This is a well-known result from Chapter XIII.4 in [3]. �

Proof of Theorem 13. R-positive recurrence implies f(R) = 1 and f ′(R) ∈ (0,∞). Due
to f(R) = 1, we can rewrite (22) as

Mŝ(x,A)−mŝ(x,A) =
b(s)

1− a(s)
,

where ŝ = sR and
a(s) = f(sR), b(s) = hŝ(x)πŝ(A),

so that a′(1) = Rf ′(R), b(1) = h(x)π(A). Applying Lemma 15, we find that as n→∞,

Rn(Mn(x,A)−mn(x,A))→ h(x)π(A)

R2f ′(R)
.

12



which combined with condition (19) yields the main assertion. The stated sufficient condition
for (19) is verified using

∞∑
n=1

Rnmn−1(x,A) ≤
∞∑
n=1

Rn

∫
1{y:g(y)>ε}m

n−1(x, dy) ≤ ε−1h(x) <∞.

�
Remark. To illustrate the role of the condition (19), consider the kernel (5) with

m(x,A) = g1(x)γ1(A),

assuming∫
g1(x)γ1(dx) = a1,

∫
g(x)γ(dx) = a,

∫
g1(x)γ(dx) =

∫
g(x)γ1(dx) = 0,

where a1 > a > 0. In this particular case, we have

Mn(x,A) = mn(x,A) + ang(x)γ(A), mn(x,A) = an1g1(x)γ1(A),

and clearly,

Mn(x,A) ∼
{
an1g1(x)γ1(A), if g1(x)γ1(A) > 0,
ang(x)γ(A), if g1(x)γ1(A) = 0 and g(x)γ(A) > 0.

Turning to the generating function defined by (6) we find

Fn =

∫∫
g(y)Mn−1(x, dy)γ(dx) = an+1, F (s) =

a2s

1− as
.

This yields R = a−1 and we see that condition (19) is not valid for (x,A) such that
g1(x)γ1(A) > 0. On the other hand, if g(x) <∞ and A satisfies (21), then

0 =

∫
g(x)γ1(dx) ≥

∫
A

g(x)γ1(dx) ≥ εγ1(A),

so that γ1(A) = 0 and therefore RnMn(x,A)→ g(x)γ(A).

7 3-parameter GW process with clusters

Here we construct a transparent example of a GW process with clusters having the type
space E = [0,∞). Its positive recurrent reproduction kernel is fully specified by just three
parameters a, c ∈ (0,∞), and b ∈ (−1,∞):

M(x, dy) = aex−y1{y≥x}dy + ce−bxδ0(dy).
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This kernel satisfies (5) with

m(x, dy) = aex−y1{y≥x}dy, g(x) = ce−bx, γ(A) = δ0(A), (23)

implying that each cluster consists of a single particle of type 0.
The full specification of our example refers to a continuous time Markov branching process

modeling the size of a population of Markov particles having the unit life-length mean and
offspring mean a. The main idea is to count the Markov particles generation-wise, and to
define the type of a Galton-Watson particle as the birth-time of the corresponding Markov
particle. The corresponding stem process {ξn}n≥0 is defined by

ξn(A) = the number of n-generation Markov particles born in the time period A,

so that its conditionally on the parent’s birth time x,

mn(x, [0, t]) = anP(x+ T1 + . . .+ Tn ≤ t) = anP(Nt−x ≥ n), for t > x,

where Ti are independent exponentials with unit mean and {Nt}t≥0 is the standard Poisson
process.

Proposition 16 Consider the above described multi-type GW process with clusters charac-
terised by (23). Then we have

f(s) =
rcs

r − s
, r =

1 + b

a
, R =

r

1 + cr
. (24)

The process is supercritical if c > r−1
r

, critical if c = r−1
r

, and subcritical if c < r−1
r

.
Convergence (20) holds for A = [0, t], t ∈ [0,∞), with the right hand side equal to

e−bx(Rδ0(dy) + aR2e(aR−1)ydy).

If Ra < 1, then (20) holds even for A = E with the right hand side equal to Re−bx

1−aR .

Proof. Referring to the underlying Poisson process, we find that for s 6= 1/a,

ms(0, [0, t]) = s

∞∑
n=0

snan
∞∑
k=n

P(Nt = k) = s
∞∑
k=0

P(Nt = k)
1− (as)k+1

1− as

=
s

1− as
(1− asE(as)Nt) =

s

1− as
(1− aset(as−1)).

More generally, we have

ms(x, [0, t]) = ms(0, [0, t− x]) =
s

1− as
(1− ase(t−x)(as−1))1{t≥x},

so that

ms(x, dy) = sδx(dy) + as2e(as−1)(y−x)1{y≥x}dy.

14



By (14)

hs(x) =

∫
g(y)ms(x, dy) = sce−bx + cas2

∫ ∞
0

eh(as−1)e−b(x+u)du = f(s)e−bx,

where f(s) satisfies (24). Since f(r) = ∞, the stated value R = r
1+cr

is found from the
equation f(R) = 1.

Applying once again (14), we find

πs(dy) =

∫
ms(x, dy)γ(dx) = ms(0, dy) = sδ0(dy) + as2e(as−1)ydy.

To check this and previously obtained expressions, we verify the general formula for the
integral∫

hs(x)πs(dx) = sf(s) + f(s)as2
∫
e−(1+b)xeasxdx =

rsf(s)

r − s
=

r2s2

(r − s)2
= s2f ′(s).

With

h(x) = e−bx, π(dx) = Rδ0(dx) + aR2e(aR−1)xdx,

Theorem 13 specialised to the current example says that for t ∈ [0,∞),

RnMn(x, [0, t])→ e−bx(R + aR2

∫ t

0

e(aR−1)ydy)

= e−bx(R +
aR2

aR− 1
(e(aR−1)t − 1)) = e−bx

aR2e(aR−1)t −R
aR− 1

, n→∞.

If aR < 1 and A = E, then condition (19) holds since

π(E) = R +
aR2

1− aR
=

R

1− aR
<∞,

and Rnmn(x,E) = (Ra)n → 0. �

Remark. If we further specialize this example by letting the stem process to be the Yule
process, then we have a = 2. If furthermore, b = 2 and c < r−1

r
= 1

3
, then the corresponding

GW process with clusters is subcritical, despite the total number of particles in the Yule
process is infinite.
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