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Abstract

The Matérn hard-core processes are classical examples for point process models obtained
from (marked) Poisson point processes. Points of the original Poisson process are deleted
according to a dependent thinning rule, resulting in a process whose points have a prescribed
hard-core distance. We present a new model which encompasses recent approaches. It
generalizes the underlying point process, the thinning rule and the marks attached to the
original process. The new model further reveals several connections to mixed moving maxima
processes, e.g. a process of visible storm centres.
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1 Introduction

Point process models obtained by dependent thinning of homogeneous Poisson point processes
have been extensively examined during the last decades. The Matérn hard-core processes [Matérn,
1960] are classical examples for such processes, where the thinning probability of an individual
point depends on the other points of the original point pattern. The Matérn models and slight
modifications of them are applied to real data in various branches, for instance ecological science
[Stoyan, 1987, Picard, 2005], geographical analysis [Stoyan, 1988] and computer science [Ibrahim
et al., 2013].
There already exist several extensions of Matérns models [Kuronen and Leskelä, 2013], concerning
the hard-core distance [Stoyan and Stoyan, 1985, Månsson and Rudemo, 2002], the thinning rule
[Teichmann et al., 2013] or the generalization the underlying Poisson process [Andersen and Hahn,
2016]. We present a new model which encompasses all these approaches and further generalizes
the underlying point process, the thinning rule and the marks attached to the original process.
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In Section 2, we shortly review the Matérn hard-core process and state details on Palm calculus
which will be used throughout the paper. Our general model is defined in Section 3. We restrict
the underlying ground process to a log Gaussian Cox process in Section 4 and calculate first and
second order properties for this model. In Section 5, we establish a connection between our model
and mixed moving maxima (M3) processes. We prove that a process based on our model is in the
max-domain of attraction of an M3 process and further calculate first and second order properties
of a point process which can be recovered from an observation of the M3 process itself.

2 Preliminaries

In this paper, we regard a point process as random countable subset of a complete separable
metric space S. For ϕ ⊂ S we denote by n(ϕ) the cardinality of ϕ. We define the space of locally
finite subsets of S by

Nlf = {ϕ ⊂ S : n(ϕ ∩B) <∞, for all bounded B ⊂ S}

and the corresponding σ-algebra

Nlf = σ({ϕ ∈ Nlf : n(ϕ ∩B) = m} : B ⊂ S bounded and m ∈ N).

A point process Φ is a random variable taking values in (Nlf ,Nlf).

Matérn hard-core processes and Palm calculus. Matérn introduced point process models
which are obtained from a stationary Poisson process Φ on S = Rd with intensity λ, by a de-
pendent thinning method [Matérn, 1960]. In the Matérn I model, all points ξ ∈ Φ that have
neighbours within a deterministic hard-core distance R are deleted. The Matérn II model consid-
ers a marked point process ΦM where each point ξ ∈ Φ is independently endowed with a random
mark mξ ∼ U [0, 1]. A point (ξ,mξ) ∈ ΦM is retained in the thinned process Φth if the sphere
BR(ξ) contains no points ξ′ ∈ Φ \ {ξ} with mξ′ < mξ. That is,

Φth = {(ξ,mξ) ∈ ΦM : mξ < mξ′ , ∀ξ′ ∈ Φ ∩BR(ξ) \ {ξ}}
= {(ξ,mξ) ∈ ΦM : fth(ΦM ; ξ,mξ) = 1}

with the thinning function

fth(ΦM ; ξ,mξ) =
∏

(ξ′,mξ′ )∈ΦM\{(ξ,mξ)}

(1− 1ξ′∈BR(ξ)1mξ′<mξ
).

It is of particular interest to compute the probability that a given point (ξ,mξ) ∈ ΦM is retained
in the thinned process. This probability can be calculated using Palm calculus [Mecke, 1967,
Møller and Waagepetersen, 2004, Daley and Vere-Jones, 2008, Chiu et al., 2013], which we briefly
summarize in the following.
The reduced Campbell measure C ! for a point process Φ on S is a measure on S ×Nlf defined by

C !(D) = E
∑
ξ∈Φ

1(ξ,Φ\ξ)∈D, D ⊂ S ×Nlf .

2



Let the intensity measure µ be σ-finite. Then the Campbell measure is, in its first component,
absolutely continuous with respect to µ. Its Radon-Nikodym density P !

ξ is called reduced Palm
distribution. Therefore

C !(B × F ) =

∫
B

P !
ξ(F )dµ(ξ), B ⊂ S, F ∈ Nlf

and for non-negative functions h : S ×Nlf → [0,∞)

E
∑
ξ∈Φ

h(ξ,Φ \ {ξ}) =

∫ ∫
h(ξ, η)dP !

ξ(η)dµ(η).

Hence P !
ξ can be interpreted as the conditional distribution of Φ \ {ξ} given ξ ∈ Φ. Thereby the

retaining probability of a point (ξ,mξ) ∈ ΦM equals

r(ξ,mξ) =

∫
Mlf

fth(ϕ; ξ,mξ) P
!
ξ,mξ

(dϕ)

where Mlf is the suitably defined space of point configurations of the marked process ΦM . We
give the full definition of Mlf and its σ-algebra in the next section. The generating functional of
a point process Φ is defined as

GΦ(u) = E
∏
ξ∈Φ

u(ξ)

for functions u : S → [0, 1], see [Westcott, 1972]. The Palm distribution P !
ξ,mξ

equals the distribu-

tion of ΦM since ΦM is a Poisson process - see Example 4.3 in Chiu et al. [2013]. As a consequence
of this, r(ξ,mξ) is the generating functional of ΦM evaluated at fth. Therefore

r(ξ,mξ) = exp(−λ|BR(o)| ·mξ)

and the intensity of the thinned process equals

λth = λ

∫ 1

0

r(mξ) dmξ = |BR(o)|−1(1− exp(−λ|BR(o)|)).

The Palm distribution of a general point process is more difficult to handle, however it can be
explicitly calculated for many Cox process models [Møller, 2003, Coeurjolly et al., 2015]. Besides,
Mecke [1967] indicates how to calculate the Palm distribution of an infinitely divisible point
process. A point process Φ is called infinitely divisible if, for all n ∈ N there exist iid. processes

Φ1, . . . ,Φn such that Φ
d
= Φ1 + · · ·+ Φn.

3 Generalizing the Matérn hard-core processes

We present a new point process model, obtained by dependent thinning of a ground process Φ,
which generalizes the Matérn model in several ways. We therefore call the new model generalized
Matérn model.
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p mξ ζ
Matérn I 1 - 1ξ′∈BR(ξ)

Generalized Matérn I (1− ‖ξ − ξ′‖/R)+ - 1ξ′∈BR(ξ)

Matérn II 1 U [0, 1] 1ξ′∈BR(ξ)1m′ξ<mξ

Generalized Matérn II (1− ‖ξ − ξ′‖/R)+ U [0, 1] 1ξ′∈BR(ξ)1m′ξ<mξ

Table 1: Let S = Rd. The classical Matérn models are obtained as special case of our general model. We
call the models resulting from Matérn I or II by including an additional stochastic thinning, generalized
Matérn I and II model respectively.

Suppose that Φ is a locally finite point process on S. Each point ξ of Φ is independently attached
with a random mark mξ. We allow these marks to be continuous functions from S to R, i.e. an
element of the space of continuous functions M = C(S,R) with law ν. Then,

ΦM = {(ξ,mξ) : ξ ∈ Φ}

is a marked point process, i.e. a mapping into (Mlf ,Mlf), with the set of point configurations

Mlf =
{
ϕ ⊂ S ×M : {ξ ∈ S, (ξ,mξ) ∈ ϕ} ∈ Nlf and (ξ,mξ), (ξ,m

′
ξ) ∈ ϕ⇒ mξ = m′ξ

}
and its σ-algebraMlf which is defined analogous to Nlf . The Bernoulli random variable τΦM ;ξ,mξ

shall indicate whether a point of ΦM is retained in the thinned process. We define the thinned
marked process

Φth = {(ξ,mξ) ∈ ΦM : (ξ,mξ) ∈ ΦM , τΦM ;ξ,mξ = 1}, (1)

which we call generalized Matérn process, and the thinned ground process

Φ0
th = {ξ : (ξ,mξ) ∈ Φth}. (2)

The success probability of τΦM ;ξ,mξ equals the thinning function

fth(ΦM ; ξ,mξ) =
∏

(ξ′,m′ξ)∈ΦM

(1− ζ(ξ,mξ, ξ
′,mξ′)p(ξ,mξ, ξ

′,mξ′)).

Here, ζ : (S,M)2 → {0, 1} is a measurable function which we call competition function and
which specifies the inferior points which are endangered to be deleted. We call a point ξ inferior
if ζ(ξ,mξ, ξ

′,m′ξ) = 1 for some (ξ′,m′ξ) ∈ ΦM \ {ξ,mξ}. Likewise, p : (S,M)2 → [0, 1] is a
measurable function determining the probability that an inferior point is deleted. We henceforth
fix

ζ(ξ,mξ, ξ,mξ) = 1, p(ξ,mξ, ξ,mξ) = 1− p0 ∈ [0, 1]

and thereby include independent p0-thinning in our model. In order to simplify notation, we will
use abbreviations like ξ = (ξ,mξ) and ζ(ξ, ξ′) = ζ(ξ,mξ, ξ

′,mξ′) throughout the paper.

Example 1. The Matérn hard-core models I and II can be easily derived from our model, see
Table 1. There, we also give generalizations where p 6= 1.
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Figure 1: Plot of the original Poisson process Φ and the underlying intensity function (upper left).
Thinned points Φ0

th of a generalized Matérn I model (upper right) and a generalized Matérn II model
(lower left) with R = 1 and pξ′(ξ) = max(0, 1 − ‖ξ − ξ′‖). The last plot shows the thinned points of a
generalized hard-core process with competition function ζ(ξ, ξ′) = 1mξ′ (ξ)>mξ(ξ)

, random mark functions

mξ(·) = u·ϕ(·), u ∼ U [0, 1] with the two-dimensional standard-normal density ϕ and thinning probability
p(ξ, ξ′) = max(0, 1− ‖ξ − ξ′‖).

Example 2. A further generalization of the Matérn I model in S = Rd was presented in Teich-
mann et al. [2013]. According to their thinning rule, a point ξ of the ground process Φ is retained
with probability

p0

∏
ξ′∈ΦM\{ξ}

(1− f(‖ξ − ξ′‖)),
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with p0 ∈ (0, 1] and some deterministic function f : [0,∞) → [0, 1]. This equals our model with
the choice ζ ≡ 1 and p(ξ,mξ, ξ

′,m′ξ) = f(‖ξ − ξ′‖).

Example 3. Consider now S = Rd, marks mξ in M = R{0,1} with mξ(0) ∼ µ and mξ(1) ∼ ν
for probability measures µ and ν. Let ζ(ξ,mξ, ξ

′,mξ′) = 1mξ(0)≥mξ′ (0) and p(ξ,mξ, ξ
′,mξ′) =

f(‖ξ − ξ′‖,mξ(1),mξ′(1)). Then

fth(ΦM ; ξ,mξ) = p0

∏
ξ′∈ΦM\{ξ}

[
1− 1mξ(0)≥mξ′ (0)f

(
‖ξ − ξ′‖,mξ(1),mξ′(1)

)]
.

This model was presented by Teichmann et al. [2013] as an extension of the Matérn II model.

Example 4. Let Φ be an inhomogeneous Poisson process in Rd, attached with random mark
functions mξ(·) = u·ϕ(·), u ∼ U [0, 1] with the d-dimensional standard-normal density ϕ. Consider
the competition function ζ(ξ, ξ′) = 1mξ′ (ξ)>mξ(ξ)

and p(ξ, ξ′) = max(0, 1 − ‖ξ − ξ′‖). This leads
to a soft-core model where inferior points are the more likely to be thinned the closer they are to
superior points. See Figure 1 for a plot of this model in d = 2 and Figure 2 for a plot of arbitrary
points (ξ,mξ) and (η,mη) with d = 1.

Figure 2: Arbitrary points (ξ,mξ) and (η,mη) of ΦM from Example 4 with d = 1. Since mη(ξ) >
mξ(ξ), the point (ξ,mξ) is inferior to (η,mη) and hence endangered to be thinned with probability
p(ξ,mξ, η,mη) = max(0, 1− |ξ − η|).

4 Generalized Matérn model based on log Gaussian Cox

processes

Let P !
ξ(·) be the reduced Palm distribution of ΦM , that is P !

ξ(·) is a probability measure on
(Mlf ,Mlf) for each ξ ∈ S ×M. The retaining probability of a point ξ ∈ Φ with mark function
mξ can then be calculated by

r(ξ,mξ) =

∫
Mlf

fth(ϕ ∪ (ξ,mξ); ξ,mξ) P
!
ξ(dϕ).
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Since our new model is defined in a rather general setting, reasonable restrictions are needed
in order to calculate the reduced Palm distribution of ΦM and thereby first and seconder order
properties of Φth. We henceforth assume that Φ is a log Gaussian Cox process, though all results
may be derived in a similar way for other Cox processes or infinitely divisible point processes
[Mecke, 1967], when P !

ξ is known.
Let Ψ = exp(W ) be the random intensity function of Φ where W is a Gaussian random field with
mean function µ and covariance function C. We write Φ ∼ LGCP(µ,C) for short.

Proposition 1. Let Φ ∼ LGCP(µ,C) and h(ξ, ξ′) = 1 − ζ(ξ, ξ′)p(ξ, ξ′), then the retaining
probability is

r(ξ,mξ) = E
∏

ξ′∈Φ̃M

h(ξ, ξ′),

with Φ̃ ∼ LGCP(µ̃, C) and µ̃(·) = µ(·) + C(·, ξ). Furthermore, if Ψ̃ is the random intensity

function of Φ̃, the first order intensity of Φ0
th is given by

ρth(ξ) = p0ρΦ(ξ)

∫
M
EΨ̃ exp

(
−
∫
S

∫
M
ζ(ξ, ξ′)p(ξ, ξ′)Ψ̃(ξ′)ν(dmξ′)dξ

′
)
ν(dmξ), (3)

where ρΦ is the intensity of Φ.

Proof. The reduced Palm distribution P !
ξ of Φ equals the distribution of Φ̃ ∼ LGCP(µ̃, C) since

Φ ∼ LGCP(µ,C) - see Proposition 1 in Coeurjolly et al. [2015]. Therefore

r(ξ,mξ) =

∫
Mlf

fth(ϕ ∪ {ξ}; ξ) P !
ξ(dϕ)

= E
∏

ξ′∈Φ̃M∪{ξ}

[1− ζ(ξ, ξ′)p(ξ, ξ′)]

= (1− ζ(ξ, ξ)p(ξ, ξ))E
∏

ξ′∈Φ̃M

[1− ζ(ξ, ξ′)p(ξ, ξ′)]

= p0 E
∏

ξ′∈Φ̃M

h(ξ, ξ′)

= p0 EΨ̃ exp

(
−
∫
S×M

(
1− h(ξ, ξ′)

)
Ψ̃(ξ′)dξ′ν(dmξ′)

)
,

where the last equality follows from calculating the generating functional of Φ̃M .

Proposition 2. Consider Φ̃ ∼ LGCP(µ̃, C) with µ̃(·) = µ(·) +C(·, ξ) +C(·, η) and let ρ
(2)
Φ be the

second order intensity of Φ. Then, the second order intensity of the thinned process Φ0
th equals

ρ
(2)
th (ξ, η) = ρ

(2)
Φ (ξ, η)p2

0

∫
M

∫
M
h(ξ,η)h(η, ξ)

EΨ̃ exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
Ψ̃(ξ′)dξ′ν(dm′ξ)

)
ν(dmξ)ν(dmη).
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Proof. The probability that none of the two arbitrary points (ξ,mξ) and (η,mη) is deleted by any
point of the point configuration ϕ ∈Mlf is

f
(2)
th (ϕ; ξ,η) =

∏
ξ′∈ϕ

(1− ζ(ξ, ξ′)p(ξ, ξ′))(1− ζ(η, ξ′)p(η, ξ′)).

Thus, the probability that (ξ,mξ), (η,mη) ∈ ΦM are retained in Φth equals

r(ξ,η) =

∫
Mlf

f
(2)
th (ϕ ∪ {ξ,η}; ξ,η)P !

ξ,η(dϕ),

where P !
ξ,η is the two-point reduced Palm distribution of ΦM , which is also the distribution of

a log Gaussian Cox process Φ̃ ∼ LGCP(µ̃, C) with µ̃(·) = µ(·) + C(·, ξ) + C(·, η) - see again
Proposition 1 in Coeurjolly et al. [2015]. Therefore∫

Mlf

f
(2)
th (ϕ ∪ {ξ,η}; ξ,η)P !

ξ,η(dϕ)

= E
∏

ξ′∈Φ̃M∪{ξ,η}

(
1− ζ(ξ, ξ′)p(ξ, ξ′)

)(
1− ζ(η, ξ′)p(η, ξ′)

)
= p2

0h(ξ,η)h(η, ξ) E
∏

ξ′∈Φ̃M

h(ξ, ξ′)h(η, ξ′)

= p2
0h(ξ,η)h(η, ξ) EΨ̃ exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
Ψ̃(ξ′)dξ′ν(dmξ)

)
.

5 Application to mixed moving maxima processes

We establish a connection between the generalized Matérn model and mixed moving maxima
processes in this section. In the first subsection, we choose a specific thinning function and prove
that a process based on the corresponding generalized Matérn process (1) converges to known
(conditional) mixed moving maxima processes. We slightly modify this thinning function in the
second subsection to obtain a process whose first and second order properties can be derived and
whose points can be recovered from observations of the mixed moving maxima process itself under
rather mild assumptions.

General framework. Let S = Rd, K ⊂ S be compact and let X be a stochastic process whose
paths are almost surely in X = C(S,R) and which fulfils the condition

EX
∫
S

sup
t∈K

X(t− ξ) dξ <∞. (4)

Then a mixed moving maxima process [Smith, 1990] is defined by

Z(t) =
∨

(s,u,X)∈Θ

uX(t− s), t ∈ S, (5)
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where Θ is a Poisson process on S × (0,∞]× X with directing measure

dλ(s, u,X) = ds u−2du dPX .

Further, we assume that Ψ is a non-negative process with

EΨEX
∫
S

sup
t∈K

X(t− ξ)Ψ(ξ)dξ <∞. (6)

Then the Cox extremal process [Dirrler et al., 2016] is defined in an analogous way

Y (t) =
∨

(s,u,X)∈Θ̃

uX(t− s), (7)

where Θ̃ is a Cox process directed by the random measure dΛ(s, u,X) = Ψ(s)dsu−2dudPX .
We henceforth consider Φ ∼ LGCP(µ−log(τ), C) with random intensity function τ−1Ψ and τ > 0.
Each point ξ of Φ is independently attached with a random mark function mξ(·) = UξXξ(· − ξ),
where U ∼ τu−2

1(τ,∞)du and X ∼ dPX . We assume that for each path X(ω, ·) of X(·) there exist
monotonously decreasing functions fω and gω such that

gω(‖t‖) ≤ X(ω, t) ≤ fω(‖t‖), ∀t ∈ S, (8)

and gω(0) = X(ω, 0) = fω(0).

5.1 Matérn extremal process

We choose the competition function ζ such that a point ξ ∈ Φ is deleted if its corresponding mark
function mξ is - at each point - strictly smaller than the mark function mξ′ of some other point
ξ′ ∈ Φ. That is, the thinning function can be written as

fth(ΦM ; ξ,mξ) =
∏

ξ′∈ΦM

[
1− 1uξ′>supt∈S uξXξ(t−ξ)Xξ′ (t−ξ′)−1

]
(9)

and the process resulting from dependent thinning is

Φth = {(ξ,mξ) ∈ ΦM : fth(ΦM ; ξ,mξ) = 1}.

We introduce the Matérn extremal process defined by

Π(t) =
∨

(ξ,mξ)∈Φth

mξ(t). (10)

The mξ are closely related to the extremal functions of ΦM introduced by Dombry and Eyi-Minko
[2013], though the set Φth is usually much larger than the set of extremal functions. The intensity
of Φth is finite, this is a fundamental difference compared to the Cox extremal process Y whose
underlying point process Θ̃ is infinite. Still, the following lemma shows that the two processes
coincide in the limiting case τ → 0.
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Lemma 3. Let the conditions (4), (6) and (8) hold true and assume that Φ ∼ LGCP(µ−log τ, C).
If τ → 0, the convergence

Π→ Y

holds weakly in C(S,R).

Proof. The sample paths of the extremal hard-core process Π are continuous, since the marks mξ

are continuous and Φ is locally finite. The finite-dimensional distributions of Π are given by

P(Π(t1) ≤ y1, . . . ,Π(tn) ≤ yn) = P(UξXξ(t1 − ξ) ≤ y1, . . . , UξXξ(tn − ξ) ≤ yn, ∀(ξ,mξ) ∈ Φth)

= P
(
Uξ ≤ min

1≤i≤n
(yiXξ(ti − ξ)−1),∀(ξ,mξ) ∈ Φth

)
= P

(
Uξ ≤ min

1≤i≤n
(yiXξ(ti − ξ)−1),∀(ξ,mξ) ∈ ΦM

)
= EΨ exp

[
−
∫
X

∫
S

∫
min1≤i≤n(yiXξ(ti−ξ)−1)

u−2
1(τ,∞)(u) duΨ(ξ)dξdPX

]

= EΨ exp

[
−
∫
X

∫
S

max

(
τ, min

1≤i≤n
(yiXξ(ti − ξ)−1)

)−1

Ψ(ξ) dξ dPX

]

= EΨ exp

[
−
∫
X

∫
S

min

(
1/τ, max

1≤i≤n
(yi
−1Xξ(ti − ξ))

)
Ψ(ξ) dξ dPX

]
Hence, with condition (6)

lim
τ→0

P(Π(t1) ≤ y1, . . . ,Π(tn) ≤ yn) = EΨ exp

[
−
∫
X

∫
S

max
1≤i≤n

(
yi
−1Xξ(ti − ξ)

)
Ψ(ξ) dξ dPX

]
which equals the finite-dimensional distribution of Y , see Remark 3 in Dirrler et al. [2016]. It
remains to prove the tightness of Π, that is

lim
δ→0

lim sup
τ→0

P(ωK(Π, δ) > ε) = 0

with an arbitrary compact set K ⊂ S and

ωK(Π, δ) = sup
t1,t2∈K:‖t1−t2‖≤δ

|Π(t1)− Π(t2)| .

This can be shown in the same way as in Theorem 7 of Dirrler et al. [2016].

Theorem 4. Let the assumptions of Lemma 3 hold true and let Ψ be stationary with EΨ(o) = 1.
The Matérn extremal process Π is in the max-domain of attraction of the mixed moving maxima
process Z given by Equation (5). That is, if Πi are iid. copies of Π, the convergence

n−1

n∨
i=1

Πi → Z,

holds weakly in C(S,R).
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Proof. Consider the sequence Π(n) = n−1
∨n
i=1 Πi. We have to prove that Π(n) is tight, and that

its marginal distributions converge to that of Z which are given by

P(Z(t1) ≤ z1, . . . , Z(tm) ≤ zm) = exp

[
−
∫
X

∫
S

max
1≤i≤n

(
yi
−1Xξ(ti − ξ)

)
dξ dPX

]
.

The tightness can be derived by similar arguments as in the proof of Theorem 7 in Dirrler et al.
[2016]. The finite-dimensional distributions of Π(n) are given by

P(Π(n)(t1) ≤ z1, . . . ,Π
(n)(tm) ≤ zm)

=
n∏
i=1

EΨ exp

(
−
∫
X

∫
S

min

(
1

τ
, max

1≤j≤m

Xξ(tj − ξ)
nzj

)
Ψi(ξ) dξdPXξ

)

= EΨ exp

(
−
∫
X

∫
S

min

(
n

τ
, max

1≤j≤m

Xξ(tj − ξ)
zj

)
n−1

n∑
i=1

Ψi(ξ) dξdPXξ

)
.

Since

lim
n→∞

min

(
n

τ
, max

1≤j≤m

Xξ(tj − ξ)
zj

)
n−1

n∑
i=1

Ψi(ξ) = max
1≤j≤m

Xξ(tj − ξ)
zj

,

we obtain

lim
n→∞

P(Π(n)(t1) ≤ z1, . . . ,Π
(n)(tm) ≤ zm) = exp

[
−
∫
X

∫
S

max
1≤i≤n

(
zj
−1Xξ(tj − ξ)

)
dξ dPX

]
.

5.2 Process of visible storm centres

We now consider the thinning function

f ∗th(ΦM ; ξ,mξ) =
∏

ξ′∈ΦM

[
1− 1uξ′>uξXξ(0)Xξ′ (ξ−ξ′)−1

]
.

The process resulting from dependent thinning equals

Φ∗th = {(ξ,mξ) ∈ ΦM : f ∗th(ΦM ; ξ,mξ) = 1}
= {(ξ,mξ) ∈ Φth : Π(ξ) = mξ(ξ)}.

That is, a point (ξ,mξ) is retained if mξ(ξ) ≥ m′ξ(ξ) for all other (ξ′,m′ξ) in ΦM . This condition is
sharper than (9) in the preceding section where points (ξ,mξ) are retained if there is an arbitrary
t such that mξ(t) ≥ m′ξ(t) for all other (ξ′,m′ξ) - therefore Φ∗th ⊂ Φth.
We introduce the process of visible storm centres defined by

Π∗(t) =
∨

(ξ,mξ)∈Φ∗th

mξ(t). (11)

This process is closely related to the extremal hard-core process Π defined in (10), see also Figure 3.
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Figure 3: The black solid lines form the final processes Π∗ (left) and Π (right). The shape with centre
ξ = 2 does not contribute to Π∗, since its centre is covered by an other shape.

Remark 5. The set Φ∗th is a subset of the set of extremal functions of ΦM introduced by Dombry
and Eyi-Minko [2013]. If mξ is an extremal function which is not included in Φ∗th, then Π∗(ξ) >
mξ(ξ), i.e. the centre of mξ is covered by other storms, see Figure 3.

We apply Proposition 1 and 2 from Section 4 to calculate first and second order properties of the
thinned process Φ∗th.

Lemma 6. Let Φ ∼ LGCP(µ− log τ, C) with random intensity function τ−1Ψ. The intensity of
Φ∗th is given by

ρΦ∗th
(ξ) = p0EΨ(ξ)

∫
X
Xξ(o)EΨ̃

[
1− exp(−τ−1Xξ(0)−1 · cΨ̃)

cΨ̃

]
dPXξ ,

where

cΨ̃ =

∫
S

EXXξ′(ξ − ξ′)Ψ̃(ξ′)dξ′

and τ−1Ψ̃ is the random intensity function of Φ̃ ∼ LGCP(µ̃− log τ, C) and µ̃(·) = µ(·) + C(·, ξ).

Proof. The retaining probability can be calculated by

r(ξ,mξ) = EΨ̃ exp

(
−
∫
S

∫
M
ζ(ξ, ξ′)p(ξ, ξ′)τ−1Ψ̃(ξ′)µ(dmξ′)dξ

′
)

= EΨ̃ exp

(
−
∫
S

∫
M
1uξ′>uξXξ(0)Xξ′ (ξ−ξ′)−1τ−1Ψ̃(ξ′)µ(dmξ′)dξ

′
)

= EΨ̃ exp

(
−
∫
S

∫
X

∫ ∞
τ

1uξ′>uξXξ(0)Xξ′ (ξ−ξ′)−1Ψ̃(ξ′)u−2
ξ′ duξ′dPXξ′dξ

′
)
.
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Due to the condition (8), uξXξ(0)Xξ′(ξ − ξ′)−1 ≥ τ and therefore

r(ξ,mξ) = EΨ̃ exp

(
−
∫
X

∫
S

∫ ∞
uξXξ(0)Xξ′ (ξ−ξ′)−1

u−2
ξ′ Ψ̃(ξ′)duξ′dPXξ′dξ

′

)

= EΨ̃ exp

(
−
∫
X

∫
S

Xξ′(ξ − ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)
.

The intensity then equals

ρΦth
(ξ) = p0ρΦ(ξ)

∫
M
EΨ̃ exp

(
−
∫
X

∫
S

Xξ′(ξ − ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)
µ(dmξ)

= p0EΨ(ξ)

∫
X

∫ ∞
τ

EΨ̃ exp
(
−u−1Xξ(0)−1cΨ̃,Xξ

)
u−2dudPXξ ,

with cΨ̃ =
∫
X

∫
S
Xξ′(ξ − ξ′)Ψ̃(ξ′)dξ′dPXξ′ . By calculating the integral with respect to u we finally

obtain

ρΦth
(ξ) = p0EΨ(ξ)

∫
X
Xξ(0)EΨ̃

[
1− exp(−τ−1Xξ(0)−1 · cΨ̃)

cΨ̃

]
dPXξ .

Lemma 7. Let Φ ∼ LGCP(µ− log τ−1, C) with random intensity function Ψ. The second order
intensity of Φ∗th equals

ρ
(2)
Φ∗th

(ξ, η) = p2
0E[Ψ(ξ)Ψ(η)]

∫
X

∫
X

[ ∫ ∞
τ

∫ uηXη(0)

Xξ(η−ξ)

τ

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duξ duη

−
∫ ∞
τ

∫ ∞
uξXξ(0)

Xη(ξ−η)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duη duξ

]
dPXξdPXη

with

r(ξ) = EΨ̃ exp

(
−
∫
X

∫
S

Xξ′(ξ − ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)

and

r(ξ,η) = EΨ̃ exp

(∫
X

∫
S

min

(
Xξ′(ξ − ξ′)
uξXξ(0)

,
Xξ′(η − ξ′)
uηXη(0)

)
Ψ̃(ξ′)dξ′dPXξ′

)
.

Here τ−1Ψ̃ is the random intensity function of Φ̃ ∼ LGCP(µ̃ − log τ−1, C) and µ̃(·) = µ(·) +
C(·, ξ) + C(·, η).

Proof. Due to Proposition 2

ρ
(2)
th (ξ, η) = ρ

(2)
Φ (ξ, η)p2

0

∫
M

∫
M
h(ξ,η)h(η, ξ)

EΨ̃ exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
Ψ̃(ξ′)dξ′ν(dm′ξ)

)
ν(dmξ)ν(dmη).
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Then

EΨ̃ exp

(
−
∫
S×M

(
1− h(ξ, ξ′)h(η, ξ′)

)
τ−1Ψ̃(ξ′)dξ′ν(dm′ξ)

)
= EΨ̃ exp

(
−
∫
X

∫
S

∫ ∞
τ

[1u>uξXξ(0)(Xξ′ (ξ−ξ′))−1 + 1u>uηXη(0)(Xξ′ (η−ξ′))−1

− 1u>uξXξ(0)(Xξ′ (ξ−ξ′))−11u>uηXη(0)(Xξ′ (η−ξ′))−1 ]Ψ̃(ξ′)u−2 dudξ′dPXξ′
)

= r(ξ)r(η)EΨ̃ exp

(
−
∫
X

∫
S

∫ ∞
τ

1u>max[uξXξ(0)(Xξ′ (ξ−ξ′))−1,uηXη(0)(Xξ′ (η−ξ′))−1]Ψ̃(ξ′)u−2 dudξ′dPXξ′
)

= r(ξ)r(η)EΨ̃ exp

(∫
X

∫
S

min

(
Xξ′(ξ − ξ′)
uξXξ(0)

,
Xξ′(η − ξ′)
uηXη(0)

)
Ψ̃(ξ′)dξ′dPXξ′

)
with r(ξ) = EΨ̃ exp

(
−
∫
X

∫
S

Xξ′ (ξ−ξ′)
uξXξ(0)

Ψ̃(ξ′)dξ′dPXξ′
)

. Furthermore

h(ξ,η)h(η, ξ) = 1− 1uη>uξXξ(0)Xη(ξ−η)−1 − 1uξ>uηXη(0)Xξ(η−ξ)−1

+ 1uη>uξXξ(0)Xη(ξ−η)−11uξ>uηXη(0)Xξ(η−ξ)−1

= 1− 1uη>uξXξ(0)Xη(ξ−η)−1 − 1uξ>uηXη(0)Xξ(η−ξ)−1

and

ρ
(2)
Φ∗th

(ξ, η) = p2
0E[Ψ(ξ)Ψ(η)]

[ ∫
X

∫ ∞
τ

∫
X

∫ ∞
τ

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duξ duηdPXξdPXη

−
∫
X

∫ ∞
τ

∫
X

∫ ∞
uηXη(0)

Xξ(η−ξ)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duξdPXξ duηdPXη

−
∫
X

∫ ∞
τ

∫
X

∫ ∞
uξXξ(0)

Xη(ξ−η)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duηdPXη duξdPXξ

]

= p2
0E[Ψ(ξ)Ψ(η)]

∫
X

∫
X

[ ∫ ∞
τ

∫ uηXη(0)

Xξ(η−ξ)

τ

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duξ duη

−
∫ ∞
τ

∫ ∞
uξXξ(0)

Xη(ξ−η)

r(ξ)r(η)r(ξ,η)u−2
ξ u−2

η duη duξ

]
dPXξdPXη .

Remark 8. Let Z be the classical Smith model [Smith, 1990] in R2, that is X is the density of
the two-dimensional standard-normal distribution. Then, the intensity of the process of visible
storm centres of Z can be calculated as

lim
τ→0

ρΦ∗th
(ξ) = Xξ(o)

[∫
S

Xξ′(ξ − ξ′)dξ′
]−1

= (2π)−1.

In general, ρΦ∗th
and ρ

(2)
Φ∗th

cannot be explicitly calculated if Ψ is random. However, numerical

calculation of ρΦ∗th
is feasible in most cases. For certain choices of X, e.g. X(t) = (1− t2)+ in R,

even ρ
(2)
Φ∗th

is numerically tractable.
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M. Kuronen and L. Leskelä. Hard-core thinnings of germ-grain models with power-law grain sizes.

Adv. in Appl. Probab., 45(3):595–625, 2013.
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