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Abstract

Pitman (2003), and subsequently Gnedin and Pitman (2006), showed that a large class of
random partitions of the integers derived from a stable subordinator of index α ∈ (0, 1)
have infinite Gibbs (product) structure as a characterizing feature. The most notable case
are random partitions derived from the two-parameter Poisson–Dirichlet distribution,
PD(α, θ ), whose corresponding α-diversity/local time have generalized Mittag–Leffler
distributions, denoted by ML(α, θ ). Our aim in this work is to provide indications on
the utility of the wider class of Gibbs partitions as it relates to a study of Riemann–
Liouville fractional integrals and size-biased sampling, and in decompositions of special
functions, and its potential use in the understanding of various constructions of more
exotic processes. We provide characterizations of general laws associated with nested
families of PD(α, θ ) mass partitions that are constructed from fragmentation operations
described in Dong et al. (2014). These operations are known to be related in distribution
to various constructions of discrete random trees/graphs in [n], and their scaling limits.
A centerpiece of our work is results related to Mittag–Leffler functions, which play a
key role in fractional calculus and are otherwise Laplace transforms of the ML(α, θ )
variables. Notably, this leads to an interpretation within the context of PD(α, θ ) laws
conditioned on Poisson point process counts over intervals of scaled lengths of the
α-diversity.

Keywords: beta-gamma algebra; Brownian and Bessel processes; Gibbs partitions;
Mittag–Leffler functions; stable Poisson–Kingman distributions
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1. Introduction

It is known [41, 44, 46, 47, 54] that random partitions of the integers [n] := {1, . . . , n},
say {C1, . . . , CKn}, with Kn ≤ n unique blocks and sizes nj = |Cj|, can be generated
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Gibbs partitions 315

by sampling n variables conditionally from independent and identical random discrete
distributions of the form F(y) = ∑∞

�=1 P�1{U�≤y}, where the collection (U�) are indepen-
dent and identically distributed (i.i.d.) Uniform[0, 1] random variables independent of
(P�) ∈P∞ = {s = (s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥ 0 and

∑∞
i=1 si = 1}. P∞ denotes the space of

mass partitions summing to 1 [5, 31, 47]. Here we are interested in cases where the distribution
of (P�) may be derived from that of a stable subordinator, say Tα := (T̂α(t) : t ≥ 0), of index
α ∈ (0, 1). Set T̂α(1) := Tα , where Tα is a positive stable random variable having Laplace
transform E[e−λTα ] = e−λα

and density denoted as fα(t). Now, following [31, 41, 46, 47],
let (��) denote the ranked jumps of the subordinator Tα , with corresponding Lévy density
ρα(s) = αs−α−1/�(1 − α), and construct (P� := ��/Tα) ∈P∞. In this case, (P�) ∼ PD(α, 0),
where PD(α, 0) denotes the Poisson–Dirichlet distribution with parameters (α, 0) [54]. For
Kn = k, the probability of {C1, . . . , Ck} is given by what is referred to as the exchangeable
partition probability function (EPPF),

pα(n1, . . . , nk) = αk−1�(k)

�(n)

k∏
j=1

(1 − α)nj−1, (1.1)

where, for any non-negative number x, (x)n = x(x + 1) · · · (x + n − 1) = �(x + n)/�(x)
denotes the Pochhammer symbol. The EPPF (1.1) and its two-parameter extension [42, 43],
defined for θ > −α,

pα,θ (n1, . . . , nk) = α
(

θ
α

)
k

(θ )n

�(n)

�(k)
pα(n1, . . . , nk), (1.2)

derived from the two-parameter Poisson–Dirichlet distribution (P�) ∼ PD(α, θ ) [54], consti-
tute the most tractable and notable class of EPPFs that exhibit an infinite Gibbs or product
form [47]. The EPPF (1.2) is obtained by replacing Tα in the above discussion with another
variable Tα,θ having density fα,θ (t) = t−θ fα(t)/E[T−θ

α ]. Furthermore, it corresponds to random
partitions generated by the two-parameter Chinese restaurant process with law denoted as
CRP(α, θ ). An important quantity, derived from (1.2), is the probability of the number of
blocks Kn = k, denoted in the PD(α, θ ) case as P(n)

α,θ (k) = Pα,θ (Kn = k) with

P
(n)
α,θ (k) = α(θ/α)k

(θ )n

�(n)

�(k)
P

(n)
α,0(k), (1.3)

where P
(n)
α,0(k) = αk−1�(k)

�(n) Sα(n, k), with Sα(n, k) = 1
αkk!

∑k
j=1 ( − 1)j

(k
j

)
( − jα)n denoting the

generalized Stirling number of the second kind. See [45, 47] for more details in relation to the
derivation of P(n)

α,θ (k). Theorem 3.8 and Corollary 3.9 of [47, pp. 68–69], and more generally

[46, Proposition 13], show that, as n → ∞, n−αKn → T−α
α,θ almost surely (a.s.). Within this con-

text, T−α
α,θ is referred to as the α-diversity of PD(α, θ ). Tα may be interpreted as the inverse of

the local time process (Lt, t ≥ 0) of a general Bessel process of dimension 2 − 2α, which corre-
sponds to Brownian motion when α = 1/2 [41, 47, 53, 54]. See [47, p. 88] for a general descrip-
tion related to the present context. Following [41, 47, 54], T−α

α,θ (or a version having the same
distribution) may be interpreted in terms of the local time spent at 0 up to time 1 of a general-
ized Bessel bridge. See [41, Section 3, Theorem 3.8, Lemma 3.11, Definition 3.14, Corollary
3.15] for more details. We will refer to such variables T−α

α,θ as α-diversity/local times. T−α
α , with

density gα(z) := fα(z− 1
α )z− 1

α
−1/α, is often referred to as having a Mittag–Leffler distribution.
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Hence, T−α
α,θ , or any variable equivalent in distribution, is said to be a generalized Mittag–

Leffler variable with distribution denoted as ML(α, θ ), and it has the power-biased density gα ,

gα,θ (z) = z
θ
α gα(z)

E[T−θ
α ]

. (1.4)

See [11, 12] for its simulation and other properties. Note that (P̃�) ∼ GEM(α, θ ) denotes the
size-biased rearrangement of (P�) ∼ PD(α, θ ). See [15, 42, 43, 47, 54] for further descriptions
and the relations between these various concepts. Throughout this paper, Ga denotes a
Gamma(a, 1) variable, and βa,b denotes a Beta(a, b) variable.

1.1. Mittag–Leffler Markov chains

Variables having generalized Mittag–Leffler distributions ML(α, θ ) arise in various Pólya
urn and random graph/tree growth models [1, 7, 17, 20, 21, 25, 27-29, 37-39, 56, 57]. Of inter-
est to us are Markov chains, Z := (Zr, r ≥ 0), arising in those references in the case where
Z0 ∼ ML(α, θ ) and the marginal distribution of each Zr is ML(α, θ + r). Furthermore, there is
a sequence of random variables (Bj, j ≥ 1) defined, for each integer j, as Bj = Zj−1/Zj, and
hence there is the exact relation Zj−1 = Zj × Bj, where remarkably the Bj are independent
Beta

( θ+α+j−1
α

, 1−α
α

)
variables, and (B1, . . . , Bj) is independent of Zj, for j = 1, 2, . . . In these

cases, the sequence may be referred to as a Mittag–Leffler Markov chain with law denoted
as Z ∼ MLMC(α, θ ) [56]. The Markov chain is described prominently in various generalities,
i.e. ranges of α and θ [17, 20, 24, 25, 56], characterized by a stationary transition density
Zr | Zr−1 = z given by, for y > z,

P(Zr ∈ dy | Zr−1 = z)/dy = α(y − z)
1−α
α

−1ygα(y)

�
( 1−α

α

)
gα(z)

. (1.5)

We are further interested in cases where we can couple Z ∼ MLMC(α, θ ) with a nested family
of mass partitions ((P�,r), r ≥ 0). That is, when (P�,0) ∼ PD(α, θ ), Z0 is its α-diversity/local
time and induces (P�,r) ∼ PD(α, θ + r), with Zr ∼ ML(α, θ + r) as its α-diversity/local time;
additionally, we require that (B1, . . . , Br) is independent of (P�,r) for r = 1, 2, . . . Such nested
families may be constructed by fragmentation operations on spaces of mass partitions P∞
[13]. Hence, in these cases, we shall write ((P�,r), Zr); r ≥ 0) ∼ MLMCfrag(α, θ ), and this
distributional notation for Z appears in [27]. More details will be given in Section 3.

1.2. Preliminaries on Poisson–Kingman distributions and Gibbs partitions

We now describe the more general class of EPPFs constituting Gibbs partitions, as derived
and discussed in [16, 46, 47], called Poisson–Kingman (PK) partitions. Those works showed
that sampling from (P�) | Tα = t with law PD(α | t) leads to a general class of random partitions
that have an infinite Gibbs (product) structure as a characterizing feature. Specifically, the law
of {C1, . . . , Ck} | Tα = t can be expressed as

pα(n1, . . . , nk | t) =G
(n,k)
α (t)

k∏
j=1

(1 − α)nj−1, (1.6)

where

G
(n,k)
α (t) = αkt−n

�(n − kα)fα(t)

[∫ t

0
fα(v)(t − v)n−kα−1 dv

]
.
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As in [46], for any non-negative function h(t) satisfying E[h(Tα)] = 1, we may mix PD(α | t)
over the density, γ (dt)/dt := h(t)fα(t), to obtain an infinite class of distributions for the Gibbs
random partitions. We shall write

(P�) ∼ PKα(γ ) =
∫ ∞

0
PD(α | t)γ (dt) =

∫ ∞

0
PD

(
α | s− 1

α

)
h
(

s− 1
α

)
gα(s) ds. (1.7)

For instance, PD(α, θ ) arises when γ (dt) = fα,θ (t) dt, which is obtained by setting h(t) =
t−θ /E[T−θ

α ]. Integrating over (1.6) with respect to γ (dt) leads to the EPPF of the PK partitions
(see [47, Theorem 4.6] and [16, Theorem 12]), expressed as

p[γ ]
α (n1, . . . , nk) = Vn,k

α1−k�(n)

�(k)
pα(n1, . . . , nk), (1.8)

where Vn,k = ∫ ∞
0 G

(n,k)
α (t)γ (dt). Naturally, evaluation of (1.8) relies very much on the form

of G(n,k)
α (t). Pitman (see [46, Section 8] and [47, Section 4.5, p. 90]) developed the Brownian

case of α = 1/2, which in many respects is the most remarkable, and showed that the EPPF in
that case can be expressed explicitly in terms of Hermite functions or, equivalently, confluent
hypergeometric functions. For a general 0 < α < 1, it is nonetheless non-trivial to obtain a
representation of G

(n,k)
α (t) in terms of special functions or other transcendental functions, a

question posed in [47, Problem 4.3.3, p. 87]. An answer was provided by Theorems 2.1 and
3.1 of [22]. Using representations in [58, 59], alternative expressions of G(n,k)

α (t) were given
in terms of Fox H functions for any general α, and in terms of readily computable Meijer
G functions for the case of α = m/r, with co-prime integers m < r. See [34] and references
therein, as well as [22], for more on these special functions, especially their connections to
fractional calculus.

A distributional interpretation follows from expressing (1.6) as

pα(n1, . . . , nk|t) = f (n−kα)
α,kα (t)

fα(t)
× pα(n1, . . . , nk), (1.9)

where f (n−kα)
α,kα (t) denotes the conditional density of Tα | Kn = k when Kn ∼ P

(n)
α,0(k), and it cor-

responds to the densities of random variables equivalent in distribution to a variable denoted
as Y (n−kα)

α,kα , such that

Y (n−kα)
α,kα

d= Tα,kα

βkα,n−kα

d= Tα,n

β
1
α

k, n
α
−k

, (1.10)

where the variables in the ratios are independent. The equalities in distribution can be read from

[23, (2.11)]. The expression
(

Tα,n β
− 1

α

k, n
α
−k

)−α = T−α
α,n βk, n

α
−k also arises in [14, Proposition 2]

as the conditional α-diversity of a PD(α, 0) distribution. As such, one may represent (1.8) as

p[γ ]
α (n1, . . . , nk) =E

[
h

(
Y (n−kα)

α,kα

)]
pα(n1, . . . , nk), (1.11)

where the expectation is also identical to E[h(Tα) | Kn = k]. Although the PD(α, θ ) class of
models dominates the broad literature, there has been significant interest in the general class
of Gibbs partitions [3, 8, 10, 19, 22, 33, 52]. Our exposition takes another viewpoint of this
general class, as we begin to describe next.
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1.3. Outline

The results in [16, 22, 46], coupled with refinements in this work, allow us to describe
explicit distributions and establish scaled limit theorems for myriad random partitions of
[n], and related constructions based on (P�) ∼ PKα(γ ). For instance, it is known from [46,
Proposition 13] (see also [47]) that if Kn is the number of blocks in a partition of [n] generated
by a PKα(γ ) sampling scheme, then, as n → ∞, n−αKn → T−α a.s., where T has distribution
γ (dt)/dt = h(t)fα(t). In general, however, those results have not been exploited to provide
insights in terms of interpretations, or in fact how to utilize the general framework of Gibbs
partitions in novel ways, for what would otherwise be interesting exotic random processes.
More specifically, for a given choice of γ , how does one interpret (P�) ∼ PKα(γ ) in (1.7)?
For example, if γ corresponds to Tα | Y = y, (P�) ∼ PKα(γ ) does not necessarily equate to
the distribution of (P�) | Y = y. As another example, [40, (1.2)] describes a class of Pólya
urn models based on randomized discrete inter-arrival times that induce random limits
corresponding to a broad class of distributions denoted as UL(v, (ak){k≥1}). It is a simple
matter to select γ with this distribution, and thus achieve comparable limits; however, there is
no immediate interpretation of (P�), etc.

In order to give some insights into issues of novel usage and distributional interpretations of
the Gibbs partitions, this paper presents broad-based intertwined themes which we first sketch
below. Section 2 shows that G(n,k)

α (t) may be expressed in terms of Riemann–Liouville frac-
tional operators of orders ν = n − kα, for k = 1, . . . n, and then shows how Gibbs partitions
can be used in the decomposition of certain special functions. Results are then obtained for the
case of general ν > 0, which connects to various distributional results and identities, including
known results for PD(α, θ ) derived from a different perspective. Section 3 presents general-
izations of results for ((P�,r, Zr); r ≥ 0) ∼ MLMCfrag(α, θ ) when (P�,0) ∼ PKα(γ ), under the
fragmentation regime described in [13]. We use a special identity for products of related beta
distributions that arise in the MLMC(α, θ ) case, developed in Proposition 2.3, to illustrate
interesting mixture representations. Section 4 presents applications of the general develop-
ments in Sections 2 and 3 to the case of generalized Mittag–Leffler functions derived from the
Laplace transform of ML(α, θ ) variables. Section 4.1 describes decompositions of these special
functions. Sections 4.2 and 4.3 offer distributional interpretations of the results in Section 4.1
in terms of PK distributions based on conditioning (P�) ∼ PD(α, θ ) on Poisson point process
counts over random intervals depending on the relevant ML(α, θ ) variables.

2. Connections to Riemann–Liouville fractional operators

We present some results from the viewpoint of fractional integrals indexed by fα
and a parameter ν > 0. In particular, a simple change of variable allows us to express
α−ktnfα(t)G(n,k)

α (t) as(
In−kα+ fα

)
(t) = 1

�(n − kα)

∫ t

0
fα(v)(t − v)n−kα−1 dv

= E
[
(t − Tα)n−kα−11{Tα<t}

]
�(n − kα)

. (2.1)

Replacing fα(t) with any integrable function f (t), we see that these equations arise as spe-
cial cases of right-sided Riemann–Liouville fractional operators of orders ν = n − kα, for
k = 1, . . . n, defined by (

Iν+f
)

(t) = 1

�(ν)

∫ t

0
f (u)(t − u)ν−1 du.
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The left-sided counterpart defined by

(
Iν−f

)
(t) = 1

�(ν)

∫ ∞

t
f (u)(u − t)ν−1 du

can also be considered, though we omit further discussion for brevity. The identity (2.1) leads
to natural connections to the field of fractional calculus, wherein the interplay between special
functions, probability theory, in particular as it relates to size-biased sampling, and fractional
operator theory is illustrated. Noting that G(1,1)

α (t) = 1 leads to the equation

α
(

I1−α+ fα
)

(t) = tfα(t),

which identifies fα(t) as the unique solution to a particular Abel equation involving general
functions f (t) [30, 35, 59]. In addition, as can be read from [46, (18), (19)], the equation and its
unicity arise as a special case of properties of infinitely divisible variables [60], and are directly
related to size-biased sampling with n = 1. Using (1.9) and (2.1), the conditional density of
Tα | Kn = k when Kn ∼ P

(n)
α,0(k) can be expressed as

f (n−kα)
α,kα (t) = α�(n)

�(k)
t−n

(
In−kα+ fα

)
(t). (2.2)

Hence, we have the relation

�(n)
n∑

k=1

P
(n)
α,0(k)

(
In−kα+ fα

)
(t)

�(k)
= tn−1(I1−α+ fα

)
(t) = tnfα(t)

α
.

2.1. Decomposition of special functions

One of the unexploited features of the Gibbs partitions, beyond the case of inducing various
distributions over partitions, is that it provides a method of obtaining decompositions for a host
of special functions connected to fα . We further note that while these decompositions will now
be shown to arise from basic probabilistic principles, their derivations from other perspectives
would not be so transparent.

Lemma 2.1. Let ϕ(t) denote an arbitrary non-negative function such that E[ϕ(Tα)] < ∞. Set
h(t) = ϕ(t)/E[ϕ(Tα)], and thus γ (dt)/dt = h(t)fα(t). For each n ≥ 1 there is the decomposition

E[ϕ(Tα)] =
n∑

k=1

E[ϕ(Tα) | Kn = k] Pα,0(Kn = k), (2.3)

where E[ϕ(Tα) | Kn = k] can be expressed as

E

[
ϕ

(
Y (n−kα)

α,kα

)]
= α�(n)

�(k)

∫ ∞

0
ϕ(t)t−n(In−kα+ fα

)
(t) dt. (2.4)

Then,

(i) Vn,k :=
∫ ∞

0
G

(n,k)
α (t)γ (dt) = αk−1�(k)

�(n)
× E[ϕ(Tα) | Kn = k]

E[ϕ(Tα)]
;
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(ii) E[ϕ(Tα) | Kn = k] can be expressed as

kα

n
E[ϕ(Tα) | Kn+1 = k + 1] +

(
1 − kα

n

)
E[ϕ(Tα) | Kn+1 = k].

Proof. Equations (2.3), (2.4), and statement (i) follow from the conditional distribution of
Tα | Kn = k as expressed in (1.10), and its density representation in (2.2). Statement (ii) follows
from (i) due to backward recursion [16, Definition 3 or (8)]: Vn,k = (n − kα)Vn+1,k + Vn+1,k+1,
for n = 1, 2, . . ., k = 1, 2, . . . , n, with V1,1 = 1. �
Remark 2.1. When not considering constructions for Vn,k, both (2.3) and (2.4) apply for any
integrable real- or complex-valued function ϕ.

A study of the general class
(
Iν+fα

)
(t) follows, which connects to various distributional

results and identities, including known results for PD(α, θ ) derived from a different per-
spective. See Proposition 2.1 and Remark 2.3 for connections between Iν+fα and results in
[6, 23, 48].

2.2. Properties of Iν+fα , ν > 0

Throughout, let (τα(t) : t ≥ 0) denote a generalized gamma subordinator with Lévy den-
sity αs−α−1e−s/�(1 − α). We next provide a study of Iν+fα for general index ν > 0, where
we derive a subordinator representation which is used to exploit and connect results in [54,
Proposition 21] and related literature on size-biased sampling in the PD(α, θ ) setting.

Theorem 2.1. Select h(t) ≥ 0 such that h(t)fα(t) is the density of a random variable T, implying
E[h(Tα)] = 1. Let (τα(t) : 0 ≤ t ≤ λα + G ν

α
) denote a generalized gamma subordinator over a

random interval [0, λα + G ν
α

]. Then, for any ν, λ > 0, we have

∫ ∞

0
e−λth(t)

(
Iν+fα

)
(t) dt = 1

λνeλα

∫ ∞

0

∫ ∞

0
h(u + s)f (ν)

α,λ(u, s) du ds, (2.5)

where, for a fixed λ, f (ν)
α,λ(u, s) = λνuν−1e−λu/�(ν) × (

eλα
e−λsfα(s)

)
corresponds to the density

of the conditionally independent pair of random variables

(
Gν

λ
,
τα(λα)

λ

)
d=

(
τα

(
λα + G ν

α

) − τα(λα)

λ
,
τα(λα)

λ

)
. (2.6)

Hence, we can define the sum as a random process (T̃α,ν(λ); λ > 0) by the sum of the random
variables in (2.6). Specifically, T̃α,ν(λ) is defined as

τα

(
λα + G ν

α

)
λ

= τα(λα)

λ
× τα(λα + G ν

α
)

τα(λα)
= τα

(
λα + G ν

α

)
(
λα + G ν

α

) 1
α

×
(

λα + G ν
α

λα

) 1
α

. (2.7)

The variables separated by × are not independent for fixed λ.

Proof. Equation (2.5) is obtained by noting that the left-hand side can be expressed as∫ ∞
0

[ ∫ ∞
s (t − s)ν−1h(t)e−λt dt

]
fα(s) ds/�(ν). In order to obtain the representation in (2.6),
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first the independent increment property of subordinators gives τα(λα + G ν
α

) − τα(λα) inde-

pendent of τα(λα). Furthermore, τα(λα + G ν
α

) − τα(λα)
d= τα(G ν

α
). We can then appeal to [54,

Proposition 21] to obtain τα(G ν
α

)
d= Gν , which is otherwise easy to verify. �

Corollary 2.1. For a fixed λ > 0, the random variable T̃α,ν(λ) defined in (2.7) has a density
in t as

λνeλα

�
(

ν
α

) e−λt
∫ 1

0
fα

(
tu

1
α

)
u

1−ν
α

−1(1 − u)
ν
α
−1 du, (2.8)

and its Laplace transform is, for y > 0, E
[
e−yT̃α,ν (λ)

] = (
1 + y

λ

)−νeλα−(λ+y)α .

(i) When the density (2.8) is exponentially tilted by e−yt for a fixed y > 0, the corresponding
random variable can be represented as T̃α,ν(λ + y).

(ii) Let G1 denote an Exp(1)-distributed variable independent of Tα . Then, for ν = 1 − α,
the density of T̃α,1−α(λ), described by (2.8), agrees with the density of Tα | G1/Tα = λ,
specified as λ1−αt

(
eλα

e−λtfα(t)
)
/α. This yields the known identity

1

�
( 1−α

α

) ∫ 1

0
fα

(
tu

1
α

)
(1 − u)

1−α
α

−1 du = 1

α
tfα(t),

which corresponds to the result Tα = Tα,1 × β
− 1

α

1, 1−α
α

in, for instance, the case(
T−α

α , T−α
α,1 , . . .

) ∼ MLMC(α, 0).

Proof. The density and the Laplace transform are straightforward. The result in (i) follows
readily from the density in (2.8). The identity in (ii) can be deduced from a careful reading of
[41, 53]; see, in particular, [53, Remark 3.6 and (3.q)], which yields the appropriate form of
the conditional density. �

Remark 2.2. Note that G1/Tα
d= G

1
α

1 . In addition to [41, 53], this variable arises in many
instances with various interpretations. See [9] and [23, (2.24), p. 1324] for generalities and
related references.

2.2.1. Gamma randomization and subordinator representations. Throughout the remainder of
this work, let (e�) denote a collection of i.i.d. Exp(1) variables, and let

(
�� := ∑�

k=1 ek, � ≥ 1
)

denote the arrival times of a standard Poisson process. A recent treatment in [49], applied to the
case of species sampling models derived from Tα , i.e. sampling from F(y) = ∑∞

�=1 P�1{U�≤y},
where (P�) ∼ PD(α, 0), shows that a mixed Poisson process

(
NTα (λ) = ∑∞

j=1 1{�j/Tα≤λ},
λ ≥ 0

)
, where (��) are independent of Tα(1) := Tα , has an interpretation as the number of

animals/customers arriving up to time λ. Since Tα(1) = ∑∞
�=1 ��, it can be interpreted as the

total abundance of animals when each �� is interpreted as the (ranked) abundance of type �.

Notice that �1/Tα
d= G

1
α

1 , and

P(Tα ∈ dt | NTα (λ) = 1) = P(Tα ∈ dt | �1/Tα = λ) = P(T̃α,1−α(λ) ∈ dt), (2.9)

indicating that T̃α,1−α

(
G

1
α

1

)
d= Tα . See an earlier version of this work and [26], both following

[49], for results related to In−kα+ fα corresponding to when NTα (λ) = n. Consider now, for G1+θ
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independent of Tα,θ , the variable G1+θ /Tα,θ
d= G

1
α
θ+α
α

. Then, from [26, Corollary 3.4] (see also

[13], [54, Proposition 2.1]), or by direct integration over λ in (2.9),

P

(
T̃α,1−α

(
G

1
α
θ+α
α

)
∈ dt

)
= P(Tα,θ ∈ dt).

We now provide a result for Iν+fα for general ν > 0 and a general gamma variable.

Proposition 2.1. For any ω > 0, let G ω
α

be a gamma random variable with parameters
(

ω
α
, 1

)
,

which is independent of T̃α,ν(λ), and let Y (ν)
α,ω

d= T̃α,ν(G ω
α

) be a random variable such that Y (ν)
α,ω |

G ω
α

= λ satisfies the distributional dynamics in (2.7). Then, there are variables constructed on

the same space, denoted as T−α
α,ν ∼ ML(α, ν), independent of βω,ν ∼ Beta(ω, ν), and T−α

α,ω+ν ∼
ML(α, ν + ω), independent of βω

α
, ν
α

∼ Beta
(

ω
α
, ν

α

)
, such that, for Z

( ν
α

)
α,ω = (

Y (ν)
α,ω

)−α
, we have

the exact representation

Z
( ν
α

)
α,ω = T−α

α,ω × βα
ω,ν = T−α

α,ω+ν × βω
α

, ν
α

. (2.10)

Proof. We can choose Y (ν)
α,ω = T̃α,ν(G ω

α
). The result follows by applications of [54,

Proposition 21] and the beta-gamma algebra. For more specifics, see [54, (98)–(100),
p. 877]. �
Remark 2.3. Proposition 2.1 reveals a (surprising to us) connection between the general Iν+fα

and random variables apearing in [6, 23]; see also [36]. In particular, the variables Z
( ν
α

)
α,ω indexed

by (ν, ω) correspond to the entire range of variables given in [6, Lemma 6, (10)], and agree
also, in full generality, with the identity in [23, (2.11), p. 8]. So, from a distributional per-
spective, (2.10) is not new, except for the subordinator representation which leads to pointwise
equalities. However, [48] also develops an equivalent variation of (2.10) in the case of PD(α, θ )
interval partitions, employing the subordinator representation.

In relation to Iν+fα , we now give equivalent expressions of the densities of the random
variables in (2.10).

Proposition 2.2. Let f (ν)
α,ω(t) denote the density of Y (ν)

α,ω, defined via Z
( ν
α

)
α,ω =

(
Y (ν)

α,ω

)−α

in (2.10).

(i) Using the form of the density indicated by Tα,ω/βω,ν , it follows that, for ω > 0,

f (ν)
α,ω(t) = α�(ν + ω)

�
(

ω
α

) t−(ν+ω) (
Iν+fα

)
(t) (2.11)

where α�(ω)E[T−ω
α ] = �

(
ω
α

)
.

(ii) Using (2.8), an alternate form of f (ν)
α,ω(t) is obtained as

α�(ν + ω)

�
(

ν
α

)
�

(
ω
α

) t−(ν+ω)
∫ 1

0
fα

(
tu

1
α

)
u

1−ν
α

−1(1 − u)
ν
α
−1 du. (2.12)

(iii) Combining (2.11) and (2.12) yields, for ν > 0,(
Iν+fα

)
(t) = 1

�
(

ν
α

) ∫ 1

0
fα

(
tu

1
α

)
u

1−ν
α

−1(1 − u)
ν
α
−1 du.
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We now demonstrate how we can use Proposition 2.2 to recover results in the PD(α, θ )
setting. Recall that under PD(α, θ ) the distribution of Kn is given by P

(n)
α,θ (k) defined in (1.3). It

follows that a joint distribution of (Tα,θ , Kn) is proportional to t−θ f (n−kα)
α,kα (t)P(n)

α,θ (k), and hence,

from (2.11), f (n−kα)
α,θ+kα(t) is the conditional density of (Tα,θ | Kn = k) and, from Proposition 2.1,

corresponds to the density of the random variables

Y (n−kα)
α,θ+kα := Tα,θ+kα

βθ+kα,n−kα
= Tα,θ+n

β
1
α
θ
α
+k, n

α
−k

. (2.13)

Randomizing (2.13) with Kn ∼ P
(n)
α,θ in place of k, and using the distributional properties of an

MLMC(α, θ ), leads to a perhaps not so well-known identity involving products of independent
beta variables appearing in the related literature:

T−α
α,θ

d= T−α
α,θ+n

n∏
j=1

βθ+α+j−1
α

, 1−α
α

d= T−α
α,θ+n β θ

α
+Kn,

n
α
−Kn

. (2.14)

Now, as pointed out in [24, Proposition 6.6(iii)], (2.14) results in the distributional equality

n∏
j=1

βθ+α+j−1
α

, 1−α
α

d= β θ
α
+Kn,

n
α
−Kn

, (2.15)

leading to the following result, which will be used in the next section.

Proposition 2.3. The density of the product of independent beta random variables∏n
j=1 βθ+α+j−1

α
, 1−α

α

, arising, for instance, under an MLMC(α, θ ) distribution, can be

expressed as
n∑

k=1

P
(n)
α,θ (k)fβ θ

α +k, n
α −k

(u). (2.16)

Remark 2.4. Let α = 1/m, for m = 2, 3, . . . In the MLMC
( 1

m , θ
)

case of (2.15), for θ > −1/m
we have the following distributional identity:

n∏
j=1

βm
m(θ+j−1)+1,m−1

d=
m−1∏
i=1

βθ+ i
m ,n. (2.17)

As special cases, when α = 1/2 we have the easily deduced fact that
∏n

j=1 β2
2(θ+j)−1,1

d=
β

θ+ 1
2 ,n, and when α = 1/3,

∏n
j=1 β3

3(θ+j)−2,2
d= β

θ+ 1
3 ,n × β

θ+ 2
3 ,n. Equation (2.17) follows from

representations of ML
( 1

m , θ
)

variables in terms of beta and gamma variables (see [23, Section
8] and related references discussed there), the identity (2.14), and beta-gamma algebra.

3. Mittag–Leffler Markov chains under PKα(γ )

As discussed in Section 1.1, Markov chains Z ∼ MLMC(α, θ ) arise by various constructions
in the literature, and do not completely determine the law of a collection ((P�,r), Zr; r ≥ 0).
Here we recall that ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ ) may arise from iteration of the
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PD(α, 1 − α) single-block size-biased fragmentation operation described in [13], when the
law of (P�,0) ∼ PD(α, θ ). This section provides distributional properties of nested families
((P�,r), Zr; r ≥ 0) induced by fragmentation operations described in [13] when, in general,
(P�,0) ∼ PKα(γ ). This should be particularly useful in cases where PKα(γ ) can be interpreted.
Simplifications and various decompositions are facilitated by Proposition 2.3. As in [13],
for (P�) ∈P∞, let P̃1 denote its first size-biased pick and let (P�)1 := (P�) \ P̃1 denote the
remainder. A PD(α, 1 − α) fragmentation of (P�) is defined as

F̂ragα,1−α

(
(P�)

)
:= Rank

(
(P�)1, P̃1(Q�)

) ∈P∞,

where, independent of (P�), (Q�) ∼ PD(α, 1 − α), and Rank(·) denotes the ranked rearrange-
ment. Let

((
Q(j)

�

)
; j ≥ 1

)
denote an independent collection of PD(α, 1 − α) mass partitions

defining a sequence of independent fragmentation operators
(
F̂rag(j)

α,1−α(·); j ≥ 1
)
. It follows

from [13] that a version of the family ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ ) may be constructed
by the recursive fragmentation, for r = 1, 2, . . . ,

(P�,r) = F̂rag(r)
α,1−α

(
(P�,r−1)

) = F̂rag(r)
α,1−α ◦ · · · ◦ F̂rag(1)

α,1−α

(
(P�,0)

)
, (3.1)

when (P�,0) ∼ PD(α, θ ). These operations may also be described in terms of nested partitions
of [n] [5, Section 3.1.1], and there is a corresponding sequence of block counts (Kn,r ≥ 0),
non-decreasing in r ≥ 0, such that jointly n−α(Kn,r ≥ 0) → Z as n → ∞.

We next describe the marginal (joint) law of (Zr; r ≥ 0) when (P�,0) ∼ PKα(γ ). Suppose
that Z ∼ MLMC(α, 0) with accompanying (Bj = Zj−1/Zj, j ≥ 1), which is a collection of inde-

pendent variables such that, for each j ≥ 1, Bj ∼ Beta
(α+j−1

α
, 1−α

α

)
. A description of the

distribution of Z | Z0 = y is obtained from (1.5). Setting the density of Z0 to h(y− 1
α )gα(y) leads

to a description of the distribution of Z ∼ MLMC[γ ](α) and, using the change of variable, this
distribution is characterized by the joint density of (B1, . . . , Br, Zr) given as

r∏
i=1

fβ α+i−1
α , 1−α

α

(bi) h

(
s− 1

α

r∏
j=1

b
− 1

α

j

)
gα,r(s),

where gα,r(s) is the density of an ML(α, r) variable as defined in (1.4). It follows that when Z0

has density h(y− 1
α )gα(y), Zr has a marginal density,

g(r)
fragα

(s; γ ) := E

[
h

(
s− 1

α

r∏
i=1

β
− 1

α
α+i−1

α
, 1−α

α

)]
gα,r(s) = h(r)

fragα
(s− 1

α )gα(s), (3.2)

where h(0)
fragα

(t) = h(t) and h(r)
fragα

(t) = t−r
E

[
h

(
t

r∏
i=1

β
− 1

α
α+i−1

α
, 1−α

α

)]
/E[T−r

α ], for r = 1, 2, . . .

This means that, for each integer r, the corresponding Z
− 1

α
r has density

γ
(r)
fragα

(dt)/dt = h(r)
fragα

(t)fα(t) =E

[
h

(
t

r∏
i=1

β
− 1

α
α+i−1

α
, 1−α

α

)]
fα,r(t). (3.3)
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We next formally establish that the marginal distribution of each (P�,r) is PKα(γ (r)
fragα

) when
otherwise they have joint distribution as if they were constructed from (3.1) in the case where
(P�,0) ∼ PKα(γ ).

Proposition 3.1. Consider ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0), formed by the fragmenta-
tion operations in (3.1) when (P�,0) ∼ PD(α, 0). If (P�,0) ∼ PKα(γ ), the distribution of

((P�,r), Zr; r ≥ 0) is denoted as MLMC[γ ]
frag(α) such that, for each r and for γ

(r)
fragα

described
in (3.3), (P�,r) has marginal distribution

PKα

(
γ

(r)
fragα

) =
∫ ∞

0
PD

(
α | s− 1

α

)
g(r)

fragα
(s; γ ) ds,

with α-diversity/local time Zr having density g(r)
fragα

(s; γ ) defined in (3.2).

Proof. The proof of this result is essentially the same for any r ≥ 1. As such, we will verify
the result for r = 1. Here, (P�,1) = F̂rag(1)

α,1−α

(
(P�,0)

)
, where (P�,0) ∼ PKα(γ ), and, indepen-

dent of this,
(
Q(1)

�

) ∼ PD(α, 1 − α). Let E(α,0)
(α,1−α) denote the expectation with respect to the joint

law of
(
(P�,0),

(
Q(1)

�

))
when (P�,0) ∼ PD(α, 0). Then, when (P�,0) ∼ PKα(γ ), the distribution

of (P�,1) is characterized, for a measurable function �, by

E
(α,0)
(α,1−α)

[
�

(
F̂rag(1)

α,1−α

(
(P�,0)

))
h
(

Z
− 1

α

0

)]
. (3.4)

The random variables in (3.4) follow the MLMCfrag(α, 0) dynamics where B1 ∼ Beta
(
1, 1−α

α

)
is independent of (P�,1) = F̂rag(1)

α,1−α((P�,0)) ∼ PD(α, 1). Note that Z0 = Z1 × B1, with Z1 ∼
ML(α, 1). Hence, with these specifications we can write the expression in (3.4) as

E

[
�((P�,1))h

(
Z

− 1
α

1 B
− 1

α

1

)]
=

∫ ∞

0
E[�((P�,1)) | Z1 = s]g(1)

fragα
(s; γ ) ds.

The equality follows by noting that, under the MLMCfrag(α, 0) distribution, (P�,1) ∼ PD(α, 1)

and, given Z1 = s, B1 = b, has law PD
(
α | s− 1

α

)
to conclude the result. �

3.1. MLMC[γ ]
frag(α) EPPFs and partitions of [n]

Recall the interpretation of the random variables Y (n−kα)
α,θ+kα in (2.13) with corre-

sponding densities f (n−kα)
α,θ+kα(t). Define �

( n
α
−k)

α, θ
α
+k

(0) =E

[
h
(

Y (n−kα)
α,θ+kα

)]
, where �

( n
α
−k)

α,k (0) =∫ ∞
0 h(t)f (n−kα)

α,kα (t) dt = Vn,k
α1−k�(n)

�(k) . Here, for r = 0, 1, 2, . . ., we use

�
( n
α
−k)

α, r
α
+k(r) =

∫ ∞

0
E

[
h

(
t

r∏
i=1

β
− 1

α
α+i−1

α
, 1−α

α

)]
f (n−kα)
α,r+kα (t) dt, (3.5)

and we have the identity

n∑
k=1

P
(n)
α,r(k)�

( n
α
−k)

α, r
α
+k(r) =E

[
h(r)

fragα
(Tα)

] = 1. (3.6)
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We now provide a description of the corresponding EPPFs and the distributions of the number
of blocks for the nested sequence of random partitions of [n].

Proposition 3.2. Consider ((P�,r), Zr; r ≥ 0) ∼ MLMC[γ ]
frag(α), where (P�,0) ∼ PKα(γ ). Then,

for each r ≥ 0, the PKα(γ (r)
fragα

) partition of [n], with number of blocks Kn,r = k, has an EPPF
which can be expressed as

�
( n
α
−k)

α, r
α
+k(r) × pα,r(n1, . . . , nk).

Hence, the distribution of Kn,r is P(n)
α,r(k)�

( n
α
−k)

α, r
α
+k(r), for k = 1, . . . , n. Furthermore, as n → ∞,

n−αKn,r
a.s.→ Zr, where Zr has density (3.2).

Proof. The derivation of the EPPF, and hence the distribution of Kn,r, follows by using
(1.11) as applied to (3.3) in conjunction with (3.5) and (3.6). The asymptotic behavior follows
as a particular instance of [46, Proposition 13]; see also [47, Lemma 13]. �

Remark 3.1. For clarity, for r = 0, �
( n
α
−k)

α,k (0) × pα,0(n1, . . . , nk) is equivalent to

p[γ ]
α (n1, . . . , nk) in (1.11) for a PKα(γ ) partition of [n], and hence the distribution of

the corresponding number of blocks, Kn,0, may be expressed as

P
[γ ]
α (Kn,0 = k) = P

(n)
α,0(k)�

( n
α
−k)

α,k (0). (3.7)

3.2. Mixture representations for MLMC[γ ]
frag(α)

We now use Proposition 3.2 to obtain mixture representations and identify related Poisson–
Kingman models. See Remark 2.4 for other possible simplifications in those special cases,
in particular for α = 1/2. For each fixed r = 1, 2, . . . and j = 1, . . . , r, define the probability
measures

γ
(r,j)
fragα

(dt)/dt =
E

[
h

(
tβ

− 1
α

j, r
α
−j

)]
�

( r
α
−j)

α,j (0)
fα,r(t), (3.8)

where �
( r
α
−j)

α,j (0) =E

[
h
(

Y (r−jα)
α,jα

)]
= Vr,j

α1−j�(r)
�(j) from the previous section.

Proposition 3.3. Consider ((P�,r), Zr; r ≥ 0) ∼ MLMC[γ ]
frag(α), where (P�,0) ∼ PKα(γ ). Then,

for each fixed r = 1, 2, . . . ,

(P�,r) ∼ PKα

(
γ

(r)
fragα

) =
r∑

j=1

P
[γ ]
α (Kr,0 = j)PKα

(
γ

(r,j)
fragα

)
,

where P
[γ ]
α (Kr,0 = j) = P

(r)
α,0(j)�

( r
α
−j)

α,j (0) is identical to (3.7) with (r, j) in place of (n,k).

Furthermore, for j = 1, . . . , r, PKα(γ (r,j)
fragα

) is the distribution of a mass partition
(
P(j)

�,r

)
defined

as in (1.7) with mixing measure specified in (3.8). Hence, the EPPF of a PKα

(
γ

(r,j)
fragα

)
partition

of [n], with number of blocks K(j)
n,r = k, can be expressed as

E

[
h

(
Y (n−kα)

α,r+kαβ
− 1

α

j, r
α
−j

)]
�

( r
α
−j)

α,j (0)
× pα,r(n1, . . . , nk).
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Proof. With regards to Proposition 3.2, apply a special case of the identity in (2.15),∏r
j=1 βα+j−1

α
, 1−α

α

d= βKr,
r
α
−Kr , where its density is given in (2.16) of Proposition 2.3, taking the

form
∑r

i=1 P
(r)
α,0(j)fβj, r

α −j
(u), to the expression in (3.3). The remainder follows from appropriate

normalization and the same procedure for deriving the EPPF of a PK distribution. �
Remark 3.2. We have the identity

�
( n
α
−k)

α, r
α
+k(r) =

r∑
j=1

P
(r)
α,0(j)E

[
h

(
Y (n−kα)

α,r+kαβ
− 1

α

j, r
α
−j

)]
.

4. Mittag–Leffler function Gibbs classes

4.1. Decomposing generalized Mittag–Leffler functions in terms of scaled Prabhakar
functions

As mentioned in the introduction, the Mittag–Leffler function plays an important role in
fractional calculus as described in [18]. Here we show that the Mittag–Leffler function and its
generalizations pertinent to the PD(α, θ ) distribution can be decomposed in terms of scaled
versions of Prabhakar functions [55], defined in the most general form as

Ẽ
κ

ρ,μ(− λ) =
∞∑

�=0

( − λ)�

�!
(κ)�

�(ρ� + μ)
, (4.1)

where ρ, μ, κ ∈C, and Re(ρ) > 0. See [18, Chapter 5] for more discussion on these functions.
Recall that the Mittag–Leffler function may be defined by

Eα,1( − λ) =E
[
e−λT−α

α
] =

∞∑
�=0

( − λ)�

�(α� + 1)
=E

[
e−λ1/αXα

]
,

where, for T ′
α

d= Tα and otherwise independent, Xα := Tα/T ′
α . Remarkably, although Tα does

not have a simple density, except for α = 1/2, [61] (see also [4, 32, 53] and [9, Exercise 4.2.1])
shows that the density of Xα is, for y > 0,

fXα (y) = sin (πα)

π

yα−1

y2α + 2 cos (πα)yα + 1
.

Adjusting the notation slightly, [23, Section 3] showed that, for θ > −α,

E
[
e−λT−α

α,θ
] =E

[
e−λ1/αXα,θ

] = E
( θ
α
+1)

α,θ+1(− λ), (4.2)

where Xα,θ := Tα/Tα,θ is the Lamperti variable studied in [23], and

E
( θ
α
+1)

α,θ+1( − λ) =
∞∑

�=0

( − λ)�

�!
�

(
θ
α

+ 1 + �
)
�(θ + 1)

�
(

θ
α

+ 1
)
�(α� + θ + 1)

, θ > −α,

which further reduces to E
( θ
α

)
α,θ ( − λ), for θ > 0. We now extend these results for the case of

general ω and ν.
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Proposition 4.1. Consider the random variables Z
( ν
α

)
α,ω defined in (2.10). Their Laplace trans-

forms are equal to

E
( ω
α

)
α,ω+ν( − λ) =

∞∑
�=0

( − λ)�

�!
�

(
ω
α

+ �
)
�(ω + ν)

�
(

ω
α

)
�(α� + ω + ν)

, (4.3)

and may be expressed as special instances of scaled versions of Prabhakar functions. That is,

E
( ω
α

)
α,ω+ν( − λ) = �(ω + ν)Ẽ

ω
α
α,ω+ν( − λ).

Proof. Using (4.2),

E

[
e−λZ

( ν
α )

α,ω

]
=E

[
e
−λ1/αβ

1/α
ω
α , ν

α
Xα,ω+ν

]
=E

[
E

( ω+ν
α

+1)
α,ω+ν+1

( − λβω
α
, ν
α

)]
.

The result is obtained by substituting E
[
β�

ω
α
, ν
α

] = �
(

ω+ν
α

)
�

(
ω
α

+ �
)

�
(

ω
α

)
�

(
ω+ν

α
+ �

) . �

We now show that the generalized Mittag–Leffler functions can be expressed in terms of
special cases of the previous result.

Proposition 4.2. Following Lemma 2.1, set ϕ(t) = e−λt−α
t−θ /E[T−θ

α ]. Then, E[ϕ(Tα)] =
E

( θ
α
+1)

α,θ+1( − λ), and there is the decomposition, for each fixed λ > 0,

E
( θ
α
+1)

α,θ+1( − λ) =
n∑

k=1

P
(n)
α,θ (k)E

( θ
α
+k)

α,θ+n( − λ) =Eα,θ

[
E

( θ
α
+Kn)

α,θ+n ( − λ)
]
,

where E
( θ
α
+k)

α,θ+n( − λ) =E

[
E

( θ+n
α

)
α,θ+n

( − λβ θ
α
+k, n

α
−k

)]
can be expressed as

E
( θ
α
+k)

α,θ+n( − λ) =
∞∑

�=0

( − λ)�

�!
�

(
θ
α

+ k + �
)
�(θ + n)

�
(

θ
α

+ k
)
�(α� + θ + n)

,

as read from (4.3).

Proof. The result follows by combining Proposition 4.1 with Lemma 2.1 to obtain

E[ϕ(Tα) | Kn = k] =E

[
e−λZ

( n−kα
α )

α,θ+kα

]
× E[T−θ

α | Kn = k]

E[T−θ
α ]

,

where E[T−θ
α | Kn = k] = �(n)�

(
θ
α

+ k
)
/[�(k)�(θ + n)]. �

4.2. PD(α, θ ) masses conditioned on Poisson counts over intervals [0, λLα,θ ]

In this section we use the notation Lα,θ := T−α
α,θ ∼ ML(α, θ ) to denote the α-diversity/local

time, where local time means more specifically that Lα,θ := L1 is the local time at 0 until time
1 under a PD(α, θ ) distribution. See [50, Section 3] for this notation within the context of
regenerative PD(α, θ ) interval partitions of [0, 1]. As a reminder, Lα,θ has density gα,θ (s) ∝
s

θ
α gα(s) given by (1.4). It is clear from Lemma 2.1 that, for each fixed λ > 0, the generalized

Mittag–Leffler functions in Proposition 4.2 can be connected to a PKα(γ ) distribution, where
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h(t) = ϕ(t)/E[ϕ(Tα)] with ϕ(t) = e−λt−α
t−θ /E[T−θ

α ]. Hence, under this choice of h(t), we have
the densities

γ (dt)/dt = e−λt−α
fα,θ (t)

E
( θ
α
+1)

α,θ+1( − λ)
, g(0)

α,θ (s | λ) := e−λsgα,θ (s)

E
( θ
α
+1)

α,θ+1( − λ)
. (4.4)

We will show here that these densities correspond to conditional distributions of Tα,θ and
Lα,θ := T−α

α,θ , respectively. We write (P�,0(λ)) ∼L
(0)
α,θ (λ) to denote a mass partition having a

PK distribution specified by (4.4), expressed as

L
(0)
α,θ (λ) :=

∫ ∞

0
PD

(
α | s− 1

α
)

g(0)
α,θ (s | λ) ds. (4.5)

It is our desire to provide a plausible interpretation of this model. g(0)
α,θ (s | λ) has the expo-

nentially tilted density of Lα,θ := T−α
α,θ , which corresponds to the density of the local time

until time 1 or the α-diversity in this setting. For all θ > −α, it is generally a power-biased
and exponentially tilted density of gα . Hence, although not having the same interpretation
as NTα (λ) described in Section 2.2.1, [49] suggests that the general distributional form of
g(0)
α,θ (s | λ) can be obtained by conditioning Lα,θ , or, more generally, (P�) ∼ PD(α, θ ), on the

mixed Poisson process (
NLα,θ (t) =

∞∑
�=1

1{��/Lα,θ≤t}, t ≥ 0

)
. (4.6)

That is to say, for each fixed λ, NLα,θ (λ) counts the number of points of a Poisson process, (��),
in the random interval [0, λLα,θ ], and otherwise (��/Lα,θ , � ≥ 1) can be interpreted as arrival
times. We shall assume that (��) is independent of (P�), and thus (P�) | Lα,θ = s, NLα,θ (λ) = j

has distribution PD(α | s− 1
α ), as desired. Throughout, we will use the following easily verified

facts by conditioning on Lα,θ . First, for fixed λ, and for j = 0, 1, . . .,

P(NLα,θ (λ) = j, Lα,θ ∈ ds) = λj

j! sje−λsgα,θ (s) ds, (4.7)

and for j = 1, 2, . . .,

P

(
�j

Lα,θ

∈ dλ, Lα,θ ∈ ds

)
/dλ = λj−1

(j − 1)! sje−λsgα,θ (s) ds. (4.8)

The next result, which follows from (4.7) and (4.8), describes the marginal distribution
of the mixed Poisson process that illustrates a specific case of the Poisson switching identity
described in [49, Lemma 4.5].

Proposition 4.3. For θ > −α and j = 0, 1, . . . ,

P(NLα,θ (λ) = j) = λj
E

[
T−(θ+jα)

α

]
j!E[T−θ

α ]
E

( θ
α
+j+1)

α,θ+jα+1( − λ),

which is the same as (λ/j)P(�j/Lα,θ ∈ dλ)/dλ, for j �= 0. Furthermore, this implies

E[T−θ
α ] = �

(
θ
α

+ 1
)

�(θ + 1)
=

∞∑
j=0

λj�
(

θ
α

+ j + 1
)

j!�(θ + jα + 1)
E

( θ
α
+j+1)

α,θ+jα+1( − λ).
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The next result describes how the distributions of the form in (4.4) and (4.5) may be obtained
by conditioning on (NLα,θ (t), t ≥ 0).

Proposition 4.4. Suppose that, for θ > −α, (P�) ∼ PD(α, θ ), with α-diversity/local time
Lα,θ ∼ ML(α, θ ). Then, distributions of the form in (4.4) and (4.5) may be obtained by
conditioning on the mixed Poisson process (NLα,θ (t), t ≥ 0), described in (4.6), as follows.

(i) For j = 0, 1, 2, . . . , the density g(0)
α,θ+jα(s | λ) ds is equal to

P
(
Lα,θ ∈ ds | NLα,θ (λ) = j

) = P
(
Lα,θ+jα ∈ ds | NLα,θ+jα (λ) = 0

)
.

(ii) The density of Lα,θ | �j/Lα,θ = λ is given by g(0)
α,θ+jα(s | λ), for j = 1, 2, . . .

(iii) (P�) | NLα,θ (λ) = j ∼L
(0)
α,θ+jα(λ), for j = 0, 1, 2, . . .

Proof. Statements (i) and (ii) follow from (4.7), (4.8), and Proposition 4.3, using additionally
the fact that sjgα,θ (s) ∝ gα,θ+jα(s). Statement (iii) follows from (i) and (ii), since (P�) | Lα,θ =
s, NLα,θ (λ) = j has distribution PD(α | s− 1

α ). �
Remark 4.1. For Gδ ∼ Gamma(δ, 1) independent of (P�) ∼ PD(α, θ ), we can show that (P�) |
Gδ/Lα,θ = λ ∼L

(0)
α,θ+δα(λ), for any δ > 0, by similar arguments.

The next result follows from Proposition 4.2 and Lemma 2.1.

Proposition 4.5. Suppose that (P�,0(λ)) ∼L
(0)
α,θ (λ), specified by (4.5); then, its corresponding

EPPF of a partition of [n] is given by

p(0)
α,θ (n1, . . . , nk | λ) = E

( θ
α
+k)

α,θ+n( − λ)

E
( θ
α
+1)

α,θ+1( − λ)
pα,θ (n1, . . . , nk), (4.9)

with the distribution of Kn,0(λ), denoting the corresponding number of blocks, given by

Pα,θ (Kn,0(λ) = k) = E
( θ
α
+k)

α,θ+n( − λ)

E
( θ
α
+1)

α,θ+1( − λ)
P

(n)
α,θ (k). (4.10)

Furthermore, limn→∞ n−αKn,0(λ) = Z0(λ) a.s., where Z0(λ) has density g(0)
α,θ (s | λ).

Remark 4.2. For any θ > −1/2, L2
1
2 ,θ

d= 4G
θ+ 1

2
, and hence g(0)

1
2 ,θ

(x | λ) ∝ x2θ e−λx− 1
4 x2

cor-

responds, up to a scale, to a power-biased and exponentially tilted Raleigh distribution.
Interestingly, g(0)

1
2 ,θ+ j

2

(x | λ) corresponds to densities of distributions denoted by UL
(
2θ + j +

1,
(

λ
2θ+j+1 ,

1/2
2θ+j+1

))
arising as special cases in [40, Example 3.9, p. 199].

4.3. Fragmentation processes MLMC[γ ]
frag(α) derived from (P�,0(λ)) ∼L

(0)
α,θ

(λ).

We now apply the general results for fragmentation processes in Section 3 to the case
where (P�,0(λ)) ∼L

(0)
α,θ (λ). Among other possible descriptions from the previous section,

the distributional results below may correspond to the following scenario. Suppose that
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((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ ); then ((P�,r), Zr; r ≥ 0) | NZ0 (λ) = 0, where Z0 := Lα,θ

has the distribution described in Proposition 4.6 below.

Proposition 4.6. Suppose that, for λ > 0,
(
(P�,r(λ)), Zr(λ); r ≥ 0

) ∼ MLMC[γ ]
frag(α), with γ

specified by (4.4). Then, (P�,0(λ)) ∼L
(0)
α,θ (λ) and, for r = 1, 2, . . .,

(P�,r(λ)) = F̂rag(r)
α,1−α

(
(P�,r−1(λ))

) ∼L
(r)
α,θ (λ) =

∫ ∞

0
PD

(
α | s− 1

α
)

g(r)
α,θ (s | λ) ds,

where

g(r)
α,θ (s | λ) :=

E
[

exp
{−λs

∏r
i=1 βθ+α+i−1

α
, 1−α

α

}]
E

( θ
α
+1)

α,θ+1( − λ)
gα,θ+r(s) (4.11)

is the density of Zr(λ). The EPPF of a partition of [n] can be expressed as

E

[
E

( θ+r
α

+k)
α,θ+r+n

(−λ
∏r

i=1 βθ+α+i−1
α

, 1−α
α

)]
E

( θ
α
+1)

α,θ+1( − λ)
× pα,θ+r(n1, . . . , nk). (4.12)

Letting Kn,r(λ) denote the corresponding number of blocks, it follows that as n → ∞,

n−αKn,r(λ)
a.s.→ Zr(λ).

Proof. In this section,

h(r)
fragα

(t) =
t−(θ+r)

E

[
exp

{−λt−α
∏r

i=1 βα+i−1
α

, 1−α
α

} ∏r
i=1 β

θ
α
α+i−1

α
, 1−α

α

]
E

[
T−θ

α

]
E

[
T−r

α

]
E

( θ
α
+1)

α,θ+1( − λ)
.

Hence, after some manipulation, it follows that in this case g(r)
fragα

(s; γ ), as generally described

in (3.2), is equal to g(r)
α,θ (s | λ) defined in (4.11). The remaining results are obtained from

Proposition 3.2 and the form of the EPPF in (4.9). �
Remark 4.3. Using

E

[
r∏

i=1

β�
θ+α+i−1

α
, 1−α

α

]
=

r∏
i=1

�
(

θ+i
α

)
�

(
θ+α+i−1

α
+ �

)
�

(
θ+α+i−1

α

)
�

(
θ+i
α

+ �
)

for � = 1, 2, . . ., the numerator in (4.12) can be explicitly expressed in terms of a 3(r + 1)-
parametric Mittag–Leffler function (see [18, (6.3.8), p. 162]), which generalizes Prabhakar
functions (4.1).

4.3.1. Mixture representations. In this section we consider Kr ∼ P
(r)
α,θ , corresponding to the

number of blocks in a PD(α, θ ) partition of [r] = {1, . . . , r}. Applying the identity (2.15), we
have, for any λ > 0,

E

[
exp

{
−λ

r∏
i=1

βθ+α+i−1
α

, 1−α
α

}]
=Eα,θ

[
e
−λβ θ

α +Kr , r
α −Kr

] =
r∑

j=1

P
(r)
α,θ (j)E

[
e
−λβ θ

α +j, r
α −j

]
,
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where E

[
e
−λβ θ

α +j, r
α −j

]
= 1F1

(
θ
α

+ j; θ
α

+ r
α

; − λ
)

is a confluent hypergeometric function of

the first kind. Hence, the general results in Section 3.2, coupled with the specific results
developed for L(r)

α,θ (λ), lead to mixture representations involving PK distributions with mix-
ing measures defined by confluent hypergeometric functions as follows. Consider, for each
r = 1, 2, . . . and j = 1, . . . , r, mass partitions (P(j)

�,r(λ)) ∼L
(r,j)
α,θ (λ), where

L
(r,j)
α,θ (λ) =

∫ ∞

0
PD

(
α | s− 1

α
)

g(r,j)
α,θ (s | λ) ds (4.13)

with

g(r,j)
α,θ (s | λ) = 1F1

(
θ
α

+ j; θ
α

+ r
α

; − λs
)

E
( θ
α
+j)

α,θ+r( − λ)
gα,θ+r(s). (4.14)

The next result follows from an application of Proposition 3.3, followed by the results in
Propositions 4.5 and 4.6.

Proposition 4.7. Consider the same settings as in Proposition 4.6, and the distributions
specified by (4.13) and (4.14). Then, for r = 1, 2, . . . and j = 1, . . . , r,

(P�,r(λ)) ∼L
(r)
α,θ (λ) =

r∑
j=1

Pα,θ (Kr,0(λ) = j)L(r,j)
α,θ (λ),

where Pα,θ (Kr,0(λ) = j) is specified by (4.10) with integers (r,j) in place of (n,k). The EPPF of(
P(j)

�,r(λ)
) ∼L

(r,j)
α,θ (λ) based on a partition of [n] can be expressed as

E

[
E

(
θ+r
α

+k
)

α,θ+n+r

( − λβ θ
α
+j, r

α
−j

)]
E

( θ
α
+j)

α,θ+r( − λ)
pα,θ+r(n1, . . . , nk),

where the expectation at the numerator equals

∞∑
�=0

( − λ)�

�!
�(θ + n + r)

�(α� + θ + n + r)

(
θ+r
α

+ k
)
�

(
θ
α

+ j
)
�(

θ+r
α

)
�

.

Remark 4.4. In the case of α = 1/2, regardless of the specification for Z0 ∼ γ , we have

the (joint) distributional result Z := (Zr, r ≥ 0)
d=

(
2
√

Z2
0

4 + ∑r
�=1 e�, r ≥ 0

)
∼ MLMC[γ ]( 1

2

)
.

The case of MLMC
( 1

2 , 1
2

)
corresponds, up to a scale, to the components of the line-breaking

construction of the Brownian continuum random tree as in [1, 2] (see also [39]).

Remark 4.5. We used the notation Lα,θ to invite possible interpretations of conditioning on
NLα,θ (λ) within the context of strings of beads ([0, Lα,θ ], dL−1), where dL−1 is a discrete
random measure whose ranked masses are PD(α, θ ), as discussed in [50, 51, 57].
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