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Abstract

Consider a homogeneous Poisson point process of the Euclidean plane and its Voronoi
tessellation. The present note discusses the properties of two stationary point processes
associated with the latter and depending on a parameter θ. The first one is the set of points
that belong to some one-dimensional facet of the Voronoi tessellation and are such that
the angle with which they see the two nuclei defining the facet is θ. The main question of
interest on this first point process is its intensity. The second point process is that of the
intersections of the said tessellation with a straight line having a random orientation. Its
intensity is well known. The intersection points almost surely belong to one-dimensional
facets. The main question here is about the Palm distribution of the angle with which the
points of this second point process see the two nuclei associated with the facet. The note
gives answers to these two questions and briefly discusses their practical motivations. It also
discusses natural extensions to dimension three.

1 Introduction

The statistical properties of the facets of the Voronoi tessellation of homogeneous point processes
of the Euclidean plane are well-studied [1].

This note is focused on a question which was apparently not considered so far, which is the
distribution of the angle with which points of the one-dimensional facets of the Poisson-Voronoi
tessellation see the two Delaunay neighbors defining the facet. The motivation for this question
stems from cellular radio networks and is briefly discussed in the note. The problem is however
of independent interest.

Let Φ = {X1, X2, . . . } be a homogeneous Poisson point process of intensity λ > 0 on R2. Let
VXi ∈ R2 denote the Voronoi cell with nucleus Xi ∈ Φ:

VXi :=

{
x ∈ R2 : ‖x−Xi‖ ≤ inf

Xj∈Φ\{Xi}
‖x−Xj‖

}
. (1)

It is well known that the Voronoi cells in question are all a.s. finite random polygons. The
topological boundary of each cell consists in an a.s. finite number of a.s finite segments. Each
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such segment is associated with a so called Delaunay pair, namely a pair of points of Φ such that
the cells of these two points share a common boundary segment.

Consider the set of the points of the one-dimensional facets of the Voronoi tessellation of Φ that
see their Delaunay pair with a given angle. This discrete set of points forms a stationary point
process which is a factor of the point process Φ. It is discussed in Section 2 where its intensity is
determined.

Another natural model features a random line of the plane and the intersections of this line
with the one-dimensional facets. This defines a stationary point process on the line which is
discussed in Section 3. The Palm distribution of the angles at which the points of the latter point
process see the Delaunay pairs of the facets that intersect the line is determined.

These problems have natural extensions in dimension three which are discussed in Section 4.
Finally, Section 5 presents the cellular networking motivations of the problems alluded to

above.

2 Planar Point Process with Prescribed Delaunay Angle

Below, an intrinsic order on pairs of points of R2 is selected, e.g., the natural on the x coordinate.
For all pairs of points (D,D′) of R2 such that D < D′ w.r.t. this order, and for all points Z of

R2, let D̂, Z,D′ denote the angle from D to D′ in, e.g., the anti-trigonometric direction and in the
referential with origin Z.

Let θ ∈ (0, 2π) be fixed. For each segment S of the Voronoi tessellation of Φ, there is either 0,
or 1 point Z on this segment satisfying the following property: denote by D1 and D2 the Delaunay
neighbors associated with S, ordered as above; there is either 0, or 1 point Z of the segment such

that the angle ̂D1, Z,D2 is equal to θ mod 2π.
Let Ψθ be the point process in R2 of all points satisfying the above property. This is illustrated

in Figure 1, which depicts a point of the segment belonging to the intersection of the boundary
VX1 and that of VX2 satisfying this angular property.

Lemma 1. For all θ ∈ (0, 2π), Ψθ is a stationary and ergodic point process. Its intensity γθ is
equal to 2λ sin2 θ

2
.

Proof. For all such θ, Ψθ is a factor point process of Φ. It is hence stationary and mixing.
For all ordered points X1 6= X2 of Φ, let Zθ(X1, X2) be the point Z that belongs to the bisector

line of (X1, X2) and is such that ̂X1, Z,X2 = θ. LetB(x, r) be the open ball of center x and radius r.
The point Zθ(X1, X2) is in the support of Ψθ if and only if Φ(B(Zθ(X1, X2), ‖Zθ(X1, X2)−X1‖) = 0.

Consider the following mass transport: send mass 1 from X ∈ Φ to Z ∈ Ψθ if there exists

Y ∈ Φ such that Y > X, Z = Zθ(X, Y ) (so that X̂, Z, Y = θ), and Φ(B(Z, ‖Z − Y ‖) = 0. Every
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Figure 1: Triangles denote the points of the Poisson point process Φ. Solid black lines denote
the one-dimensional facets of the Poisson-Voronoi cells. The points X1 and X2 are the Delaunay
neighbors associated with the one-dimensional facet containing Zθ, ordered as indicated above.
Here θ ∈ (0, 2π) with the above conventions.

point of Ψθ receives mass 1. Hence, by the mass transport principle,

γθ = λP0
Φ

[
∪Y ∈Φ\{0}{Φ (B (Zθ(0, Y ), ‖Zθ(0, Y )‖)) = 0}

]
= E0

Φ

 ∑
Y ∈Φ\{0}

1Φ(B(Zθ(0,Y ),‖Zθ(0,Y )‖))=0


= E

[∑
Y ∈Φ

1Φ(B(Zθ(0,Y ),‖Zθ(0,Y )‖))=0

]
,

where P0
Φ denotes the Palm probability of Φ and where the last equality follows from Slivnyak’s

theorem. Using now Campbell’s formula and moving to polar coordinates, one gets

γθ = πλ2

∫ ∞
0

exp
(
−λπR2

θ,r

)
rdr, (2)

where the integration is only for polar angles from −π/2 to π/2 because of the ordering assumption
and where Rθ,r = r

2| sin(θ/2)| . It follows that

γθ = πλ2

∫ ∞
0

exp

(
−λπ r2

4 sin2 θ
2

)
rdr = 2λ sin2 θ

2
. (3)

Here are a few direct corollaries of Lemma 1. The first one is about the mean number of points
of Ψθ in the typical Voronoi cell:
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Corollary 1.

E0
Φ[Ψθ(V0)] = 2 sin2 θ

2
. (4)

Proof. Consider the following mass transport: send mass 1 from each point X of Φ to each point
of Ψθ belonging to VX . The formula then follows from the mass transport principle.

The second one is:

Corollary 2. For a two-dimensional Poisson-Voronoi tessellation, the mean number of one-
dimensional facets of the typical cell that contain (resp. do not contain) the middle point of
the line segment joining the Delaunay neighbors which define the facet is equal to 4 (resp. 2).

Proof. The result immediately follows from the last corollary and the fact that the mean number
of facets of the typical cell is equal to 6.

3 Distribution of Delaunay Angle on a Line

The setting is the same as above, with Φ a homogeneous Poisson point process of intensity λ on
the Euclidean plane and its Voronoi tessellation.

Consider a straight line with a random orientation and distance to the origin, independent of
Φ. Due to isotropy, one can assume that the line is the x-axis. Let Υ ∈ R denote the point process
of Voronoi boundary crossings along this line. The points of Υ are represented by “crosses” in

Figure 2. The linear intensity of Υ is well known to be µ = 4
√
λ

π
[2]. The point process is stationary

(compatible with shifts along the x-axis).
Almost surely, each point of Υ belongs to a one-dimensional facet of the Voronoi tessellation

of Φ. As such, one can associate to each point Z of Υ the two Delaunay neighbors X1(Z) and
X2(Z) associated to the one-dimensional facet Z belongs to. These points are ordered using the
above convention, with X1 < X2. Let

Θ(Z) = ̂X1(Z), Z,X2(Z) ∈ (0, 2π).

These angles are depicted on Figure 2.
By the same compatibility w.r.t. shifts along the x-axis, the random variables {Θ(Z)} are

marks of the point process Υ. Thus the Palm distribution of Θ is well defined. Note that this
Palm distribution in question is w.r.t. the linear point process Υ rather than Φ.

Lemma 2. The Palm distribution with respect to Υ of Θ = Θ(0) has a density equal to

fΘ(t) =
1

4
sin

t

2
, 0 < t < 2π. (5)

Proof. Let t be fixed with t ∈ (0, π). Let Ξ+
t denote the sub-point process of Υ where only points

with an angular mark in (t, π) are retained, that is

Ξ+
t :=

∑
Z∈Υ

δZ1Θ(Z)∈(t,π).

4



Figure 2: Triangles denote the points of Φ. Solid black lines denote the one-dimensional Voronoi
facets. A cross denotes a point at the intersection of a Voronoi facet and the x-axis.

Since the selection of points of Υ which are retained to define Ξ+
t is based on marks, the point

process Ξ+
t is also stationary. Let µ+

t denote the (linear) intensity of Ξ+
t . By the definition of Palm

probabilities, the two (linear) intensities µ+
t and µ are related by the formula µ+

t = µP0
Υ(Θ(0) ∈

(t, π)), where P0
Υ(·) denotes the Palm probability of Υ. Thus

P0
Υ(Θ(0) ∈ (t, π)) =

µ+
t

µ
. (6)

For all pairs (X1, X2) of ordered points of Φ, let Z = Z(X1, X2) denote the intersection of the
bisector line of (X1, X2) with the x-axis and R = R(X1, X2) denote the distance between X1 and
Z(X1, X2). One has

µ+
t = E

[∑
Z∈Υ

1Z∈[0,1]1Θ(Z)∈(t,π)

]

= E

[ ∑
X1<X2∈Φ

1Z(X1,X2)∈[0,1]1Z(X1,X2)∈VX1
∩VX2

1 ̂X1,Z(X1,X2),X2∈(t,π)

]
.

Using now the fact that the factorial moment measure of the Poisson point process of intensity λ is
λ2dU1dU2, where dUi, i = 1, 2 represents Lebesgue measure on R2, one gets that for all t ∈ (0, π),

µ+
t = λ2

∫
U1

∫
U2>U1

P0
U1,U2

(Z(U1, U2) ∈ VU1 ∩ VU2)1Z(U1,U2)∈[0,1]1 ̂U1,Z(U1,U2),U2∈(t,π)
dU1dU2,

where P0
U1,U2

denotes the two point Palm probability of Φ. Let U1 = (x1, y1) and U2 = (x2, y2).
The coordinates of Z = Z(U1, U2) are

Z =

(
1

2

(x2 − x1)(x2 + x1) + (y2 − y1)(y2 + y1)

x2 − x1

, 0

)
. (7)
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Figure 3: Z belongs to the one-dimensional facet of U1 and U2 if and only if there is no point of
Φ within the open disk of radius R that is centered at Z.

Let also R = R(U1, U2) = ‖U1 − Z‖ and r = ‖U1 − U2‖.
Using again the empty ball characterization of the Voronoi cell (see Figure 3), one gets that

for all t ∈ (0, π),

µ+
t =

1

2
λ2

∫
U1

∫
U2>U1

exp
(
−λπR2

)
12 arcsin r

2R
∈(t,π)1Z∈[0,1]dU1dU2,

where the 1/2 comes from mirror symmetry w.r.t. π and the fact that the integral (without the
1/2) also counts the points Z with an angle Θ in (2π − t, 2π). So for all t ∈ (0, π),

P0
Υ(Θ(0) ∈ (t, π)) =

1

2

λ2

µ

∫
U1

∫
U2>U1

exp
(
−λπR2

)
12 arcsin r

2R
∈(t,π)1Z∈[0,1]dU1dU2

=
1

4

λ2

µ

∫
U1

∫
U2

exp
(
−λπR2

)
12 arcsin r

2R
∈(t,π)1Z∈[0,1]dU1dU2.

The following stretch-rotation transformations are now used:[
z1

z2

]
=

[
1 1
−1 1

] [
x1

x2

]
and

[
z3

z4

]
=

[
1 1
−1 1

] [
y1

y2

]
.

This yields dx1dx2dy1dy2 = 1
4
dz1dz2dz3dz4. It follows that

P0
Υ(Θ(0) ∈ (t, π)) =

λ2

16µ

∫
R4

1 1
2

(
z1+

z3z4
z2

)
∈[0,1]

× 1
2 arcsin

√√√√√ z22+z
2
4

z22+z
2
4+z

2
3

(
1+

z24
z22

)∈(t,π)

× e
−λπ

4

(
z22+z24+z23

(
1+

z24
z22

))
dz1dz2dz3dz4.
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Now the first indicator function can be eliminated by carrying out the integration over z1, where
the condition for the first indicator function is met when

0 ≤ 1

2

(
z1 +

z3z4

z2

)
≤ 1,

or equivalently when − z3z4
z2
≤ z1 ≤ 2− z3z4

z2
, which yields a factor of 2.

Polar coordinates, i.e., (z2, z4) = (r cosφ, r sinφ) are now used to handle the second indicator
function:

P0
Υ(Θ(0) ∈ (t, π)) =

λ2

8µ

∫
R

dz3

∫ ∞
0

r dr

∫ 2π

0

dφ12 arcsin r√
r2+

z23
cos2 φ

∈(t,π) e
−λπ

4

(
r2+

z23
cos2 φ

)
. (8)

The next step is to carry out the integration with respect to z3, which is twice the integral
from 0 to ∞.

Since t < π, the indicator function in the last integral is equal to 1 on an interval with left
limit z−3 = 0 (the argument of the arcsine is 1 for z3 = 0 and so the indicator is equal to 1 as
t ∈ (0, π)) and with right limit obtained by solving

r√
r2 +

z23
cos2 φ

= sin
t

2
,

namely z+
3 = r| cosφ| cot t

2
. Hence, for 0 < t < π, one can write (8) as

P0
Υ(Θ(0) ∈ (t, π)) =

λ3/2

4µ

∫ ∞
0

r dr

∫ 2π

0

dφ | cosφ| exp

(
−λπr

2

4

)
erf

(
r
√
λπ cot t

2

2

)

=
λ3/2

µ

∫ ∞
0

dr r exp

(
−λπr

2

4

)
erf

(
r
√
λπ cot t

2

2

)

=
2λ cot t

2

πµ

∫ ∞
0

dr exp

(
− λπr2

4 sin2 t
2

)
=

2
√
λ cos t

2

πµ
(a)
=

1

2
cos

t

2
, (9)

where erf(x) = 2√
π

∫ x
0
e−u

2
du is the error function and (a) follows from the fact that µ = 4

√
λ

π
.

The pdf of Θ on (0, t) follows by differentiating (9) with respect to t, which yields

fΘ(t) =
1

4
sin

t

2
, t ∈ (0, π). (10)

The expression for the density of Θ in (π, 2π) follows by symmetry.
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4 The Three-Dimensional Case

In this section, Φ is a stationary Poisson point process of intensity λ in R3 and ν(3) = 4π
3

denotes
the volume of the unit sphere in dimension three.

4.1 The subset of a facet seeing a given angle

Consider a two-dimensional facet F of the Voronoi tessellation of Φ. Let X1 and X2 be the two
nuclei creating F . Let C be the intersection point of the segment [X1, X2] and the bisector plane
P of this segment. Note that although F ⊂ P , C does not necessarily belong to F . For all
θ ∈ (0, 2π), the set Zθ(X1, X2) of points of F that see the two nuclei X1 and X2 with angle θ is a
random closed subset of F . Here the angle is measured in the plane that contains X1, X2, and Z.
The set Zθ(X1, X2) is actually the intersection of facet F with the circle of center C and radius ρ
in plane P , with

ρ :=
||X1 −X2||

2

∣∣∣∣cot
θ

2

∣∣∣∣ .
In the two-dimensional case, Corollary 1 gives a formula for the mean number of facets of the

typical cell that contain a point seeing the nucleus of the typical cell and the other nucleus defining
the facet with angle θ. More precisely, if Zθ(X, Y ) be the point of the bisector line of [X, Y ] that
sees the pair (X, Y ) with angle θ ∈ (0, 2π), then this corollary says that

E0
Φ

[ ∑
X∈Φ, X 6=0

1Zθ(0,X)∈V0

]
= 2 sin2 θ

2
. (11)

The three-dimensional analogue of the question considered in that corollary is about the Palm
expectation of the mean length, say Lθ of the set of loci of the facets of the typical Voronoi cell
that see the nucleus of this cell and the other nucleus defining the facet with angle θ. This analogue
is evaluated in the following lemma:

Lemma 3. For all θ ∈ (0, 2π), with θ 6= π,

Lθ := E0
Φ

[ ∑
X∈Φ, X 6=0

l1(Zθ(0, X))

]
= 4π

(
6

πλ

) 1
3

Γ

(
4

3

) ∣∣∣∣cos
θ

2

∣∣∣∣ sin3 θ

2
, (12)

where l1 denotes length.

Proof. By Slivnyak’s theorem and Campbell’s formula,

E0
Φ

[ ∑
X∈Φ, X 6=0

l1(Zθ(0, X))

]
= E

[∑
X∈Φ

l1(Zθ((0, X),Φ + δ0))

]

= λ

∫
x∈R3

1x<0

∫ 2π

t=0

PΦ (Zθ(t, (0, x),Φ + δ0 + δx) ∈ V0) dxdt,(13)

8



where Zθ(t, (0, x),Φ + δ0 + δx) denotes the point of plane P that is at the intersection of the circle
of center C and radius ρ in this plane and the line of this plane containing C and with direction
t. Using now isotropy, one gets that

E0
Φ

[ ∑
X∈Φ, X 6=0

l1(Zθ(0, X))

]
= 2πλ

∫
x∈R3

1x<0ρ(x)PΦ (Zθ(0, (0, x),Φ + δ0 + δx) ∈ V0) dx

= πλ

∫
x∈R3

ρ(x)PΦ (Zθ(0, (0, x),Φ + δ0 + δx) ∈ V0) dx

= πλ

∫
x∈R3

ρ(x) exp(−λν(3)R(x)3)dx, (14)

with ρ(x) defined as above, namely

ρ(x) :=
||x||

2

∣∣∣∣cot
θ

2

∣∣∣∣ ,
and R(x) the distance between x and Z, namely

R(x) :=
||x||

2

1

sin θ
2

.

Passing to spherical coordinates, one gets

E0
Φ

[ ∑
X∈Φ, X 6=0

l1(Zθ(0, X))

]
= 2π2λ

∣∣∣∣cot
θ

2

∣∣∣∣ ∫
r>0

exp

(
−λπr

3

6

1

sin3 θ
2

)
r3dr

= 4π

(
6

πλ

) 1
3

Γ

(
4

3

) ∣∣∣∣cos
θ

2

∣∣∣∣ sin3 θ

2
. (15)

The last result was for θ 6= π. For θ = π, one should rather consider the point process Ξ of
points that belong to some facet and that are the middle points of the segment [X1, X2] of the
Delaunay neighbors associated with this facet. The result is:

Lemma 4.
Nπ := E0

Φ [Ξ(V0)] = 8. (16)

Proof. By the same arguments as above, the mean number of points of the cell of 0 that see the
two ordered nuclei (0, X) with angle θ = π is

Mπ =
λ

2

∫
x∈R3

exp

(
−λν(3)

(
||x||

2

)3
)

dx

= 2πλ

∫
r>0

exp

(
−λπ1

6
r3

)
r2dr

= 4.

The result follows by symmetry.
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4.2 The angles seen from a line

The problem considered in Section 3 has a direct extension in dimension three, where the question
is again that of the Palm distribution of the angle Θ at which the intersections of the x-axis with
the 2-dimensional facets of the Voronoi tessellation of a Poisson point process in R3 see the two
nuclei creating the facet.

Lemma 5. The Palm distribution with respect to Υ of Θ = Θ(0) has the density

fΘ(t) =
3

4

∣∣∣∣cos
t

2

∣∣∣∣ sin2 t

2
, t ∈ (0, 2π). (17)

Proof. By the same arguments as in the two-dimensional case, for all t ∈ (0, π),

P0
Υ(Θ(0) ∈ (t, π)) =

λ2

4µ(3)

∫
U1∈R3

∫
U2∈R3

exp
(
−λν(3)R3

)
12 arcsin r

2R
∈(t,π)1Z∈[0,1]dU1dU2,

with µ(3) = (4π/3)1/3 Γ(5/3)λ1/3 the linear intensity of 2-dimensional facet crossings, ν(3) the
volume of the unit sphere in dimension three, and r, Z and R geometrically defined as above.
That is, r = ‖U1 − U2‖, Z is the point where the bisector plane of the line segment [U1, U2]
intersects the x-axis, and R = ‖Z − U1‖ = ‖Z − U2‖.

Let U1 = (x1, y1, z1) and U2 = (x2, y2, z2). The following stretch-rotation transformations are
now used:[

u1

u2

]
=

[
1 1
−1 1

] [
x1

x2

]
,

[
u3

u4

]
=

[
1 1
−1 1

] [
y1

y2

]
and

[
u5

u6

]
=

[
1 1
−1 1

] [
z1

z2

]
.

This yields dx1dx2dy1dy2dz1dz2 = 1
8
du1du2du3du4du5du6. It follows that

P0
Υ(Θ(0) ∈ (t, π)) =

λ2

32µ(3)

∫
R6

1 1
2

(
u1+

u3u4
u2

+
u5u6
u2

)
∈[0,1]

× 1
2 arcsin

√√√√√ u22+u
2
4+u

2
6

u22+u
2
3+u

2
4+u

2
5+u

2
6+

u23u
2
4

u22

+
u25u

2
6

u22

+
2u3u4u5u6

u22

∈(t,π)

× e
−A

8

(
u22+u23+u24+u25+u26+

u23u
2
4

u22
+
u25u

2
6

u22
+

2u3u4u5u6
u22

)3/2

du1du2du3du4du5du6,

where A = 4πλ/3. Now the first indicator function can be eliminated by carrying out the integra-
tion over u1, where the condition for the first indicator function is met when

0 ≤ 1

2

(
u1 +

u3u4

u2

+
u5u6

u2

)
≤ 1,

or equivalently when −u3u4
u2
− u5u6

u2
≤ u1 ≤ 2− u3u4

u2
− u5u6

u2
, which yields a factor of 2.

Spherical coordinates, i.e., (u2, u4, u6) = (r sinψ cosϕ, r sinψ sinϕ, r cosψ) and polar coordi-
nates, i.e., (u3, u5) = (ρ cosφ, ρ sinφ) are now used to handle the second indicator function:

P0
Υ(Θ(0) ∈ (t, π)) =

λ2

16µ(3)

∫ 2π

0

dϕ

∫ π

0

dψ sinψ

∫ 2π

0

dφ

∫ ∞
0

dr r2

×
∫ ∞

0

dρ ρ12 arcsin r√
r2+a(ψ,ϕ,φ)2ρ2

∈(t,π) e
−A

8 (r2+a2(ψ,ϕ,φ)2ρ2)
3/2

, (18)

10



where

a2(ψ, ϕ, φ)2 =
1− (sinψ sinφ sinϕ− cosψ cosφ)2

sin2 ψ cos2 ϕ
.

The next step is to carry out the integration with respect to ρ. The indicator function in
question is equal to 1 on an interval with left limit ρ− = 0 (the argument of the arcsine is 1 and
so π > t is true as t ∈ (0, π)) and with right limit obtained by solving

r2

r2 + a2(ψ, ϕ, φ)2ρ2
= sin2 t

2
,

namely ρ+ = r
a

cot t
2
. Hence, one can write the integrals w.r.t. ρ and r in (18) as∫ ∞

0

dr r2

∫ r
a

cot t
2

0

dρ ρ e−
A
8

(a2ρ2+r2)3/2 =
32 Γ(5/3)

9a2A5/3

(
1− sin3 t

2

)
. (19)

Thus the final step involves calculating the angular integrals as

P0
Υ(Θ(0) ∈ (t, π)) =

2 Γ(5/3)λ2

9A5/3µ(3)

(
1− sin3 t

2

)∫ 2π

0

dϕ

∫ π

0

dψ sinψ

∫ 2π

0

dφ
1

a(ψ, ϕ, φ)2

=
2 Γ(5/3)λ2

9A5/3µ(3)

(
1− sin3 t

2

)∫ 2π

0

dϕ

∫ π

0

dψ sinψ

×
∫ 2π

0

dφ
sin2 ψ cos2 ϕ

1− (sinψ sinφ sinϕ− cosψ cosφ)2

=
4π Γ(5/3)λ2

9A5/3µ(3)

(
1− sin3 t

2

)∫ 2π

0

dϕ

∫ π

0

dψ sin2 ψ | cosϕ|

A= 4πλ
3=

1

2

(
4π

3

)1/3
Γ(5/3)λ1/3

µ(3)

(
1− sin3 t

2

)
=

1

2

(
1− sin3 t

2

)
, (20)

where the formula µ(3) = (4π/3)1/3Γ(5/3)λ1/3 was used.
The pdf of Θ follows by differentiating (20) with respect to t, which yields

fΘ(t) =
3

4
cos

t

2
sin2 t

2
, t ∈ (0, π). (21)

The expression for density of Θ follows from the symmetry and is given as

fΘ(t) =
3

4

∣∣∣∣cos
t

2

∣∣∣∣ sin2 t

2
, t ∈ (0, 2π). (22)

Note that the density is 0 at t = π.
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5 Cellular Networking Motivations

Consider a cellular radio network where a mobile user connects to the nearest base station. If the
locations of the base stations are some realization of a stationary point process, the service region
of each base station is essentially the Voronoi cell of this base station [5]. A mobile user moving
on a straight line crosses cell boundaries of the Voronoi tessellation, where it performs inter-cell
handovers [3] that involve the transfer of the cellular connection between the two base stations
sharing the cell boundary. When the mobile user handset is equipped with two directional panels,
the handset might have to swap panels depending on whether the two base stations involved in
the inter-cell handover are seen by the same panel or not. The event whether a panel swap occurs
or not hence depends on the angle at which the mobile user at the cell boundary sees the two base
stations sharing the boundary. The evaluation of the frequency of panel swaps at handover times
requires evaluating the pdf of the angle with which the intersection point of a randomly oriented
line and the Voronoi facet sees the two nuclei that define the facet.

Assume that the base stations of a cellular radio network are located at positions that are a
realization of a Poisson point process Φ of intensity λ in the plane as illustrated in Figure 2. The
dashed straight line represents the path of a mobile user, which is assumed to be along x-axis
without loss of generality. A cross on the figure denotes a point at the intersection of a Voronoi
facet and the line of motion of the mobile user. These points are those where the mobile user has
to perform an inter-cell handover.

The situation motivating the previous analysis is that where the mobile user is equipped with
directional panels. The simplest situation is that where the mobile user has two panels, one
creating a beam covering the angular regions [χ, χ+ π), and the other a beam covering the region
[χ+π, χ+ 2π), where χ is uniformly distributed on [0, π]. When the mobile user reaches an inter-
cell handover point, two things may happen. If the two base stations involved in the handover are
not on the same side of the line with angle χ (i.e., are in the beams of different panels, as depicted
on Figure 4), there is a panel swap, which has a certain overhead cost. If the base stations are on
the same side of this line, there is no panel swap (see an instance of this case on Figure 5) and no
such cost is incurred by the mobile user. In this context it is important to evaluate the ergodic
fraction of inter-cell handovers that involve such a panel swap.

The more general situation is that where there are 2m panels with m ≥ 1, each surveying an
angle (or beam) of the form [χ + 2kπ/2m, χ + 2(k + 1)π/2m), k = 0, 1, . . . , 2m − 1. Here too, the
main question is again about the fraction of inter-cell handovers that involve a panel swap (which
happens when the two base stations are seen by the mobile user within different panel beams).
This question is answered in the next corollary of Lemma 2.

Corollary 3. When the typical mobile user has 2m panels, m ≥ 1, the probability p of a panel
swap at the user during an inter-cell handover is

p =
2m

π
sin

π

2m
, m ≥ 1. (23)

Proof. The case of two panels, i.e., m = 1, is considered first. Without loss of generality, the
coordinate system can be taken such that the inter-cell handover point is the origin O. Let X

12



Figure 4: Panel swap with 2 panels. Figure 5: No panel swap with 2 panels.

denote the minimal Delaunay neighbor, A(X) its angle, and Θ the angle with which O sees the
two Delaunay neighbors, with the foregoing conventions.

As Figures 4 and 5 show, a panel swap occurs if and only if one of the two ends of the
panel is “within” the angle Θ. More precisely, let χ denote the angle of the panel, which is
uniformly distributed on (0, π). If Θ ∈ (0, π), there is a panel swap if and only if either χ ∈
(A(X), A(X) + Θ) or χ + π ∈ (A(X), A(X) + Θ), and these two events cannot simultaneously
hold. Similarly, if Θ ∈ (π, 2π), there is a panel swap if and only if either χ ∈ (A(X) + Θ, A(X))
or χ+ π ∈ (A(X) + Θ, A(X)), with these two events excluding each other. Since Θ, A(X) and χ
are independent, the probability of a panel swap is

p =

∫ π

0

fΘ(t)
1

2π

(∫ t

0

du+

∫ t

0

du

)
dt+

∫ 2π

π

fΘ(t)
1

2π

(∫ 2π−t

0

du+

∫ 2π−t

0

du

)
dt

=
1

2π

∫ π

0

t sin
t

2
dt

=
2

π
, (24)

where the expression obtained in (10) was used.
This can be generalized to the case where the mobile user has 2m panels, with m ≥ 1.
Using the same notation as above, if Θ ∈ (0, π), a panel swap occurs if and only if there is at

least one k = 0, 1, . . . , 2m − 1 such that

χ+
2kπ

2m
∈ (A(X), A(X) + Θ). (25)

If Θ ∈ (π, 2π), a panel swap occurs if and only if

χ+
2kπ

2m
∈ (A(X) + Θ, A(X)), (26)

for some k = 0, 1, . . . , 2m − 1. Hence a panel swap is certain if Θ ∈
(

π
2m−1 , 2π − π

2m−1

)
. The

cases Θ ∈
(
0, π

2m−1

)
and Θ ∈

(
2π − π

2m−1 , 2π
)

are symmetrical. For Θ ∈
(
0, π

2m−1

)
(resp. Θ ∈(

2π − π
2m−1 , 2π

)
), there are 2m symmetrical possibilities for a panel swap, one for each value of
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k = 0, 1, . . . , 2m − 1 in Equation (25) (resp. (26)). These events are disjoint and have the same
probability. Since Θ, A(X), and χ are independent, the probability of a panel swap is hence

p = 2m+1

∫ π
2m−1

0

dtfΘ(t)
1

2π

∫ t

0

du+

∫ 2π− π
2m−1

π
2m−1

fΘ(t)dt

=
2m

4π

∫ π
2m−1

0

t sin
t

2
dt+

1

4

∫ 2π− π
2m−1

π
2m−1

sin
t

2
dt

=
2m

π
[sin t− t cos t]

π
2m

0 + cos
π

2m

=
2m

π
sin

π

2m
− cos

π

2m
+ cos

π

2m

=
2m

π
sin

π

2m
. (27)
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