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Abstract

In the classical simple random walk the steps are independent, viz., the walker has no memory.
In contrast, in the elephant random walk, which was introduced by Schütz and Trimper [11]
in 2004, the walker remembers the whole past, and the next step always depends on the whole
path so far. Our main aim is to prove analogous results when the elephant has only a restricted
memory, for example remembering only the most remote step(s), the most recent step(s) or
both. We also extend the models to cover more general step sizes.

1 Introduction

In the classical simple random walk the steps are equal to plus or minus one and independent—
P (X = 1) = 1 − P (X = −1) = p, (0 < p < 1). In this model the walker has no memory. This
random walk is, in particular, Markovian. Motivated by applications, although interesting in its
own right, is the case when the walker has some memory. The extreme case is, of course, when the
walker has a complete memory, that is, when ”the next step” depends on the whole process so far.
This so called elephant random walk (ERW) was introduced by Schütz and Trimper [11] in 2004,
the name being inspired by the fact that elephants have a very long memory.

The first, more substantial, paper on elephant random walks is, to the best of our knowledge,
Bercu’s paper [1], in which he proves a number of limit theorems. A main point is that there
is a kind of phase transition at the point p = P (X = 1) = 3/4, which divides the problem into
the diffusive regime, 0 ≤ p < 3/4, the critical regime, p = 3/4, and the superdiffusive regime,
3/4 < p ≤ 1, with somewhat different asymptotics.

A main device in his paper is the use of martingale theory due to the observation that a
multiplicative scaling of the random walk constitutes a martingale.

Our main interest is the situation in which the elephant has only a limited memory, either that
he or she remembers only some distant past, only a recent past or a mixture of both. No paper
on exact results and proofs seems to exist, only simulations, in which case a given fraction of the
distant/recent past is remembered; [12, 2, 10].

The first task in this direction is to consider the cases when the walker only remembers the
first (two) step(s) or only the most recent (previous) step. In particular the latter case involves
rather cumbersome computations and we therefore invite the reader(s) to try to push our results
further. It should also be mentioned that the paper by Engländer and Volkov [4] is devoted to this
latter case, although from a different angle, in that the next step is not generated by flipping a
coin, rather by turning it over or not. They have a somewhat different focus, in particular, they
consider the case with different p-values in each step.

The cases with limited memory behave very differently mathematically in that some of the
walks are still non-markovian others are markovian, but there is no convenient martingale around.
Moreover there are no phase transitions in these cases.

A second point concerns the extension of (some of) Bercu’s results in [1] from the simple random
walk to general sums, that is, to the case when the steps have an arbitrary distribution on the
integers.
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We begin by defining the various models in Section 2. After some preliminaries in Section 3,
some results for general ERW:s are obtained in Section 4. Sections 5 and 6 are devoted to the
distant past and Sections 8 and 9 to the recent past, respectively. These ”one-sided” memories
are then followed up in Sections 10 and 11 where we consider mixed cases, that is, when the
memory contains some early steps as well as some recent ones, after which we shortly discuss
some different models. We close with a section containing some questions and remarks. For easier
reading we collect some of the somewhat more lengthy (elementary and tedious) computations in
the Appendix.

2 Background

The elephant random walk is defined as a simple random walk, where, however, the steps are not
i.i.d. but dependent as follows. The first step X1 equals 1 with probability r ∈ [0, 1] and is equal
to −1 with probability 1− r. After n steps, that is, at position Sn =

∑n
k=1 Xk, one defines

Xn+1 =

{
+XK , with probability p ∈ [0, 1],

−XK , with probability 1− p,

where K has a uniform distribution on the integers 1, 2, . . . , n. With Gn = σ{X1, X2, . . . , Xn} this
means (formula (2.2) of [1]) that

E(Xn+1 | Gn) = (2p− 1) · Sn

n
, (2.1)

after which, setting an = Γ(n) · Γ(2p)/Γ(n+ 2p − 1), it turns out that {Mn = anSn, n ≥ 1} is a
martingale.

Our main aim is to extend these results to the case when the elephant has only a restricted
memory, for example remembering only the most remote step(s) and/or the most recent one(s).
A result in Section 4 allows us to conclude that our results remain true (suitably modified) also
when the steps of the ERW:s follow a general distribution on the integers.

First in line is the case when the elephant only remembers the distant past, the most extreme
one being when the memory is reduced to the first step only, viz.,

Xn+1 =

{
+X1, with probability p ∈ [0, 1],

−X1, with probability 1− p.

Somewhat more sophisticated is when the memory covers the first two steps, in which case

Xn+1 =

{
+XK , with probability p ∈ [0, 1],

−XK , with probability 1− p,

where P (K = 1) = P (K = 2) = 1/2.

Technically more complicted is when the elephant only remembers the recent past. Here we
focus on the very recent past, which is the last step, that is,

Xn+1 =

{
+Xn, with probability p ∈ [0, 1],

−Xn, with probability 1− p.

We begin, throughout, by assuming that X1 = 1, and generalize our findings in this setting
(for simplicity) to the case r = p. We denote our partial sums with Tn, n ≥ 1, when the first
variable(s) is/are fixed and let Sn be reserved for the case when they are random.

In order to move from Tn to Sn we also need to discuss the behavior of the walk when the
initial value equals −1. However, in that case the evolution of the walk is the same except for the
fact that the trend of the walk is reversed, viz., the corresponding walk equals the mirrored image
in the time axis. This implies that the mean after n steps equals −E(Tn), but the dynamics being
the same, implies that the variance remains the same (Var (−Y ) = Var (Y ) for a random variable
Y ). In fact, the second moments of the walk remain the same. The same goes for higher order
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moments—odd moments equal the negative of those when X1 = 1, and even moments remain the
same. In Sections 6 and 11 we depart from the assumption that X1 and X2 are fixed, and then
the additional case X1 +X2 = 0 has to be taken care of.

Finally, in order to avoid special effects we assume throughout that 0 < p < 1; note that p = 1
corresponds to Xn = X1 for all n, and p = 0 the the case of alternating summands.

3 Some auxiliary material

For easier access of the arguments below we shortly present some auxiliary results from probability
and analysis.

3.1 Disturbed limit distributions

The following (well-known) result (which is a special case of the Cramér–Slutsky theorem) will be
used in order to go from a special case to a more general one.

Proposition 3.1 Let {Un, n ≥ 1} be a sequence of random variables and suppose that V is inde-

pendent of all of them. If Un
d→ U as n → ∞, then UnV

d→ UV as n → ∞.

Proof. Using characteristic functions and bounded convergence we have, as n → ∞,

ϕUnV (t) = E exp{itUnV } = E
(
E(exp{itUnV } | V )

)
= EϕUn

(tv) → EϕU (tv)

= E
(
E(exp{itUV } | V )

)
= E exp{itUV }) = ϕUV (t).

An application of the continuity theorem for characteristic functions finishes the proof. ✷

3.2 Conditioning in case of a restricted memory

Let {Sn, n ≥ 1} be an ERW, let {Fn, n ≥ 1} denote the σ-algebras generated by the memory of
the elephant and let Gn = σ{X1, X2, . . . , Xn} stand for the full memory. We already know from
(2.1) above that E(Xn+1 | Gn) = (2p− 1)Sn/n. Our aim is to establish analogs when the elephant
has a restricted memory, that is, analogs for E(Xn+1 | Fn).

Toward the end, let In = {i ≤ n : i ∈ M}, where M = the memory of the elephant. Then,

E(Xn+1 | Fn) = p ·
∑

i∈In

1

|In|
Xi + (1− p) ·

∑

i∈In

1

|In|
(−Xi) = (2p− 1) ·

∑
i∈In

Xi

|In|
, (3.1)

that is, the conditional mean equals the average of the possible choices multiplied by the expected
value of the sign; in analogy with (2.1).

If, for example, In = {n} the elephant only remembers the most recent step, and In = {1, n}
means that he/she only remembers the first and the most recent steps; these are two cases that
will be considered in the sequel. In these cases (3.1) states that

E(Xn+1 | Fn) = (2p− 1)Xn and E(Xn+1 | Fn) = (2p− 1)
X1 +Xn

2
,

respectively.
The next problem is when we condition on steps that are not contained in the memory. In

words, if they do not, the elephant does not remember them, and, hence, cannot choose among
them in a following step. More precisely, mathematically M is defined as those steps in the past
on which the elephant bases the next step. Technically, let I ⊂ {1, 2, . . . , n} be an arbitrary set of
indices, such that I ∩ In = ∅. Then

E(Xn+1 | σ{In ∪ I}) = E(Xn+1 | Fn) = (2p− 1)

∑
i∈In

Xi

|In|
. (3.2)

It follows, in particular, that

E(Xn+1 | Gn) = (2p− 1)

∑
i∈In

Xi

|In|
, (3.3)
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and that

E(SnXn+1 | Gn) = SnE
(
Xn+1 | Gn

)
= Sn(2p− 1)

∑
i∈In

Xi

|In|
. (3.4)

This, and the fact that X2
n+1 = 1, will be useful several times for the computation of second

moments as follows:

E(S2
n+1) = E(Sn +Xn+1)

2 = E(S2
n) + 2E(SnXn+1) + E(X2

n+1)

= E(S2
n) +

2(2p− 1)

|In|
E
(
Sn

∑

i∈In

Xi

)
+ 1. (3.5)

3.3 Difference equations

In the proofs we use several difference equations. For convenience and easy reference we summarize
here some well-known facts about linear difference equations that are used on and off.

Proposition 3.2 (i) Consider the first order equation

xn+1 = a xn + bn, for n ≥ 1, with x∗
1 given.

Then

xn = an−1x∗
1 +

n−2∑

ν=0

aνbn−1−ν .

If, in addition, |a| < 1 and bn = bnγ with γ > −1, then

xn =
bn−1

1− a
− γabn−1

n(1− a)2
(
1 + o(1)

)
as n → ∞.

(ii) If, in particular, |a| < 1 and xn+1 = axn + b, then

xn =
b

1− a
+ an−1

(
x∗
1 −

b

1− a

)
=

b

1− a

(
1 + o(1)

)
as n → ∞.

(iii) Next is the homogeneous, second order equation

xn+1 = a xn + b xn−1, for n ≥ 2, with x∗
1, x

∗
2 given.

Then, with λ1/2 = (a±
√
a2 + 4b)/2, provided a2 + 4b 6= 0,

xh
n = c1λ

n
1 + c2λ

n
2 with c1, c2 chosen such that xh

i = x∗
i for i = 1, 2 .

(iv) As for the inhomogeneous second order equation

xn+1 = a xn + b xn−1 + dn, for n ≥ 2, with x∗
1, x

∗
2 given,

we have xn = xh
n+yn, where yn is some solution of the inhomogeneous equation, where the constants

c1, c2 in xh
n are chosen properly. If dn ≡ d and a+ b 6= 1 we may choose yn = d/(1− a− b).

3.4 Some notation

We use the standard δa(x) to denote the distribution function with a jump of height one at a.
Constants c and C are always numerical constants that may change between appearances.

4 General elephant random walks

Let {S̃n, n ≥ 1} be an ERW, and suppose that R is a random variable with distribution function

FR that is independent of the walk. If S̃n/an
a.s.→ Z as n → ∞ for some normalizing positive

sequence an → ∞ as n → ∞, and some random variable Z, it follows from Proposition 3.1 that
RS̃n/an

a.s.→ RZ as n → ∞. An immediate consequence of this fact is that we can extend Theorems
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3.1, 3.4 and (the first half of) Theorem 3.7 of [1] to cover more general step sizes. Namely, consider

the ERW for which X̃1 ≡ 1, and let the random variables X̃n, n ≥ 2, be constructeded as in Section
2 with this special X̃1 as starting point. Furthermore, let R be a random variable, independent of
{X̃n, n ≥ 1}, and consider Xn = R · X̃n, n ≥ 1, and, hence, Sn = R · S̃n.

The following theorem (which reduces to the cited results of [1] if R is a coin-tossing random
variable), holds for Sn = RS̃n:

Theorem 4.1 (a) For 0 < p < 3/4,
Sn

n

a.s.→ 0 as n → ∞;

(b) For p = 3/4,
Sn√
n logn

a.s.→ 0 as n → ∞;

(c) For 3/4 < p < 1,
Sn

n2p−1

a.s.→ RL as n → ∞,

where L is a non-dgenerate random variable.

As for convergence in distribution, we have to distinguish more carefully between the three cases.

Theorem 4.2 For 0 < p < 3/4 we obtain

Sn√
n

d→
∫

R\{0}
N0, 1

3−4p
(·/|t|) dFR(t) + P (R = 0) · δ[0,∞)(·) as n → ∞.

Moreover, if E(R2) < ∞, then E(Sn/
√
n) → 0 and E((Sn/

√
n)2) → E(R2)/(3− 4p) as n → ∞.

Proof. As R and Sn are independent we find that

P
( Sn√

n
≤ x

)
=

∫

R

P
(
R

S̃n√
n
≤ x | R

)
dFR(t)

=

∫

R

P
(
t
S̃n√
n
≤ x

)
dFR(t)

=

∫

(−∞,0)

P
( S̃n√

n
≥ x/t

)
dFR(t) +

∫

(0,∞)

P
( S̃n√

n
≤ x/t

)
dFR(t)

+P (R = 0) · δ[0,∞)(x)

→
∫

(−∞,0)

(
1−N0, 1

3−4p
(x/t)

)
dFR(t) +

∫

(0,∞)

N0, 1
3−4p

(x/t) dFR(t)

+P (R = 0) · δ[0,∞)(x),

by dominated convergence which yields the desired result.
The second part is immediate, since R is independent of everything else. ✷

Remark 4.1 If R = ±1 with probabilities r and (1 − r), respectively, the limit distributions of

Sn/
√
n and S̃n/

√
n are the same, and we rediscover Theorem 3.3 of [1].

Remark 4.2 For the critical case, p = 3/4 one similarly obtains, using [1], Theorem 3.6, that

Sn√
n logn

d→
∫

R\{0}
N0,1(·/|t|) dFR(t) + P (R = 0) · δ[0,∞)(·) as n → ∞.

The supercritical case, 3/4 < p < 1, has a different evolution and no analogous result exists. ✷

5 Remembering only the distant past 1

This turns out as being the easiest case, since convenient independence is inherent. We begin by
assuming that the elephant only remembers the first step, i.e., that Fn = σ{X1}, and begin with
the assumption that X1 = 1 (recall that partial sums are denoted with the letter T ). Then,

E(Xn+1 | Fn) = E(Xn+1 | X1) = (2p− 1) · 1 = E(Xn+1) for all n ≥ 1,
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and, hence,
E(Tn+1 | Fn) = 1 + n(2p− 1) = E(Tn+1).

Moreover, applying (3.5) to Tn we find that

E(T 2
n+1) = E(T 2

n) + 2 (2p− 1)E(Tn · 1) + 1

= E(T 2
n) + 2(2p− 1)

(
1 + (n− 1)(2p− 1)

)
+ 1

= E(T 2
n) + 2(2p− 1)2n+ 4(2p− 1)(1− p) + 1,

which, after telescoping, yields

E(T 2
n+1) = 1 + (2p− 1)2n(n+ 1) +

(
4(2p− 1)(1− p) + 1

)
n,

and, finally,
Var (Tn+1) =

(
1− (2p− 1)2)

)
n = 4p(1− p)n.

A completely analogous calculation for characteristic functions, with an eye on (3.2), shows that

ϕTn+1
(t) = E

(
E
(
eit(Tn+Xn+1) | Gn

))
= E

(
eitTn ·E

(
eitXn+1 | Gn

))

= E
(
eitTn ·E

(
eitXn+1 | X1

))
= E

(
eitTn · (peit + (1− p)e−it

)

= ϕTn
(t) ·

(
peit + (1− p)e−it

)
,

after which telescoping tells us that

ϕTn+1
(t) =

(
peit + (1− p)e−it

)n · eit,

after which a standard computation shows that

ϕ(Tn−n(2p−1))/
√
n(t) → exp{−4p(1− p)t2} as n → ∞.

Next we note that the computations so far prove that the increments are uncorrelated, suggesting
independence ... In fact, recalling that we have assumed that X1 = 1, we have, setting αk = 1 if
Xk = +X1, for k ≥ 2, and 0 otherwise,

P (Xi = Xj = 1) = P (αi = αj = 1− p) = P (αi = 1− p) · P (αj = 1− p)

= (1 − p)2 = P (Xi = 1) · P (Xj = 1),

for i, j ≥ 2 and different.
This means that the ERW coincides with the classical simple random walk, except for the fact

that the first step is always equal to one. This is—after some thinking—rather obvious, because
(in the language of [4]) we might interpret X1 as a coin that we either flip or not before each new
step. Hence we obtain:

Proposition 5.1 The strong law of large numbers, the central limit theorem, and the law of the
iterated logarithm all hold for {Tn, n ≥ 1}.

If, on the other hand, the first step is equal to −1, then, by symmetry, E(Tn+1) = −n(2p−1)−1,
the variance remains the same (recall the discussion toward the end of Section 2), and, again, by
symmetry, Tn+1 + n(2p − 1) normalized by

√
n is asymptotically normal and the SLLN and the

LIL do hold again.
As a consequence, assuming that X1 is a coin-tossing random variable, we are (asymptotically)

confronted with two normal distributions, one for each of the two portions of the probability space.
In fact, if we imagine the situation that r = P (X1 = +1) is close to zero or one it is rather apparent
how the very first step determines along which branch it will evolve.

One also notes, more formally, that E(Xn+1 | Fn) = (2p − 1)E(X1), so that E(Xn+1) =
(2p− 1)2, implying that Var (Sn) = O(n2) (and not of order n) as n → ∞. Thus, an ordinary CLT
is not valid, with the exception that if p = 1/2 the two ”branches” determined by the first step
collaps (asymptotically) into one, and we are ultimately faced with a classical simple symmetric
random walk.

Hence, the following limit result is always available in the general case:
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Theorem 5.1 Let Sn =
∑n

k=1 Xk.Then,

(a)
Sn

n

d→





2p− 1, with probability p,

−(2p− 1), with probability 1− p,
as n → ∞;

(b) E(Sn/n) → (2p− 1)2 and Var (Sn/n) → 4p(1− p)(2p− 1)2 as n → ∞.

Proof of (a). If X1 = ±1 we know from above that E(Tn) = ±(1 + (n − 1)(2p− 1)), and that

Var (Tn) = 4p(1−p)(n− 1). This tells us that, Tn

n

p→ ±(2p− 1) as n → ∞. The conclusion follows.

Proof of (b). Immediate. ✷

Remark 5.1 (i) An interpretation of the limit in (a) is that the random walk at hand, on average,
behaves, asymptotically, like a coin-tossing random variable with values at the points ±(2p− 1).

(ii) An alternative way of phrasing the conclusion of the theorem is that

FSn/n(x) → p · δ−(2p−1)(x) + (1− p) · δ2p−1(x) as n → ∞.

However, if we use a random normalization we obtain the following result:

Theorem 5.2 Let Sn =
∑n

k=1 Xk.Then,

(a)
Sn − n(2p− 1)X1√

4np(1− p)

d→ N0,1 as n → ∞;

(b)
Sn − n(2p− 1)X1

n

a.s.→ 0 as n → ∞;

(c) lim sup
n→∞

(lim inf
n→∞

)
Sn − n(2p− 1)X1√
8np(1− p) log logn

= 1 (−1) a.s.

Proof of (a). We use the fact that

Sn − n(2p− 1)X1√
4n p (1− p)

= X1
Tn − n(2p− 1)√

4np(1− p)
,

together with Theorem 4.2 and its Remark 4.1.

Alternatively, one may condition on the value of X1. This procedure will be exploited in the
proof of Theorem 6.2 in the next section.

Proof of (b) and (c). Define Ω1 = {ω ∈ Ω : X1(ω) = 1} and Ω2 = Ωc
1. After renormalization

the original probability measure will be a probability measure on Ω1. Based on this measure on
Ω1 we obtain an SLLN and an LIL for Sn −n(2p− 1)X1. Similarly on Ω2. Combining them yields
the desired result. ✷

Remark 5.2 The strong law can also be formulated with a random RHS:

Sn

n

a.s.→ (2p− 1)X1 as n → ∞ .

Remark 5.3 If X1 is a general random variable with distribution F having no mass at zero, then

Sn − n(2p− 1)X1√
4np(1− p)

d→
∫ ∞

−∞
N0,1(·/|t|) dF (t) as n → ∞.

✷

A special case is, once again, p = 1/2:

Corollary 5.1 If p = 1/2, then

Sn

n

a.s.→ 0 as n → ∞,
Sn√
n

d→ N0,1 as n → ∞, lim sup
n→∞

(lim inf
n→∞

)
Sn√

2n log logn
= 1; (−1) a.s.
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6 Remembering only the distant past 2

In this section we begin by assuming that the elephant only remembers the first two steps, so that
Fn = σ{X1, X2}, and suppose that X1 = X2 = 1. Then, for n ≥ 2,

E(Xn+1 | Fn) = E(Xn+1 | X1, X2) = (2p− 1) · 1 + 1

2
= (2p− 1) = E(Xn+1) (6.1)

for all n ≥ 2, and, hence,

E(Tn+1 | Fn) = 2 + (n− 1)(2p− 1) = n(2p− 1) + 3− 2p = E(Tn+1),

(since E(T2) = 2). Extending the idea from the previous section that the walk evolves as an
ordinary simple random walk beginning at the third step, a natural guess is that

Var (Tn+1) = 4p(1− p)(n− 1), n ≥ 3.

To see this we first observe that Var (T3) = Var (X3) = 4p(1 − p), that is, the formula is correct
for n = 2. Assuming it is correct for n− 1 we have

Var (Tn+1) = Var (Tn +Xn+1) = Var (Tn) + 2Cov (Tn, Xn+1) + Var (Xn+1)

= 4p(1− p)(n− 2) + 0 + 4p(1− p) = 4p(1− p)(n− 1),

since by (3.4) and the fact that X1 = X2 = 1,

Cov (Tn, Xn+1) = E(TnXn+1)− E(Tn)E(Xn+1) = E(Tn(2p− 1))− E(Tn)(2p− 1) = 0. (6.2)

Next, by modifying the computations involving the characteristic function from Section 5, we
obtain

ϕTn+1
(t) = E

(
E
(
eit(Tn+Xn+1) | Gn

))
= E

(
eitTn · E

(
eitXn+1 | X1, X2

))

= E
(
eitTn ·

(
peit + (1− p)e−it

))
= ϕTn

(t) ·
(
peit + (1− p)e−it

)
.

By continuing as before one obtains, after proper centering, a limiting normal distribution for these
initial X-values. Similarly for the other ones. But, only for each ”branch” separately. One can
also ascertain that the variance is not linear if we assume random beginnings. Except, as before,
when p = 1/2 and the three main limit theorems (SLLN, CLT, LIL) hold (as in Corollary 5.1).

The following analog of Theorem 5.1 holds in the general case (as one might expect):

Theorem 6.1 Let Sn =
∑n

k=1 Xk. Then

(a)
Sn

n

d→






2p− 1, with probability p2,

0, with probability 1− p,

−(2p− 1), with probability p(1− p),

as n → ∞;

(b) E(Sn/n) → p(2p− 1)2 and that Var (Sn/n) → p(1− p)(2p− 1)2
(
4p2 + 1

)
.

Proof of (a). If X1 = X2 = ±1 we know from above that E(Tn) = ±(n(2p−1)+3−2p), and that
Var (Tn) = 4p(1− p)(n− 2). Moreover, E(Tn) = 0 whenever X1 and X2 have different signs. The
variance remains the same (with p = 1/2). This, together with the fact that P (X1 = X2 = 1) = p2,
P (X1 = X2 = −1) = (1 − p)p, and P (X1 6= X2) = p(1 − p) + (1 − p)2 = 1 − p helps us to finish
the proof of the first part. Part (b) follows. ✷

Remark 6.1 (i) In analogy with Remark 5.1 we have the interpretation that the elephant, asymp-
totically, on average, performs a random walk on the points ±(2p− 1) and 0.

(ii) Mimicing Remark 5.1 we may rewrite the conclusion of the theorem is

FSn/n(x) → p(1− p) · δ−(2p−1)(x) + (1− p) · δ0(x) + p2 · δ2p−1(x) as n → ∞. ✷

Once again random normalization produces further limit results:
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Theorem 6.2 Let Sn =
∑n

k=1 Xk.Then,

(a)
Sn − n(2p− 1) (X1 +X2)/2√

n

d→ p · N0,4p(1−p) + (1− p) · N0,1 as n → ∞;

(b)
Sn − n(2p− 1) (X1 +X2)/2

n

a.s.→ 0 as n → ∞;

(c) lim sup
n→∞

(lim inf
n→∞

)
Sn − n(2p− 1) (X1 +X2)/2√

2n log logn
= σ(X1, X2) (−σ(X1, X2)) a.s.,

where σ(X1, X2) =

{
4p(1− p), for ω ∈ {ω ∈ Ω : X1(ω) ·X2(ω) = 1},
1, otherwise.

Proof of (a). Conditioning on the value of (X1 +X2)/2 we obtain

P
(Sn − n(2p− 1)(X1 +X2)/2√

n
≤ x

)
= P

(Sn − n(2p− 1)(X1 +X2)/2√
n

≤ x | X1 = X2 = 1
)
· p2

+P
(Sn − n(2p− 1)(X1 +X2)/2√

n
≤ x | X1 = X2 = −1

)
· p(1− p)

+P
(Sn − n(2p− 1)(X1 +X2)/2√

n
≤ x | X1 +X2 = 0

)
· (1− p)

= P
(Tn − n(2p− 1)√

n
≤ x

)
· p2 + P

(−Tn + n(2p− 1)√
n

≤ x
)
· p(1− p)

+P
( Tn√

n
≤ x | X1 +X2 = 0

)
· (1− p)

→
(
p2 + p(1− p)

)
· N0,4p(1−p)(x) + (1− p) · N0,1(x)

= p · N0,4p(1−p)(x) + (1− p) · N0,1(x) as n → ∞.

Parts (b) and (c) follow along the lines of the proof of Theorem 5.1. ✷

7 The distant past; higher order

If one remembers the first m random variables for some m ∈ N, the following obvious extension
of the above results emerges.

Theorem 7.1 For qk = P (Sm = m− 2k), rk =
(
(m−k)p+k(1−p)

)
/m, and pk = (m− 2k)(2p−

1)/m, where 0 ≤ k ≤ m and m ∈ N,

Sn

n

d→
m∑

k=0

qkδpk
as n → ∞,

and
Sn − n(2p− 1)Sm/m√

n

d→
m∑

k=0

qk N0,4rk(1−rk) n → ∞.

Proof. As before we write

P
(Sn

n
≤ x

)
= P

(Sn

n
≤ x | X1 = 1, . . . , Xm = 1

)
· P (X1 = 1, . . . , Xm = 1)

+ P
(Sn

n
≤ x

∣∣ exactly one− 1 among the first m X :es
)

×P (exactly one− 1 among the first m X :es)

+ · · ·+ P
(Sn

n
≤ x | X1 = −1, . . . , Xm = −1

)
· P (X1 = −1, . . . , Xm = −1)

= P
(Sn

n
≤ x | X1 = 1, . . . , Xm = 1

)
· P (Sm = m)

+ P
(Sn

n
≤ x | exactly one− 1 among the first m X :es

)
· P (Sm = m− 2)

+ · · ·+ P
(Sn

n
≤ x | X1 = −1, . . . , Xs = −1

)
· P (Sm = −m),
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and observe that in each conditional case we have a random walk with the appropriate success
probabilities, i.e., for Sm = m− 2k the sucess probability is rk =

(
(m− k)p+ k(1 − p)

)
/m, and,

hence, the expectation is pk = 2rk − 1 = (m− 2k)(2p− 1)/m.

Remark 7.1 (i) The probabilities at the jumps are relatively complicated and therefore not ex-
pressed in detail, but q0 = pm and qm = (1− p)pm−1.

(ii) A more detailed analysis shows that the probability mass of the limit distribution of Sn/n
concentrates near zero as m increases.

(iii) One easily checks that the variance for each ”branch” equals 4p(1− p)(n−m), which, in turn,
is dominated by ≤ 4p(1 − p)n, which, consequently, tells us that the analog of Theorems 5.1 and
6.1 holds.

(iv) Once again, the case p = 1/2 is special as described in the two previous sections. ✷

8 Remembering only the recent past 1

This situation is much more complex, because, even though one remembers only recent steps, the
path depends on the whole history so far (some remarks on that will be given in Subsection 12.3).
Once again we begin by assuming that the elephant only remembers the very last step, which
means that Fn = σ{Xn}. This setting is reminiscent of [4], where one turns over a coin instead of
tossing it. The main focus there, however, is on different p-values at each step and, e.g., how this
may affect phase transitions and behavior at critical values.

We begin, as always, by assuming that X1 = 1. Then, E(X1) = 1, and

E(Xn+1 | Fn) = E(Xn+1 | Xn) = (2p− 1) ·Xn, and, hence, E(Xn+1) = (2p− 1)E(Xn),

for all n ≥ 2. By iterating this it follows that for, n ≥ 0,

E(Xn+1) = (2p− 1)nE(X1) = (2p− 1)n, (8.1)

and

E(Tn+1) =
1− (2p− 1)n+1

2(1− p)
.

For the second moment we have, by (3.5) and (3.2),

E(T 2
n+1 | Gn) = T 2

n +2Tn(2p− 1)Xn +1, hence, E(T 2
n+1) = E(T 2

n) + 2(2p− 1)E(TnXn) + 1 .

For the middle term we obtain by (3.2),

E(TnXn) = E(X2
n) + E(Tn−1E(Xn | Gn−1)) = 1 + (2p− 1)E(Tn−1Xn−1) ,

which in turn, after iteration, yields

E(TnXn) = 1 +

n−1∑

k=1

(2p− 1)k =
1− (2p− 1)n

2(1− p)
.

Now we can calculate the second moment:

E(T 2
n+1) = E(T 2

n) + 2(2p− 1) · 1− (2p− 1)n

2(1− p)
+ 1 = E(T 2

n) +
p

1− p
− (2p− 1)n+1

1− p
.

By telescoping we obtain

E(T 2
n+1) =

np

1− p
+O(1) as n → ∞,

which implies the following formula for the asymptotic variance:

Var (Tn+1) =
np

1− p
+O(1) as n → ∞. (8.2)

Noticing that Sn = X1Tn and that X1 = ±1, a glance at (8.1) and (8.2) shows that Tn

n

p→ 0 and

that Sn

n

p→ 0 as n → ∞, suggesting the following result:
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Theorem 8.1 For X1 = ±1,

Tn√
n

d→ N0, p

1−p
and

Sn√
n

d→ N0, p

1−p
as n → ∞.

Our next task is to apply the method of moments in order to prove that this is indeed true. We
thus wish to prove that

E
(Tn

n

)m

→ µm =





m!

2m/2(m/2)!
·
( p

1− p

)m/2

, if m is even,

0, if m is odd.

(8.3)

This amounts to lengthy computations of various higher order mixed moments. The reason for
this is that higher order moments of Tn can be expressed as linear combinations of lower order
moments of Tn and Xn with the aid of the binomial theorem.

Convergence of mean and variance has already been established above. For higher order mo-
ments we use induction.

Throughout in the following, C(p,m), with our without an index, are numerical constants which
may differ from line to line and E(Rn(p,m)) are quantities of smaller order than the leading term.

Lemma 8.1 For m ≥ 1 we have, as n → ∞,

E
(
(Tn)

2m−1Xn

)
= (2p− 1)E

(
(Tn−1)

2m−1Xn−1

)
+ (2m− 1)E(Tn−1)

2m−2 + E(Rn(p,m))

∼ 2m− 1

2(1− p)
·E(Tn)

2m−2 ; (8.4)

E
(
(Tn)

2mXn

)
= (2p− 1)E

(
(Tn−1)

2mXn−1

)
+ 2m · E(Tn−1)

2m−1 +

+m(2m− 1) (2p− 1)E((Tn−1)
2m−2Xn−1) + E(Rn(p,m))

∼ C1(p,m) · nm−1 ; (8.5)

E(Tn+1)
2m = E((Tn)

2m) + 2m(2p− 1) E((Tn)
2m−1Xn) +

+m(2m− 1)E((Tn)
2m−2) + Rn(p,m)

= E((Tn)
2m) +

m(2m− 1) (2p− 1)

1− p
E((Tn)

2m−2) + E(Rn(p,m))

∼ (2m)!

2mm!

( p

1− p

)m

(n+ 1)m ; (8.6)

E(Tn+1)
2m+1 = E((Tn)

2m+1) + (2m+ 1)(2p− 1)E((Tn)
2mXn)

+(2m+ 1)(m− 1)E((Tn)
2m−1) + E(Rn(p,m))

∼ C2(p,m) · (n+ 1)m , (8.7)

where E(Rn(p,m)) denotes individual remainder terms.

The proof of the lemma amounts to extending the above computations for mean and variance to
higher order variants and is deferred to the Appendix, Subsection A.1.

Proof of Theorem 8.1. As already mentioned, the proof exploits the method of moments. For
X1 = 1 the lemma tells us that

E
(
(Tn/

√
n)2m

)
→ (2m)!

2mm!

( p

1− p

)m

and that E
(
(Tn/

√
n)2m+1

)
→ 0 as n → ∞,

which verifies (8.3). For X1 = −1 we recall from the end of Section 3 that even moments remain
the same and that odd moments are the same except for a change of sign, which yields the same
conclusion. The limit result for Sn then follows as in Theorem 4.2. ✷

Remark 8.1 The sequence {Xn, n ≥ 1} is a stationary recurrent Markov chain with finite state
space which, hence, is uniformly ergodic. The asymptotic normality of Tn therefore also follows
from a CLT for Markov chains, see, e.g., Corollary 5 of [8] (cf. also [7], Theorem 19.1.) ✷

The Markov property also provides a strong law.

Theorem 8.2 We have
Sn

n

a.s.→ 0 as n → ∞.

Proof. The stationary distribution of the ergodic Markov chain {Xn, n ≥ 1} is (1/2, 1/2), which
has expectation zero. An application of Theorem 6.1 in [3] yields the conclusion. ✷
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9 Remembering only the recent past 2

In this section we assume that the elephant remembers the two most recent steps, that is, at time
n the next step is based on the steps Xn and Xn−1. The computations are as before, although
more elaborate. We have, as always, X1 = 1, E(X2 | F1) = (2p− 1)X1,

E(X3 | F2) = (2p− 1)
X1 +X2

2
= (2p− 1)

1 +X2

2
,

and, for n ≥ 3,

E(Xn+1 | Fn) = E(Xn+1 | Xn−1, Xn) = (2p− 1)
Xn−1 +Xn

2

Computing the moments one obtains the following result. For the proof we refer to the Appendix,
Subsection A.2.

Lemma 9.1 As n → ∞,

E(Xn) → 0;

E(Sn) → (2p− 1)(2p+ 1)

4(1− p)
;

Var (Sn/
√
n) → 1 +

(2p− 1)(5− 2p)

2(1− p)(3− 2p)
= σ2

2 .

The expectation of Xn tends to zero geometrically fast.

Remark 9.1 For p = 1/2 the process reduces, as usual, to a simple symmetric random walk. ✷

For the following limit theorems we lean on the Markov property (and invite the reader to try the
moment method).

Theorem 9.1 We have

Sn

n

a.s.→ 0 and
Sn

σ2
√
n

d→ N0,1 as n → ∞.

Proof. The sequence {Xn, n ≥ 1} now forms a Markov chain of order two. Theorem 6.1 in [3]
yields the strong law, and the results in [5], Section 3, or [6], combined with Corollary 5 of [8],
yield the asymptotic normality with the moments as calculated above. ✷

Remark 9.2 If we suppose that the elephant remembers a fixed but finite number, k say, of the
most recent steps, the sequence of steps forms a Markov chain of order k, and we obtain, by
(basically) the same arguments as above that Sn/

√
n will be asymptotically normal (a Markov

chain of order k can be considered as a k-dimensional Markov chain and use e.g. [6]). ✷

10 Remembering the distant as well as the recent past 1

Next we consider the case when the elephant has a clear memory of the early steps as well as the
very recent ones.

One can think of a(n old) person who remembers the early childhood and events from the last
few days but nothing in between. The most elementary case is Fn = σ{X1, Xn}, for all n ≥ 2.
Following the approach of earlier variants we begin by assuming that X1 = 1. Then, for n ≥ 2,

E(X2) = E
(
E(X2 | X1)

)
= E

(
(2p− 1)X1

)
= 2p− 1,

and

E(Xn+1) = E
(
E(Xn+1 | Fn)

)
= E

(
E(Xn+1 | X1, Xn)

)
= (2p− 1)E

(X1 +Xn

2

)

= (2p− 1)E
(1 +Xn

2

)
=

2p− 1

2
· (1 + E(Xn)).
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Exploiting Proposition 3.2(i) we obtain, for n ≥ 1,

E(Xn) =
2p− 1

3− 2p
+
(2p− 1

2

)n−1

· 4(1− p)

3− 2p
, (10.1)

and, hence, that

E(Tn) = 1 + (2p− 1) + (n− 2)
2p− 1

3− 2p
+

4(1− p)

3− 2p

n∑

k=1

(2p− 1

2

)k−1

= n · 2p− 1

3− 2p
+

8(1− p)

(3 − 2p)2
+ o(1) as n → ∞ . (10.2)

Next we note that E(T 2
1 ) = 1, and, by (3.5), that, for n ≥ 1,

E(T 2
n+1) = E(T 2

n) + (2p− 1)E(Tn) + (2p− 1)E(TnXn) + 1. (10.3)

In order to establish a difference equation for the second moment we first have to compute the
mixed moment. For the computational details we refer to Appendix A.3 and obtain (formula
(A.7)),

E(T 2
n) =

(2p− 1)2

(3 − 2p)2
· n2 +

(
1 +

(2p− 1)

(3− 2p)3
(4p2 − 40p+ 35)

)
· n+ o(n).

Joining the expressions for the first two moments, finally, tells us that the variance is linear in n:

Var (Tn) = n2 · (2p− 1)2

(3− 2p)2
+ n ·

(
1 +

(2p− 1)

(3− 2p)3
(4p2 − 40p+ 35)

)

−
(
n · 2p− 1

3− 2p
+

8(1− p)

(3− 2p)2

)2

+ o(n)

= n · σ2
T + o(n) as n → ∞ , (10.4)

where

σ2
T = 1 +

(2p− 1)

(3− 2p)3
(4p2 − 24p+ 19). (10.5)

Given the expressions for mean and variance, a weak law is immediate:

Tn

n

p→ 2p− 1

3− 2p
as n → ∞. (10.6)

In analogy with our earlier results this suggets that Tn is asymptotically normal. That this is,
indeed, the case follows from the fact that {Tn, n ≥ 1} is, once again, a uniformly ergodic Markov
chain, since the only random piece from the past is the previous step. We may thus apply Corollary
5 of [8] (cf. also [7], Theorem 19.1) to conclude that Tn − E(Tn) is asymptotically normal with
mean zero and variance σ2

Tn, with σ2
T as defined in (10.5), which, in view of (10.2), establishes

that

Tn − 2p−1
3−2pn

σT
√
n

d→ N0, 1 as n → ∞. (10.7)

An appeal to the disussion at the end of Section 2 now allows us to conclude that

E(Sn) = pE(Tn) + (1 − p)E(−Tn) = (2p− 1)E(Tn),

E(S2
n) = E(T 2

n),

Var (Sn) = E(Tn)
2 − (2p− 1)2(E(Tn))

2,

which tells us that

E(Sn/n) →
(2p− 1)2

3− 2p
and Var (Sn/n) → σ2

S = 4p(1− p)
(2p− 1)2

(3 − 2p)2
as n → ∞. (10.8)

Furthermore, in analogy to Theorem 5.1, we arrive at the following asymptotic distributional
behavior of Sn:
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Theorem 10.1 We have

Sn

n

d→ S =





2p− 1

3− 2p
, with probability p,

−2p− 1

3− 2p
, with probability 1− p,

as n → ∞.

Moreover, E(Sn/n)
r → E(Sr) for all r > 0, since |Sn/n| ≤ 1 for all n.

Remark 10.1 Comparing this with Theorem 5.1 we see that the jump points are closer together
here. This can be explained by the fact that the current random variables are less dependent than
those in Section 5. ✷

Finally, by combining (10.7) with the obvious analog for the case X1 = −1, asymptotic normality
follows with a random centering:

Theorem 10.2 We have

Sn − (2p−1)X1

3−2p n

σT
√
n

d→ N0,1 as n → ∞.

Proof. We first note that it follows from the discussion following (10.7) that the CLT there
remains true when X1 = −1 with a + replacing the − in the numerator. We thus may argue as in
the proof of Theorem 5.1, via the fact that

Sn − (2p−1)X1

3−2p n

σT
√
n

= X1 ·
Tn − (2p−1)

3−2p n

σT
√
n

.

Alternatively, condition on the value of X1 and proceed as in the proof of Theorem 6.2. ✷

11 Remembering the recent as well as the distant past 2

In this section we extend the previous one in that we assume that Fn = σ{X1, X2, Xn}, for all
n ≥ 3. Following the approach of earlier variants we begin by assuming that X1 = X2 = 1. Then
E(X1) = E(X2) = 1, E(X3) = (2p− 1) and, for n ≥ 3,

E(Xn+1) = E
(
E(Xn+1 | Fn)

)
= E

(
E(Xn+1 | X1, X2, Xn)

)
=

2p− 1

3
· (2 + E(Xn)).

Exploiting Proposition 3.2(i) yields

E(Xn) =
2p− 1

2− p
+
(2p− 1

3

)n−1(
1− 2p− 1

2− p

)
=

2p− 1

2− p
+

3(1− p)

2− p

(2p− 1

3

)n−2

, (11.1)

and, hence,

E(Tn) = 1 + 1 + (2p− 1) + (n− 3) · 2p− 1

2− p
+

3(1− p)

2− p

n∑

k=4

(2p− 1

3

)k−2

= n · 2p− 1

2− p
+

3(1− p)(7 − 2p)

2(2− p)2
+ o(1) as n → ∞ . (11.2)

As for second moments, E(T1)
2 = 1, E(T2)

2 = 4, E(T3)
2 = E(1 + 1 +X3)

2 = 4 + 4E(X3) + 1 =
4 + 4(2p− 1) + 1 = 8p+ 1, and, generally, that,

E(T 2
n+1) = E(T 2

n) + 2E(TnXn+1) + 1. (11.3)

Concerning the mixed moments and other details we refer to Appendix A.4, from which we obtain

E(T 2
n) = n2 · (2p− 1)2

(2− p)2
+ n ·

(
1 +

(2p− 1)

(2− p)3
· (5p2 − 32p+ 26)

)
+ o(n).
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The variance, finally, turns out as

Var (Tn) = n · σ2
T + o(n), where σ2

T = 1 +
(2p− 1)

(2 − p)3
· (5− 5p− p2). (11.4)

Following the path of the previous section we now immmediately obtain a weak law:

Tn

n

p→ 2p− 1

2− p
as n → ∞. (11.5)

It remains to consider the general case with arbitrary X1 and X2. There is a slight change
here from the previous section. Namely, we first have the case when X1 = X2 = −1, for which the
arguments from the previous section carry over without change, that is, the mean equals E(−Tn)
and the second moment equals E(T 2

n). However, now we also have a mixed case which behaves
somewhat differently.

Namely, consider the case when the first two summands are not equal; X1+X2 = 0, X1X2 = −1.
Then,

E(X3) = E
(
E(X3 | X1, X2)

)
= E

(
(2p− 1)

X1 +X2

2

)
= (2p− 1)E(0) = 0,

and, for n ≥ 3,

E(Xn+1) = E
(
E(Xn+1 | Fn)

)
= E

(
E(Xn+1 | X1, X2, Xn)

)
=

2p− 1

3
·
(
0 + E(Xn)

)

=
2p− 1

3
E(Xn) = · · · = CE(X3) = 0,

from which we conclude that, for n ≥ 2,

E(Tn) = 0. (11.6)

For the calculation of the second moment we refer again to Appendix A.4 and find that

E(T 2
n) = n · 1 + p

2− p
+ o(n) = Var (Tn+1) as n → ∞,

where the last equality is due to the fact that E(Tn) = 0. The weak law now runs slightly differently,
in that

Tn

n

p→ 0 as n → ∞. (11.7)

We note in passing that the mean is linear in n and that the second moment is of order n2 when
the first two summands are equal, whereas the mean is zero and the second moment is linear in n
when they are not. However, the variance is linear in n in all cases.

As for central limit theorems, the main arguments are the same as in Section 10, in that

Tn ± 2p−1
2−p n

σT
√
n

d→ N0,1 as n → ∞, (11.8)

for the cases X1 = X2 = −1 and X1 = X2 = 1, respectively, and

Tn√
n · 1+p

2−p

d→ N0,1 as n → ∞, (11.9)

when the first two summands are unequal.
Switching to moments of Sn, using T+

n , T−
n and T 0

n for the three cases, we obtain,

E(Sn) = p2E(T+
n ) + (1 − p) · E(T 0

n) + p(1− p)E(T−
n ) = p(2p− 1)E(T+

n ),

E(S2
n) = p2E((T+

n )2) + (1 − p) · E((T 0
n)

2) + p(1− p)E((T−
n )2).

Collecting the various pieces tells us that

E(Sn/n) →
p(2p− 1)2

2− p
and Var (Sn/n) →

p(1− p)(2p− 1)2(4p2 + 1)

(2− p)2
as n → ∞.

Finally, by modifying our earlier results of this kind, one ends up as follows:
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Theorem 11.1 We have

Sn

n

d→ S =






2p− 1

2− p
, with probability p2,

0, with probability 1− p,

−2p− 1

2− p
, with probability p(1− p),

as n → ∞.

Morevover, E(Sn/n)
r → E(Sr) for all r > 0, since |Sn/n| ≤ 1 for all n.

We finally wish to combine the asymptotic normality for the three different beginnings of the
process in order to arrive at a limit theorem for the S-process. This works (in theory) the same
way as in Section 10. However, there is a problem with the variance. Namely, in Theorem 10.2
both cases had the same variance, whereas here the variance, when X1 and X2 are equal, is not
the same as when they are different. Nevertheless, here is the result.

Theorem 11.2 We have

Sn − (2p−1)(X1+X2)/2
2−p n

√
n

d→ p · N0,σ2
T
+ (1− p) · N0,(1+p)/(2−p) as n → ∞,

with σ2
T as given in (11.4).

Proof. The conclusion follows by conditioning on the value of (X1 +X2)/2, and proceeding as
in the proof of Theorem 6.2. ✷

12 Miscellania

We close by mentioning some further specific models and by describing some problems and chal-
lenges for further research.

12.1 More on restricted memories

(i) The next logical step would be to check the case when Fn = σ{X1, Xn−1, Xn}. By modifying
the computations in Appendix A.2, setting a = 2p−1

3 and d = 3a2, we find that

µn+1 = E(Xn+1) = E
(
E(Xn+1 | X1, Xn−1, Xn)

)
=

2p− 1

3
E(X1 +Xn−1 +Xn)

= a
(
(2p− 1) + µn−1 + µn

)
= a(µn−1 + µn) + d,

after which Proposition 3.2(iv), and a glance at the computations in Appendix A.2, tell us that

E(Xn) =
(2p− 1)2

5− 4p
+O(qn) as n → ∞.

where q = max{|λ1|, |λ2|} < 1, with λi, i = 1, 2, defined in Appendix A.2, and it follows that

E(Sn) ∼ n
(2p− 1)2

5− 4p
as n → ∞.

If Fn = σ{X1, X2, Xn−1, Xn}, then, with a = 2p−1
4 and d = 2p(2p− 1)2/4, one similarly obtains

that

E(Sn) ∼ n
p (2p− 1)2

3− 2p
as n → ∞.

In fact, theoretically it is possible to obtain results of the above kind for any fixed number of early
and/or late memory steps.

(ii) A more subtle case is when the number of memory steps depends on n, such as logn or
√
n.
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(iii) Another model is when the elephant remembers everything except the first step, more gen-
erally, the elephant remembers all but the first k steps for some k ∈ N. Set pk = P (Xk+1 = 1),
Vn = Xk+1 + . . .Xn, and Hn = σ{Xk+1, . . . Xn}, and let n ≥ k + 1. Then

E(Xn+1 | Hn) = (2p− 1)
Vn

n− 2
and thus E(Vn+1 | Hn) = γ̃nVn,

where γn = (n− 3 + 2pk)/(n− 2). With

ãn =

n∏

k=3

γ̃−1
k =

Γ(n− 1) Γ(2pk)

Γ(n− 2 + 2pk)

one can, as in [1], show that ãnVn is a martingale. From the same paper it follows, provided that
0 < pk < 3/4, that

Vn√
n− 2

d→ N0,1/(4−3pk) as n → ∞,

which implies that
Sn√
n

d→ N0,1/(4−3pk) as n → ∞.

The quantity pk depends on the construction used for the k steps X2, ..., Xk+1.

Other cases one might think of is when the memory covers everything except

• the last j steps;

• the first k steps and the last j steps;

• the first α logn steps and or the last β logn steps for some α, β > 0;

• the first α
√
n steps and or the last β

√
n steps for some α, β > 0;

• the first α logn steps and or the last β
√
n steps for some α, β > 0;

• and so on, aiming at more general (final) results.

12.2 Phase transition

The results of Bercu [1] show that for the full memory one has a phase transition at p = 3/4.
There is no such thing in our results. An obvious, as well as interesting, question would be to find
the breaking point. There exist some papers on this topic using simulations, see e.g., [12, 2, 10]
and further papers cited therein, but we are not aware of any theoretical results concerning this
matter.

12.3 Remembering the first vs. the last step

There is a fundamental difference in behavior in these extreme cases, it is not just a matter of
recalling some earlier step. Namely, it is a matter of comparing

Xn+1 =

{
+X1, with probability p,

−X1, with probability 1− p,

with

Xn+1 =

{
+Xn, with probability p,

−Xn, with probability 1− p.

In order to see the difference more clearly, let us imagine that p is close to one.
In the first case every new step equals most likely the first one, that is, a typical path will then

constist of an overwhelming amout of X1:s interfoliated by an occasional −X1. In the second case
every new step equals most likely the most recent one, that is, a typical path will constist of an
overwhelming amout of X1:s followed by an overwhelming amount of −X1:s, followed by ...., that
is alternating long stretches of the same kind.

Moreover, since, in the first case, every new step is a function of just the first one, the indepen-
dence structure does not come as a surprise, whereas in the second case the next step depends on
the previous one, which in turn depends on its previous one, etcetera, which implies that the next
step, in fact, depends on the whole path so far.
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12.4 Final Remarks

(i) We have seen that the more the elephant remembers the cumbersomer become the computa-
tions. However, once again, in theory it would be possible to compute higher order moments and
thus, e.g., use the moment method to prove limit theorems.

(ii) By using the device from Section 4 one can extend all limit theorems for ERW:s to the case
with general steps. ✷

A Appendix

In this appendix we collect more technical calculations.

A.1 Proof of Lemma 8.1

Recall that even powers of Xn are always equal to 1, and, moreover, that Xk
n=Xn if k is odd. One

consequence of this is the following fact that will be used repeatedly below:

E
(
(Tn)

2m−k(Xn+1)
k | Fn

)
= E

(
(Tn)

2m−kE(Xn+1 | Fn)
)

=




E(Tn)

2m−k, if k is even,

E
(
(Tn)

2m−k(2p− 1)Xn

)
, if k is odd.

(A.1)

As mentioned in connection with the statement of Theorem 8.1 we use induction. We thus assume
that we know that the moments up to order 2m − 2 converge properly, in particular we may
choose n so large that |E(Tn/

√
n)k| ≤ 2µk for k ≤ 2m − 2, which, by symmetry, inplies that

|E(Tn)
k| ≤ 4µkn

k/2, for k even ≤ 2m − 1 and ≤ 4εnk/2, and for k odd ≤ 2m − 1, for some ε
small (recall that µk are the moments of the standard normal distribution as given in (8.3)).
Proof of (8.4).

E
(
(Tn)

2m−1Xn | Fn−1

)
= E

(
(Tn−1 +Xn)

2m−1Xn | Fn−1

)

=

2m−1∑

k=0

(
2m− 1

k

)
(Tn−1)

2m−1−k ·E
(
(Xn)

k+1 | Fn−1

)

= (Tn−1)
2m−1E(Xn | Fn−1) + (2m− 1)(Tn−1)

2m · E(X2
n | Fn−1) +Rn(p,m)

= (Tn−1)
2m−1(2p− 1)Xn−1 + (2m− 1)(Tn−1)

2m +Rn(p,m).

Taking expectations on either side yields

E
(
(Tn)

2m−1Xn

)
= (2p− 1)E((Tn−1)

2m−1Xn−1) + (2m− 1)E(Tn−1)
2m−2 + E(Rn(p,m)). (A.2)

Exploiting (A.1) yields a bound for the remainder:

|E(Rn(p,m))| ≤ |
2m−1∑

k=3

(
2m− 1

k

)
E
(
(Tn−1)

2m−1−k · E((Xn)
k+1 | Fn−1)

)
|

≤
2m−1∑

k=3

(
2m− 1

k

)
|E(Tn−1)

2m−1−k| · 1

≤ Cp · 2m ·
(
2m− 1

m− 1

)
· 4µ2m−4 · nm−2 = C(m, p) · nm−2. (A.3)

By iterating (A.2) we then obtain that

E
(
(Tn)

2m−1Xn

)
= (2m− 1)

n−1∑

k=1

(2p− 1)n−1−kE
(
(Tk)

2m−2

+Rk+1(p,m)/(2m+ 1)
)
+ (2p− 1)n−1

= (2m− 1)
1

2(1− p)
E(Tn)

2m−2 +O
(
nm−2

)
.
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Proof of (8.5).

E
(
(Tn)

2mXn | Fn−1

)
= E

(
(Tn−1 +Xn)

2mXn | Fn−1

)

=

2m∑

k=0

(
2m

k

)
(Tn−1)

2m−k · E
(
(Xn)

k+1 | Fn−1

)

= (Tn−1)
2mE(Xn | Fn−1) + 2m(Tn−1)

2m−1 ·E(X2
n | Fn−1) +Rn(p,m)

= (Tn−1)
2m(2p− 1)Xn−1 + 2m(Tn−1)

2m−1 +Rn(p,m).

Taking expectations on either side yields

E
(
(Tn)

2mXn

)
= (2p− 1)E

(
(Tn−1)

2mXn−1

)
+ 2mE(Tn−1)

2m−1 + E(Rn(p,m)).

The estimation of the remainder is the same as above. The remaining part of the proof follows the
exact same lines and is therefore omitted.

Having estimates for the mixed moments we are now able to attack the ”pure” moments. This
will be done without explicit mentioning. Moreover, the estimates for the remainders, are, again,
the same.
Proof of (8.6).

E
(
(Tn+1)

2m | Fn

)
=

2m∑

k=0

(
2m

k

)
(Tn)

2m−k · E
(
(Xn+1)

k | Fn

)

= (Tn)
2m + 2m(2p− 1)(Tn)

2m−1Xn +

(
2m

2

)
(Tn)

2m−2 +Rn(p,m).

Taking expectations on either side yields

E(Tn+1)
2m = E(Tn)

2m + 2m(2p− 1)E
(
(Tn)

2m−1Xn

)
+

(
2m

2

)
E(Tn)

2m−2 + E(Rn(p,m))

= E(Tn)
2m + 2m(2p− 1) · (2m− 1)

1− (2p− 1)n−1

2(1− p)
E(Tn)

2m−2

+

(
2m

2

)
E(Tn)

2m−2 +O
(
nm−2

)

= E(Tn)
2m +

m(2m− 1)p

1− p
· E(Tn)

2m−2 +O
(
nm−1

)

= E(Tn)
2m +

m(2m− 1)p

1− p

(2m− 2)!

2m−1(m− 1)!
nm−1 + O

(
nm−2

)
,

by the induction hypothesis. Summing up the differences leads to the desired result.

Proof of (8.7).

E
(
(Tn+1)

2m+1 | Fn

)
=

2m+1∑

k=0

(
2m+ 1

k

)
(Tn)

2m+1−k ·E
(
(Xn+1)

k | Fn

)

= (Tn)
2m+1 + (2m+ 1)(2p− 1)(Tn)

2mXn +

(
2m+ 1

2

)
(Tn)

2m−1 +Rn(p,m).

Taking expectations on either side yields

E(Tn+1)
2m+1 = E(Tn)

2m+1 + (2m+ 1)(2p− 1)E
(
(Tn)

2mXn

)

+

(
2m+ 1

2

)
E(Tn)

2m−1 + E(Rn(p,m))

= E(Tn)
2m+1 + (2m+ 1)(2p− 1)C1(p,m)nm−1

+m(2m− 1)C2(p,m− 1)nm−1 + O
(
nm−2

)

by the induction hypothesis. Summing up, finally, leads to the desired result with C2(p,m) =
(2m+1)(2p−1)

m · C1(p,m) + (2m− 1) · C2(p,m− 1). ✷
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A.2 Proof of Lemma 9.1

Set a = p− 1/2 ∈ (−1/2, 1/2). Then,

E(X1) = 2a and E(X2) = E(X2 | X1) = 2aE(X1) = 4a2.

For n ≥ 2 we have

µn+1 = E(Xn+1) = E(E(Xn+1 | Fn)) = E((2p− 1) (Xn−1 +Xn)/2) = a (µn−1 + µn).

With λ1/2 = (a±
√
a2 + 4a)/2 (note that |λ1/2| < 1) this difference equation, with the two starting

values 2a and 4a2, has, for n ≥ 1, the solution

µn = E(Xn) =
a(3a+

√
a2 + 4a)√

a2 + 4a
λn−1
1 − a(3a−

√
a2 + 4a)√

a2 + 4a
λn−1
2 .

For p < 1/2 we have
√
a2 + 4a = i

√
|a2 + 4a|, but the solution is still real. Next,

E(Sn) =

n∑

k=1

µk =
a(3a+

√
a2 + 4a)√

a2 + 4a

1− λn
1

1− (a+
√
a2 + 4a)/2

−a(3a−
√
a2 + 4a)√

a2 + 4a

1− λn
2

1− (a−
√
a2 + 4a)/2

→ 2a(3a+
√
a2 + 4a)√

a2 + 4a(2− a−
√
a2 + 4a)

− 2a(3a−
√
a2 + 4a)√

a2 + 4a(2 − a+
√
a2 + 4a)

=
2a(a+ 1)

1− 2a
=

p2 − 1/4

1− p
as n → ∞.

The second moment is more tedious. We begin with

E(S2
n+1 | Fn) = S2

n + (2p− 1)Sn (Xn−1 +Xn) + 1,

and obtain

vn+1 = E(S2
n+1) = vn + (2p− 1)E(SnXn + SnXn−1) + 1 . (A.4)

As for the mixed moments,

E(SnXn | Fn−1) = aSn−1Xn−1 + a(Sn−2Xn−2 +Xn−1Xn−2) + 1 .

By the usual trick we find

E(XnXn−1) = a+ a2 + · · ·+ an−1E(X2X1) →
a

1− a
=

2p− 1

3− 2p
as n → ∞.

With ζn = E(SnXn) we find that

ζn = a(µn−1 + µn−2) + 1 +
4a2

1− a
+O(an),

from which it follows that ζn → p2−2p+7/4
(1−p)(3−2p) , the stationary solution.

Next,

E(SnXn−1) = E(Sn−1Xn−1) + E(XnXn−1) = ζn−1 +
a

1− a
+O(an).

We finally arrive, recalling (A.4), at

vn+1 = vn + (2p− 1)

(
2p2 − 4p+ 7/2

(1− p)(3− 2p)
+

2p− 1

3− 2p

)
+ 1 + o(1),

and thus, via telescoping, at

vn ∼ n
(
1 +

(2p− 1)(5− 2p)

2(1− p)(3− 2p)

)
. ✷
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A.3 Calculation of second moments in Section 10

We first note that E(T 2
1 ) = 1, and, by (3.5), that, for n ≥ 1,

E(T 2
n+1) = E(T 2

n) + (2p− 1)E(Tn) + (2p− 1)E(TnXn) + 1. (A.5)

At this point we have to pause and compute the mixed moments: We first note that E(T1X1) = 1,
and that

E(X2X1) = E
(
X1E(X2 | X1)

)
= E(X1(2p− 1)X1) = 2p− 1,

so that
E(T2X2 | Fn) = E(X1X2 + 1) = 2p− 1 + 1 = 2p.

For n ≥ 2 we exploit (3.4), (10.2), and the fact that X2
n = 1, to obtain

E(Tn+1Xn+1) =
2p− 1

2
·E(TnXn) +

2p− 1

2
E(Tn) + 1

=
2p− 1

2
·E(TnXn) +

2p− 1

2

(
n · 2p− 1

3− 2p
+

8(1− p)

(3− 2p)2
+ o(1)

)
+ 1

=
2p− 1

2
·E(TnXn) +

(2p− 1)2

2(3− 2p)
· n+

4(2p− 1)(1− p)

(3− 2p)2
+ 1+ o(1).

Another application of Proposition 3.2(i) then tells us that

E(TnXn) =

{
(2p− 1)2

2(3− 2p)
· (n− 1) +

4(2p− 1)(1− p)

(3− 2p)2
+ 1

)/(
1− 2p− 1

2

)

−2p− 1

2
· (2p− 1)2

2(3− 2p)
· (n− 1)

/((
1− 2p− 1

2

)2
}
·
(
1 + o(1)

)

=
(2p− 1)2

(3− 2p)2
· n+

8(1 + p− 2p2)

(3 − 2p)3
+ o(1). (A.6)

Hence, using (A.5), we obtain

E(T 2
n+1) = E(Tn)

2 + (2p− 1)
(
n · 2p− 1

3− 2p
+

8(1− p)

(3− 2p)2

)

+(2p− 1)
((2p− 1)2

(3− 2p)2
· n+

8(1 + p− 2p2)

(3− 2p)3

)
+ 1 + o(1)

= E(Tn)
2 +

2(2p− 1)2

(3− 2p)2
· n+

32(2p− 1)(1− p)

(3− 2p)3
+ 1 + o(1),

after which we, via telescoping, obtain that

E(T 2
n) =

(2p− 1)2

(3 − 2p)2
· n2 − (2p− 1)2

(3− 2p)2
· n+ (n− 1) ·

(
1 +

32(2p− 1)(1− p)

(3− 2p)3

)
+ o(n).

=
(2p− 1)2

(3 − 2p)2
· n2 +

(
1 +

(2p− 1)

(3 − 2p)3
(4p2 − 40p+ 35)

)
· n+ o(n). (A.7)

A.4 Calculation of second moments in Section 11

The point of departure in this case is (11.3), viz.,

E(T 2
n+1) = E(T 2

n) + 2E(TnXn+1) + 1. (A.8)

For the mixed moments we use (3.4):

E(TnXn+1 | Gn) =
2

3
(2p− 1)Tn +

2p− 1

3
TnXn =

2

3
(2p− 1)Tn +

2p− 1

3
Tn−1Xn +

2p− 1

3
.

We thus find, using (11.2), that for n ≥ 3,

E(TnXn+1) =
2p− 1

3
E(Tn−1Xn) +

2p− 1

3
+

2(2p− 1)

3

(
n · 2p− 1

2− p
+

3(1− p)(7− 2p)

2(2− p)2
+ o(1)

)

=
2p− 1

3
E(Tn−1Xn) +

2(2p− 1)2

3(2− p)2
· n+

2p− 1)(1− p)(7 − 2p)

(2− p)2
+

2p− 1

3
+ o(1).
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Invoking Proposition 3.2(i) then tells us that

E(TnXn+1) =

{
2(2p− 1)2

3(2− p)2
· n+

2p− 1)(1− p)(7− 2p)

(2− p)2
+

2p− 1

3

)/(
1− 2p− 1

3

)

−2p− 1

3
· 2(2p− 1)2

3(2− p)2
· n

/(
(n+ 1)

(
1− 2p− 1

3

)2
}
·
(
1 + o(1)

)

=
(2p− 1)2

(2− p)2
· n+

3(2p− 1)

(2− p)3
· (p2 − 9p+ 8) + o(1) ,

which, inserted into (A.8), yields

E(T 2
n+1) = E(T 2

n) +
2(2p− 1)2

(2− p)2
· n+

3(2p− 1)(p2 − 9p+ 8)

(2− p)3
+ 1 + o(1),

and, after summation,

E(T 2
n) = n2 · (2p− 1)2

(2− p)2
− n · (2p− 1)2

(2 − p)2
+ (n− 1) ·

(
1 +

3(2p− 1)(p2 − 9p+ 8)

(2− p)3

)
+ o(n)

= n2 · (2p− 1)2

(2− p)2
+ n ·

(
1 +

(2p− 1)

(2 − p)3
· (5p2 − 32p+ 26)

)
+ o(n). (A.9)

We, finally, turn our attention to the second moment for the case when X1 ·X2 = −1, where,
again, the mixed moment is first in focus. Now, E(T1X1) = 1, E(T2X2) = E(X1X2 + X2

2 ) =
−1 + 1 = 0, and E(T3X3) = E(T2X3 +X3)

2 = 0 + 1 = 1. For n ≥ 3 we follow the usual pattern.
Due to the fact that the mean is zero, an application of (3.4) now yields

E(TnXn+1) =
2p− 1

3
E(TnXn) =

2p− 1

3
E(Tn−1Xn) +

2p− 1

3
, (A.10)

which, together with Proposition 3.2(i), tells us that

E(TnXn+1) =
2p−1

3

1− 2p−1
3

+ o(1) =
2p− 1

2(2− p)
+ o(1) as n → ∞. (A.11)

Moving into second moments, E(T 2
1 ) = 1, E(T 2

2 ) = 0, and E(T 2
3 ) = E(X2

3 ) = 1. For n ≥ 3 we
insert our findings in (A.11) into (A.8):

E(T 2
n+1) = E(T 2

n) + 2E(TnXn+1) + 1 = E(Tn)
2 +

2p− 1

2− p
+ 1 + o(1)

= E(T 2
n) +

1 + p

2− p
+ o(1) as n → ∞,

so that, via telescoping,

E(T 2
n) = n · 1 + p

2− p
+ o(n) = Var (Tn+1) as n → ∞. (A.12)
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