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Abstract

We prove polynomial ergodicity for the one-dimensional Zig-Zag process on

heavy tailed targets and identify the exact order of polynomial convergence of

the process when targeting Student distributions.
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1. Introduction

The Zig-Zag process is a Piecewise Deterministic Markov Process (PDMP) that was

recently used as a new way to construct MCMC algorithms. The one dimensional Zig-

Zag appeared in [8] as a scaling limit of the Lifted Metropolis-Hastings (see [21, 12])

applied to the Curie-Weiss model (see [19]). The process was later extended in higher

dimensions in [5] and has been proposed as a way to sample from posterior distributions

in a Bayesian setting (see also [14, 22]). Since then, its properties have been extensively

studied in the literature (see for example [4, 6, 10, 7] etc.).

[9] proves ergodicity and exponential ergodicity of the Zig-Zag process in arbitrary

dimension, however a crucial assumption required for exponential ergodicity in that
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work is that the target density has exponential or lighter tails. In [23] the converse

result was proven. The Zig-Zag sampler fails to be exponentially ergodic when the

target distribution is heavy tailed. On the other hand, it was shown in Theorem 1 of

[9] that the process will converge to the invariant measure under very mild assumptions,

including the heavy tailed case. Furthermore, [1] used hypocoercivity techniques (see

also [2]) to prove polynomial rates of convergence for the Zig-Zag process on heavy

tailed targets in arbitrary dimension.

In this note we will focus on the one-dimensional Zig-Zag process and prove poly-

nomial ergodicity in the heavy tailed scenario. The result applies in the special case

where the tails of the target decay in the same manner as a Student distribution with

ν degrees of freedom. In that case, we prove that the polynomial rate of convergence

is arbitrarily close to ν, but not more than ν. This improves upon the result stated in

[1] in the special case where d = 1, although their work provides convergence results

for higher dimensions as well.

The rest of this paper is organised as follows. In Section 2 we recall the definition

of the one-dimensional Zig-Zag process and we state the main result concerning its

polynomial ergodicity in heavy tailed targets. In Section 3 we provide proof of this

result. Finally, in Section 4 we discuss the rates of polynomial convergence of the

Zig-Zag process and compare them with the ones of other state of the art Metropolis-

Hastings algorithms.

2. Results

We begin with recalling the definition of the one-dimensional Zig-Zag process. Let

E = R× {−1,+1}, U ∈ C1(E) and λ : E → R≥0 with

λ(x, θ) = [θU ′(x)]+ + γ(x), (1)

where γ is a non-negative integrable function and we write a+ = max{a, 0}. The one-

dimensional Zig-Zag process (Zt)t≥0 = (Xt,Θ)t≥0 is a continuous time Markov process

with state space E which evolves as follows. If the process starts from (x, θ) ∈ E,

then Xt = x + tθ and Θt = θ for all t < T1, where T1 is the first arrival time of a

non-homogeneous Poisson process with rate m1(s) = λ(x+sθ, θ). Then XT1 = x+T1θ,

ΘT1 = −θ. Then, Xt = XT1 + (t − T1)ΘT1 and Θt = ΘT1 for all t ∈ (T1, T1 + T2),
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where T2 is the first arrival time of a Poisson process with intensity m2(s) = λ(XT1 +

sΘT1
,ΘT1

). The process is then defined inductively up to time Tn for all n ∈ R.

It is proven in [5] that with this choice of λ, the process has measure µ invariant,

where

µ = π
⊗ 1

2
δ{−1,+1} (2)

and

π(dx) =
1

Z
exp{−U(x)}dx (3)

with Z =
∫
R exp{−U(y)}dy <∞.

Since this note concerns the polynomial ergodicity of the one-dimensional Zig-Zag

process, we now recall the definition of polynomial ergodicity.

Definition 1. Let (Zt)t≥0 be a Markov process with state space E, having invariant

probability measure µ and let k > 0. We say that the process is polynomially ergodic

of order k if there exists a function M : E → R>0 such that for all z ∈ E and t ≥ 0

‖Pz (Zt ∈ ·)− µ(·)‖TV ≤
M(z)

tk
,

where Pz denotes the law of the process starting from z.

We will make the following assumption, typically verified in practice.

Assumption 1. Assume that there exists an ν > 0 and a compact set C ⊂ R such

that for all x /∈ C,

|U ′(x)| ≥ 1 + ν

|x|
. (4)

Remark 1. This assumption directly implies that there exists a c′ such that for all

x ∈ R, U(x) ≥ (1 +ν) log(|x|)− c′. This is an assumption made in [9] in order to prove

non-evanescence of the Zig-Zag process and it’s a natural assumption given that the

function exp{−U(x)} must be integrable.

We also need the following assumption for the refresh rate γ.

Assumption 2. Assume that the refresh rates satisfy

lim
|x|→∞

γ(x)

|U ′(x)|
= 0. (5)
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Assumption 2 ensures that the bouncing events will vastly outnumber the refresh

events, at least in the tails of the target. Whilst we have not been able to establish

the necessity of this assumption for the conclusions of Theorem 1, some control over
γ(x)

|U ′(x)|
is definitely needed. Indeed in the regime where lim|x|→∞

γ(x)

|U ′(x)|
= +∞ (as

would be the case with constant refresh rate and heavy-tailed target) random direction

changes would outnumber systematic ones, leading to random walk/diffusive behaviour

commonly associated with slow convergence. In fact in this case, the algorithm would

resemble a Random Walk Metropolis algorithm, which is known to converge at slower

polynomial rate. Therefore, we believe that some control of the refresh rate relative

to |U ′| should be assumed for guarantees about specific rates of convergence to hold.

This can be further supported by simulation studies. In Figure 1 we present the Mean

Square Error of estimating a tail probability (P(X ≥ 5) for a standard Cauchy target)

using Zig-Zag with differing refresh rates. We consider γ(x) = 0, γ(x) = |U ′(x)| and

γ(x) = 1. For each algorithm we generated 1000 independent realisations, all starting

from (−5,+1) and all realisations run until time T = 104. For each time less than

T the average square error of the true probability (approximately equal to 0.0628) is

reported. It is clear that the smaller refresh rate leads to more rapid convergence.

Our main result is the following.

Theorem 1. (Polynomial ergodicity of Zig-Zag.) Suppose that U satisfies Assumption

1 and let C and ν > 0 as in (4). Suppose further that the refresh rate satisfies

Assumption 2. Then, for any k < ν, there exist constants B, δ > 0 and β ∈ (0, 1)

such that if we let

Vβ,δ(x, θ) = exp {βU(x) + δ sgn(x)θ} (6)

then for all (x, θ) ∈ R× {−1,+1},

‖Px,θ(Zt ∈ ·)− µ(·)‖TV ≤
BVβ,δ(x, θ)

t1+k
+
B

tk
, (7)

i.e. the process is polynomially ergodic of order k.

Remark 2. By carefully inspecting the proof of Theorem 1, we observe that Assump-

tion 2 can be weakened in the following sense. If ν is as in Assumption 1 and if we fix

k < ν, then in order to prove polynomial ergodicity of order k, it suffices that there
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Figure 1: Mean Square Error over time of three Zig-Zag algorithms with different refresh

rates γ(x), described in the upper right corner. The algorithms target the Cauchy distribution

and are used to estimate the probability mass the Cauchy distribution assigns to the event

[5,+∞). For all three algorithms, 1000 independent realisations were generated and for each

time less than 104 the average square error between the approximation of the probability and

the actual probability (approximately 0.0628) are reported. Evidently, the fastest convergence

is achieved by lowering the values of γ.

exists a small η > 0 and that we ask that

lim
|x|→∞

γ(x)

|U ′(x)|
≤M

where

M = M(k) =

(
k + 1

ν + 1
(1 + η)− η

) (
1− 1+k

1+ν (1 + η)
)1+η

1−
(

1− 1+k
1+ν (1 + η)

)1+η . (8)

We observe however that M is not uniform in k. More precisely, assuming that η is

small enough so that M(k) > 0 for all k, we have limk→νM(k) = 0. A proof of this

remark will be given in Section 3.

An immediate corollary of Theorem 1 is the following characterisation of the order of

polynomial convergence of the one-dimensional Zig-Zag on Student distributions. For

the following lower bound on the total variation distance from the invariant measure
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we use a type of argument similar to the proof of Theorem 2.1 in [23], suggested to us

by Professor Anthony Lee in private communication.

Corollary 1. Let ν > 0 and suppose π is a Student distribution with ν degrees of

freedom, i.e.

π(x) =
1

Z

(
1 +

x2

ν

)−(ν+1)/2

(9)

and the Zig-Zag process targets µ as in (2), having refresh rate that satisfies Assumption

2. For all k < ν, there exist β ∈ (0, 1) and δ,B > 0 such that for all (x, θ) ∈

R× {−1,+1},

‖Px,θ(Zt ∈ ·)− µ(·)‖TV ≤
BVβ,δ(x)

t1+k
+
B

tk
,

i.e. for all k < ν, the process is polynomially ergodic of order k. Furthermore, for any

k > ν, the process is not polynomially ergodic of order k. More specifically, there exists

a constant C ′ such that for all t > 0 large enough

‖P0,+1(Zt ∈ ·)− µ(·)‖TV ≥
C ′

tν
.

Corollary 1 illustrates that Theorem 1 is close to being tight. At least for Student

distributions with ν degrees of freedom, it is established that the process is polynomially

ergodic for order k < ν and it is not for any order k > ν. Whether the process

is polynomially ergodic of order ν is still an open question, but probably of limited

practical importance.

3. Proofs

Before we prove Theorem 1 we recall the form of the strong generator of the Zig-Zag

process.

Definition 2. We define L to be the operator acting on any f ∈ C1(E) so that for all

(x, θ) ∈ E,

Lf(x, θ) = θf ′(x, θ) +
(
[θU ′(x)]+ + γ(x)

)
(f(x,−θ)− f(x, θ)) . (10)

It can be proven (see for example [11]) that L is the restriction on C1 of the strong

generator of (Zt)t≥0.
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General conditions for polynomial ergodicity can be found in Theorems 3.2 and 3.4

of [13] and Theorem 1.2 of [3] (see also Corollary 6 in [15] for some earlier results on

sub-geometric convergence). Here we use a result found and proved in the presented

form in the unpublished lecture notes [16].

Theorem 2. (Hairer [16] Theorem 4.1.) Let (Xt)t≥0 a continuous time Markov pro-

cess on X with strong generator L. Suppose that there exists a function V : X →

[1,+∞) and a constant K such that for all x ∈ X

LV (x) ≤ K − f(V ) (11)

for a function f : [0,+∞) → [0,+∞) strictly concave, increasing, with f(0) = 0,

lims→+∞ f(s) = +∞. Suppose further that all the sub-level sets of V are pre-compact

and small. Then, the following hold:

1. There exists a unique invariant measure µ for the process such that∫
f(V (x))µ(dx) <∞.

2. Let Hf (u) =
∫ u
1

1/f(s)ds, then there exists a constant B > 0 such that for every

x ∈ X

‖Px(Xt ∈ ·)− µ(·)‖TV ≤
BV (x)

H−1f (t)
+

B

f ◦H−1f (t)
. (12)

Proof of Theorem 1. Suppose that U satisfies Assumption 1 and let k < ν. Select

a such that k = a/(1 − a) so that a < 1 − 1/(1 + ν). For any β̃ ∈ (0, 1) we have that

there exists a c0 > 0 such that for all x /∈ C(
Vβ̃,δ(x, θ)

)1−a
|U ′(x)| ≥ c0 exp{β̃(1− a)(1 + ν) log |x|}1 + ν

|x|
= c0(1 + ν) |x|β̃(1−a)(1+ν)−1

Since (1−a)(1+ν)−1 > 0, there exists a β close to 1 such that β(1−a)(1+ν)−1 > 0,

so

lim
|x|→∞

V 1−a
β (x, θ)|U ′(x)| = +∞. (13)

Now, Vβ,δ ∈ C1 and lim|x|→∞ Vβ,δ(x, θ) = +∞ so all the level sets are compact. Since

the process is positive Harris recurrent and some skeleton is irreducible (see [9]) we get

from Proposition 6.1 of [20] that the level sets are also small. Since lim|x|→∞ U(x) =

+∞ it is clear that Vβ,δ is bounded below away from 0 so by multiplying with an
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appropriate constant we can assume that Vβ,δ(x, θ) ≥ 1 for all (x, θ). We calculate

LVβ,δ(x, θ) = Vβ,δ(x, θ)
(
θβU ′(x) + ([θU ′(x)]+ + γ(x)) (exp{−2θ sgn(x)δ} − 1)

)
.

Note that due to Assumption 1 and that U(x)
|x|→∞−−−−→ +∞, we get that there exists a

compact set C̃ such that for all x /∈ C̃ sgn(U ′(x)) = sgn(x). Therefore, when x /∈ C̃

and θ sgn(x) > 0,

LVβ,δ(x, θ)
V aβ,δ(x, θ)

≤ V 1−a
β,δ (x, θ)|U ′(x)|

[
β +

(
γ(x)

|U ′(x)|
+ 1

)
(exp{−2δ} − 1)

]
and when θ sgn(x) < 0

LVβ,δ(x, θ)
V aβ,δ(x, θ)

≤ V 1−a
β,δ (x, θ)|U ′(x)|

[
−β +

γ(x)

|U ′(x)|
(exp{2δ} − 1)

]
.

Overall we have for x /∈ C̃

LVβ,δ(x, θ)
V aβ,δ(x, θ)

≤ V 1−a
β,δ (x, θ)|U ′(x)|max

{
β +

(
γ(x)

|U ′(x)|
+ 1

)
(exp{−2δ} − 1) ,

[
−β +

γ(x)

|U ′(x)|
(exp{2δ} − 1)

]}
.

(14)

Recall that
γ(x)

|U ′(x)|
|x|→∞−−−−→ 0. Fix δ > −1/2 log(1 − β) and by possibly increasing C̃,

we have that there exists a constant c′ > 0 such that for all x /∈ C̃

max

{
β +

(
γ(x)

|U ′(x)|
+ 1

)
(exp{−2δ} − 1) ,−β +

γ(x)

|U ′(x)|
(exp{2δ} − 1)

}
< −c′ < 0.

Combining this with (13) and (14) we get that Vβ,δ satisfies (11) with f(u) = cua

for c = c′/2 and with K being an appropriate constant that bounds the continuous

function LVβ,δ + f(Vβ,δ) inside C̃.

Therefore, all the conditions of Theorem 2 are satisfied. Note thatHf (s) =
∫ s
1

1/f(u)du =

c−1
∫ s
1
u−adu =

1

c(1− a)
(s1−a − 1) so

H−1f (t) = (1 + c(1− a)t)
1/(1−a)

and therefore

f ◦H−1f (t) = c (1 + c(1− a)t)
a/(1−a)

Since we picked a such that k = a/(1−a), meaning that k+ 1 = 1/(1−a), (7) follows.

�
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Proof of Remark 2. Fix k < ν and set a such that k = a/(1− a), therefore 1− a =

1/(1+k). Our goal is to find an appropriate upper bound on γ(x)
|U ′(x)| that will guarantee

that the RHS of (14) is negative for appropriately chosen β and δ. For this it suffices to

prove that for some β, δ > 0, the maximum appearing in the RHS of (14) is negative,

bounded away from zero and that (13) holds. These two conditions will guarantee

that the drift condition (11) holds for Vβ,δ and we can conclude similar to the proof of

Theorem 1. Since from the proof of that theorem(
Vβ̃,δ(x, θ)

)1−a
|U ′(x)| ≥ c0(1 + ν) |x|β̃(1−a)(1+ν)−1 ,

in order to guarantee (13), it suffices to pick β = (1 + η)(1 + k)/(1 + ν) for some

η > 0. From the discussion after (14), we can pick δ = − 1
2 (1 + η) log(1 − β) =

− 1
2 (1 + η) log (1− (1 + η)(1 + k)/(1 + ν)). With this choice of β, δ the first part of the

maximum of the RHS in (14) will be negative, bounded away from zero. The second

part of the maximum writes

−β+
γ(x)

|U ′(x)|
(exp{2δ}−1) = −(1+η)

1 + k

1 + ν
+

γ(x)

|U ′(x)|

((
1

(1− (1 + η)(1 + k)/(1 + ν))

)(1+η)

− 1

)
.

Therefore, solving the inequality −β +
γ(x)

|U ′(x)|
(exp{2δ} − 1) < −η (which would

guarantee that the maximum on the RHS of (14) is negative, bounded away from

zero), we get

γ(x)

|U ′(x)|
≤M(k)

where M(k) as in (8). �

Proof of Corollary 1. Let π as in (9). Then for all δ′ > 0 there exists a compact set

C with 0 ∈ C, such that for all x /∈ C

|U ′(x)| = (ν + 1)|x|
ν + x2

≥ 1 + ν − δ′

|x|

Therefore for every δ′ > 0, the distribution satisfies Assumption 1 where the ν in

that assumption is equal to ν − δ′. From Proposition 1, for all k < ν, there exists a

β ∈ (0, 1), δ > 0 and B > 0 such that for all (x, θ) ∈ R× {−1,+1},

‖Px,θ(Zt ∈ ·)− µ(·)‖TV ≤
BVβ,δ(x)

t1+k
+
B

tk
.
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Now, suppose that the Zig-Zag starts from x = 0, θ = +1. There exists a C0 and K > 0

such that for all |x| ≥ K, π(x) ≥ C0|x|−ν−1. Fix a time t > K. Let At = {x : x > t}.

After less or equal to time t has passed, the Zig-Zag will not have hit At. We therefore

get for all t > K,

‖P0,+1(Zt ∈ ·)− µ(·)‖TV ≥ |P0,+1(Xt ∈ Act)− π(Act)| = π(Act) =

∫
|x|>t

π(x)dx ≥

≥ 2C0

∫ +∞

t

x−ν−1dx =
C0

ν

1

tν
.

�

4. Discussion

It is interesting to compare the Zig-Zag polynomial convergence rates with the ones

of the one-dimensional Random Walk Metropolis (RWM) and the Metropolis-adjusted

Langevin algorithm (MALA) algorithms. In fact, it is shown in [18], Propositions 4.1

and 4.3 (see also [17]) that when targeting a Student distribution with ν degrees of

freedom with any finite variance proposal RWM or with MALA, one gets polynomial

order of convergence (ν/2)−, i.e. for any ε > 0, the polynomial rate of convergence is

at least ν/2− ε. It is however proven not to be ν/2. In [17] the authors provide these

lower bounds for the convergence rates, while in [18] they provide the upper bound. As

proven in this note, the one-dimensional Zig-Zag has polynomial rate of convergence

ν− in the same setting, which is better than RWM or MALA. This phenomenon was

also observed in simulations in [4]. We conjecture that the advantage of the Zig-Zag is

due its momentum, which, in a one-dimensional, uni-modal setting with zero refresh

rate, will force the process to never switch direction before it hits the mode. This

diminishes any possible diffusive behaviour of the process at the tails and helps the

algorithm converge faster. We should note here that better polynomial rates (and more

precisely, arbitrarily better rates) can be achieved for the Random Walk Metropolis

(RWM) if one introduces a proposal with heavier tails. However, a natural analogue

of this modification is to allow the Zig-Zag to speed up and move faster in areas of

lower density. This idea is further discussed in [23] and proven to be able to provide

exponentially ergodic algorithms even on heavy tailed targets, which can outperform

the simple Zig-Zag in the sense of having better effective sample size per number of
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likelihood evaluations.
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et Statistiques. Available at https://arxiv.org/abs/1905.01691.

[11] Davis, M. (2018). Markov Models and Optimization. Chapman and Hall/CRC

Monographs on Statistics and Applied Probability. Routledge.

[12] Diaconis, P., Holmes, S. and Neal, R. M. (2000). Analysis of a nonreversible

Markov chain sampler. Ann. Appl. Probab. 10, 726–752.



A Note on the Polynomial Ergodicity of the One-Dimensional Zig-Zag process 13

[13] Douc, R., Fort, G. and Guillin, A. (2009). Subgeometric rates of convergence

of f-ergodic strong markov processes. Stochastic Processes and their Applications

119, 897 – 923.

[14] Fearnhead, P., Bierkens, J., Pollock, M. and Roberts, G. O. (2018).

Piecewise deterministic Markov processes for continuous-time Monte Carlo.

Statist. Sci. 33, 386–412.

[15] Fort, G. and Roberts, G. O. (2005). Subgeometric ergodicity of strong Markov

processes. Ann. Appl. Probab. 15, 1565–1589.

[16] Hairer, M. (2016). Convergence of Markov Processes. Unpublished Lecture

Notes. Available at http://www.hairer.org/Teaching.html.

[17] Jarner, S. and Roberts, G. O. (2007). Convergence of Heavy-tailed Monte

Carlo Markov Chain Algorithms. Scandinavian Journal of Statistics 34, 781–815.

[18] Jarner, S. F. and Tweedie, R. L. (2003). Necessary conditions for geometric

and polynomial ergodicity of random-walk-type. Bernoulli 9, 559–578.

[19] Levin, D., Luczak, M. and Peres, Y. (2007). Glauber dynamics for the mean-

field Ising model: cut-off, critical power law, and metastability. Probability Theory

and Related Fields 146, 223–265.

[20] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian Processes II:

Continuous-Time Processes and Sampled Chains. Advances in Applied Probability

25, 487–517.

[21] Turitsyn, K. S., Chertkov, M. and Vucelja, M. (2011). Irreversible Monte

Carlo algorithms for efficient sampling. Physica D: Nonlinear Phenomena 240,

410 – 414.
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