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CONVEXLY ORDERABLE GROUPS AND VALUED FIELDS

JOSEPH FLENNER AND VINCENT GUINGONA

Abstract. We consider the model theoretic notion of convex orderability,
which fits strictly between the notions of VC-minimality and dp-minimality.
In some classes of algebraic theories, however, we show that convex orderability
and VC-minimality are equivalent, and use this to give a complete classification
of VC-minimal theories of ordered groups and abelian groups. Consequences
for fields are also considered, including a necessary condition for a theory of
valued fields to be quasi-VC-minimal. For example, the p-adics are not quasi-
VC-minimal.

1. Introduction

After many of the advancements in modern stability theory, some model theorists
have been seeking to adapt techniques from stable model theory to other families of
unstable, yet still well-behaved theories. These include o-minimal theories as well
as theories without the independence property. As these notions of model-theoretic
tameness proliferate, in each case, two natural questions arise: what are the useful
consequences of the property, and which interesting theories have the property? As
an example of the latter line of inquiry, an ordered group is weakly o-minimal if and
only if it is abelian and divisible, and an ordered field is weakly o-minimal if and
only if it is real closed [10]. Similar characterizations of dp-minimality for abelian
groups can be found in [3], and results on dp-minimal ordered groups can be found
in [13].

Resting comfortably among these conditions is VC-minimality, introduced by
Adler in [2]. Most of the classical variations on minimality, such as (weak) o-
minimality, strong minimality, and C-minimality, imply VC-minimality. On the
other hand, VC-minimality is strong enough to imply many properties of recent
interest, such as dependence and dp-minimality.

The question of consequences of VC-minimality has been addressed elsewhere
(see e.g. [4,7,8]). In this paper, we seek to identify the VC-minimal theories among
some basic classes of algebraic structures. Here a problem quickly arises. While it
tends to be straightforward to verify that a theory is VC-minimal, the definition of
VC-minimality does not lend itself easily to negative results. Except in some special
cases, previously it had only been possible to show a theory is not VC-minimal by
showing that it is not dp-minimal or dependent.

To sidestep this problem, we explore the intermediate notion of convex order-
ability, first introduced in [8]. All VC-minimal theories are also convexly orderable,
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and while the converse fails in general, in many cases it is, in a sense, close enough.
The strategy, thus, is twofold. Given a class of algebraic theories, we use known
results (for example, on o-minimal ordered groups) to produce a list of VC-minimal
theories from the class. We then study convex orderability in relation to the class
of theories to establish that the list is exhaustive.

In this way, we give a complete classification of VC-minimal theories of ordered
groups (Section 3) and abelian groups (Section 5). Partial results, in the form
of necessary conditions for VC-minimality, are given for ordered fields (Section 3)
and valued fields (Section 4). For valued fields, the weaker condition of quasi-VC-
minimality is also evaluated.

The remainder of this section gives the necessary background on VC-minimality,
and Section 2 presents some useful facts about convex orderability.

1.1. VC-minimality. Let X be any set and let B ⊆ P(X). We say that B is
directed if, for all A,B ∈ B, one of the following conditions holds:

(1) A ⊆ B,
(2) B ⊆ A, or
(3) A ∩B = ∅.

Let T be a first-order L-theory, and fix a set of formulas

Ψ = {ψi(x; ȳi) | i ∈ I}

(note that the singleton x is a free variable in every formula of Ψ, but the parameter
variables ȳi may vary). Then Ψ is directed if, for all M |= T ,

{
ψi(M; ā)

∣∣∣ i ∈ I, ā ∈M |ȳi|
}

is directed, where ψi(M; ā) = {b ∈M | M |= ψi(b; ā)} ⊆M .
We say that T is VC-minimal if there exists a directed Ψ such that all (parameter-

definable) formulas ϕ(x) are T -equivalent to a boolean combination of instances of
formulas from Ψ (i.e., formulas of the form ψ(x; ā) for ψ ∈ Ψ). In this case, Ψ is
called a generating family for T .

For example, it is easy to see that strongly minimal theories are VC-minimal;
take Ψ = {x = y}. Similarly, o-minimal theories are VC-minimal; take Ψ = {x ≤
y, x = y}. A prototypical example of a VC-minimal theory which is neither stable
nor o-minimal is the theory of algebraically closed valued fields; take Ψ = {v(z) <
v(x − y), v(z) ≤ v(x − y)}, recalling the swiss cheese decomposition of Holly [9].
By a simple type-counting argument, one can see that formulas ϕ(x; ȳ) in VC-
minimal theories have VC-density ≤ 1 (see [3]). From this, one can conclude that
VC-minimal theories are dp-minimal (see, for instance, [6]).

Finally, T is quasi-VC-minimal if there exists a directed Ψ such that all formulas
ϕ(x) are T -equivalent to a boolean combination of instances of formulas from Ψ and
parameter-free formulas. Clearly, all VC-minimal theories are quasi-VC-minimal.
Moreover, the theory of Presburger arithmetic, Th(Z; +,≤), is quasi-VC-minimal;
take Ψ = {x ≤ y, x = y}. Again, by the same type-counting argument, one can
check that quasi-VC-minimal theories are dp-minimal.
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2. Convex orderability

VC-minimality is a powerful condition having many consequences (see, for ex-
ample, [2, 4, 7, 8]). However, it can be difficult to verify that a theory is not VC-
minimal. In attempting to classify VC-minimal theories of certain kinds, therefore,
we instead look at a related notion called convex orderability.

Definition 2.1. An L-structure M is convexly orderable if there exists a linear
order E on M (not necessarily definable) such that, for all ϕ(x; ȳ), there exists

k < ω such that, for all b ∈M |ȳ|, ϕ(M; b) is a union of at most k E-convex subsets
of M .

Note in the above that k may depend on ϕ, but E does not. In [8], it is shown
that if M is convexly orderable and M ≡ N, then N is convexly orderable as
well. Therefore, convex orderability is a property of a theory. Moreover, the next
proposition follows immediately from the definition.

Proposition 2.2. The property of convex orderability is closed under reducts. That
is, if T is a convexly orderable L-theory and L′ ⊆ L, then the reduct T ↾ L′ is also
convexly orderable.

For later reference, we cite the following from [8].

Proposition 2.3 (Corollary 2.9 of [8]). If T is convexly orderable, then T is dp-
minimal.

Furthermore, the following proposition is a simple modification of Proposition
2.5 of [8].

Proposition 2.4. Suppose X is a set and B ⊆ P(X) \ {∅} is directed. Then, there
exists a linear ordering E on X so that every B ∈ B is a E-convex subset of X.

From this, a simple compactness argument gives the corollary.

Corollary 2.5 (Theorem 2.4 of [8]). If T is VC-minimal and M |= T , then M is
convexly orderable.

By contrast, the above corollary does not hold for quasi-VC-minimal theories, as
the ∅-definable sets may be quite complicated. However, restricting our attention
to a single formula, we obtain a localized result for quasi-VC-minimal theories. In
the following, notice that E does depend on the formula ϕ.

Corollary 2.6. If T is a quasi-VC-minimal theory, M |= T , and ϕ(x; y) is a
formula, then there exists a linear ordering E on M and k < ω such that, for all
b ∈ M |y|, ϕ(M; b) is a union of at most k E-convex subsets of M . That is, T is
‘locally convexly orderable’.

Proof. By compactness, there exists k0 < ω, δ(x; z) a directed formula, and a ∅-
definable partition ofM via the finite set of formulas Θ(x) so that, for each b ∈M |y|,
ϕ(M; b) is a boolean combination of at most k0 instances of δ and formulas from
Θ. (More precisely, compactness yields k0 and a finite set of formulas, while coding
tricks allow one to compress a finite set of directed formulas into the single formula
δ.)

Let k = k0|Θ|+ 1 and, for each θ ∈ Θ, let δθ(x; z) be the formula δ(x; z) ∧ θ(x).
Note that each δθ is directed, as δ is. Hence, by Theorem 2.4, for each θ ∈ Θ, there
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exists Eθ a linear ordering on θ(M) so that every instance of δθ is Eθ-convex. We
then concatenate the orderings Eθ in an arbitrary (but fixed) sequence to form a
single linear ordering E on M .

Now, for any b ∈ M |y| and θ ∈ Θ, ϕ(x; b) ∧ θ(x) is a boolean combination of at
most k0 instances of δθ, each of which is E-convex. Therefore, ϕ(M; b) is a union
of at most k = k0|Θ|+ 1 E-convex subsets of M . �

One of the original motives for defining convex orderability was to give an analog
to VC-minimality which is closed under reducts. However, the converse to Corollary
2.5 does not hold. The dense circle order is convexly orderable but not VC-minimal
(for more information, see [2]). It is, in fact, a reduct of (a definitional expansion of)
dense linear orders without endpoints, which is o-minimal and hence VC-minimal.
On the other hand, the dense circle order becomes VC-minimal if one allows a single
parameter in the generating family.

Let us call a theory VC-minimal with parameters if there exists a directed gen-
erating family as in the original definition, but allowing parameters from some
distinguished model in the formulas. One could then ask whether VC-minimality
with parameters is closed under reducts. An example in [1] shows that this is still
not the case. Recalling Proposition 2.2, therefore, there are convexly orderable
theories which are not VC-minimal even with parameters.

Nevertheless, in the following sections we will see several instances where convex
orderability serves as a useful proxy for VC-minimality. In particular, we use Corol-
laries 2.5 and 2.6 to answer questions about which algebraic structures of various
kinds are convexly orderable, VC-minimal, and quasi-VC-minimal.

3. Ordered groups

Let G = (G; ·,≤) be an infinite ordered group and let T = Th(G). We prove the
following theorem.

Theorem 3.1. The following are equivalent:

(1) G is abelian and divisible.
(2) T is o-minimal,
(3) T is VC-minimal,
(4) T is convexly orderable.

This is a generalization of Theorem 5.1 of [10], which is itself a generalization of
Theorem 2.1 of [11]. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are well-known (or
clear from the previous section), so it will suffice to show that (4) ⇒ (1).

Thus, suppose that T is convexly orderable. By Proposition 3.3 of [13], all dp-
minimal ordered groups are abelian. Using Proposition 2.3, therefore, we already
have that G is abelian and it remains only to show that it is divisible. We begin
with a general lemma about convexly orderable ordered structures.

Lemma 3.2. If M = (M ;≤, ...) is a linearly ordered structure that is convexly
orderable, then there do not exist definable sets X0, X1, ... ⊆ M that are pairwise
disjoint and coterminal (that is, cofinal or coinitial) in M .

Proof. Suppose that M is convexly ordered by E. Suppose that there exists defin-
able sets X0, X1, ... ⊆M that are pairwise disjoint and ≤-coterminal in M . By the
pigeonhole principle, we may assume that all Xi are either ≤-cofinal or ≤-coinitial
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in M . Without loss of generality, suppose all are ≤-cofinal in M . By convex order-
ability, for each i, Xi is a union of finitely many E-convex subsets ofM . Therefore,
there exists some E-convex subset Ci ⊆ Xi such that Ci is ≤-cofinal in M .

Because the rays [a,∞)≤ are uniformly definable, there is a natural number k
such that every [a,∞)≤ is the union of at most k E-convex sets. Now consider the
sets C1, . . . , C2k+1. Since these are E-convex and pairwise disjoint, we may arrange
the indices so that

Ci1 ⊳ Ci2 ⊳ . . .⊳ Ci2k+1
.

For each j ≤ 2k+ 1, choose bj ∈ Cij , and fix a > max {bj | 1 ≤ j ≤ 2k + 1}. By
≤-cofinality of Cij , for each j we may also choose cj ∈ Cij ∩ [a,∞)≤. Thus we have

c1 ⊳ b2 ⊳ c3 ⊳ . . .⊳ b2k ⊳ c2k+1

with each cj ∈ [a,∞)≤ and each bj /∈ [a,∞)≤. It follows that for j = 0, . . . , k, each
c2j+1 lies in a separate E-convex component of [a,∞)≤. This contradiction implies
that M is not convexly orderable, as required. �

We return to the case of T = Th(G), where G = (G; +,≤) is a convexly orderable
ordered group. For k < ω, let k | x be the formula ∃y (k · y = x). For each natural
number n ≥ 1 and prime p, define the set

Dp,n =
{
x ∈ G

∣∣ x > 0, pn | x and pn+1 ∤ x
}
.

Lemma 3.3. Suppose for some prime p that pG 6= G. Then for each n, Dp,n is
cofinal in G.

Proof. Since pG 6= G, there is some c > 0 with p ∤ c. Consider 0 < a ∈ G. We
show that there is x ≥ a such that x ∈ Dp,n. First, if p ∤ a, let b = a; if p | a, set
b = a+ c. So, b ≥ a and p ∤ b. Now x = pn · b ≥ a and x ∈ Dp,n. �

Combining this with Lemma 3.2, we can now easily establish Theorem 3.1.

Corollary 3.4. If G is convexly orderable, then G is divisible.

Proof. Suppose G is convexly orderable but not divisible, say pG 6= G. For each n,
Dp,n is cofinal and pairwise disjoint in G. Apply Lemma 3.2 to conclude. �

Although there were previously known examples of dp-minimal theories that are
not VC-minimal (e.g., see [6]), this gives us a natural example of such a theory
(discovered independently in [1]).

Example 3.5. The theory of Presburger arithmetic, T = Th(Z; +,≤), is not VC-
minimal and not convexly orderable. On the other hand, it is quasi-VC-minimal,
and hence also dp-minimal.

This has interesting consequences for ordered fields.

Proposition 3.6. Suppose F = (F ; +, ·,≤) is an ordered field. If F is convexly
orderable, then every positive element has an nth root for all n ≥ 1.

Proof. Suppose F is convexly ordered by E. Then, E induces a convex ordering on
the ordered group (F+; ·,≤) where F+ = {a ∈ F | a > 0}. Thus, by Theorem 3.1,
F+ is divisible. In other words, for any a ∈ F+ and n ≥ 1, there exists b ∈ F+ such
that bn = a. �

Theorem 5.3 of [10] states that any weakly o-minimal ordered field is real closed.
This suggests the following open question.
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Open Question 3.7. Is it the case that an ordered field (F ; +, ·,≤) is convexly
orderable if and only if (F ; +, ·,≤) is real closed?

Before we get carried away, however, not all ordered structures that are convexly
orderable are weakly o-minimal. For example, consider Q and take D ⊆ Q dense
and codense. One can verify that the structure M = (Q;≤, D) has quantifier
elimination, from which it easily follows that it is VC-minimal. For instance, take
as a generating family

Ψ = {(D(x) ∧ x < y), (¬D(x) ∧ x < y), D(x), x = y}.

So M is convexly orderable, but on the other hand, M is clearly not weakly o-
minimal. The issue is that Lemma 3.2 necessitates infinitely many coterminal
disjoint sets to contradict convex orderability. This leads to another open question.

Open Question 3.8. If M = (M ;≤, ...) is a linearly ordered structure that is
convexly orderable, then is M quasi-weakly o-minimal?

4. Valued fields

4.1. Simple interpretability. In this subsection we exhibit a means of passing
convex orderability from a structure to a simple interpretation in the structure. If
M and N are models (not necessarily in the same language) and A ⊆ M , then M

interprets N over A if there are n ≥ 1, an A-definable subset S ⊆ Mn, and an
A-definable equivalence relation ε on S such that

• the elements of N are in bijection with the ε-equivalence classes of S, and
• the relations on S induced by the relations and functions of N via this
bijection are A-definable in M.

Moreover, if n = 1 in the above definition, we say that M simply interprets N.
It is generally most convenient to identify the elements of N with the equivalence

classes of S, so that for instance we will write ā ∈ x if ā ∈ S and x ∈ N corresponds
to the ε-equivalence class containing ā.

Remark 4.1. Using the same notation as above, suppose ϕ(x̄; ȳ) is a formula in
the language of N with k = |x̄|. Then there is ϕ̃(z̄; w̄) in the language of M (with
parameters from A) with the property that, for any set X ⊆ Nk defined by an
instance ϕ(x̄; ā) of ϕ, the set

X̃ =
⋃
X ⊆ Sk.

is defined by an instance ϕ̃(z̄; b̄) of ϕ̃. To see this, induct on the complexity of ϕ,
replacing function and relation symbols fromN with their corresponding definitions
in M and = with ε, and relativizing all quantifiers to S.

Lemma 4.2. If M simply interprets N and M is convexly orderable, then N is also
convexly orderable.

Proof. Let ε(x, y) define an equivalence relation on S ⊆ M as in the definition of
interpretation (possibly over parameters), and suppose that M is convexly ordered
by EM . Define on N the relation EN by

xEN y ⇐⇒ (∀s ∈ y)(∃r ∈ x)[r EM s].

We claim that N is convexly ordered by EN .
6



First note that EN linearly orders N . Transitivity and linearity are clear. For
antisymmetry, suppose that xEN y and yEN x. Then, beginning with an arbitrary
s0 ∈ y, find ri ∈ x, si ∈ y such that for every i < ω, ri EM si and si+1 EM ri. But
since x is a definable subset of M, x must be a finite union of EM -convex sets. So
we must have si ∈ x for some i, whence x = y. A similar argument shows that
x⊳N y iff there is an r ∈ x such that r ⊳M s for all s ∈ y.

Now consider a formula ϕ(x; ȳ) in the language of N, ā a tuple from N , and

X ⊆ N the set defined by ϕ(x; ā). For ϕ̃(x; b̄) defining X̃ as in Remark 4.1, since
EM convexly orders M, there is a uniform bound k on the number of EM -convex
sets comprising an instance of ϕ̃ in M. It will suffice to show that X is also a union
of at most k EN -convex sets in N .

Suppose not, so that there are

c0 EN c1 EN . . .EN c2k

such that ci ∈ X iff i is even. For each i < 2k, since ci 6= ci+1 there is c̃i ∈ ci such
that c̃i ⊳M d for all d ∈ ci+1. Take also any element c̃2k ∈ c2k. Now

c̃0 EM c̃1 EM . . .EM c̃2k

and c̃i ∈ X̃ iff i is even. This contradicts the fact that X̃ is a union of k (or fewer)
EM -convex sets.

We conclude that in N, every instance of ϕ defines a union of k or fewer EN -
convex sets. Since any formula in the language of N admits such a uniform bound,
EN convexly orders N. �

Lemma 4.2 allows us to show that a theory is not convexly orderable (hence not
VC-minimal) by simply interpreting a structure that is not convexly orderable. We
can apply this to theories of valued fields. Let K be a valued field with value group
Γ, residue field k, and valuation v : K → Γ∪ {∞}, and let T = Th(K; +, ·, |). Here
x|y means v(x) ≤ v(y). Though we work in the one-sorted language L = {+, ·, |},
the statements could be adapted to other languages of valued fields.

Corollary 4.3. If T is convexly orderable, then both the value group Γ and the
residue field k are convexly orderable.

Proof. Both Γ and k are simply interpretable (over ∅) in K. For example, Γ is
interpreted on S = K \ {0} via ε(x, y) ≡ x | y ∧ y | x (i.e., v(x) = v(y)). Since
v(xy) = v(x) + v(y), the addition in Γ is interpreted by multiplication in K, and
the ordering is explicitly given by |. We use Lemma 4.2 to conclude. �

We know that the theory of algebraically closed valued fields is convexly order-
able. Also, the theory of real closed valued fields is weakly o-minimal [5], hence
also convexly orderable. This leads to an interesting open question: Under which
circumstances does the converse of Corollary 4.3 hold?

Open Question 4.4. Is it true that, for any Henselian valued field K with value
group Γ and residue field k, K is convexly orderable if and only if Γ and k are
convexly orderable?

We understand when Γ is convexly orderable by Theorem 3.1, but we do not
currently have a characterization for when k is convexly orderable. Answering Open
Question 4.4 would probably require first understanding when a field is convexly
orderable in general.

We can apply Corollary 4.3 to the case of the p-adics.
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Corollary 4.5. If Γ is not divisible, then T is not convexly orderable, hence not
VC-minimal. In particular, the theory of the p-adics is not VC-minimal.

Proof. By Theorem 3.1, Γ is convexly orderable if and only if Γ is divisible. Hence,
if Γ is not divisible, then Corollary 4.3 implies that T is not convexly orderable.
In particular, the theory of the p-adics, Th(Qp; +, ·, |), has value group (Z; +,≤),
which is not divisible. Hence, the theory of the p-adics is not VC-minimal. �

By Section 6 of [6], the theory of the p-adics is dp-minimal. So this corollary gives
us another natural example of a theory that is dp-minimal but not VC-minimal.
In the next subsection, we exhibit a means of producing examples of theories that
are dp-minimal but not quasi-VC-minimal.

4.2. Quasi-VC-minimality. For this subsection, fix K a valued field with value
group Γ and let T = Th(K; +, ·, |) as in the previous subsection. First, recall that
if K is algebraically closed, then T is VC-minimal. Notice that if K is algebraically
closed, then Γ is divisible. The main goal of this section is to prove the following
stronger result.

Theorem 4.6. If T is quasi-VC-minimal, then Γ is divisible.

Suppose then that Γ is not divisible, say pΓ 6= Γ. Fix some positive γ1 ∈ Γ \ pΓ.
Define γn ∈ Γ by

γn =

{
k · p · γ1 if n = 2k,

γ1 + k · p · γ1 if n = 2k + 1.

Notice that 0 = γ0 < γ1 < ... < γn < ... and p | γn if and only if n is even.
We now construct, for each n < ω, An ⊆ K as follows. Set A0 = {0}. For each

a ∈ An, choose a
′ ∈ K such that v(a− a′) = γn. Let

An+1 = An ∪ {a′ | a ∈ An} .

Note that a′ /∈ An (to see this, show inductively that for distinct b1, b2 ∈ An,
v(b1 − b2) ≤ γn−1). Therefore |An| = 2n. Moreover, for all a ∈ An and all i < n,
there exists b ∈ An such that v(a− b) = γi.

Suppose that E is a linear ordering on K. In this case, each An is also linearly
ordered by E. For each b ∈ K, define

Xb = {a ∈ K | p | v(a− b)} .

Lemma 4.7. For each n < ω, there exists b ∈ K such that Xb is the union of no
fewer than n+ 1 E-convex subsets of K.

Proof. Fix n < ω and let A = A2n+1, which is a finite linear order (under E).
Let a0 ∈ A be the E-minimal element. In general, we inductively construct a

sequence a0, ..., a2n+1 ∈ A such that

(1) v(aj − ai) = γj for all j < i,
(2) a0 ⊳ a1 ⊳ ...⊳ a2n+1, and
(3) for all a ∈ A with v(a− ai) ≥ γi, ai E a.

Suppose that a0, . . . , ai with the above properties have been found, and choose
ai+1 ∈ A E-minimal such that v(ai+1 − ai) = γi. This exists by definition of
A = A2n+1. By condition (3), ai⊳ai+1, so condition (2) holds up to ai+1. Condition
(1) and v(ai+1−ai) = γi > γj implies that v(aj−ai+1) = γj for all j < i. Therefore,
condition (1) holds for ai+1. Finally, fix a ∈ A and suppose v(a − ai+1) ≥ γi+1.
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Since v(ai+1 − ai) = γi, we have v(a − ai) = γi as well. However, since ai+1 was
chosen E-minimal in the set {x ∈ A | v(x− ai) = γi} and a belongs to this set, we
must have that ai+1 E a. Thus, condition (3) holds for ai+1.

Finally, set b = a2n+1. Then, for i ≤ 2n, ai ∈ Xb if and only if p | v(ai − b) if
and only if p | γi. Recall, moreover, that p | γi if and only if i is even. Therefore,
ai ∈ Xb if and only if i is even. By condition (2), Xb is the union of no fewer than
n+ 1 E-convex subsets of K. �

Proof of Theorem 4.6. Suppose Γ 6= pΓ. Fix the formula

ϕ(x; y) = ∃z(zp | (x− y)).

Towards a contradiction, suppose T were quasi-VC-minimal. By Corollary 2.6,
there exists a linear order E on K and n < ω such that each instance of ϕ is a
union of at most n E-convex subsets of K. By Lemma 4.7, there exists b ∈ K
such that Xb = ϕ(K; b) is a union of no fewer than n+1 E-convex subsets of K, a
contradiction. �

Corollary 4.8. The following theories are not quasi-VC-minimal: Th(Qp; +, ·, |)
for any prime p, and Th(k((t)); +, ·, |) for any field k.

Since the p-adics are dp-minimal, this gives us a natural example of a theory
that is dp-minimal and not quasi-VC-minimal. Combining this observation with
Corollary 3.5, we get strict implications

VC-minimal ⇒ quasi-VC-minimal ⇒ dp-minimal

where strictness is witnessed by Presburger arithmetic and the p-adics respectively.

5. Abelian Groups

Let A = (A; +) be an abelian group and T = Th(A). Throughout this section we
work exclusively in the pure group language L = {+}. For each k,m < ω, consider
the formula

ϕk,m(x) = ∃y (k · y = m · x) .

Notice that ϕk,m(A) is a subgroup of A. For k = 0, ϕ0,m(A) is the subgroup of
m-torsion elements of A, which we will also denote by A[m]. For m = 1, ϕk,1(A) is
the subgroup of k-multiples of A, which we will also denote by kA.

Proposition 5.1 (Corollary 2.13 of [12]). All definable subsets of A are boolean
combinations of cosets of ϕk,m(A) for various k,m < ω.

Let PP(A) be the set of all the p.p.-definable subgroups of A, which are namely
the finite intersections of subgroups of the form ϕk,m(A) for various k,m < ω.
Define a quasi-order - on all subgroups of A by setting, for each subgroup B0 and
B1 of A:

B0 - B1 if and only if [B0 : B0 ∩B1] < ℵ0.

Think of this as B0 being almost a subgroup of B1 (missing only by a finite index).
This quasi-order generates an equivalence relation ∼, which is called commensura-
bility. For any B0 ∼ B1, notice that B0 ∩ B1 ∼ B0, so ∼-classes are closed under

intersection. We denote by P̃P(A) the set PP(A)/ ∼ of equivalence classes. Thus,

- induces a partial order on P̃P(A). In [3], this partial order is used to characterize
dp-minimality of T as follows.
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Proposition 5.2 (Corollary 4.12 of [3]). The theory T is dp-minimal if and only

if
(
P̃P(A);-

)
is linear.

This is then used as the main tool for proving a classification of dp-minimal
theories of abelian groups. In the following, a nonsingular group B is one for which
B[p] and B/pB are finite for all primes p.

Proposition 5.3 (Proposition 5.27 of [3]). The theory T is dp-minimal if and only
if A is elementarily equivalent to one of the following abelian groups:

(1)
⊕
i≥1

(
Z/piZ

)(αi)⊕Z (p∞)
(β)⊕

(
Z(p)

)(γ)
⊕B for some prime p, a nonsingular

abelian group B, and αi, β, and γ cardinals with αi < ℵ0 for all i.

(2)
(
Z/pkZ

)(α)
⊕

(
Z/pk+1Z

)(β)
⊕ B for some prime p, k ≥ 1, finite abelian

group B, and cardinals α and β, at least one of which is infinite.

In this section, we will prove a characterization for when T is VC-minimal (and
convexly orderable) analogous to Proposition 5.2, and likewise use it to obtain a
complete list of VC-minimal theories of abelian groups.

Lemma 5.4. Suppose that there exists H ⊆ PP(A) such that

(1) (H;⊆) is a linear order; and
(2) For all k and m, ϕk,m(A) is a boolean combination of cosets of elements

H ∈ H.

Then, T is VC-minimal.

Proof. For each H ∈ H, let ψH(x; y) be the formula x − y ∈ H , and let Ψ =
{ψH | H ∈ H}. The instances of Ψ define precisely the cosets of members of H.
We claim that Ψ is a generating family for T .

First, to see that Ψ is directed, fix H1, H2 ∈ H and a1, a2 ∈ A. By (1), we may
assume without loss of generality that H1 ⊆ H2. Then each coset of H1 is a subset
of a coset of H2, so that either a1 +H1 ⊆ a2 +H2 or (a1 +H1) ∩ (a2 +H2) = ∅ as
required.

By Proposition 5.1, all definable subsets of A are boolean combinations of cosets
of ϕk,m(A) for various k,m < ω. So (2) implies that all parameter-definable subsets
of A are in fact boolean combination of cosets of elements H ∈ H. �

Corollary 5.5. The theory T = Th(Z; +) is VC-minimal.

Proof. Let H = {(n!) · Z | 1 ≤ n < ω}∪{0}. This satisfies the conditions in Lemma
5.4. �

For a prime p, let Z(p) be the additive group of the ring Z localized at the prime
ideal (p) = pZ. Let Z(p∞) be the Prüfer p-group, which is the direct limit of
(Z/pkZ) for all k ≥ 1. For an abelian group A and cardinal κ, let A(κ) be the direct
sum of κ copies of A.

Corollary 5.6. The theories of the following abelian groups are VC-minimal:

(1)
(
Z/pkZ

)(ℵ0)
for some k < ω and prime p,

(2)
(
Z/pkZ

)(ℵ0) ⊕
(
Z/pk+1Z

)(ℵ0)
for some k < ω and prime p, and

(3) Z(p∞)(β) ⊕ Z(γ)
(p) for cardinals β and γ and prime p.
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Proof. (1) Since piA =
(
piZ/pkZ

)(ℵ0)
and A[pi] =

(
pk−iZ/pkZ

)(ℵ0)
, we see that

PP(A) =
{(
piZ/pkZ

)(ℵ0)
∣∣∣ 0 ≤ i ≤ k

}
,

which is itself a chain. We conclude that T is VC-minimal by Lemma 5.4.
(2) Notice that, for each i,

piA =
(
piZ/pkZ

)(ℵ0)
⊕
(
piZ/pk+1Z

)(ℵ0)

A[pi] =
(
pk−iZ/pkZ

)(ℵ0)
⊕
(
pk+1−iZ/pk+1Z

)(ℵ0)
.

So, let H be the chain 0 ⊂ pkA ⊂ A[p] ⊂ pk−1A ⊂ A[p2] ⊂ ... and use Lemma 5.4
to conclude.

(3) In this case, we have

A[pi] = (Z(p∞)[pi])(β) ⊕ 0

piA = Z(p∞)(β) ⊕
(
piZ(p)

)(γ)
.

Use the chain 0 ⊆ A[p] ⊆ A[p2] ⊆ ... ⊆ p2A ⊆ pA ⊆ A along with Lemma 5.4 to
conclude. �

However, not every dp-minimal abelian group is VC-minimal or even convexly
orderable.

Lemma 5.7. Suppose that there exists a chain of ∅-definable subgroups A = A0 ⊇
A1 ⊇ A2 ⊇ ... and a ∅-definable subgroup B ⊆ A such that

(1) for each i < ω, Ai ∩B 6= Ai+1 ∩B, and
(2) for each i < ω, [Ai : Ai ∩B] ≥ ℵ0.

Then, T = Th(A; +) is not convexly orderable. Hence, T is not VC-minimal.

Proof. By way of contradiction, suppose that A is convexly ordered by E. In
particular, suppose that each instance of the formula x − y ∈ B is a union of at
most k E-convex subsets of A for some fixed k < ω.

Since [Ak : Ak ∩B] ≥ ℵ0, the set

C = {a+B | a ∈ Ak}

of cosets of B is infinite. On the other hand, for each 1 ≤ i ≤ k, Ai∩B ( Ai−1∩B.
So, for any choice of b ∈ (Ai−1 \Ai)∩B and a ∈ Ak, a+ b ∈ (Ai−1 \Ai). Therefore,
for all a ∈ Ak and 1 ≤ i ≤ k, (a+B)∩(Ai−1 \Ai) is non-empty. That is, (Ai−1 \Ai)
intersects non-trivially each element of C.

By convex orderability, for each i ≤ k, Ai is a finite union of E-convex subsets of
A. Let Ci denote the elements a+B ∈ C such that, for some E-convex component
C of a+B, C * Ai and C ∩Ai 6= ∅. By convexity, there can be only finitely many
such a+B, namely the ones covering the finitely many “endpoints” of Ai. Hence,
Ci is finite for each i ≤ k. Finally, set

C∗ = C \


⋃

i≤k

Ci


 .

Since C is infinite, C∗ is also infinite and, in particular, non-empty.
We claim that each Ai contains at most k − i E-convex components of each

element of C∗. By choice of k, this clearly holds for i = 0. So suppose that i > 0
and that the claim holds for Ai−1. Consider a+B ∈ C∗. By construction, for each

11



E-convex component C of a+B, either C ⊆ Ai or C∩Ai = ∅. However, as observed
above (a + B) ∩ (Ai−1 \ Ai) 6= ∅, so at least one of the E-convex components of
a+ B contained in Ai−1 must be disjoint from Ai. By assumption, Ai−1 contains
at most k− (i− 1) E-convex components of a+B. Thus Ai contains at most k− i.
The conclusion follows by induction.

Therefore, for all a+B ∈ C∗, (a+B)∩Ak = ∅. On the other hand, Ak intersects
every coset a+B ∈ C by definition of C. This gives the desired contradiction. �

We use this to produce an example of an abelian group whose theory is dp-
minimal but not VC-minimal.

Corollary 5.8. Fix some αi < ℵ0 for each i ≥ 1 such that the set {i | αi > 0} is
infinite. Then the theory of the abelian group

A =
⊕

i≥1

(
Z/piZ

)αi

is not convexly orderable.

Proof. Let I = {i | αi > 0}, let i0 = 0, and let i1 < i2 < ... enumerate I. It is
straightforward to check that the ∅-definable subgroups

Aℓ = piℓA for all ℓ < ω, and B = A[p]

satisfy the hypotheses of Lemma 5.7. �

By Proposition 5.3 (1), we see that this A is, in fact, dp-minimal.

Definition 5.9. For X ∈ P̃P(A) (i.e., X is a ∼-class of PP(A)), we say that X
is upwardly coherent if there exists H ∈ X such that, for all H1 ∈ PP(A) with
H � H1, we have that H ⊆ H1.

By extension, we say that the group A is upwardly coherent if every X ∈ P̃P(A)
is.

Intuitively, upward coherence means the class contains a particular subgroup for
which being almost a proper subgroup is sufficient to be, in fact, a subgroup. In
the presence of dp-minimality, this condition implies VC-minimality as shown in
the next lemma.

Lemma 5.10. Suppose T = Th(A; +) is dp-minimal. If A is upwardly coherent,
then T is VC-minimal.

Proof. For each X ∈ P̃P(A), let HX ∈ X witness that X is upwardly coherent.
Since PP(A) is countable, so is X , so let X = {Hi | i < ω} enumerate X . Define
Hi

X ∈ X inductively as follows:

• H0
X = HX .

• For i ≥ 0, Hi+1
X = Hi

X ∩Hi.

Since X is closed under intersection, each Hi
X is still an element of X .

Let HX =
{
Hi

X

∣∣ i < ω
}
. By construction, HX is a chain under ⊆ with maximal

element HX . Moreover, by definition of ∼, every H ∈ X is a finite union of cosets
of a member of HX . Finally, set

H =
⋃{

HX

∣∣∣ X ∈ P̃P(A)
}
.
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For any distinct X,Y ∈ P̃P(A), by Proposition 5.2 either X � Y or Y � X .
Without loss, suppose X � Y . Therefore, by upward coherence, H ⊇ HX for all
H ∈ Y . Hence, HX ∪ HY is a chain under ⊆. It follows that H is itself a chain
under ⊆. We thus conclude that H satisfies the hypotheses of Lemma 5.4, showing
that T is VC-minimal. �

Putting this all together, we arrive at the desired characterization of convexly
orderable (and VC-minimal) abelian groups.

Theorem 5.11. The following are equivalent:

(1) T is VC-minimal;
(2) T is convexly orderable;
(3) T is dp-minimal and A is upwardly coherent.

Proof. We have (1) ⇒ (2) by Corollary 2.5. Lemma 5.10 gives (3) ⇒ (1). Thus, it
remains only to show (2) ⇒ (3).

If T is convexly orderable, then T is dp-minimal by Proposition 2.3. So, suppose

that there exists some X ∈ P̃P(A) that is not upwardly coherent. Fixing any
B ∈ X , we construct A = A0 ⊇ A1 ⊇ A2 ⊇ ... from PP(A) such that, for all i < ω:

(1) [B : Ai ∩B] < ℵ0, so that Ai ∩B ∈ X ;
(2) If i > 0, then Ai−1 ∩B 6= Ai ∩B; and
(3) [Ai : Ai ∩B] ≥ ℵ0.

By Lemma 5.7, this implies that T is not convexly orderable, as required.
First, set A0 = A. If B ∼ A, then A ∈ X trivially witnesses upward coherence,

contrary to assumption. Therefore, [A : B] ≥ ℵ0, giving condition (3) for i = 0.
Clearly condition (1) and (2) also hold for i = 0.

Now fix i ≥ 0 and suppose that Ai has been constructed satisfying (1), (2), and
(3). Consider Ai ∩ B. Since Ai ∩ B ∈ X and X is not upwardly coherent, there
exists H ∈ PP(A) such that Ai ∩B � H and Ai ∩B * H . Set Ai+1 = H ∩Ai. We
show that Ai+1 satisfies (1), (2), and (3).

Since Ai ∩B - H ,

[Ai ∩B : Ai+1 ∩B] = [Ai ∩B : H ∩ Ai ∩B] < ℵ0,

giving condition (1). Suppose Ai ∩ B = Ai+1 ∩ B. Then H ∩ (Ai ∩ B) = Ai ∩ B
implies (Ai ∩B) ⊆ H , contrary to assumption. Therefore, condition (2) holds.

Finally, consider the inclusions

(Ai+1 ∩B) ⊆ Ai+1 ⊆ Ai and (Ai+1 ∩B) ⊆ Ai+1 ⊆ H.

Since [Ai : Ai ∩ B] ≥ ℵ0, [Ai : Ai+1 ∩ B] ≥ ℵ0. Moreover, since Ai ∩ B ≁ H ,
[H : Ai+1 ∩ B] ≥ ℵ0. However, by Proposition 5.2, at least one of [H : Ai+1] and
[Ai : Ai+1] is finite, as either H - Ai or Ai - H . Therefore, from

[Ai : Ai+1 ∩B] = [Ai : Ai+1][Ai+1 : Ai+1 ∩B] ≥ ℵ0

[H : Ai+1 ∩B] = [H : Ai+1][Ai+1 : Ai+1 ∩B] ≥ ℵ0

we obtain [Ai+1 : Ai+1 ∩B] ≥ ℵ0. Hence, condition (3) holds. This completes the
construction, showing that T is not convexly orderable. �

Before turning to the classification of VC-minimal abelian groups, we will need
two lemmas. Both address the question of transferring VC-minimality between an
abelian group and its direct summands. For groups A = (A; +) and B = (B; +),
let A⊕B = (A⊕B; +).
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Lemma 5.12. If B is any abelian group and Th(A ⊕ B) is VC-minimal, then
Th(A) is VC-minimal.

Proof. Assume T ∗ = Th(A ⊕B) is VC-minimal. By Theorem 5.11 (3), T ∗ is dp-
minimal and A⊕B is upwardly coherent. By the proof of Lemma 5.10, there exists
H ⊆ PP(A⊕B) such that (H;⊆) is a linear order and, for all k and m, ϕk,m(A⊕B)
is a finite union of cosets of some Hk,m ∈ H. Thus, we may write

ϕk,m(A ⊕B) =
⋃

i≤n

(ai ⊕ bi) +Hk,m

for some choice of ai ∈ A, bi ∈ B.
If πA denotes the projection of A ⊕ B onto A, note that πA(ϕk,m(A ⊕ B)) =

ϕk,m(A). So, clearly, HA = πA(H) is also linearly ordered by ⊆. Moreover, we have

ϕk,m(A) =
⋃

i≤n

ai + πA(Hk,m).

Therefore, using HA in Lemma 5.4, we see that T = Th(A) is VC-minimal. �

Lemma 5.13. If B is a finite abelian group, then Th(A) is VC-minimal if and
only if Th(A⊕B) is VC-minimal.

Proof. Suppose T = Th(A) is VC-minimal. Again recalling the proof of Lemma
5.10, there exists H ⊆ PP(A) so that (H;⊆) is a chain and, for all k andm, ϕk,m(A)
is a finite union of cosets of some Hk,m ∈ H. For each H ∈ H, choose a subgroup
B(H) ⊆ B minimal (with respect to ⊆) such that H⊕B(H) ∈ PP(A⊕B). Finally,
let

H∗ = {H ⊕B(H) | H ∈ H} .

We verify that H∗ satisfies the hypotheses of Lemma 5.4 for A⊕B.
First, to see that H∗ is a linear order under ⊆, suppose H1 ⊆ H2 from H. As

(H1 ⊕B(H1)) ∩ (H2 ⊕B(H2)) = H1 ⊕ (B(H1) ∩B(H2))

is again an element of PP(A ⊕ B), the minimality of B(H1) implies B(H1) =
B(H1) ∩B(H2). Thus B(H1) ⊆ B(H2) and H1 ⊕B(H1) ⊆ H2 ⊕B(H2).

Second, we wish to show that ϕk,m(A ⊕B) is a boolean combination of cosets
of elements of H∗. Since we already know that ϕk,m(A) is a finite union of cosets
of Hk,m, and B is finite, it suffices to show that

Hk,m ⊕B(Hk,m) ⊆ ϕk,m(A)⊕ ϕk,m(B) = ϕk,m(A ⊕B).

That is, we need to show B(Hk,m) ⊆ ϕk,m(B). If not, however,

(Hk,m ⊕B(Hk,m)) ∩ ϕk,m(A⊕B) = Hk,m ⊕ (B(Hk,m) ∩ ϕk,m(B))

would be in PP(A ⊕ B), in which case B(Hk,m) ∩ ϕk,m(B) would contradict the
minimality of B(Hk,m).

Therefore, H∗ satisfies the conditions of Lemma 5.4, proving VC-minimality of
Th(A⊕B). The converse follows immediately from Lemma 5.12. �

We are now ready to prove an analog to Proposition 5.3 for VC-minimal (and
convexly orderable) theories of abelian groups. The proposition gives a strong
starting point, a complete list of dp-minimal theories of abelian groups. Theorem
5.11 and the above lemmas provide a set of tools for determining which of these
are VC-minimal.
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Theorem 5.14. T is VC-minimal (and convexly orderable) if and only if A is
elementarily equivalent to one of the following abelian groups:

(1)
⊕

p prime

(
Z (p∞)

(βp)
)
⊕
(
Z(q)

)(γ)
⊕Q(δ)⊕B for a fixed prime q, finite abelian

group B, and cardinals βp, γ, and δ such that βp < ℵ0 for all p 6= q;

(2)
⊕

p prime

(
Bp ⊕ Z (p∞)

(βp) ⊕
(
Z(p)

)(γp)
)
⊕ Q(δ) for a fixed prime q, finite p-

groups Bp, and cardinals βp, γp, and δ such that βp < ℵ0 for all p 6= q and
γp < ℵ0 for all p (incuding q);

(3)
(
Z/pkZ

)(α)
⊕

(
Z/pk+1Z

)(β)
⊕ B for some prime p, k ≥ 1, finite abelian

group B, and cardinals α and β, at least one of which is infinite.

Proof. Suppose T is dp-minimal. By Proposition 5.3, it falls under one of two
categories. T is either the theory of a group as in (3) above; or, A is elementarily
equivalent to

(⋆)
⊕

i≥1

(
Z/piZ

)(αp.i)
⊕ Z (p∞)

(βp) ⊕
(
Z(p)

)(γp) ⊕B

for a prime p, nonsingular abelian group B, and cardinals αp,i, βp, and γp with
each αp,i finite.

For the former category, it follows from Corollary 5.6 and Lemma 5.13 that the
group in (3) is also VC-minimal.

For the latter, first recall that by results of Szmielew [14], any abelian group is
elementarily equivalent to one of the form

⊕

p prime


⊕

i≥1

(
Z/piZ

)(αp,i)
⊕ Z (p∞)(βp) ⊕

(
Z(p)

)(γp)


⊕Q(δ).

It is straightforward to verify that such a group is only nonsingular if each αp,i, βp,

γp, and {i | αp,i > 0} is finite. For instance, for B =
(
Z(p)

)(γp)
, we have B/pB =

(Z/pZ)(γp), which is finite iff γp is. Hence, (⋆) becomes

(†)
⊕

p prime


⊕

i≥1

(
Z/piZ

)(αp,i)
⊕ Z (p∞)

(βp) ⊕
(
Z(p)

)(γp)


⊕Q(δ)

with each αp,i finite and βp, γp, and {i | αp,i > 0} finite for p 6= q. In other words,

writing Bp =
⊕
i≥1

(
Z/piZ

)(αp,i)
, we have that Bp is a finite p-group for all p 6= q.

Suppose, then, that (†) is VC-minimal. We show that (†) is as in (1) or (2). By
Corollary 5.8 and Lemma 5.12, Bq must also be finite. If γq < ℵ0, then we are in
case (2).

Thus, suppose that γp ≥ ℵ0. Notice that qA � A. We must show that B =⊕
pBp is finite and γp = 0 for p 6= q.

If γp > 0 for some p 6= q, then qA � pnA for all n. However, there is no
H ∈ PP(A) with H ∼ qA such that H ⊆ pnA for all n. Therefore, the ∼-class of
qA is not upwardly coherent, contradicting Theorem 5.11.
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If Bp is nonzero for infinitely many primes p, let p0, p1, . . . enumerate all such
primes, excluding q. Then we have

qA �


∏

i≤n

pi


A.

But there is no H ∈ PP(A) with H ∼ qA such that H ⊆
(∏

i≤n pn

)
A for every n,

again contradicting upward coherence of the ∼-class of qA.
We have thus established that the theory of a VC-minimal abelian group belongs

to one of the cases (1), (2), or (3). It remains only to show that the groups in (1)
and (2) are indeed VC-minimal.

For both cases, A[qn] witnesses the upward coherence of its ∼-class for every n.

In case (2), kA ∼ A for all k, so the chain of P̃P(A) is given by

0 � A[q] � A[q2] � ... � A,

and each ∼-class is upwardly coherent. Furthermore, each group in PP(A) is a
boolean combination of cosets of groups in this chain. The details of this compu-
tation can be found in Lemma 5.28 of [3].

In case (1), in addition to A[qn], we also have that qnA witnesses the upward

coherence of its ∼-class. The chain of P̃P(A) is given by

0 � A[q] � A[q2] � ... � q2A � qA � A.

Again, we refer to Lemma 5.28 of [3] to see that the groups in this chain generate
every member of PP(A).

In both cases, therefore, A is upwardly coherent. By Theorem 5.11, T is VC-
minimal. �

Acknowledgments. We would like to express our thanks to the referee for point-
ing out an error in the original draft of Proposition 5.3 and consequently, Theorem
5.14.
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