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A FUNDAMENTAL DICHOTOMY FOR DEFINABLY COMPLETE

EXPANSIONS OF ORDERED FIELDS

ANTONGIULIO FORNASIERO AND PHILIPP HIERONYMI

Abstract. An expansion of a definably complete field either defines a discrete
subring, or the image of every definable discrete set under every definable map
is nowhere dense. As an application we show a definable version of Lebesgue’s
differentiation theorem.

1. Introduction

Let K be an expansion of an ordered field 〈K,<,+, ·〉. We say K is definably

complete if every bounded subset of K definable in K has a supremum in K. Such
structures were first studied by Miller in [12]. A definably complete expansion of
ordered field is always real closed. The topology considered here is the usual order
topology on K and the product topology on Kn; all rings are taken with 1.

The following dichotomy is the main result of the paper.

Theorem A. Let K be definably complete. Then either

(I) f(D) is nowhere dense for every definable discrete set D ⊆ Kn and every
definable function f : Kn → K, or

(II) K defines a discrete subring.

This result is a generalization of [6, Theorem 1.1] from expansions of the real
field to arbitrary definably complete expansions of ordered fields. The two cases
in Theorem A are indeed exclusive. It is easy to check that a definable subring
has to be unbounded and that its set of quotients is dense in K. By definable
completeness, the positive elements of a definable discrete subring of K form a
model of first-order Peano arithmetic; in §5 we will see that they even form a model
of second-order Peano arithmetic (seen as a first-order theory). Hence Theorem A
separates the class of definably complete expansions of ordered fields into two very
distinct categories.

The significance of Theorem A comes from its use as a tool to prove statements
about arbitrary definably complete expansions of ordered fields. In order to show
that a statement holds for all such structures, it is now enough to consider structures
having either property (I) or (II) from Theorem A. In the case when a discrete sub-
ring is definable, proofs from second-order arithmetic often transfer easily to these
structures. On the other hand, if a structure satisfies property (I), techniques and
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ideas from the study of o-minimality and related tameness notions can sometimes
be applied. As an application of this new proof strategy we present the following
definable analogue of Lebesgue’s differentiation theorem, answering a question of
Miller from [12].

Theorem B. Let K be definably complete and let f : K → K be definable and
monotone. Then f is differentiable on a dense subset of K.

Notation. For the rest of the paper, let K denote a definable complete expansion
of an ordered field 〈K,<,+, ·〉. We say a set is definable if it is definable in K with
parameters from K. 〈a, b〉 is the ordered pair with elements a and b. Given a subset
X of Kn × Km and a ∈ Kn, we denote the set {b : 〈a, b〉 ∈ X} by Xa. As said
before, all rings are taken with 1.

Acknowledgements. The authors would like to thank Lou van den Dries and the
anonymous referees for closely reading the paper and for their valuable comments.

2. Facts about definable complete fields

In this section we recall several facts about definably complete expansions of
ordered fields. For more details and background, see [12]. The following fact is
immediate from definable completeness.

Fact 1. Let Y ⊆ K be non-empty closed and definable. Then Y contains a mini-
mum (a maximum) iff Y is bounded from below (from above).

Fact 2 ([12, Lemma 1.9]). Let Y ⊆ K2 be definable such that Ya is closed and
bounded and Ya ⊇ Yb 6= ∅ for every a, b ∈ K with a < b. Then

⋂
a∈K Ya 6= ∅.

Definition 3. Let D ⊆ K be definable, closed and discrete and let d ∈ D. If d is
not the maximum of D, we say the minimum of D>d is the successor of d in D,
written sD(d).

Note that the minimum in the previous definition exists by Fact 1.

Fact 4. Let D ⊆ K be definable, closed and discrete. If D has a minimum (a
maximum), so has every definable subset of D.

Definition 5. A subset A ⊆ Kn is called pseudo-finite if it is definable, closed,
bounded and discrete. We call A at most pseudo-enumerable if there exists a
definable closed discrete set D ⊂ K≥0 and a definable function f : D → Kn such
that f(D) = A.

The notion of a pseudo-finite set was introduced in [4] and the notion of at most
pseudo-enumerable in [3].

Fact 6 ([3, Main Theorem]). If A ⊆ Kn is at most pseudo-enumerable, then it has
no interior.

Fact 7 ([4, Lemma 2.22]). Let D ⊆ Kn be pseudo-finite and let f : D → Km

be a definable function. Then f(D) is pseudo-finite. In particular, f achieves a
minimum and a maximum on D.

Fact 8 ([3, Lemma 4.14]). Every definable discrete subset of Kn is at most pseudo-
enumerable.
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Fact 8 simplifies our task to prove Theorem A considerably. To establish Theo-
rem A, it is now enough to show that whenever K defines a closed and discrete set
D ⊆ K≥0 and a function f : D → K with f(D) somewhere dense, then K defines
a discrete subring.

Definition 9. A definable family (Xt : t ∈ D) is at most pseudo-enumerable

if its index set D is at most pseudo-enumerable.

The following fact was implicitly proved in [3]. For the reader’s convenience, we
have included a proof here.

Fact 10. (1) The union of an at most pseudo-enumerable family of discrete
sets is at most pseudo-enumerable.

(2) Let (Xt : t ∈ K) be a definable increasing family of discrete subsets of Kn.
Then

⋃
t∈K Xt is at most pseudo-enumerable.

Proof. Statement (1) is [3, Corollary 4.16]. We now consider (2). By [4, Theorem
3.3], K either defines a discrete, closed and unbounded set, or every discrete set
definable in K is pseudo-finite. We now handle the cases separately. If every
discrete definable set in K is pseudo-finite, then each Xt is pseudo-finite. By [4,
Theorem 3.3]

⋃
t∈K Xt itself is pseudo-finite. Now suppose that there exists D ⊆

K≥0 definable, discrete, closed and unbounded. Since (Xt : t ∈ K) is increasing and
D is unbounded,

⋃
t∈K Xt =

⋃
t∈D Xt. By (1) applied to the family (Xt : t ∈ D),⋃

t∈K Xt is at most pseudo-enumerable. �

3. Natural fragments and asymptotic extraction

In this section we generalize the idea of asymptotic extraction, first introduced
by Miller in [13, p. 1484], to definably complete fields. Since the original approach
is not strong enough to yield the desired results, we adjust the method developed
in [7, Lemma 1] to extract larger and larger fragments of the natural numbers.

Definition 11. Let D be a definable, closed and discrete subset of K≥0. We say
that D has step 1 if, for every d ∈ D with d 6= max(D), sD(d) = d + 1. We say
that D is a natural fragment if it is either empty, or if D has step 1 and 0 ∈ D.

Lemma 12. Let D and E be natural fragments. Then either D ⊆ E or E ⊆ D.

Proof. Suppose not. Let d = min(D\E∪E\D). Without loss of generality, assume
d ∈ D. Since 0 ∈ D ∩ E, d > 0. Since D is a natural fragment, d − 1 ∈ D. Since
d was chosen to be minimal, d − 1 ∈ E as well. Since d /∈ E, d − 1 has to be the
maximum of E. Since D ∩ [0, d − 1] = E ∩ [0, d − 1] by minimality of d, we have
E ⊆ D. �

Corollary 13. Let (Xt : t ∈ I) be a definable family such that Xt is a natural
fragment for each t ∈ I. Then

⋃
t∈I Xt is a natural fragment.

It is worth noting that by Lemma 12 the union of all natural fragments, although
not necessarily definable, is closed, discrete, contains 0 and has step 1.

Definition 14. Let D be a definable, closed and discrete subset of K≥0 and ε ∈
K>0. We say that D is an ε-natural fragment if

(1) |sD(d)− (d+ 1)| < ε for every d ∈ D with d 6= maxD,
(2) dist(D, 0) < ε.



4 ANTONGIULIO FORNASIERO AND PHILIPP HIERONYMI

For a ∈ K≥0, we say D is an ε-natural fragment close to a if dist(D, a) < ε.

The next Lemma shows that the property of being an ε-natural fragment for some
ε is preserved under small changes.

Lemma 15. Let ε ∈ K>0 with ε < 1
4 , let D be a ε-natural fragment close to a and

let f : D → (−ε, ε) be a definable function. Then

E := {d+ f(d) : d ∈ D}

is a 3ε-natural fragment close to a.

Proof. Set g(d) := d + f(d) for d ∈ D. It is immediate that (2) holds for E
and 3ε, since it holds for D and ε. Since (1) holds for D and ε and ε < 1/4,
g(sD(d)) = sE(g(d)) for every d ∈ D with d 6= maxD. Moreover, for every d ∈ D
with d 6= maxD,

|sE(g(d))− g(d)− 1| < 2ε+ |sD(d) − d− 1| < 3ε.

Hence (1) holds for E and 3ε. Hence E is a 3ε-natural fragment close to a. �

Definition 16. Let (Yt : t ∈ I) be a definable family of subsets of K. The natural
fragment extracted from (Yt : t ∈ I) is the set of d ∈ K≥0 such that for every
ε ∈ K>0 there exists t ∈ I such that Yt is an ε-natural fragment close to d.

It is not obvious that the object defined in the previous definition is a natural
fragment in sense defined before. The following Lemma establishes that this is
indeed the case.

Lemma 17. Let (Yt : t ∈ I) be a definable family of subsets of K. Then the
natural fragment extracted from (Yt : t ∈ I) is a natural fragment.

Proof. Let D be the natural fragment extracted from (Yt : t ∈ I). Since the empty
set is a natural fragment, we reduce to the case that D is non-empty. It follows
easily from the definitions that 0 ∈ D whenever D is non-empty.

For d ∈ D consider the definable set Ed consisting of all e ∈ K with e ≤ d such that
for every ε ∈ K>0 there exists t ∈ I such that Yt is an ε-natural fragment close to
d and dist(Yt, e) < ε. Note that d ∈ Ed and Ed ⊆ D. Hence

⋃
d∈D Ed = D. Thus

by Corollary 13 it is enough to show that each Ed is a natural fragment.

Let d ∈ D. We first show that e + 1 ∈ Ed for every e ∈ Ed with e ≤ d − 1. Let
ε ∈ K such that 0 < ε < 1. Take t ∈ I such that Yt is a

ε
2 -natural fragment close

to d and dist(Yt, e) <
ε
2 . Let y ∈ Yt be such that |e − y| < ε

2 . Since e ≤ d − 1 and
dist(Yt, d) <

ε
2 , y is not the maximum of Yt. Then

|sYt
(y)− (e + 1)| = |sYt

(y) + y − y − (e+ 1)|

≤ |sYt
(y)− y − 1|+ |y − e| < ε.

Hence dist(Yt, e+1) < ε. Thus e+1 ∈ Ed. Similarly, we can show that e− 1 ∈ Ed

for every e ∈ Ed with e ≥ 1.

Consider
B := { e ∈ Ed : [e, e+ 1) ∩Ed = {e} }.

Note that B is closed and discrete and d ∈ B. We will now show that B is a natural
fragment. It is easy to see that 0 ∈ B. Let e ∈ B and suppose e ≤ d − 1. Then
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e + 1 ∈ Ed. Towards a contradiction assume e + 1 /∈ B. Then there is l ∈ Ed

such that e + 1 < l < e + 2. Since l ≥ 1 and l ∈ Ed, we have l − 1 ∈ Ed with
e < l − 1 < e+ 1. Hence e /∈ B, a contradiction.

It is left to show that Ed = B. Towards a contradiction suppose there is e ∈ Ed \B.
By Fact 4 there is a maximal l ∈ B smaller than e. Since l < d, l + 1 ∈ B. Since
l ∈ B and e /∈ B, l + 1 < e. A contradiction against the maximality of l. Hence
Ed = B. �

It is worth pointing out that until this point only the additive structure of K has
been used.

Proposition 18. Let D be an unbounded natural fragment. Then 〈D,+, ·, <〉 is
a model of first-order Peano arithmetic. Moreover, D ∪ −D is a definable discrete
subring of K.

Proof. Let D be an unbounded natural fragment. We first show that D is closed
under addition. Suppose not. By Fact 4 we can take d ∈ D minimal such that there
is e ∈ D with d+ e /∈ D. Clearly, d 6= 0. Since d is minimal, (d− 1) + (e+ 1) ∈ D.
A contradiction. Hence D is closed under addition.

Now suppose that D is not closed under multiplication. Again take d ∈ D
minimal such that there is e ∈ D with d ·e /∈ D. Clearly, d 6= 0. By minimality of d,
(d−1) ·e ∈ D and hence (d−1) ·e+e ∈ D. Hence D is closed under multiplication.
Since every definable subset of D has a minimum by Fact 4, 〈D,+, ·, <〉 satisfies
the first-order induction axiom. Hence 〈D,+, ·, <〉 is a model of first-order Peano
arithmetic.

Now set Z := D∪−D. It follows immediately that 〈Z,+, ·〉 is a discrete subring
of K. �

4. Best approximations and the proof of Theorem A

Let K be a definably complete expansion of an ordered field that defines a closed
and discrete set D ⊆ K≥0 and a function f : D → K with f(D) somewhere
dense. In order to establish Theorem A, it is enough by Fact 8 to define a discrete
subring. By Proposition 18 it suffices to define an unbounded natural fragment.
After composing f with a semialgebraic function we can assume that f(D) is dense
in (0, 1). First several definitions related to this function f will be introduced. These
definitions were first used for expansions of R by Hieronymi and Tychonievich in [9].

Definition 19. Let c ∈ (0, 1). We say d ∈ D is a best approximation of c from

the left if f(d) < c and

f(D<d) ∩
(
f(d), c

)
= ∅.

We write Lc for the set of best approximations of c from the left. Similarly, we say
d ∈ D is a best approximation of c from the right if f(d) > c and

f(D<d) ∩
(
c, f(d)

)
= ∅.

and write Rc for the set of best approximations of c from the right.
For d ∈ D, we write

Lc,d := Lc ∩ [0, d] and Rc,d := Rc ∩ [0, d],
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and

lc,d :=

{
f(maxLc,d), if Lc,d 6= ∅;
0, otherwise,

and rc,d :=

{
f(maxRc,d), if Rc,d 6= ∅;
1, otherwise.

Since D is closed and discrete, both Lc and Rc are closed and discrete by Fact 4.
Since D≤d is pseudo-finite, so is f(D≤d) by Fact 7. Hence both Lc and Rc are
non-empty. It is easy to check that by density of f(D) both Lc and Rc are un-
bounded and c = sup f(Lc) = inf f(Rc) for c ∈ (0, 1). Moreover Lc,d and Rc,d are
pseudo-finite and the maximum used in the above definition actually exists. It also
worth pointing out that this implies lc,d < c < rc,d.

Lemma 20. Let a ∈ (0, 1) \ f(D) and d ∈ D. Then La,d = Lb,d and Ra,d = Rb,d

for every b ∈
(
la,d, ra,d

)
.

Proof. By definition of la,d and ra,d,

f(D≤d) ∩ (
(
la,d, a

)
∪
(
a, ra,d

)
) = ∅.

Since a /∈ f(D), f(D≤d) ∩
(
la,d, ra,d

)
= ∅. Hence for all b ∈

(
la,d, ra,d

)

{e ∈ D≤d : f(e) < b} = {e ∈ D≤d : f(e) < a}

and
{e ∈ D≤d : f(e) > b} = {e ∈ D≤d : f(e) > a}.

Thus La,d = Lb,d and Ra,d = Rb,d. �

The strategy for the rest of proof is as follows. We will introduce a definable
family using the notions introduced above. Then it will be shown that the natural
fragment extracted from this family is unbounded. The idea how to show the last
statement is the following: suppose there is b ∈ K, ε ∈ K>0 and a suitable semial-
gebraic function g such that the image of a definable subset of Lb,d × {b} ×Rb,d is
an ε-natural fragment close to some n ∈ K. By Lemma 20, the set Lb,d and Rb,d

do not change on an interval around b. Being careful with the definitions we will
use this statement to show that we can find an element c close to b and d′ ∈ D such
that the image of a definable subset of Lc,d′ × {c} × Rc,d′ under g is a 6ε-natural
fragment close to n+ 1.

Let g : K3 → K be

g(a, b, c) :=

{
c−a
b−a

if a < b < c,

0 otherwise.

We will now define a family of definable sets from which we extract an unbounded
natural fragment. Let 〈a, b〉 ∈ (0, 1)2 and d ∈ D. Define

Ya,b,d := {0} ∪ {g(lb,e, b, rb,e) : e ∈ La,d}.

Let J be the set of 〈a, b, d〉 ∈ ((0, 1)\f(D))2×D such that the map e 7→ g(lb,e, b, rb,e)
is strictly increasing on La,d. Note that (Ya,b,d)〈a,b,d〉∈J is indeed a definable family.

Lemma 21. Let 〈a, b, d〉 ∈ J , c ∈ (0, 1), u ∈ K and ε ∈ K>0 with ε < 1
4 . Then

(i) if La,d = Lc,d, then Ya,b,d = Yc,b,d.
(ii) if Ya,b,d is an ε-natural fragment close to u, then there is an interval I

around b such that for all c ∈ I \ f(D), we have 〈a, c, d〉 ∈ J and Ya,c,d is a
3ε-natural fragment close to u.
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Proof. Statement (i) is immediate from the definitions. For (ii) let I0 be the interval
(lb,d, rb,d). By Lemma 20 and b /∈ f(D), Lc,d = Lb,d and Rc,d = Rb,d for every c ∈ I0.
For each e ∈ La,d let Ie be the maximal open subinterval of I0 containing b such
that for each c ∈ Ie

(4.1) |g(lc,e, c, rc,e)− g(lb,e, b, rb,e)| < ε.

This choice is possible, since g is continuous in the second coordinate and lc,e = lb,e
and rc,e = rb,e for every c ∈ I0. Note that the maps e ∈ La,d 7→ sup Ie and
e ∈ La,d 7→ inf Ie are definable. Hence by Fact 7 both functions have a maximum
and a minimum on La,d. Hence there is e1, e2 ∈ La,d such that

⋂

e∈La,d

Ie =
(
inf Ie1 , sup Ie2

)
.

Let I be this open interval. Since b ∈ I, I is non-empty. Since ε < 1
4 and Ya,b,d is

an ε-natural fragment, the map e 7→ g(lc,e, c, rc,e) is strictly increasing on La,d for
every c ∈ I \ f(D). Hence 〈a, c, d〉 ∈ J for all such c.

Let c ∈ I. Let k : Ya,b,d → (−ε, ε) map 0 to 0 and g(lb,e, b, rb,e) to

g(lc,e, c, rc,e)− g(lb,e, b, rb,e).

This function is well-defined, since 〈a, b, d〉 ∈ J and hence e 7→ g(lb,e, b, rb,e) is
strictly increasing on La,d. By definition

Ya,c,d = {y + k(y) : y ∈ Ya,b,d}.

By definability of k, (4.1) and Lemma 15, this set is a 3ε-natural fragment. �

Theorem 22. The natural fragment extracted from (Ya,b,d : 〈a, b, d〉 ∈ J) is un-

bounded.

Proof. Let F be the natural fragment extracted from (Ya,b,d : 〈a, b, d〉 ∈ J). We
first show that F is non-empty. It is enough to find for every ε ∈ K>0 a triple
〈a, b, d〉 ∈ J such that Ya,b,d is an ε-natural fragment up to 1. Let d ∈ D be the
smallest element of D. Take a, b ∈ [0, 1] \ f(D) such that

0 <
f(d)

1 + ε
< b < f(d) < a < 1.

Then La,d = {d}, Lb,d = ∅ and Rb,d = {d}. Hence lb,d = 0 and rb,d = f(d). Thus

|g(lb,d, b, rb,d)− 1| = |
f(d)

b
− 1| < ε.

Hence Ya,b,d = {0, f(d)
b

} is an ε-natural fragment up to 1.

Now towards a contradiction suppose that F is bounded. Let n be the maximum
of F . We will establish a contradiction against the maximality of n. For this, it is
enough to construct for every ε ∈ K>0 a triple 〈a, b, d〉 ∈ J such that Ya,b,d is an
ε-natural fragment close to n+ 1.

Let ε ∈ K>0. Since n is in the natural fragment extracted from (Ya,b,d : 〈a, b, d〉 ∈
J), there is 〈u, v, e〉 ∈ J such that Yu,v,e is an ε

6 -natural fragment close to n. Let I
be the interval around v given by Lemma 21(ii) such that for every w ∈ I \ f(D),
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Yu,w,e is an ε
2 -natural fragment close to n and 〈u,w, e〉 ∈ J .

Let d0 be an element of D≥e such that there are e1, e2 ∈ D with e1, e2 ≤ d0,
f(e1) < f(e2), and (

f(e1), f(e2)
)
⊆ I.

Such an element exists because of the density of f(D). Choose a ∈ K \ f(D) such
that lu,e < a and

(
lu,e, a

)
∩ f(D≤d0

) = ∅.

We can find such an element because f(D≤d0
) is pseudo-finite and f(D) does not

have interior by Fact 6. Now let d ∈ D be the smallest element in D≥d0
with

f(d) ∈
(
lu,e, a

)
.

Then La,d = Lu,e ∪ {d}.

It is left pick to b. First take e1, e2 ∈ D≤d such that f(e1) < f(e2),

(
f(e1), f(e2)

)
⊆ I and

(
f(e1), f(e2)

)
∩ f(D≤d) = ∅.

This choice is possible, because f(D≤d) is pseudo-finite. Now pick b ∈
(
f(e1), f(e2)

)

such that b /∈ f(D) and

(4.2) |g(f(e1), b, f(e2))− (n+ 1)| <
ε

2
.

By our choice of b, f(e1) = lb,d and f(e2) = rb,d. Since b ∈ I \ f(D), Yu,b,e is a
ε
2 -natural fragment close to n and 〈u, b, e〉 ∈ J . Since Lu,e = La,e by choice of a,
we have that 〈a, b, e〉 ∈ J and Yu,b,e = Ya,b,e by Lemma 21(i). Hence Ya,b,e is a
ε
2 -natural fragment close to n. If Ya,b,e is a ε

2 -natural fragment close to n+ 1, then
Ya,b,e is also a ε-natural fragment close to n+1 and hence we are done. Thus from
now on we can assume that Ya,b,e is not a ε

2 -natural fragment close to n+1. Then

(4.3) |maxYa,b,e − n| <
ε

2
.

Now set z := g(lb,d, b, rb,d). Since La,d = Lu,e ∪ {d}, we have

Ya,b,d = Ya,b,e ∪ {z}.

Then by (4.2) and (4.3)

|z −maxYa,b,e − 1| ≤ |z − (n+ 1)|+ |maxYa,b,e − n| <
ε

2
+

ε

2
= ε.

Hence Ya,b,d is an ε-natural fragment close to n+ 1. �

The proof of the above theorem can be easily adapted to show that, for every
pseudo-finite set F ⊆ K≥1, {0} ∪ F can be approximated arbitrarily close by some
Ya,b,d: i.e., for every ε > 0 there exists 〈a, b, d〉 ∈ J such that dist({0}∪F, Ya,b,d) < ε.

As shown in Proposition 18, if D is the unbounded natural fragment extracted
in Theorem 22, then D ∪ −D is a definable discrete subring of K, and Theorem A
follows.
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5. Unrestrained DC structures

Definition 23. We say that K is unrestrained if it defines a discrete subring,
otherwise, we say that K is restrained.

We claim that unrestrained structures are the same as model of second-order
arithmetic, in a sense that we will make precise. The result of this section will be
used in §7.

First, we make precise what we mean by model of second-order arithmetic; as a
background reference we use [19], especially its §1. Let L2 := 〈N,D; 0, 1,+, ·, <〉 be
the (first-order!) 2-sorted language of second-order arithmetic, with a sort N for
(“natural”) numbers (which will be denoted by lowercase letters) and one sort D for
sets (which will be denoted by uppercase letters), with number constants 0 and 1,
binary operations + and · and a binary relation< on numbers, and a binary relation
∈ between numbers and sets. Let L be an arbitrary expansion of L2 (here we differ
from [19], where only structures in the language L2 are considered); notice that we
allow extra function symbols and predicates that involve the sort D and not only
new function and relation symbols on N . A model of second-order arithmetic is a
(again, first-order) L-structure N := 〈N,D; 0, 1,+, ·, <, . . .〉 satisfying the following
axioms:

Basic axioms: 〈N,+, 0, 1,+, ·, <〉 is the positive cone of a discrete linearly
ordered ring Z;

Extension axiom:

∀X∀Y (∀n(n ∈ X ↔ n ∈ Y ) → X = Y );

Induction axiom:

∀X ((0 ∈ X & ∀n(n ∈ X → n+ 1 ∈ X)) → X = N);

Comprehension scheme:

∃X∀n (n ∈ X ↔ φ(n)),

where φ(n) is any L-formula in which X does not occur freely.

Remember that we view second-order arithmetic as a theory in first-order logic;
thus, the theory will have models besides the standard one, given by N and all its
subsets.

5.1. From unrestrained structures to models of arithmetic. First, we show
how to transform an unrestrained structure into a model of second-order arithmetic.

For the rest of this subsection, let K be unrestrained. Let Z be a definable
discrete subring of K. Note that Z is the unique subring with that property: if Z ′

were another discrete definable subring of K, one considers the minimum positive
element of Z∆Z ′ and easily reaches a contradiction against Z 6= Z ′. We will denote
the non-negative elements of Z by N and the fraction field of Z by Q. We start by
transferring some of the coding techniques, in particular recursion, to our setting.
As most of the proofs are direct transfers of the classical ones, we leave most of the
details to the reader.

It is already clear that N is a model of first-order arithmetic.
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Lemma 24. There is a definable map β : N × N → N such that for each l ∈ N
and each definable map f : N≤l → N there is k ∈ N such that β(k, i) = f(i) for
i ≤ l.

Proof. Since the function f may definable using parameters outside N , we will
remind the proof (we refer to [19, §II.2] for the details). Since N is a model
of first-order arithmetic, there is a definable bijection θ : N × N → N . Define
β′(r, a, i) := rem(r, (i + 1) · a + 1), where rem(x, y) denotes the remainder after
integer division of x by y. Let β(k, i) := β′(θ−1(k), i).
Let l ∈ N and f : N≤l → N be definable. It is left to show that there exist r, a ∈ N
such that β′(r, a, i) = f(i) for i ≤ l. Since N is a model of first-order arithmetic,
we can find a ∈ N such that f(i) < a for each i ≤ l and all elements of

{(i+ 1)a+ 1 : i ∈ N≤l}

are pairwise coprime. We denote (i + 1)a+ 1 by ki. To finish the construction we
just need to establish the following claim.

Claim 1. For each m ∈ N≤l, there exists r ∈ N such that for each i ∈ N≤m

rem(r, ki) = f(i).

Suppose not. Let m ∈ N≤l be minimal such that r as in the claim does not exist.
By minimality of m, there is r′ ∈ N be such that for every i ∈ N≤m−1

rem(r′, ki) = f(i).

Note that the set {ki : i ∈ N<m} is definable inside N . Let r ∈ N such that
rem(r, ki) = rem(r′, ki) for each i < m, and rem(r, km) = f(m). Such an r exists
by the Chinese Remainder Theorem in N . The Chinese Remainder holds in N
because N is a model of first-order arithmetic. Contradiction. �

From the proof of the above Lemma, it is clear that β is already definable in
〈N,+, ·, <〉, and hence for every l ∈ N , every definable subset of N<l is definable
in 〈N,+, ·, <〉.

Lemma 25. Let c : Kn → N and g : Kn ×N → N be definable. Then there is a
unique definable function f : Kn ×N → N such that for all a ∈ Kn

f(a, 0) = c(a),

f(a, i+ 1) = g(a, f(a, i)).

Proof. As in the real case, given a ∈ Kn and j, l ∈ N , we define f(a, j) = l if there
exists k ∈ N such that

β(k, 0) = a;

β(k, j) = l;

∀i ∈ N such that i < j, β(k, i+ 1) = g(a, β(k, i)). �

Corollary 26. Let X ⊆ N be unbounded and definable. Then there is definable
bijection from N to X .

Proof. Let f : N → X be the function that takes 0 to the minimum of X and i+1
to the successor of f(i) in X . By Lemma 25 f is definable. �
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Definition 27. Let A and B be definable sets. Let ∆ be a family of functions
from B to Km. We say that ∆ is in definable bijection with A if there exists
a definable map α : A×B → Km such that:

(1) for every f ∈ ∆ there exists a unique a ∈ A such that for every b ∈ Kn

f(b) = α(a, b);
(2) for every a ∈ A the map x 7→ α(a, x) is in ∆.

With the above notation, we denote by α̂ : ∆ → A the map sending f ∈ ∆ to the
unique a ∈ A satisfying (1).

If Γ is a family of subsets of B, we say that Γ is in definable bijection with

A if the family of characteristic functions of the sets in Γ is in definable bijection
with A. By abuse of notation, if α : A× B → {0, 1} is the corresponding map, we
denote by α̂ : Γ → A the map sending X ∈ Γ to the unique a ∈ A satisfying the
analogue of (1).

Example 28. The family of open balls in Kn is in definable bijection with Kn ×
K>0.

Lemma 29. The family of definable bounded subsets of N is in definable bijection
with N .

Proof. Let C ⊆ N be the set of all k ∈ N such that β(k, i) ∈ {0, 1} for all i ∈ N .
Define γ : C ×N ×N → {0, 1} by

(k, l, i) 7→

{
β(k, i), if i ≤ l;
0, otherwise.

Since N is a model of first-order arithmetic, there is a definable bijection θ : N ×
N → N . Let D be θ(C×N). Now consider the subset E of D containing all k ∈ N
such that there is no k′ ∈ N with k′ < k and

{i ∈ N : γ(θ−1(k′), i) = 1} = {i ∈ N : γ(θ−1(k), i) = 1}.

By Lemma 24, for every bounded definable subset X of N there is k ∈ D such that
{i ∈ N : γ(θ−1(k), i) = 1} = X . Hence by Fact 1, there is a unique k ∈ E with
this property. Hence the family of definable bounded subsets of N is in definable
bijection with E. By Corollary 26 E is in definable bijection with N . Thus the
family of definable bounded subsets of N is in definable bijection with E. �

Corollary 30. The family of definable subsets ofN is in definable bijection withK.

We denote by ǫ̂ the corresponding bijection.

Proof. The idea of the proof is to use the expansion in base 2 to encode definable
subsets of N as elements of K. Let E be the family of all definable subsets of N
and C be the family of unbounded definable subsets of N . We want to prove that
E is in definable bijection with K.

Claim 1. C is in definable bijection with (0, 1].

The Corollary then follows: in fact, by Lemma 29, E \C is in definable bijection
with N . Moreover, the disjoint union of K and N is in definable bijection with K:
we define µ : K ⊔N → K as follows:

µ(x) :=





x if x ∈ K \N

2x if x is in the copy of N inside K

2x+ 1 if x is in the copy of N outside K.
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Hence, E is in definable bijection with K.
Let us prove now Claim 1. By Lemma 25 there is a unique definable function

from N to N , which we denote by 2n, such that 20 = 1 and 2n+1 = 2 · 2n. For
i ∈ {0, 1} let

Yn,i := {a ∈ (0, 1] : there is m ∈ 2 ·N + i such that m < 2na ≤ m+ 1} .

Given X ⊂ N definable and unbounded and n ∈ N , let f : N → {0, 1} be the
characteristic function of X , and

Zn,X :=
⋂

ℓ∈N≤n

Yℓ,f(ℓ)

By induction on n, it is easy to see that

Zn,X =
(an
2n

,
an + 1

2n

]

for some unique an ∈ N with 0 ≤ an < 2n. Let a := lim supn→∞
an

2n . Then, since
we assumed that X is unbounded, it is easy to see that

⋂
n∈N Zn,X = {a} and

a ∈ (0, 1]. Define λ̂(X) := a.

We now show that λ̂ is a definable bijection between C and (0, 1]. Given a ∈ (0, 1]

let X := {n ∈ N : a ∈ Yn,1}: then, λ̂(X) = a, and hence λ̂ is surjective. Let X,X ′

be distinct definable unbounded subsets of N , and assume, for a contradiction, that

b := λ̂(X) = λ̂(X ′). Let n := min(X∆X ′); w.l.o.g., we can assume n ∈ X \ X ′.

Then, Zn,X′ =
(

an−1
2n , an

2n

]
and Zn,X =

(
an

2n ,
an+1
2n

]
for a unique an ∈ N with

1 ≤ an < 2n. Moreover, since b = λ̂(X) = λ̂(X ′), we have an = b · 2n, and, for
every m > n, m ∈ X ′ and m /∈ X ; however, the latter contradicts the fact that X
is unbounded.

The corresponding function λ : K × N → {0, 1} is given λ(a, n) = 1 ↔ a ∈
Yn,1. �

Lemma 31. The family of definable functions from N to K is in definable bijection
with K.

Proof. The idea of the proof is that KN ≈ (2N )N ≈ 2N×N ≈ 2N ≈ K, where AB

denotes the family of definable functions from B to A, and A ≈ B means that there
is a definable bijection between A and B.

More in details, fix a definable bijection θ : N × N → N . Given f : K → N
definable, let Xf be the definable subset of N such that, for every i, j ∈ N ,

j ∈ ǫ̂−1(f(i)) ↔ θ(i, j) ∈ Xf .

The definable bijection δ̂ is given by δ̂(f) := ǫ̂(Xf ). Equivalently, define δ̂(f) to be
the unique b ∈ K such that, for every i, j ∈ N , ǫ(f(i), j) = ǫ(b, θ(i, j)).

The corresponding function δ is defined in the following way: for every b ∈ K
and i ∈ N , δ(b, i) is the unique c ∈ K such that, for every j ∈ N , ǫ(c, j) =
ǫ(b, θ(i, j)). �

Corollary 32. Let c : Kn → K and g : Kn ×N → K be definable. Then there is
a unique definable function f : Kn ×N → K such that for all a ∈ Kn

f(a, 0) = c(a),

f(a, i+ 1) = g(a, f(a, i)).
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Notice that from the proofs of Corollary 30 and Lemma 31 it follows that ev-
ery definable subset of N and every definable function from N to K are already
definable in 〈K,N,+, ·, <〉.

Moreover, we can encode definable subsets of N as elements of K. Thus, the set
sort of the proposed model of arithmetic is K itself, and the inclusion relation ∈ is
defined as follows:

n ∈ a ↔ ǫ(a, n) = 1.

Finally, we add a function, predicate or constant for (the translation via ǫ̂ of) every
function, predicate, or constant in the language of K. It is now clear that the
resulting structure is a model of second-order arithmetic.

5.2. From models of arithmetic to unrestrained structures. Conversely,
start with N := 〈N,D; 0, 1,+, ·, <, . . .〉 a model of second-order arithmetic, in the
sense explained at the beginning of §5, in the language L. Let Z be the ring gen-
erated by N and Q be the field of fractions of Z. As in [19, Def. I.4.2], a set of
“real numbers” can be interpreted inside N : more precisely, a “sequence of ratio-
nal numbers” is a definable function from N to Q; such a sequence is Cauchy if it
satisfies the usual Cauchy condition. We set K to be the set of Cauchy sequences
modulo the null sequences, with the operations +, · and order < induced by the
ones on Q. Clearly, Q embeds definably and canonically in K. It is also clear that
〈K, ·,+, <〉 is an ordered field; moreover, since the family of Cauchy sequences of
rational numbers is a definable family, K is interpretable in N .

Lemma 33. K0 := 〈K,Z, ·,+, <〉 is a definably complete structure.

Proof. Standard proof of analysis (cf. [19, Theorem III.2.2]). Let A ⊂ K be defin-
able, bounded, and nonempty; we have to show that A has a least upper bound.
W.l.o.g., we can assume that A is an initial segment, that is, if a ∈ A and b < a,
then b ∈ A; moreover, we can also assume 0 ∈ A.

For every n ∈ N , let

f(n) := max
{m

2n
: m ∈ N,

m

2n
∈ A

}
.

By definition, f takes values in Q ∩A; it is clear that f is a Cauchy sequence, and
that its equivalence class is the l.u.b. of A. �

Thus, we have the function ǫ̂ for the structure K0; using the coding given by ǫ̂
we can translate all the extra functions, predicates and constants in L as functions,
predicates, and constants on K; we denote by K the resulting expansion of K0. It
is still true (with the same proof as in Lemma 33) that K is definably complete,
and thus we showed how to transform a model of second-order arithmetic into an
unrestrained definably complete structure.

The two transformations are inverse to each other; thus we can say that models
of second-order arithmetic and unrestrained definably complete structures are the
same objects.

6. Definable functions and meager sets

In this section we will establish some preliminary facts about definable functions,
and show how to transfer part of the theory about Baire category to the definable
context. We will later use these facts to prove Theorem B.
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6.1. Definably meager and DΣ sets. In order to shows how to use Theorem A,
and because we will use it in the remainder of this section, we give a quick new
proof of a conjecture by Fornasiero and Servi [5]. It was first proved by different
methods in [8].

Definition 34. A definable set A ⊆ Kn is called definably meager if A =⋃
t∈K Xt, for some definable increasing family (Xt : t ∈ K) of nowhere dense

subsets of Kn.

Lemma 35. Let A ⊆ Kn be at most pseudo-enumerable. Then A is definably
meager.

Proof. Since A is at most pseudo-enumerable, there exists a definable closed and
discrete set D ⊂ K≥0 and a definable surjective function f : D → A. For each
t ∈ K, let Xt := f(D≤t). By Fact 7, each Xt is pseudo-finite. Then A =

⋃
t∈K Xt,

and (Xt : t ∈ K) is definable increasing family of nowhere dense subsets of Kn. �

Theorem 36 ([8]). K is not definably meager.

Proof. If K is restrained, then Theorem A and [3, Proposition 6.4] shows that
every definably meager sets has empty interior, and in particular K is not definably
meager.

If not, then, as shown in [3, Lemma 6.2], we can mimic one of the classical proofs
of Baire’s category theorem to conclude that K is not definably meager. �

Definition 37. Let X ⊆ Kn be a definable set. We say that X is a DΣ set if it is
the union of a definable increasing family, indexed by K, of closed subsets of Kn.

By [5, Remark 3.3], a definable set is a DΣ set iff it is the projection of a definable
closed set.

Lemma 38. Let A ⊆ Kn+m be a DΣ set. Let

T (A) := {x ∈ Kn : Ax is definably meager} .

Then A is definably meager iff Kn \ T (A) is definably meager.

Proof. It follows immediately from [5, Lemma 5.2 and Proposition 5.4]. �

6.2. Definable functions and continuity. Now that we have a reasonable ana-
logue of the notion of meager sets, we can use it to transfer several well-known
results from real analysis to K. For the remainder of this subsection we will not use
Theorem A anymore. Afterwards, we will use these results to prove Theorem B by
distinguishing the case when K is either restrained or unrestrained.

First, we show that a monotone function f is continuous outside a “small” set.

Lemma 39. Let f : K → K be a definable monotone function. Then, the set Df
of discontinuity points of f is at most pseudo-enumerable.

Proof. For every ε > 0 let

Df(ε) :=

{
x ∈ K : lim sup

y→x

|f(y)− f(x)| > ε

}

=

{
x ∈ K : lim

y→x+
f(y)− lim

y→x−
f(y) > ε

}
.

It is easy to see that f(Df(ε)) is discrete for every ε > 0. Thus, by Fact 10, since
Df =

⋃
ε>0 Df(ε), Df is at most pseudo-enumerable. �
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Definition 40. Let f : K → K be a definable function. The fourDini derivatives

of f are:

λℓf(x) := lim inf
y→x−

f(y)− f(x)

y − x

λrf(x) := lim inf
y→x+

f(y)− f(x)

y − x

Λℓf(x) := lim sup
y→x−

f(y)− f(x)

y − x

Λrf(x) := lim sup
y→x+

f(y)− f(x)

y − x
.

Lemma 41. Let f : K → K be definable and continuous. If, for every x ∈ K,
Λrf(x) ∈ K and Λrf is continuous, then f is C1 (and f ′ = Λrf).

Proof. As in [1, Theorem 1.3]. �

We will now adapt the classical definition of Baire class to the “definable” con-
text.

Definition 42. Let X ⊆ Kn be a definable set, f : X → K be a definable function,
and n ∈ N. We say that f is of definable Baire class n if:

(1) either n = 0 and f is continuous;
(2) or n > 0 and there exists a definable family of functions (ft : X → K)t∈K

such that each ft is of class (n− 1) and
(a) either, for every x ∈ X , f(x) = limt→+∞ ft(x).
(b) or, for every x ∈ X , f(x) = supt ft(x);
(c) or, for every x ∈ X , f(x) = inft ft(x).

In the above definition we had to add Clauses (2-b) and (2-c) to the classical
definition, because we could not prove that a function satisfying e.g. Clause (2-b)
would satisfy Clause (2-a).

The interest for us of the above definition stems from the following fact.

Lemma 43. Let f : K → K be definable and continuous. Then, Λrf is of definable
Baire class 2.

Proof. For every t 6= 0 let gt(x) :=
f(x+t)−f(x)

t
. Then,

Λrf(x) = inf
t>0

sup
0<s<t

gs(x). �

Definition 44. Let f : X → K be a definable function. We say that f is almost

continuous if the set of its discontinuity points Df is nowhere dense.

Definition 45. K has locally o-minimal open core if there does not exist a definable,
closed, discrete, and unbounded subset of K≥0 (see [4, Thm. 3.3]).

We could prove the following lemma only under the assumption that K does not
have locally o-minimal open core.

Lemma 46. Assume that K does not have locally o-minimal open core. Let (ft :
Kn → [0, 1])t∈K be a definable family of almost continuous functions. Let f :
Kn → [0, 1] be either of the following functions:

(1) f(x) = supt ft(x);
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(2) or f(x) = limt→∞ ft(x).

Then, the restriction of f to the complement of a definably meager set is continuous.
If moreover each ft is continuous (i.e., f is of definable Baire class 1), then D(f) is
definably meager.

Proof. Minor variation of [15, Thm. 7.3]. Let M ⊂ K≥0 be definable, closed,
discrete, and unbounded.

Let Di be the closure of Dfi, and D :=
⋃

i∈M Di since each Di is nowhere dense,
D is definably meager. Let X := Kn \D: notice that X is dense in Kn. We claim
that f ↾X is continuous outside a definably meager set. (If each fi is continuous,
then D is empty, and we also obtain the“moreover” clause).

For every ε > 0, set

Fε := {a ∈ X : ∀δ > 0 ∃x ∈ X (|x− a| < δ & |f(x)− f(a)| > 5ε)} .

it suffices to show that Fε is nowhere dense. Fix an open box V ⊆ Kn and ε > 0.
We prove first Case (2). Notice that f(x) = limt→∞,t∈M ft(x). For every i ∈ K,

let

Ei := {x ∈ V : |fi(x) − f(x)| ≤ ε} .

Notice that (Ei : i ∈ M) is a definable family of subsets of V , and
⋃

i∈M Ei = V .
Hence, by Theorem 36, there exists i0 ∈ M such that the closure of Ei0 has
nonempty interior. Let U ⊆ cl(Ei0 ) be a nonempty open box. Since fi0 is continu-
ous on U ∩X , after shrinking U we can also assume that, for every x, x′ ∈ U ∩X ,
|fi0(x) − fi0(x

′)| ≤ ε. Thus, for every x, x′ ∈ U ∩ X , |f(x)− f(x′)| ≤ 3ε, and
therefore U ∩X ∩ Fε = ∅.

Thus, every nonempty open definable set V contains a nonempty open set U
disjoint from Fε ∩X , and therefore Fε ∩X is nowhere dense.

The proof of Case (1) is similar, using instead

Ei := {x ∈ V : f(x) ≤ fi(x) + ε} . �

Example 47. (1) Notice that in the above lemma we cannot conclude that
Df is definably meager without also assuming that either each fi is con-
tinuous or K is restrained (see Corollary 50). In fact, it is easy to see
that the characteristic function of an at most pseudo-enumerable set is the
pointwise limit of a definable family of functions fi such that each D(fi)
is pseudo-finite. For instance, let R := 〈R,+, ·, <,N〉. Let f : R → R be
the characteristic function of Q: then, f can be written as the limit of a
definable family of functions fi, with D(fi) finite for every i.

(2) Let f : Kn → K be a definable continuous function such that Λrf is
discontinuous on a nonmeager set: then Λrf is a function of definable Baire
class exactly 2 (i.e., not 1). It is an easy exercise to find such a function f
when K is unrestrained (cf. [1, p. 42]): however, we will see later that when
K is restrained such f does not exist.

(3) If X ⊆ Kn is a nonempty definable closed subset, then the characteristic
function of X is of definable Baire class 1.

(4) If R is an unrestrained expansion of the real field, then, for each n ∈ N,
the “definable Baire class n” and the “Baire class n” are the same class
(because all sets in the projective hierarchy are definable in R); therefore,
by a theorem by Lebesgue [11], for each n there is a definable function of
definable Baire class exactly n.
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(5) Let C ⊂ R be a “Cantor set”, i.e., a nonempty, definable, closed, perfect,
nowhere dense subset. Define f : R → R as f(x) = 0 outside C, f(x) = 1/2
on each point of C such that there exists ε > 0 with either (x, x+ε)∩C = ∅,
or (x− ε, x)∩C = ∅, and f(x) = 1 otherwise. Then, f is of definable Baire
class exactly 2 (cf. [15, Ch.7]). There are some restrained expansions of
R defining a Cantor set as above. We leave open the question if in the
restrained case there can be definable functions of definable Baire class
greater than 2.

(6) If K is restrained and defines set X ⊂ K which is dense and codense, then
the characteristic function of X is not in any definable Baire class; for in-
stance, if R is the expansion of the real field by the set Ralg of real algebraic
numbers, then the characteristic function of Ralg is of Baire class 2, but it
is not in any definable Baire class.

6.3. Restrained structures. In this subsection we will prove a few results about
definable functions and sets in restrained structures. We will use them to prove
the restrained case of Theorem B; however, we think that some of them are of
independent interest.

Lemma 48. Let X ⊆ K be definable and nowhere dense. Then, there exists two
sets Y, Z ⊂ K discrete, definable, and such that Y ⊆ X and cl(X) ⊆ cl(Y )∪ cl(Z).
Moreover, the choice of Y can be made in a uniform way: that is, if X ⊂ Kn+1 is
definable, and for every t ∈ Kn, Xt is nowhere dense, then there exists Y, Z ⊂ Kn+1

definable, such that Y ⊆ X and, for every t ∈ Kn, Yt and Zt are discrete, and
Xt ⊆ cl(Yt) ∪ cl(Zt).

Proof. Let Y be the set of isolated points of X . W.l.o.g., we can assume that X is
closed and X ⊂ (0, 1). Thus, (0, 1) \X can be written in a unique way as a union
of disjoint open intervals; let Z be the set of centers of such intervals. �

Lemma 49. K is restrained iff, for every m ∈ N, every definably meager subset of
Km is nowhere dense.

Proof. For the “if” direction, let X ⊂ K be at most pseudo-enumerable. Then,
by Lemma 35, X is definably meager; thus, by assumption, X is nowhere dense,
proving that K is restrained.

For the “only if” direction, first we assume m = 1. If K has locally o-minimal
open core, then the conclusion holds (see [4, Theorem 3.3]). Otherwise, there exists
an unbounded definable closed discrete set D ⊂ K≥0. Let X ⊂ K be definably
meager; thus, X =

⋃
i∈K Yi, for some (Yi : i ∈ K) definable increasing family of

nowhere dense set. Since D is unbounded, X =
⋃

i∈D Yi. By Lemma 48, there
exists two definable families of discrete sets (Zi : i ∈ D) and (Wi : i ∈ D), such
that, for every i ∈ D, Yi ⊆ cl(Zi ∪Wi). Let T :=

⋃
i∈D Zi ∪Wi. By Fact 10, T is

at most pseudo-enumerable, and hence nowhere dense, since K is restrained. Since
X ⊆ cl(T ), we have that X is nowhere dense.

Assume now that m ≥ 1 (and K is restrained). By induction on n, we show the
following:

(1)n Every DΣ subset of Kn has interior or is nowhere dense;
(2)n For every p ∈ N andADΣ subset ofKn+p, the set {x ∈ Kn : cl(Ax) 6= cl(A)x}

is definably meager in Kn.

(3)n If A is a DΣ subset of Kn, then fr(A) := cl(A) \ Å is nowhere dense.
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(4)n Every definably meager subset of Kn is nowhere dense.

Assertion (4)m is the conclusion of the Lemma. Assertion (1)1 is the Case m = 1.
The proofs of (2)1 and the inductive step are as in [14, 1.6].
More precisely, assume that we have already proved (1)n; we claim that (2)n,

(3)n, and (4)n also hold. For (3)n: we have

fr(A) = fr(Å) ∪ fr(A \ Å) = fr(Å) ∪ cl(A \ Å)

and each of the two pieces is a DΣ set with empty interior, and thus, by (1)n,
nowhere dense.

For (4)n, let X ⊆ Kn be definably meager: that is, X =
⋃

t∈K Yt, where (Yt :
t ∈ K) is a definable increasing family of nowhere dense subsets of Kn. For each
t ∈ K, let Zt be the closure of Yt (inside Kn); define W :=

⋃
t Zt. Then, W is

definably meager and hence, by Theorem 36, with empty interior; moreover, W is a
DΣ set. Thus, by (1)n, W is nowhere dense, and, since X ⊆ W , X is also nowhere
dense.

The proof of (2)n is a bit more involved. Let A be a DΣ subset of Kn+p and
B := {x ∈ Kn : ∃y ∈ cl(A)x \ cl(Ax)}. We want to show thatB is definably meager.

For each open box U ⊆ Kp, let CU := {〈x, y〉 ∈ cl(A) : y ∈ U & cl(Ax) ∩ U = ∅}
and BU := π(CU ), where π : Kn+p → Kn is the projection onto the first n
coordinates. Notice that B is the union of all the BU ’s.

Claim 1. For each open box U , BU is nowhere dense.

In fact, let G := π(A ∩ (Kn × U)). Then, G is a DΣ set, and fr(G) has empty
interior (by (3)n). However, BU ⊆ fr(G), and the claim is proved.

For each r > 0, let

D(r) := {〈x, y〉 ∈ cl(A) : |y| ≤ r & d(y,Ax) ≥ r} ,

E(r) := cl(D(r)), and F (r) := π(E(r)). Since B =
⋃

r>0 π(D(r)) ⊆
⋃

r>0 F (r),
and each F (r) is closed, it suffices to show that each F (r) has empty interior.
Assume, for a contradiction, that F (r) contains a nonempty open box V , for some
r > 0. Define f : V → Kp, f(x) := lexmin(E(r)x). By [2, 2.8(1)], the set of
discontinuity points of f is definably meager; thus, by (1)n, after shrinking V if
necessary, we can assume that f is continuous on V . Thus, Γ(f), the graph of f , is
contained in E(r). After shrinking V if necessary, by continuity of f , we can find
an open box U ⊂ Kp of diameter less than r and such that f(V ) ⊆ U .

Then, D(r)U := D(r) ∩ (Kn × U) ⊆ CU , and therefore

V ⊆ π
(
cl(D(r)U )

)
⊆ cl

(
π(D(r)U )

)
⊆ cl(BU ),

contradicting Claim 1.
Finally, assume that we have already proved all the statements for every n′ < n;

we want to prove (1)n. Let A ⊂ Kn be a DΣ set with empty interior; we want
to prove that A is nowhere dense. Notice that A is definably meager; thus, by
Lemma 38, the set of points x ∈ Kn−1 such that Ax has nonempty interior is
definably meager; hence, by (1)1 and (4)n−1, the set of points x ∈ Kn−1 such that
Ax is somewhere dense is nowhere dense. By (2)n−1, the set of points x ∈ Kn−1

such that cl(A)x has interior is nowhere dense. Hence, cl(A) has empty interior. �

Corollary 50. LetK be restrained and without locally o-minimal open core, n,m ∈
N, and f : Km → K be of definable Baire class n. Then, f is almost continuous.
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Proof. By induction on n, Lemma 46, and Lemma 49. �

Lemma 51. Let K be restrained, U ⊆ Kn be open and definable, f : U → K be
a definable continuous function, and p ∈ N. Then, f is Cp on a dense open subset
of U .

Proof. Let B ⊆ U be an open box; it suffices to prove the result for f ↾B; since B
is diffeomorphic to Kn itself, it suffices to treat the case when U = Kn.

If K has locally o-minimal open core, then, since f is definable in the open core
of K, the conclusion follows from [4, Theorem 5.11].

Otherwise, by induction, it suffices to treat the case p = 1. First, we do the
case n = 1. By Lemma 43, Λrf is of definably Baire class 2. By Corollary 50,
Λrf : K → K ∪ {±∞} is continuous on a dense open set U , but may take value
infinity somewhere.

Claim 1. Let V := {x ∈ U : Λrf(x) ∈ K}. Then, V is open and dense.

If not, since Λrf is continuous on U , there would exist an interval [a, b] ⊆ U such
that

(1) either for every x ∈ [a, b], Λrf(x) = +∞,
(2) or, for every x ∈ [a, b], Λrf(x) = −∞.

By replacing f(x) with f(x)− f(b)−f(a)
b−a

(x− a), w.l.o.g. we can assume that f(b) =

f(a). Thus, since f is continuous and definable, there exists x0 ∈ (a, b) that is a
maximum for f in [a, b]; but then Λrf(x0) ≤ 0, contradicting Case (1). Similarly,
there exists x1 ∈ (a, b) that is a minimum for f in (a, b), contradicting Case (2).
Finally, by Lemma 41, f is C1 on V .

Assume now that n > 1. We will prove that, outside some nowhere dense set,
each partial derivative of f exists and is continuous; it suffices to show that ∂f/∂xn

exists and is continuous on a dense open set. Let ēn := 〈0, . . . , 0, 1〉 ∈ Kn. Define

the Dini derivatives of f in the direction ēn as Λrf := lim supt→0+
f(x+tēn)−f(x)

t
,

and similarly for the other three Dini derivatives. Reasoning as in the case n = 1,
we see that Λrf is finite and continuous on a dense open set U , and similarly for the
other three Dini derivatives. It then suffices to show that, after maybe shrinking
U to a smaller dense open definable set, the four Dini derivatives coincide; by
symmetry, it suffices to prove that λℓf = Λrf on a dense open set. Assume not:
then, by continuity, there would exists an open set V such that λℓf(x) 6= Λrf(x)
for every x ∈ V ; but this contradicts the case n = 1. �

7. Lebesgue’s Theorem

We give now an application of Theorem A, by proving the following analogue of
Lebesgue’s theorem. Remember that we call K unrestrained if it defines a discrete
subring (with 1), and restrained otherwise.

Theorem B. Let f : K → K be a definable monotone function. Then, f ′(x) exists
and is in K (i.e., not ±∞) on a dense subset of K.

The reasons we chose this example are that it is interesting in its own right (it
was conjectured in [12]), and it gives a good illustration of how Theorem A can
be used to transfer various classical results from R to K. Theorem A allows us to
reduce the proof of the above Theorem to structures satisfying either condition (I)
or (II) of Theorem A.
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7.1. The restrained case. We will now give a proof of Theorem B in the case
when K is restrained.

The theorem in the restrained case follows immediately from the results in §6.3
plus the following lemma.

Lemma 52. Let K be restrained; let f : K → K be a definable monotone function.
Then, there exists a definable closed nowhere dense set C such that f is continuous
outside C.

Proof. Let D be the set of discontinuity points of f , and C be its closure. By
Lemma 39, D is at most pseudo-enumerable; by Theorem A, C is nowhere dense.

�

The following corollary concludes the proof of Theorem B in the case when K is
restrained.

Corollary 53. Let K be restrained; let f : K → K be a definable monotone
function. Then, f is C1 outside a nowhere dense set.

Proof. By Lemmas 52 and 51. �

7.2. Measure theory. Let us examine now the case when K defines a discrete
subring Z. Using the results in §5, we can transfer the tools of measure theory. We
will sketch the relevant ideas in the following (cf. [19, §X.1] for a different approach).
Many of the definitions make sense also in the case when K is restrained: therefore
in this subsection, unless said otherwise, we are not assuming thatK is unrestrained.

Definition 54. Let D ⊂ K≥0 be a nonempty closed discrete definable set, and let
sD be defined as in Definition 3. Let h : D → K be a definable function. We define
H : D → K to be function given recursively by H(min(D)) = 0 and for every d ∈ D
with d 6= max(D), H(sD(d)) = H(d)+h(d). If h takes only nonnegative values and
H exists, we denote

∑

d∈D

h(d) := sup
d∈D

H(d) ∈ K≥0 ∪ {+∞} .

It is easy to see that if H is definable, then it is unique. Moreover, if K is
unrestrained, then H exists by Corollary 32.

Definition 55 (Lebesgue measure). Let a < b ∈ K∪{±∞}; we set |(a, b)| := b−a.
Let U :=

(
Id : d ∈ D

)
be a definable family of open intervals, indexed by a closed

discrete set D ⊆ K≥0. We define M(U) :=
∑

d∈D |Id| (if it exists).

Let A ⊆ K be a definable set. We denote by µ(A) the infimum of M(U), as U
varies among all the definable coverings of A by open intervals, indexed by some
definable discrete subset of K≥0, such that M(U) exists. Notice that µ(A) may not
lie in K (since it is the infimum of a set that may not be definable), but in the
Dedekind-MacNeille completion of 〈K,<〉. Notice also that 0 ≤ µ((0, 1)) ≤ 1.

Notice that when K expands 〈R,+, ·,N〉, then µ(X) is the outer Lebesgue mea-
sure of X .

Conjecture 56. µ((0, 1)) = 1.

However, things are much simpler if K unrestrained. In that case, M(U) always
exists, and we can always assume that the index set of U is either N or an initial
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segment of N (more precisely, for every definable closed discrete subset D ⊂ K≥0

there is a unique definable increasing bijection between a unique initial segment of
N and D).

Moreover, the family of definable covers of a given definable set A by open
intervals indexed by N is itself definable (by Lemma 31), and therefore µ(A) ∈
K≥0 ∪ {+∞}. Moreover, again by using Lemma 31, if (Ai : i ∈ I) is a definable
family, then f : i 7→ µ(Ai) is a definable function.

Proposition 57. Let K be unrestrained. Then, µ((0, 1)) = 1.

The proof of the above proposition is a minor modification the classical one that
(0, 1) has Lebesgue measure 1, and is left to the reader; he can base it on the
following result, whose proof is also left to the reader.

Lemma 58 (Commutativity of addition). Let K be unrestrained. Let h : N →
K≥0 be a definable function, and σ : N → N be a definable bijection. Then,∑

d∈N h(d) =
∑

d∈N h(σ(d)).

Notice that we are not able to prove the above lemma without the assumption
that K defines a discrete subring.

Conjecture 59. Let D ⊆ K≥0 be a definable closed discrete subset; let h : D →
K≥0 be a definable function, and σ : D → D be a definable bijection. Then,∑

d∈D h(d) =
∑

d∈D h(σ(d)) (i.e., if the sum on the left exists, then also the one on
the right exists and is equal to it).

Lemma 60 (Sigma-subadditivity of measure). Let K be unrestrained. Let
(
Ai :

i ∈ N
)
be a definable family of subsets of K. Then,

µ(
⋃

i

Ai) ≤
∑

i

µ(Ai).

In particular, if µ(Ai) = 0 for every i ∈ N , then µ(
⋃

i Ai) = 0. Therefore, if A ⊂ K
is at most pseudo-enumerable, then µ(A) = 0.

Proof. Left to the reader. �

Corollary 61. Let K be unrestrained. Let X ⊆ K be a definable set, and 0 ≤ δ <
1 ∈ K. Assume that for every interval I we have µ(X ∩I) ≤ δ |I|. Then, µ(X) = 0.

Proof. Assume not: let µ(X) = c > 0. Fix 0 < ε ∈ K small enough (how small will
be clear later). Let U := (Id : d ∈ N) be a definable family of intervals, such that
M(U) < (1 + ε)c and X ⊆

⋃
d Id. Thus, by our assumption on X ,

µ(X) ≤
∑

d

µ(Id ∩X) ≤
∑

d

δ |Id| ≤ δ(1 + ε)c.

If we take ε small enough, we have δ(1 + ε) < 1, absurd. �

7.3. The unrestrained case. With those tools at our disposal, we can now mimic
some of the proofs of Lebesgue’s theorem: we will follow the trace of [17] for the
case when f is continuous, and of [18] for the general cases.

First, a technical lemma, which is easy to prove for every K, without using
Theorem A: the proof is left to the reader (cf. [17] for the details).
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Lemma 62 (Riesz’s Rising Sun Lemma). Let a < b ∈ K and g : [a, b] → K be a
definable bounded function. For every x ∈ [a, b], denote

G(x) := max
(
g(x), lim sup

y→x

g(y)
)
.

Let

E := {x ∈ (a, b) : (∃y ∈ (x, b]) g(y) > G(x)} .

Then, E is an open definable subset of (a, b). Moreover, let (a′, b′) be a maximal
open subinterval of E. Then, lim supy→a′+ g(y) ≤ G(b′).

Lemma 63. Let K be unrestrained. Let a < b ∈ K, and f : (a, b) → K be a
definable increasing function. Define

A∞ := {x ∈ (a, b) : Λrf(x) = +∞} .

Then, µ(A∞) = 0.

Proof. The same as in [17, Assertion 1].
More in details, given c ∈ K, define

g(x) := f(x)− cx;

Ac := {x ∈ (a, b) : Λrf(x) > c} ;

Ec :=
{
x ∈ (a, b) : (∃y > x) g(y) > g(x+)

}
;

Df := {x ∈ (a, b) : f is discontinuous at x} .

Notice that
⋂

cAc = A∞ and µ(Df) = 0 (becauseDf is at most pseudo-enumerable),
and therefore it suffices to show that µ(Ac \ Df) is arbitrarily small for c large
enough. Moreover, Ac \Df ⊆ Ec; therefore, it suffices to show that µ(Ec) is small.

Let G be as in Lemma 62; notice that G(x) = g(x+), unless x = b, when
G(b) = g(b). Thus, by Lemma 62, Ec is an open subset of (a, b), and it is the
disjoint union of a definable family of open intervals {(ak, bk) : k ∈ N}, such that
c(bk − ak) ≤ f(b+k )− f(a+k ). Hence, c

∑
k∈N (bk − ak) ≤ f(b)− f(a), and therefore

µ(Ec) ≤
f(b)−f(a)

c
. �

Lemma 64. Let K be unrestrained. Let f : K → K be a definable monotone
continuous function.

(1) Let A := {x ∈ K : λℓf(x) < Λrf(x)}. Then, µ(A) = 0.
(2) The set of points x ∈ (a, b) such that f ′(x) does not exist or is infinite has

measure 0.

Proof. We proceed as in [17, Assertion 2]. (2) follows easily from (1), thus we only
need to prove (1).

It suffices to show that, for every 0 < c < C ∈ K, the set

B := {x ∈ K : λℓf(x) < c & Λrf(x) > C}

has measure 0. Let δ := c/C: by Corollary 61, it suffices to show that, for every
a < b ∈ K, µ(B∩(a, b)) < δ(b−a). As in[17, Assertion 2], by applying Lemma 62 to
the function g(x) := f(−x) + cx, we get that {x ∈ (a, b) : λℓf(x) < c} is contained
in an open definable set D, such that for every maximal interval (ak, bk) ⊆ D, we
have f(bk) − f(ak) ≤ c(bk − ak) (notice that we can take the indexes k in N in a
definable way). We then apply again Lemma 62 to the function g(x) := f(x)−Cx
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restricted to each interval (bk, ak), and we get that D ∩ (bk, ak) is contained in an

open definable set Dk, such that µ(Dk) ≤
f(bk)−f(ak)

C
. Thus,

µ(B ∩ (a, b)) ≤
∑

k

µ(Dk) ≤

∑
k f(bk)− f(ak)

C
≤ δ

∑

k

(bk − ak) ≤ δ(b− a). �

Let us treat now the case when f is not continuous: we will follow the ideas
in [18].

Lemma 65. Let f : [a, b] → K be a strictly increasing definable function. Then,
f(x) has a continuous definable inverse; that is, there exists a continuous, non-
decreasing, definable function F defined on [f(a), f(b)], such that F (f(x)) = x for
every x ∈ [a, b].

Proof. Define F (y) := sup {t : f(t) ≤ y}. �

Lemma 66. Let K be unrestrained and a < b ∈ K. Let f : [a, b] → K be a
nondecreasing definable function. Let E be the set of x ∈ [a, b] such that either f ′

does not exists or it is infinite. Then, µ(E) = 0.

Proof. By replacing f(x) with f(x) + x, w.l.o.g. we can assume that f is strictly
increasing. Thus, we can apply Lemma 65: let F be defined there. By lemmas 64
and 63, F ′ exists and is finite outside a definable set of measure 0. Given x 6= y ∈
[a, b], we write

f(y)− f(x)

y − x
=

(
F (f(y))− F (f(x))

f(y)− f(x)

)−1

.

Thus, if f is continuous at x and F ′(x) exists, we have that f ′(x) = 1/F (f ′(x)) ∈
K ∪ {+∞}. However, by Lemma 39, the set of discontinuity points of f is at most
pseudo-enumerable, and a fortiori of measure 0, and by Lemma 63, f ′(x) < +∞
outside a set of measure 0. �

Corollary 67. Let K be unrestrained. Let f : K → K be a definable monotone
function. Let E be the set of x ∈ K such that f ′(x) does not exists or is infinite.
Then, µ(E) = 0, and therefore E has empty interior.

7.4. Other problems. Lest the reader thinks the transfer from the real case to
the definably complete one is always automatic, we will conclude with an open
problem and recall some counterexamples.

Conjecture 68 (Brouwer’s Fixed Point). Let f : [0, 1]2 → [0, 1]2 be a definable
continuous function. Then, f has a fixed point, i.e. there exists c ∈ [0, 1]2 such that
f(c) = c.

Fact 69 (Hrushovski, Peterzil [10]). There exists an o-minimal structure K and a
definable C∞ nonzero function f : I → K, where I is an open interval around 0,
such that f(0) = 0 and f satisfies the differential equation

(7.1) f(x) = x2f ′(x) + x, f(0) = 0, f ′(0) = 1.1

For every 0 < ε ∈ R there is no C1 function f : (−ε, ε) → R satisfying Equa-
tion (7.1).

1f is the formal power series
∑

n≥1
(n− 1)! xn.
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Another counterexample to some kind of “transfer principle” for restrained (in-
deed, locally o-minimal) structures can be found in work by Rennet in [16].

For unrestrained structures, let R be an expansion of 〈R,+, ·, <,N〉, L be its
language, T0 be the L-theory whose models are definably complete structures with a
discrete subring, and T be any recursive set of sentences true in R and extending T0.
By Gödel’s incompleteness theorem, there is a model of T which is not elementarily
equivalent to R.
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