
ar
X

iv
:1

30
2.

70
69

v1
 [

m
at

h.
L

O
]

 2
8

Fe
b

20
13

LEARNING THEORY IN THE ARITHMETIC HIERARCHY

ACHILLES A. BEROS

Abstract. We consider the arithmetic complexity of index sets of uniformly
computably enumerable families learnable under different learning criteria. We
determine the exact complexity of these sets for the standard notions of finite
learning, learning in the limit, behaviorally correct learning and anomalous
learning in the limit. In proving the Σ0

5
-completeness result for behaviorally

correct learning we prove a result of independent interest; if a uniformly com-
putably enumerable family is not learnable, then for any computable learner
there is a ∆0

2
enumeration witnessing failure.

Algorithmic learning theory examines the process by which members of a class
are identified from a finite amount of information. The classes to be learned are
either classes of functions or classes of computably enumerable (c.e.) sets. In this
paper we address the learning of c.e. sets.

Since learning is not a mathematical concept, it is not endowed with an un-
ambiguous definition. Like the concept of computability, learning has an intuitive
meaning, but lends itself to a number of different formalizations. In learning theory,
we consider effective formalizations and call them models of learning. A model is
principally defined by two factors: the type of information and the criterion for
success. The information is read by a learning machine from an enumeration of
the set to be learned. As the machine must be computable, it cannot consider the
entirety of an enumeration and will only take a finite initial segment as input. On
such an input, the learning machine outputs a natural number, interpreted as a
Σ0

1-code describing the content of the set being enumerated. We call such outputs
hypotheses. As the machine reads longer initial segments of the enumeration, it
outputs a sequence of hypotheses that we will call the hypothesis stream. The con-
dition on when the hypothesis stream represents successful learning is the criterion
for success and may depend on the accuracy, consistency or frequency of correct
information in the hypothesis stream. Additional limitations, such as bounds on
the computational resources of the learning machine, are often considered.

The first model of learning is due to Gold [5]. According to his model, now
commonly referred to as TxtEx-learning, a machine is deemed to have successfully
identified an enumeration if, on cofinitely many initial segments, the machine out-
puts the same hypothesis and it is correct. A machine is said to have learned a set if
it identifies every enumeration of the set, and has a learned a family if it learns every
member of the family. Three other standard notions are TxtFin-learning, TxtBC-
learning and TxtEx∗-learning which differ from TxtEx-learning in what constitutes
successful identification of an enumeration. In the case of TxtFin-learning, while
a machine is permitted to abstain from making a hypothesis for a finite amount
of time, it must eventually output a hypothesis and the first such hypothesis must

2010 Mathematics Subject Classification. Primary 03D80, 68Q32.
Key words and phrases. Inductive Inference, Learning Theory, Arithmetic Hierarchy.

1

http://arxiv.org/abs/1302.7069v1

2 ACHILLES A. BEROS

be correct. A machine is said to have TxtBC-identified an enumeration if all but
finitely many of the hypotheses in the hypothesis stream are correct. In contrast
to TxtEx-learning, they need not be the same. Last, TxtEx∗-learning differs from
TxtEx-learning in that the unique hypothesis appearing infinitely many times in
the hypothesis stream need only code a set having finite symmetric difference with
the content of the given enumeration.

With this paper, we introduce a new line of inquiry to the field of learning theory.
We examine the complexity of determining whether a family is learnable given a
code for an effective presentation of the family, thereby establishing a measure of
the complexity of the learning process.

We prove that decision problems for learning under the standard notions of
TxtFin-learning and TxtEx-learning are Σ0

3-complete and Σ0
4-complete, respec-

tively, and that those for TxtBC-learning and TxtEx∗-learning are both Σ0
5-complete,

when certain natural limitations are placed on the complexity of the families con-
sidered. In proving the Σ0

5-completeness of TxtBC-learning, we obtain a TxtBC-
learning analog of a theorem of Blum and Blum [4]. Blum and Blum’s work demon-
strated that a set is TxtEx-learnable if it is TxtEx-learnable from computable enu-
merations. We show that, provided the family under consideration is uniformly
computably enumerable (u.c.e.), one need only consider ∆0

2 enumerations to decide
if a family is TxtBC-learnable.

We preface the completeness results with a brief introduction to some of the
concepts of learning theory and notation from computability theory. For a more in
depth treatment, we refer the reader to Osherson et al. [6] and Soare [8].

1. Preliminaries

Unless noted otherwise, all families in this paper are u.c.e. We regard a set, A,
as coding a family, F , where the ith member (or column) of F is {x : 〈i, x〉 ∈ A}
for a computable pairing function 〈x, y〉. Given natural numbers, e and s, We,s

denotes the result of computing the set coded by e up to s stages using a standard
numbering of the c.e. sets. Finite strings of natural numbers are represented by
lowercase Greek letters. Enumerations, called texts in learning theory, are either
treated as infinite strings or as functions on the natural numbers. Initial segments
of enumerations feature throughout this paper and are either denoted by lowercase
Greek letters, as mentioned above, or by initial segments of functions: i.e. T [n] in
learning theory notation, or f↾n in standard logic notation. The nth element of an
enumeration is denoted T (n) or f(n), as is appropriate. To switch from ordered lists
to unordered sets, we say that content(σ) = {x ∈ N : (∃n)(x = σ(n))}. For infinite
enumerations, we extend the content notation to denote the set that is enumerated.
If A and B are sets of natural numbers and their symmetric difference, A△B, is
finite, then we write A =∗ B.

Learning machines are denoted by M or N , with subscripts or superscripts
as needed to indicate parameters. We consider an effective enumeration of all
computable learning machines as having been fixed, whereby Mn denotes the nth

learner.

Definition 1.1 ([3]). Fix a symbol, ‘?’, as a placeholder to indicate that a hypoth-
esis has not yet been made. The definition of TxtFin-learning by a learner, M , is
in four parts:

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 3

(1) M TxtFin-identifies an enumeration f if and only if (∃n)(∀n′ < n)(M(f↾
n′) = ? ∧M(f↾n) 6= ? ∧WM(f↾n) = content(f)).

(2) M TxtFin-learns a c.e. set A if and only if M TxtFin-identifies every enu-
meration for A.

(3) M TxtFin-learns a family of c.e. sets if and only if M TxtFin-identifies
every member of the family.

(4) A family, F , is TxtFin-learnable (denoted F ∈ TxtFin) if and only if there
is a machine, M , that TxtFin-learns F .

Definition 1.2 ([5]). The definition of TxtEx-learning is analogous to that of
TxtFin-learning. TxtFin is everywhere replaced by TxtEx and the first clause is
replaced by:

(1) M TxtEx-identifies an enumeration f if and only if (∃n)(limi→∞M(f↾ i) =
n ∧Wn = content(f)).

Definition 1.3 ([2]). The definition of TxtBC-learning is analogous to that of
TxtFin-learning. TxtFin is everywhere replaced by TxtBC and the first clause is
replaced by:

(1) M TxtBC-identifies an enumeration f if and only if (∃n)(∀i > n)(WM(f↾i) =
content(f)).

Definition 1.4 ([7]). The definition of TxtEx∗-learning is analogous to that of
TxtFin-learning. TxtFin is everywhere replaced by TxtEx∗ and the first clause is
replaced by:

(1) M TxtEx∗-identifies an enumeration f if and only if (∃n)(limi→∞M(f↾
i) = n ∧Wn =∗ content(f)).

Before turning to our own results, we present the following facts which will be
needed in the subsequent sections.

We use the following theorem in the proof of Theorem 3.1 and the corollary that
follows in the proof of Theorem 5.1.

Theorem 1.5 (Blum and Blum [4]). If a family is TxtEx-learned from computable

enumerations by a computable machine M , then it is TxtEx-learned from arbitrary

enumerations by a computable machine M̂ .

Corollary 1.6. If F is TxtEx∗-learned from computable enumerations by a com-

putable machine M , then it is TxtEx∗-learned from arbitrary enumerations by a

computable machine M̂ .

Proof. The proof is immediate. Simply replace TxtEx-learning with TxtEx∗-learning
throughout the proof of Theorem 1.5. �

Next we have Angluin’s Theorem. The application of the theorem which follows
is used in the proof of Theorem 3.2.

Theorem 1.7 (Angluin’s Theorem [1]). Let L = {L0, L1, . . .} be a uniformly com-

putable family. L is TxtEx-learnable if and only if there is a u.c.e. family of finite

sets F = {F0, F1, . . .} such that

(1) Fi ⊆ Li for all i ∈ N

(2) If Fi ⊆ Lj ⊆ Li, then Li = Lj

4 ACHILLES A. BEROS

Although we do not present it here, examination of the proof of Angluin’s Theo-
rem shows that the existence of F does not require L to be uniformly computable,
merely u.c.e. Example 1.8 uses this observation to distinguish TxtBC-learning and
TxtEx-learning.

Example 1.8. Let Hx = {x + n : n ≤ |Wx|}, and Lx = {x + n : n ∈ N}. Define
F = {H0, L0, H1, L1, . . .}. We claim that F is TxtBC-learnable, but not TxtEx-
learnable.

F is clearly u.c.e. and can be enumerated so that He is the (2e)
th column and Le

is the (2e+1)st column of F . We must verify that F is TxtBC-learnable, but that
no machine can TxtEx-learn F . Consider a machine that, on input σ, sets x0 and
x1 to be the least element and greatest element, respectively, of content(σ) and sets
y1 equal to the greatest element of Wx0,|σ|. If y1 > x1 − x0, the machine outputs
a code for Hx0

; if x1 − x0 ≥ y1, it outputs a code for Lx0
. Thus, for enumerations

of infinite intervals, the machine may vacillate between two different correct codes.
For finite intervals, eventually only one correct code will be output. We conclude
that F is TxtBC-learnable.

Now, we wish to show that F is not TxtEx-learnable. To obtain a contradiction,
assume that we have a machine, M , that TxtEx-learns F . As we observed at the
outset, this means there is a u.c.e. family {G0, G1, . . .} such that each Gi is finite,
G2i ⊆ Hi, G2i+1 ⊆ Li and, if Gi ⊆ A ⊆ B where B is the ith set in F and A ∈ F ,
then A = B. Specifically, G2i+1 ⊆ Li and G2i+1 ⊆ Hi if and only if Hi = Li -
exactly when Wi is an infinite set. Let m be the maximum number in G2i+1. If
card(Wi) ≥ m− i+1, then G2i+1 ⊆ Hi and Hi = Li. In other words, we can decide
in the limit whether or not Wi is infinite. Since we cannot actually decide in the
limit whether or not a number codes an infinite set, we have obtained the desired
contradiction.

We conclude this section with the following definition.

Definition 1.9. Define the following four index sets of Σ0
1 codes for u.c.e. families

learnable according to the given criterion.

(1) Define FINL to be the index set for TxtFin-learning.
(2) Define EXL to be the index set for TxtEx-learning.
(3) Define BCL to be the index set for TxtBC-learning.
(4) Define EXL∗ to be the index set for TxtEx∗-learning.

2. TxtFin-Learning

We begin the presentation of our results by demonstrating that TxtFin-learning
is Σ0

3-complete. This is accomplished in two steps. With Theorem 2.1 we place a Σ0
3

upper bound on the complexity of FINL. Next, Theorem 2.2 reduces an arbitrary
Σ0

3 predicate to FINL.

Theorem 2.1. FINL has a Σ0
3 description.

Proof. Suppose e codes a u.c.e. family L = {L0, L1, . . .}. We will show that e ∈
FINL if and only if

(∃k)(∀i)

(

(∃σ)
(

(content(σ) ⊆ Li) ∧ (Mk(σ) 6=?)
)

∧ ψ(k)

)

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 5

where ψ(k) denotes

(∀α, j)(∃τ ≺ α)
(

(Mk(τ) 6=?)∨ (content(α) 6⊆ Lj)∨ (Mk(α) =?)∨ (WMk(α) = Lj)
)

.

Observe that the formula mandates the existence of a learning machine,Mk, such
that for every set in the family there is a string of elements from that set on which
the learner outputs a hypothesis. Furthermore, if it outputs a least hypothesis, in
the sense that the only hypothesis it makes on proper initial segments of the given
data is ?, then that hypothesis is correct. We now build a new machine, M̂ , based
on Mk, which TxtFin-learns the family L.

For a string σ, define Aσ = {τ : content(τ) ⊆ content(σ) ∧ |τ | ≤ |σ|}. Order Aσ

by σ < τ if either |σ| < |τ | or else |σ| = |τ | and σ is below τ in the lexicographical

order on N
|σ|. Define M̂(σ) to be Mk(τ) where τ is the least element of Aσ on

which Mk outputs a hypothesis other than ?. If no such τ exists, M̂(σ) =?. On

no enumeration will the least hypothesis of M̂ be incorrect since that would imply
the existence of such an enumeration for Mk. Fix an arbitrary enumeration, f , for
Li ∈ L. Let σ be a string, with content(σ) ⊆ Li, on which Mk outputs a least (and
hence correct) hypothesis. Every element of content(σ) appears in f , thus there is

an n such that σ ∈ Af↾n. For some m ≤ n, M̂(f↾m) will be a least and correct
hypothesis.

Since the given formula is Σ0
3, we have produced a predicate with the desired

properties.
�

Theorem 2.2. FINL is Σ0
3-hard.

Proof. Consider a Σ0
3 predicate P (e) ↔ (∃x)(∀y)(∃z)(R(e, x, y, z)), where R is a

computable predicate. We will reduce P to FINL by means of a computable function
such that the image of e is a code for a u.c.e. family that is TxtFin-learnable if P (e)
and not TxtFin-learnable if ¬P (e). We now fix e and proceed with the construction
of a family based on that particular e. The family under construction is denoted
G = {G0, G1, . . .}. While G depends on e, we omit the parameter for the sake of
simplicity as we are only concerned with the fixed value of e during the construction
below.

EachG ∈ G will consist of ordered pairs and can thus be partitioned into columns
C(G, i) = {x : 〈i, x〉 ∈ G}. For convenience, we will index the columns starting
with −1. Let C(i) = {〈i, x〉 : x ∈ N}. For the remainder of the construction we will
adhere to the notation defined in the following list.

• Let 〈xs, ys, zs〉 be a computable enumeration of all triples of natural num-
bers.

• For x ≥ 1, let hsx be the number of stages, up to s, at which the largest j,
such that (∀y ≤ j)(∃i ≤ s)(xi = x∧yi = y∧R(e, x−1, y, zi)), has increased.

• If it exists, let hx = lims→∞ hsx.
• For x ∈ N, an x-label is a number in the xth-column, C(x), used to distin-
guish sets in G. Labels may be enumerated into any column of any G ∈ G
except C(G,−1) during the construction. We say G has an x-label k when
k ∈ C(G, x). Equivalently, when 〈x, k〉 ∈ G.

• Define Sk
x = {G ∈ G : G has an x-label k}. The family depends on the

stage, but we do not include any notation to indicate the stage as it will be

6 ACHILLES A. BEROS

clear from context. When we wish to reference the ith-member of Sk
x , we

will write Sk
x(i).

• Let nk
x = card(Sk

x).
• Define a function, pkx, used to record numbers associated with each member
of Sk

x . In particular, pkx(i) will be a number withheld from Sk
x(i). Denote

by P k
x the set {pkx(0), . . . , p

k
x(n

k
x)}. At each stage, we will ensure that P k

x \
{pkx(i)} ⊆ C(Sk

x(i),−1) and pkx(i) 6∈ C(Sk
x(i),−1). At certain stages, the

values of the pkx will change.

Next, we describe the actions taken at a given stage of the construction. The
construction consists of using the predicate, P , to resolve two opposing forces. One
is the attempt to label all sets in a unique way, and the other is to create an infinite
family that mirrors the structure of {N \ {x} : x ∈ N} every set of which has the
same label.

Stage s: The triple under consideration is 〈xs, ys, zs〉. Let t be the most recent
previous stage at which xt = xs. We examine two cases: hsxs

> htxs
and hsxs

= htxs
.

First, suppose that hsxs
> htxs

. We interpret this increase as progress toward
verifying P (e). We enumerate elements as needed to ensure that, for each xs-
label, k, and i ≤ 〈xs, k〉 + hsxs

, if G,G′ ∈ Sk
xs
, then C(G, i) ∩ [0, 〈xs, k〉 + hsxs

] =

C(G′, i) ∩ [0, 〈xs, k〉 + hsxs
]. If pkxs

(i) ≤ 〈xs, k〉 + hsxs
, we pick a member of C(−1)

greater than 〈xs, k〉 + hsxs
and every number used in the construction so far, and

set pkxs
(i) equal to the chosen number. We enumerate pkxs

(i) into every member

of Sk
xs

\ {Sk
xs
(i)}. Thus, for each set with xs-label k, there is a particular natural

number the set does not contain, but which is contained in all other sets with
xs-label k.

Finally, we pick the set of least index in G that has not yet been assigned an
xs-label and assign it a unique, and previously unused, xs-label.

In the second case, suppose that hsxs
= htxs

. This stability suggests that the
outcome will be ¬P (e). For each k currently in use as an xs-label, we create
a new set, Sk

xs
(nk

xs
+ 1) ∈ Sk

xs
, such that C(Sk

xs
(nk

xs
+ 1), j) ∩ [0, 〈xs, k〉 + hsxs

] =

C(Sk
xs
(nk

xs
), j)∩[0, 〈xs, k〉+hsxs

], for j ≤ k+hsxs
. We enumerate P k

xs
into Sk

xs
(nk

xs
+1)

and set pkxs
(nk

xs
+ 1) equal to the least member of C(−1) not used during the

construction so far and greater than 〈xs, k〉+hsxs
. Finally, we enumerate pkxs

(nk
xs
+1)

into every member of Sk
xs

\ {Sk
xs
(nk

xs
+ 1)}.

Verification: If P (e), then (∃x)(∀y)(∃z)(R(e, x, y, z)). Hence, for some x, hsx →
∞. For infinitely many s, xs = x, thus every set in G will eventually receive an x-
label. At such stages, agreement between sets with the same label is also increased.
Consequently, any two sets in G with the same x-label are equal. The family is
learned by a machine that searches for the least x-label and outputs a code for the
first set in G that receives the same x-label.

If ¬P (e), then (∀x)(∃y)(∀z)(¬R(e, x, y, z)). Fix any machine, M . If M(σ) = ?
for every string σ with content contained in a member of G, M has failed to learn
G and we are done. Otherwise, we may pick a string, σ, such that

• M(σ) 6= ?;
• for all τ ≺ σ, M(τ) = ?;
• for some G ∈ G, content(σ) ⊆ G.

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 7

Let k be an x-label with whichG is marked such that max(content(σ)) < 〈xs, k〉+
hsxs

. Pick a stage, s, at which hsy = hy for all y such that G contains a y-label less
than or equal to 〈x, k〉+ hx. At a subsequent stage, t, xt = x and a new set, G′, is
created containing content(σ). Labels contained in G′ are either y-labels, k, such
that hsy will never increase or labels enumerated into G′ after stage t. The latter
are only shared with sets created at subsequent stages. As a consequence, there is
a member of P k

x never enumerated into G′, but contained in G. We conclude that
M , an arbitrarily chosen learning machine, has failed to TxtFin-learn G.

The computable function that maps e to a code for the u.c.e. family G constructed
above is a reduction of P to FINL.

�

3. TxtEx-Learning

We now proceed to describe the arithmetic complexity of TxtEx-learning. The
first Σ0

4 description of EXL of which we are aware is due to Sanjay Jain. Here
we present a different formula, but one which explicitly illustrates the underlying
structure and serves as a model for the Σ0

5 description of BCL given in Section 4.

Theorem 3.1. EXL has a Σ0
4 description.

Proof. By Theorem 1.5 we need only consider computable enumerations when an-
alyzing the complexity of EXL. Further, observe that if there is a machine, M ,
that TxtEx-learns a family, there is a total machine, M̂ , that TxtEx-learns the
same family. Specifically, define M̂(σ) to be M(σ↾n) for the greatest n such that

M(σ↾n) converges within |σ| computation stages and define M̂(σ) = 0 if no such
initial segment exists. Suppose e codes a u.c.e. family {L0, L1, . . .}.

We will define a formula which states that there is a learner such that for every
enumeration and every set in the family, if the enumeration is total and enumerates
the set, then eventually the hypotheses stabilize and a given hypothesis is either
correct or the hypotheses have not yet stabilized. Syntactically, this can be stated
as follows:

(1) (∃a)(∀k, i)
(

(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li) → ψ(k, a, i)
)

where we define ψ(k, a, i) to be

(∃s)(∀t > s)
(

Ma(φk↾t) =Ma(φk↾s)
)

∧ (∀n)
(

WMa(φk↾n) = Li

∨ (∃m > n)
(

Ma(φk↾m) 6=Ma(φk↾n)
)

)

.

The last formula is ∆0
3. Thus, (1) is Σ

0
4 and characterizes TxtEx-learning because,

for any family coded by a number e which satisfies formula (1), there is a learner
whose hypotheses converge to correct hypotheses on every computable enumeration
and if e fails to satisfy formula (1), every learner must fail on some hypothesis for
some set in the family.

We have, therefore, exhibited a Σ0
4 description of EXL.

�

8 ACHILLES A. BEROS

To achieve the desired completeness result, we now prove that an arbitrary Σ0
4

predicate can be reduced to EXL. The proof utilizes the family described in Ex-
ample 1.8. While not TxtEx-learnable, the family is learnable under more liberal
descriptions of learning. It is, in a sense, just barely not TxtEx-learnable.

Theorem 3.2. EXL is Σ0
4-hard.

Proof. Let COINF be the index set of all codes for c.e. sets which are coinfinite.
Since COINF is Π0

3-complete, it suffices to prove that any predicate of the form
(∃x)(f(e, x) ∈ COINF) for a computable function f can be reduced to EXL. As in
Example 1.8 from the preliminary section, let He = {e+x : x ≤ |We|}, Le = {e+x :
x ∈ ω}, and F = {H0, L0, H1, L1, . . .}. Fix a uniformly computable enumeration of
F where He is the 2e+1st column of F and Le is the 2eth column. For notational
convenience, we denote the eth column of F by Fe. We will define a sequence of
u.c.e. families, Rn,e, and choose a computable map g so that g(e, x) is a Σ0

1 code
for the u.c.e. family Ge,x where, for x ≤ e

Ge,x =
⋃

n∈[e,x]

Rn,e.

We construct the u.c.e. families Rn,e simultaneously for x < n < e. The family,
Rn,e, will consist of an infinite number of partial enumerations of Fn. How complete
the enumerations are will depend on whether e ∈ COF or e ∈ COINF.

Stage 0: Let Rn,e be the empty set.
Stage s: Suppose that [i, i + j] ⊆ We,s. In this case, enumerate Fn,j , a finite

partial enumeration of Fn, and the least natural number greater than n/2 into the
ith column of Rn,e. Denote this last number by n0. We include n0 in order to
guarantee that the set is nonempty and, if it is a partial enumeration of Ha or
La, it will contain a. Also, for all k ∈ [i, i + j], enumerate all the elements in the
kth column into the ith column and vice versa so that all the columns with indices
between i and i+ j are identical.

There are two cases. First, suppose e ∈ COF, then there are only finitely many
distinct sets in Rn,e; cofinitely many columns ofRn,e will be identical to Fn and the
rest will be finite subsets of Fn. Thus Ge,x will consist of Fn for x ≤ n ≤ e together
with some finite subsets of these sets. When e ∈ COINF, Rn,e will contain only
finite subsets of Fn and so Ge,x will consist of a collection of finite sets, possibly
infinitely many.

Based on g(e, x) and given an arbitrary Σ0
4 unary predicate P , we define a new

map, h, which witnesses the reduction of P to EXL. Since P is Σ0
4, it is of the form

(∃y)(Q(x, y)) where Q is a Π0
3 predicate. Let r be a one-to-one and computable map

witnessing the reduction of Q to COINF. In other words, P (x) ↔ (∃y)(r(x, y) ∈
COINF). Furthermore, we may assume that

P (e) → (∀∞y)(r(e, y) ∈ COINF)

and

¬P (e) → (∀y)(r(e, y) ∈ COF)

Let s be such that for fixed e, {s(e, y)}y∈N is a computable, strictly increasing,
subsequence of {r(e, y)}y∈N. The existence of such a subsequence is guaranteed by
the fact that r is one-to-one, implying that {r(e, y)}y∈N is an unbounded sequence.

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 9

For convenience, suppose that s(e,−1) = 0 for all e ∈ N. Let h be a computable
function such that, for e ∈ N, h(e) is a code for the u.c.e. family

He =
⋃

y∈ω

Gs(e,y),s(e,y−1).

If ¬P (e), then (∀y)(r(x, y) ∈ COF). For each n ∈ ω there is a y such that
s(e, y − 1) ≤ n ≤ s(e, y). Fn ∈ Gs(e,y+1),s(e,y), hence F ⊆ He. Recalling that F is
not TxtEx-learnable, we conclude that He is not TxtEx-learnable.

If P (e), then (∀∞y)(r(e, y) ∈ COINF) and hence (∀∞y)(s(e, y) ∈ COINF). Pick
an n0 such that (∀n ≥ n0)(s(e, n) ∈ COINF). For all n ≥ n0 Gs(e,n+1),s(e,n) will
consist entirely of finite sets. Furthermore, these sets will, by definition, contain no
numbers less than n0. On the other hand, every set in Gs(e,y+1),s(e,y) for y ≤ n0

will contain a number less than or equal to n0 or be finite. Therefore the whole
family is learnable as follows. Let M0 be a computable function which learns the
finite family

⋃

y<n0+1 Gs(e,y),s(e,y−1) and let M1 be a computable function which
learns the collection of all finite sets - in other words, a function which interprets
the input it receives as a string and outputs a code for the content of that string.
Define

M(σ) =

{

M0(σ) n0 ∈ content(σ),

M1(σ) n0 /∈ content(σ).

If M is fed an enumeration for a set in the family, then either n0 will eventually
appear in the text or it will not. In either case, the learner will eventually settle on
a correct code for the set.

We have shown how to reduce an arbitrary Σ0
4 predicate to EXL and we may

conclude that EXL is Σ0
4-hard.

�

4. TxtBC-Learning

To prove the upper bound for BCL, we require a result of interest in its own
right – independent of the arithmetic complexity of BCL.

Theorem 4.1. Suppose that G is a u.c.e. family. Either G is TxtBC-learnable or,

for each computable learner M , there is a ∆0
2 enumeration of a set in G that M

fails to TxtBC-identify.

Proof. Fix a u.c.e. family G = {G0, G1, . . . }. We must prove the following disjunc-
tion. Either:

(1) there is a computable machine which TxtBC-learns G or
(2) for any computable machine, M , either

(a) there is a ∆0
2 enumeration for a set G ∈ G on which M stabilizes to an

incorrect answer or
(b) there is a ∆0

2 enumeration for a set G ∈ G on which M never stabilizes
to codes for a single set.

Assume that statement (2) is false. We may then fix a learner, M , that fails
to satisfy statements (2)(a) and (2)(b). We shall demonstrate that, under this as-
sumption, G is TxtBC-learnable by some machine, i.e. statement (1) is true. To
accomplish this, we perform a construction starting from a computable enumer-
ation, g(0), g(1), . . ., of G ∈ G uniformly obtained from an enumeration of the

10 ACHILLES A. BEROS

family. The construction will follow a strategy designed to produce a ∆0
2 enumera-

tion witnessing statement (2)(b). Our assumption that these constructions fail will
ultimately yield a method we shall use to build a learner for the family.

We construct a ∆0
2 enumeration, f , in stages. After stage s has completed,

the state of the enumeration is a finite partial function, fs. Let ks(0), . . . , ks(s)
denote an increasing reordering of g(0), . . . , g(s). In addition, we define a restraint
function, rs(i), and a counter, is, which monitor the length of the enumeration
and the initial segments of fs on which M exhibits key behavior. Specifically, is
counts the number of times M appears to have output hypotheses coding distinct
sets on fs, and rs(is) is the length of fs. For 1 ≤ j < is, define the hypothesis
hsj = M(fs↾rs(j)) and pick a least witness xsj ∈ Whs

j
,s△Whs

j−1
,s. We will call hsj

and xsj the jth hypothesis and witness chosen at stage s, respectively.

Stage s+1: Let fs, rs, is, ks, x
s
0, . . . , x

s
is

and hs0, . . . , h
s
is

be as obtained from
stage s. We shall refer to the preceding collectively as the variables. Let the finite
sequence ks+1(0), . . . , ks+1(s+ 1) be an increasing reordering of g(0), . . . , g(s+ 1).
Define a set of strings

S(s+ 1) = {α : (|α|, y < s) ∧ (content(α) ⊆ {ks+1(0), . . . , ks+1(s+ 1)})}.

We must consider two possible types of injury at the beginning of the stage.
First, suppose that ks+1↾(s + 1) 6= ks↾(s + 1). Let j ≤ s be the least number

such that ks+1(j) 6= ks(j). Reset the variables to their states at the beginning of
stage j (for example, define fs+1 to be fj).

The second type of injury occurs when a witness is found either to be “wrong”
or “not least”. We call a witness, xsj , “wrong” if xsj 6∈ Whs

j
,s+1△Whs

j−1
,s+1 and “not

least” if the tuple 〈xsj , fs↾rs(j)〉 is not the least member of the set

{〈y, α〉 : (fs↾rs(j − 1) ≺ α) ∧ (y ∈ Whs
j
,s+1△WM(α),s+1) ∧ (α ∈ S(s+ 1))},

where the set is ordered lexicographically and α <llex β if |α| < |β| or |α| = |β| and
α is lexicographically less than β. Let j ∈ N be least such that xsj is either “wrong”
or “not least” and make the following changes to the variables.

(1) is+1 = j.
(2) rs+1(m) = rs(m) for m < j and undefined for m ≥ j.
(3) fs+1↾rs(j − 1) = fs↾rs(j − 1), and fs+1(x) is undefined for x ≥ rs(j − 1).
(4) Discard xsj , . . . , x

s
is

and hsj , . . . , h
s
is
.

Having dealt with all required injury, we proceed to the actions of the stage. In
particular, we search for the <llex-least pair in the set

{〈y, α〉 : (fs+1 ≺ α) ∧ (y ∈Whs
is

,s+1△WM(α),s+1) ∧ (α ∈ S(s+ 1))}.

If a least such pair, 〈y, α〉, is found, update the variables to reflect the successful
search for an extension:

(1) Increment is+1.
(2) Extend fs+1 to α.
(3) Define rs+1(is+1) to equal the length of fs+1.
(4) Update xs+1

j = xsj and hs+1
j = hsj for j < is+1.

(5) Define xs+1
is+1

= y and his+1
=M(α).

On the other hand, if no such pair can be found, end the stage with no further
changes.

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 11

Now suppose that lims→∞ is = ∞. Then, for any n, the nth hypothesis and
witness will be changed at most finitely many times. Therefore, lims→∞ xsn and
lims→∞ fs↾n exist for every n, in which case our construction has produced an
enumeration of G which is ∆0

2 and on which the hypothesis stream generated by
M includes hypotheses that code different sets infinitely often. This is, of course,
impossible since, by assumption,M TxtBC-learns G from ∆0

2-enumerations. There-
fore, lims→∞ is 6= ∞.

The construction was performed using a computable and uniformly obtained
enumeration g(0), g(1), . . . of G. The purpose of using a computable enumeration
was to ensure that lims→∞ fs was ∆0

2. Because each pair of extension and witness
are chosen in a canonical manner that is independent of the enumeration, any
two instances of the construction will eventually select the same pair despite using
different enumerations of G. This can be proved inductively. Suppose two different
enumerations have produced two finite partial functions that agree on an initial,
possibly empty, segment. Take the first point of disagreement. The choices of
extension made at the point when the functions disagree cannot both be <llex-
least, therefore one will change at a subsequent stage.

Define a computable function ψ such that ψ(σ, s) = τ , where τ is the partial
function that results from performing the construction on an initial segment, σ,
of an enumeration after s stages of computation. Let M̂(σ) = M(ψ(σ, |σ|)). Fix
an arbitrary enumeration q(0), q(1), . . . of G. Since M TxtBC-learns G from ∆0

2-
enumerations, there must be a longest partial function, α, that is cofinitely often
extended by ψ(q↾ s, s). For any β such that content(β) ⊆ G, we have W

M̂(α) =

W
M̂(αˆβ) = G. Because G is an arbitrary member of G, M̂ succeeds in TxtBC-

learning G.
Since we have proved that G is TxtBC-learnable assuming only that G is TxtBC-

learnable from ∆0
2-enumerations, we have proved the desired claim.

�

The above result allows us to place a bound on the complexity of the enumera-
tions that must be considered when searching for an enumeration that witnesses a
failure of TxtBC-learning. The next result applies Theorem 4.1 to obtain an upper
bound on the complexity of BCL – the first half of the completeness result for BCL.

Theorem 4.2. BCL has a Σ0
5 description.

Proof. Let M be an arbitrary learner and i an index for a set in the family
F = {F0, F1, . . .}. From a computable function, f , define a sequence of functions,
{fs}s∈N, by fs(x) = f(s, x). Let φ(M, f, i) be the formula

(∀n, s)(WM(fs↾n) = Fi ∨ (∃n′ > n)(∃s′ > s)(WM(fs′ ↾n
′) 6=WM(fs↾n)

∧ (∀s′′ > s′)(fs′′↾n
′ = fs′↾n

′))).

In words, φ(M, f, i) asserts that for any stage, s, and initial segment, fs↾ n,
either the hypothesis M(fs↾n) is correct or there is a later stage and longer initial
segment on which the ∆0

2-enumeration has stabilized and on which M outputs a
code for a different set.

Define ψ(M, f) to be the formula

(∃n)(∀n′ > n)(∀s)(WM(fs↾n) =WM(fs↾n′) ∨ (∃s′ > s)(fs′↾n
′ 6= fs↾n

′))

12 ACHILLES A. BEROS

and ξ(f, i) to be

(∀n)(∃s)(∀t > s)(fs(n) = ft(n))

∧(∀n, s)(∃u, t > s)((fs(n) ∈ Fi,u) ∨ (fs(n) 6= ft(n)))

∧(∀x, u)(∃n, s)(∀t > s)(x ∈ Fi,u → fs(n) = ft(n) ∧ fs(n) = x).

If ψ(M, f), then there is an initial segment of length n such that for any stage, s,
and greater length, n′, there are two possibilities. One, the hypotheses M outputs
on fs↾n and fs↾n

′ code the same set. Two, there is a subsequent stage, s′, at
which the n′ length initial segment changes: fs′↾n

′ 6= fs↾n
′. The formula ξ(f, i)

asserts that fs converges to an enumeration of Fi as s goes to infinity. In particular,
lims→∞ fs(n) exists for all n and lims→∞ fs(n) = x if and only if x ∈ Fi.

We must prove that the following is Σ0
5 and equivalent to e ∈ BCL, where e

codes a u.c.e. family {F0, F1, . . .}.

(∃M)(∀f, i)(ξ(f, i) → ψ(M, f) ∧ φ(M, f, i)).(2)

Observe that ψ(M, f) is Σ0
3. The formula φ(M, f, i) universally quantifies over

the disjunction of a Π0
2 formula and a Σ0

2 formula. Thus, φ(M, f, i) is Π0
3. Since

ξ(f, i) is the conjunction of three Π0
3 formulas, ξ(f, i) is Π0

3. From this, we conclude
that

ξ(f, i) → ψ(M, f) ∧ φ(M, f, i)

is ∆0
4. Consequently, (2) is Σ

0
5.

To complete the proof, we must verify that any family that satisfies (2) is TxtBC-
learnable. If ξ(f, i), then f converges to a ∆0

2 enumeration of Fi. From ψ(M, f),
we have that there is an initial segment of the enumeration given by f such that,
on longer initial segments of f , either the output hypotheses code the same set, or
the ∆0

2 enumeration has not yet stabilized. Finally, φ(M, f, i) states that for any
initial segment either the hypothesis output by the learner is correct or the learner
will output a later hypothesis that is different on an initial segment of f that has
stabilized.

Thus, if (2) is true, there is a computable learning machine M such that for any
∆0

2 enumeration f , M converges to consistent hypotheses on f and, if it has not
yet output a correct hypothesis, it will change the content of its hypothesis at a
later stage. This is clearly equivalent to TxtBC-learning F from ∆0

2-enumerations.
By Theorem 4.1, TxtBC-learning from ∆0

2-enumerations is equivalent to TxtBC-
learning from arbitrary enumerations for u.c.e. families.

�

We present the lower bound in a modular fashion. The construction describes an
attempt to diagonalize against every possible learner, which succeeds only if a given
Σ0

5 predicate is false. A single step of the diagonalization is proved as a lemma.

Lemma 4.3. Let M = Mm be a computable learning machine and We a c.e. set.
There is a family Fm,e, uniformly computable in m and e, such that:

(1) If We is coinfinite, then Fm,e is not TxtBC-learnable by M , but the family

is TxtBC-learnable.

(2) If We is cofinite, then Fm,e is uniformly TxtBC-learnable in both m and e.

Proof. The construction will be performed in stages. During the stages, steps
of a diagonalization process will be attempted, although these steps may not be

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 13

completed. The diagonalization is against the learner M and a step of the diag-
onalization will be complete when a string is found on which the learner outputs,
as a hypothesis, a code for a set that includes an element not in the content of the
enumeration it has been fed. Such an element will be called a speculation. To be
explicit, we define a natural number, x, to be a speculation of M on input σ if for
some s ∈ N, x ∈ WM(σ),s and x /∈ content(σ).

We will build a family Fm,e = {A,B0, B1, B2, . . .}. At each step i, the set
Bi is initialized with the contents of the set A. A set, C, of speculations will
be maintained. We reserve the 0th and 1st columns of each set for markers. If
〈0, j〉 ∈ Bi, then Bi is said to have been tagged with j. Every set in the construction
will contain 〈1, 〈0,m〉〉 and 〈1, 〈1, e〉〉 where m is a code for M . The rest of the
construction occurs off the 0th and 1st-columns and the 0th-column of A is left
empty. We now proceed with the construction of Fm,e.

Fix M and We.
Stage 0: C,A,B0, B1, . . . are all empty. Enumerate 0 into A. Set σ0 = 0.
Stage s: Suppose the first i steps have been completed. By C,A,B0, . . . , Bi+1

we mean those sets in their current state. We are thus in the midst of step (i+ 1).
Let w0, w1, . . . , wi enumerate the current members of C, where the index reflects the
order in which they were chosen. Enumerate into each of the sets A,B0, . . . , Bi+1

those wj having j ∈ We,s.
Next, we search for the least speculation, x ≤ s, of M on input σsˆα, for some α

with |α| ≤ s, max(content(α)) ≤ s, and content(α)∩(C\A) = ∅. If no speculation is
found, pick the least number neither in C\A nor the marker columns and enumerate
this number into Bi+1, after which we end the current stage of the construction. If a
speculation, x witnessed by a string α, is found, enumerate x into C and enumerate
the members of {y : y /∈ (C\A)∧y ≤ max(content(α))} into A. Enumerate 〈0, i+1〉
into Bi+1. From this point on, only We is allowed to enumerate anything further
into Bi+1. Step i + 2 is now initiated by enumerating every element of A into
Bi+2. Finally, we set σs+1 = σsˆαˆβ, where β is an increasing enumeration of
{y : y /∈ (C \ A) ∧ y ≤ max(content(α))}. This ends the current stage of the
construction.

Observe that C \A are the speculations that, at the current stage, have not been
enumerated into A.

For coinfinite We there are two possibilities. If infinitely many steps complete,
there is a subsequence {τs}n∈N of {σs}n∈N such that WM(τs) 6= A, for each s ∈ N.
Since σs and σt are compatible for all s, t ∈ N, the computable function f(n) =
σn(n) enumerates A. Thus, we have an enumeration for a set in the family on which
M fails to converge to the correct set. If only finitely many steps complete, then
there is a string σ, equal to σs for some s ∈ N, that has no extension witnessing
speculation by M . The content of σ is contained in the last nonempty Bi, and Bi

will become a cofinite set. Since M engages in no speculation beyond σ, M must
only output codes for finite sets, thus on any enumeration of Bi that begins with
the string σ, M fails to TxtBC-learn Bi.

Depending on the outcome of the construction, but independent of We, we can
define a learning machine N0 that succeeds in TxtBC-learning Fm,e.

Case 1: Suppose infinitely many steps of the construction complete. Define N0

to be a learner that outputs a code for A on any input string unless the string

14 ACHILLES A. BEROS

contains 〈0, i〉 for some i, in which case it outputs a code for Bi. N0 succeeds in
TxtBC-learning Fm,e.

Case 2: If the jth-step is the last step initiated, define N0 to be a learner that,
on input σ, simulates the construction for A and outputs a code for one of A,
B0, B1, . . . , Bj. If content(σ) ⊆ A and 〈0, i〉 /∈ content(σ) for any i < j, N0(σ)
codes A. If 〈0, i〉 ∈ content(σ), N0(σ) is a code for Bi. Otherwise, N0(σ) is a code
for Bj and N0 has TxtBC-learned Fm,e.

Next, we define a machine that can learn
⋃

e∈COF,m∈N
Fm,e. Fix e ∈ COF. To

distinguish it from the completed set, let As denote a simulation of the construction
of A at stage s.

N(σ) =

{

0 if card(({1} ⊕ N) ∩ content(σ)) ≤ 1,

Nm,e(σ) if 〈1, 〈0,m〉〉, 〈1, 〈1, e〉〉 ∈ content(σ).

The Nm,e will be defined below. Each Nm,e need only TxtBC-learn the family
resulting from the construction based on M and We. For i ∈ N, let A∗, B∗

i and
(A∪Bi \ ({0}⊕N))∗ denote Σ0

1-codes for A,Bi and A∪Bi \ ({0}⊕N), respectively.
These codes can be computably derived from m and e. We define Nm,e as follows:

Nm,e(σ) =











B∗
i if 〈0, i〉 ∈ content(σ),

A∗ if 〈0, i〉 /∈ content(σ) ∧ content(σ) ⊆ A|σ|,

(A ∪Bk \ ({0} ⊕ N))∗ otherwise,

where k denotes the greatest index of a set that has been used in the simulated
construction up to stage |σ|.

To determine if Nm,e TxtBC-learns the family, we must consider four cases, de-
pending on the outcome of the construction and which set, D ∈ Fm,e, is enumerated
to Nm,e.

Case 1: Suppose D has a tag on the 0th-column; in other words, there exists
i ∈ N such that D = Bi. If the construction completes l < ∞ steps, then i < l.
Otherwise, D may be any of the Bi. Once 〈0, i〉 has appeared in the enumeration,
the learner will hypothesize B∗

i and never change hypothesis.
Case 2: Suppose D = Bj where j is the index of the final, but incomplete,

step of the construction. Since no 〈0, i〉 will ever be enumerated into Bj , the first
case of Nm,e will never be satisfied. Cofinitely, since A is a finite set and Bj is
not, the second case will not be satisfied either. (A is finite because only finitely
many steps of the construction complete.) Thus, cofinitely, the learner will output
(A ∪ Bk \ (0 ⊕ N))∗, where k is updated at each stage to reflect the most recent
addition to the family during the construction. Eventually k will stabilize to j,
after which time the learner’s hypotheses will always be correct.

Case 3: Suppose D = A, where only finitely many steps complete. Since A is
finite, for all but finitely many s, As = A and we may replace A|σ| with A in the
second case of the definition of Nm,e. Since no tag will ever be enumerated into
the 0th-column of A, the first case will never be satisfied and eventually the second
case will always be satisfied and Nm,e outputs A∗ cofinitely.

Case 4: Finally, suppose D = A, where infinitely many steps complete. Note
that because the learner is receiving an arbitrary enumeration, there need not be
any correlation between the enumeration given to the learner and the enumeration
of the simulation As. It is quite possible that the second case will be true only

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 15

infinitely often. The first case, however, is never satisfied. All that remains is
to prove that eventually the third case only produces correct hypotheses. Since
e ∈ COF, we may choose s such that [s,∞) ⊆ We. The set C \ A is finite and
(C \A) ∩Bi = ∅. Thus, A ∪Bi \ (0⊕ N) = A for i ≥ s.

Thus N succeeds in TxtBC-learning the following, possibly non-u.c.e., family
⋃

e∈COF,m∈N

Fm,e.

and thus can TxtBC-learn any subfamily.
�

Theorem 4.4. BCL is Σ0
5-hard

Proof. We wish to reduce an arbitrary Σ0
5 predicate P (e) to BCL. For an arbi-

trary Σ0
4 predicate Q(e), there is a Σ0

2 predicate, R(e, x, y), such that the following
representation can be made:

Q(e) ↔ (∃a)(∀b)(R(e, a, b))

↔ (∃〈a, s〉)[((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))

∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))]

↔ (∃!〈a, s〉)[((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))

∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))].

Since the predicate

((∀b)(R(e, a, b)))∧((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))∧((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))

is Π0
3, for a suitable computable function g,

Q(e) → (∃!x)(g(e, x) ∈ COINF)

and

¬Q(e) → (∀x)(g(e, x) ∈ COF).

Applying the above to P (e), the arbitrary Σ0
5 predicate under consideration, we

may define a computable function f such that

P (e) → (∃x)[(∀x′ > x)(∀y)(f(e, x′, y) ∈ COF)

∧ (∀x′ ≤ x)(∃≤1y)(f(e, x′, y) ∈ COINF)]

and

¬P (e) → (∀x)[(∃!y)(f(e, x, y) ∈ COINF)].

We will now define a family Ge from e such that Ge will be learnable if and only
if P (e). Define

Ge =
⋃

x,y∈N

Fx,f(e,x,y).

Case 1: Suppose ¬P (e). Then for every x, there is a y for which f(e, x, y) ∈
COINF. From this we conclude that for each computable learner, M coded by m,
there is a y such that f(e,m, y) ∈ COINF. Ge contains a subfamily, Fm,f(e,m,y),
that M cannot TxtBC-learn. Thus, Ge is not TxtBC-learnable.

16 ACHILLES A. BEROS

Case 2: Suppose P (e) and let x0 be such that (∀x ≥ x0)(∀y)(f(e, x, y) ∈ COF).
Let a0, a1, . . . , ak enumerate the numbers less than x0 such that, for unique corre-
sponding b0, b1, . . . , bk, we have f(e, ai, bi) ∈ COINF and let Ki be a computable
machine that learns Fai,f(e,a,bi). The existence of such a machine is guaranteed by
Lemma 4.3. Using the machineN from the proof of Lemma 4.3, define a computable
machine M on input string σ by

M(σ) =

{

Ki(σ) if 〈1, 〈0, ai〉〉, 〈1, 〈1, bi〉〉 ∈ content(σ) for i ≤ k,

N(σ) otherwise.

If an enumeration of a set in the subfamily Fai,f(e,ai,bi) is fed to M , then even-

tually a tag in the 1st-column will appear identifying it as such. Cofinitely often,
the appropriate Ki will be used to learn the enumeration. If the enumeration is for
a set from Fx,f(e,x,y) with either x 6= ai or y 6= bi for any i ≤ k, then N will be
used. From Lemma 4.3, it is known that N is capable of TxtBC-learning Fx,f(x,y)

for any x provided that y ∈ COF.
We conclude that BCL is Σ0

5-hard.
�

5. TxtEx∗-learning

Our final collection of results borrows from the BCL lower bound arguments as
well as the EXL description, given in Section 4 and Section 3, respectively. We
begin with a Σ0

5 description of EXL∗.

Theorem 5.1. EXL∗ has a Σ0
5 description.

Proof. Suppose e is a code for a u.c.e. family {L0, L1, . . .}. By Corollary 1.6, a
family that is TxtEx∗-learnable from computable enumerations is TxtEx∗-learnable
from arbitrary enumerations. Further, observe that if there is a machine, M , that
TxtEx∗-learns a family, there is a total machine, M̂ , that TxtEx∗-learns the same
family. Specifically, define M̂(σ) to beM(σ↾ n) for the greatest n such thatM(σ↾ n)

converges within |σ| computation stages and define M̂(σ) = 0 if no such initial
segment exists. We proceeed with a formula nearly identical to the description of
TxtEx-learning. Let D0, D1, . . . be a canonical, computable enumeration of the
finite sets. Consider the formula

(∃a)(∀k, i)(∃ℓ)
(

(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li) → ψ(k, a, i, ℓ)
)

(3)

where we define ψ(k, a, i, ℓ) to be

(∃s)(∀t > s)
(

Ma(φk↾t) =Ma(φk↾s)
)

∧ (∀n)
(

WMa(φk↾n)△Li = Dℓ

∨ (∃m > n)
(

Ma(φk↾m) 6=Ma(φk↾n)
)

)

.

The only difference between the above formula and that of Theorem 3.1 is an
additional existential quantifier over finite sets. Just as before, if a family satisfies
formula (3) then there is a computable machine that identifies every computable
enumeration for a set in the family.

�

Lemma 5.2. Let M = Mm be a computable learning machine and We a c.e. set.
There is a family Fm,e, uniformly computable in m and e, such that:

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 17

(1) If We is coinfinite, then Fm,e is not TxtEx∗-learnable by M , but the family

is TxtEx∗-learnable.

(2) If We is cofinite, then Fm,e is uniformly TxtEx∗-learnable in both M and e.

Proof. Fix a machine M = Mm and a c.e. set We. We will construct a family,
Fm,e = {A,L1, R1, L2, R2, . . .} in stages. Each set in Fm,e will have two columns
({〈0, x〉 : x ∈ N} and {〈1, x〉 : x ∈ N}) reserved for markers. Every set in Fm,e

contains 〈0, 〈m, 0〉〉 and 〈0, 〈e, 1〉〉 and A contains the marker 〈0, 〈0, 3〉〉 as well.
Unless otherwise indicated, any action during the construction is performed on the
complement of the reserved columns. We identify this complement with N as it is a
computable copy. At any stage of the construction, at most one pair of sets, Ln and
Rn, will be actively involved in the construction. When there is such a pair, we call
it the active pair and maintain an associated function, rn, which stores information
about that pair.

Stage 0: Search for the least string, σ, on which M outputs a hypothesis. Set σ0
equal to σ and enumerate content(σ0) into A.

Stage s+1: Let σ0 ≺ . . . ≺ σs be the sequence of strings passed to the current stage
from stage s. If there is a currently active pair, Ln and Rn, then for j ∈We,s+1, we
enumerate rn(j) and rn(j) + 1 into both Ln and Rn. We then consider four cases
depending on the status of two parameters. First, the existence of an active pair of
sets. Second, the availability, within computational bounds, of an extension, α, of
σs on which M outputs a hypothesis different from its most recent hypothesis. We
only consider the finite set of strings S = {σs τ̂ : (|τ | < s+1)∧(content(τ) ⊂ s+1)}
in our search for α.

Case 1: Suppose there is no active pair, but there is an extension, α ∈ S, of σs
such that M(α) 6=M(σs). We pick the least such α. Set σs+1 = αˆβ, where β is an
increasing enumeration of {x : x ≤ max(content(α))}, and enumerate content(σs+1)
into A.

Case 2: Next, consider the case where there is neither an active pair nor an
α ∈ S such that M(α) 6= M(σs). Let n ∈ N be least such that Ln and Rn have
not yet been used in the construction and set Ln and Rn to be the active pair. Set
σs+1 = σs and enumerate content(σs+1) into both Ln and Rn. Pick the least even
number, k, such that k and k + 1 have not appeared in the construction so far.
Enumerate k into Ln, k + 1 into Rn and set rn(0) = k.

Case 3: Let Ln and Rn be the active pair of sets, and suppose α ∈ S is least
such that M(α) 6= M(σs). Set σs+1 = αˆβ, where β is an increasing enumeration
of {x : x ≤ max(content(α))}, and enumerate content(σs+1) into A. Next, we
“cancel” the active pair. Specifically, we enumerate the marker elements 〈1, 〈n, 0〉〉
and 〈1, 〈n, 1〉〉 into Ln and Rn, respectively, and mark the pair as inactive.

Case 4: Finally, assume there is a currently active pair, Ln and Rn, but no
α ∈ S such that M(α) 6= M(σs). Pick the least even number k larger than any
number used in the construction so far, enumerate k into Ln, k+1 into Rn and set
rn(i + 1) = k, where i is the greatest value for which rn(i) is defined.

To verify that the above construction produces a family with the desired prop-
erties, we must verify three statements:

(1) Fm,e is TxtEx∗-learnable for all M and e.
(2) If We is coinfinite, then M does not TxtEx∗-learn Fm,e.

18 ACHILLES A. BEROS

(3) If We is cofinite, then there is a machine, computable from m and e, that
TxtEx∗-learns Fm,e.

If there is a pair of sets that remains active cofinitely, then Fm,e is a finite family.
If no such pair exists, then every finite set has a unique marker by which it can be
identified and the only infinite set is A. In either case, the family is learnable and
we conclude that the first statement is true.

To prove the second statement, we must again consider two cases. Suppose
We is coinfinite. If a pair of sets remains active cofinitely, then M outputs the
same hypothesis on all extensions of a finite partial enumeration whose content is
contained in both members of the pair. Thus, there are two enumerations, one for
each of Ln and Rn, on which M converges to the same hypothesis. The symmetric
difference or Ln and Rn, however, is infinite as one is co-odd and the other co-
even. If no pair remains active infinitely, then there must be an infinite number
of stages during the construction at which σ0 ≺ σ1 ≺ . . . are found such that
M(σs) 6= M(σs+1) and A is enumerated by f(n) = σn(n). In either case, M fails
to TxtEx∗-learn Fm,e.

Finally, we must exhibit a machine that can TxtEx∗-learn all possible families
Fm,e where e ∈ COF. In particular, a machine that can TxtEx∗-learn the following
possibly non-u.c.e. family as well as every subfamily:

G =
⋃

e∈COF,m∈N

Fm,e .

Since We is cofinite for all the families under consideration, observe that Fm,e

consists of a (possibly infinite) number of finite sets and either one or two sets (A or
a pair Ln and Rn) that are cofinite in the complement of the marker columns. Fix
codes a0, a1 and am,e such thatWa0

= ∅,Wa1
= N\{〈x, y〉 : (x = 0∨x = 1)∧y ∈ N}

and Wam,e
is the set A ∈ Fm,e. For notational ease, let C(k) = {〈k, x〉 : x ∈ N}.

Define Nm,e by

Nm,e(σ) =











a0 if content(σ) ∩C(1) 6= ∅,

am,e if 〈0, 〈0, 3〉〉 ∈ content(σ),

a1 otherwise.

Further, define a machine N by

N(σ) =

{

Nm,e if 〈0, 〈m, 0〉〉, 〈0, 〈e, 1〉〉 ∈ content(σ),

0 otherwise.

To prove that N learns G, select an arbitrary D ∈ G. Let e and m be the codes
such that D ∈ Fm,e for cofinite We.

Case 1: Suppose that, during the construction of Fm,e, no pair of sets remains
active infinitely. In this case, every member of Fm,e is marked, either with a marker
in C(1) or with 〈0, 〈0, 3〉〉. Thus, N succeeds in TxtEx∗-learning Fm,e.

Case 2: Suppose, on the other hand, a pair of sets remains active cofinitely
during the construction. Let Ln and Rn be that unique pair of sets. If D = A,
then 〈0, 〈0, 3〉〉 ∈ D and cofinitely often Nm,e hypothesizes am,e. Every other finite
set contains a unique marker and is hence TxtEx∗-learnable by Nm,e. Finally, if
D = Ln or Rn then D =∗

N\ (C(0)∪C(1)). No initial segment of any enumeration
of D contains either a marker in C(1) or the marker 〈0, 〈0, 3〉〉. Thus, Nm,e again
succeeds in TxtEx∗-learning the set.

LEARNING THEORY IN THE ARITHMETIC HIERARCHY 19

�

Theorem 5.3. EXL∗ is Σ0
5-hard

Proof. The proof is identical to that of Theorem 4.4 with one exception; in the
conclusion, we use Lemma 5.2 to justify the claim that N TxtEx∗-learns Fx,f(x,y)

for any x provided that y ∈ COF.
�

6. Conclusion

In summary, we have proved Σ0
3-completeness for FINL, Σ0

4-completeness for
EXL and Σ0

5-completeness for both BCL and EXL∗. Numerous other learning
criteria are known to the theory, but their arithmetic complexities remain to be
determined.

One question stemming from the above work is to ask if there are natural classes
other than u.c.e. families for which these complexity questions can be answered.
Any candidate would have to provide a framework within which an upper bound
could be placed on complexity. If more general classes are considered, observe that
complexity can only increase, whereas for more restrictive classes complexity can
only decrease.

References

[1] Dana Angluin. Inductive inference of formal languages from positive data. Theory of Algorithm

and Programs, 45:117–135, 1980.
[2] Janis Bārzdiņš. Two theorems on the limit synthesis of functions. Theory of Algorithm and

Programs, 1:82–88, 1974.
[3] Janis Bārzdiņš and Rūsiņš Freivalds. Prediction of general recursive functions. Doklady

Akademii Nauk SSSR, 206:521–524, 1972.
[4] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference. Infor-

mation and Control, 28:125–155, 1975.
[5] Mark Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.
[6] Daniel Osherson, Michael Stob, and Scott Weinstein. Systems That Learn: An Introduction to

Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, MA, 1986.
[7] Daniel Osherson and Scott Weinstein. Criteria of language learning. Information and Control,

52:123–138, 1982.
[8] Robert I. Soare. Recursively enumerable sets and degrees: a study of computable functions

and computably generated sets. Springer-Verlag, 1987.

Department of Mathematics, University of Wisconsin - Madison, Madison, WI 53706

E-mail address: aberos@math.wisc.edu

	1. Preliminaries
	2. TxtFin-Learning
	3. TxtEx-Learning
	4. TxtBC-Learning
	5. TxtEx*-learning
	6. Conclusion
	References

