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DP-MINIMALITY: INVARIANT TYPES AND DP-RANK

PIERRE SIMON

Abstract. This paper has two parts. In the first one, we prove that an invariant

dp-minimal type is either finitely satisfiable or definable. We also prove that a definable

version of the (p,q)-theorem holds in dp-minimal theories of small or medium directionality.

In the second part, we study dp-rank in dp-minimal theories and show that it enjoys

many nice properties. It is continuous, definable in families and it can be characterised

geometrically with no mention of indiscernible sequences. In particular, if the structure

expands a divisible ordered abelian group, then dp-rank coincides with the dimension

coming from the order.

The class of dp-minimal theories is a generalisation suggested by Shelah of
the classes of o-minimal and C-minimal theories. It also contains the field Qp of
p-adics. Strongly related to it is the notion of dp-rank defined in NIP theories as
follows: the dp-rank of a partial type π(x) over A is ≥ k if there are a |= π and
k sequences (Ii, i < k) mutually indiscernible over A (that is, Ii is indiscernible
over AI6=i) none of which is indiscernible over Aa. Dp-minimal theories are
theories in which all 1-types have dp-rank 1, or equivalently dp-rk(x = x) = 1.
This paper is divided into two main sections which can be read independently.

In the first one we study invariant types and a definable version of the (p, q)-
theorem. In the second one, we prove some properties of dp-rank in dp-minimal
theories.
We first present our results on invariant types. Assume that T is NIP. In [8],

Shelah proves that given an arbitrary type p over some saturated M and a |= p,
one can find some tuple c ∈ U such that tp(c/M) is finitely satisfiable in a small
B ⊆ M and tp(a/cM) is weakly orthogonal to all types finitely satisfiable in
some small B′ ⊆ M . Thus one can consider c as a maximal analysis of p over
finitely satisfiable types. Our initial idea was to consider what happens when
p is taken to be invariant. It is an easy observation that if p is orthogonal to
all finitely satisfiable types (i.e., we cannot do any analysis), then it must be
definable (see Lemma 2.3). This gave rise to the hope of being able to analyse
any invariant type over finitely satisfiable types, with a definable ‘quotient’.
However, this ended up being harder than expected and the main questions are
left unresolved. We only manage to treat the dimension one case, where no
mixed situation can occur. Thus our first main theorem is the following:

Theorem 0.1. If p is an invariant type of dp-rank 1, then it is either finitely
satisfiable or definable.
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2 PIERRE SIMON

In turned out that those ideas were useful in studying another related problem:
that of finding definable (or partially definable) types. If p(x) is a global M -
invariant type, then for any formula φ(x; y), we can consider the subset dpφ ⊆
Sy(M) of types q(y) such that p ⊢ φ(x; b) for any b |= q. The type p is definable
exactly when the sets dpφ are open for all φ (and hence they are also closed).
We are concerned here with finding types extending some given formula and for
which some prescribed type q falls in the interior of dpφ. We only succeed under
strong assumptions on the theory.

Theorem 0.2. Assume that T is dp-minimal and of medium or small direc-
tionality, then given any model M and formula φ(x; b) ∈ L(U), if φ(x; b) does not
fork over M , then there is a formula θ(y) ∈ tp(b/M) such that

∧

b′∈θ(U) φ(x; b
′)

is consistent (and hence does not fork over M).

That this holds in any NIP theory was conjectured in [2]. This conjecture
amounts to asking for a definable version of the (p, q)-theorem of finite combi-
natorics, as we will explain in Section 2.
In a subsequent paper [12] with Sergei Starchenko, we show that one can adapt

the constructions given here to find definable types in dp-minimal theories with
definable Skolem functions. With those hypothesis, we show the existence of a
definable type extending any non-forking formula. In particular, this holds for
Qp.
The second part of this paper studies dp-rank in dp-minimal theories. Little

is known about dp-rank in general, apart from the fact that it is sub-additive
([4]). This implies that the dp-rank of an n tuple in a dp-minimal theory has
rank at most n. For that reason, we only work with finite ranks here, whereas
in general the dp-rank can be an infinite cardinal (see e.g., [11, Chapter 4]). In
[6] we proved with Itay Kaplan that—after extending the base—the sequences
Ii in the definition of dp-rank can be taken to be sequences of realisations of p.
The first main result of this part (Proposition 3.4) is a strengthening of this for
dp-minimal theories. In fact, the situation is as good as it could possibly be:
the dp-rank of a tuple (a1, . . . , an) can be witnessed by mutually indiscernible
sequences of points, each of them starting with one of the ai’s. As an immediate
consequence, the property “dp-rk(ā/A) ≥ k” is type-definable in ā.
Our second main result (Theorem 3.8) says that dp-rank can be characterised

without mentioning indiscernible sequences and implies, if T eliminates ∃∞, that
it is definable in families. Our theorems can be summarised as follows:

Theorem 0.3. Let T be dp-minimal, and for ⊕1 assume elimination of ∃∞.
We work only in real sorts.
⊕0 If acl satisfies exchange, then dp-rank coincides with acl-dimension and

this happens if and only if dp-rank is additive.
⊕1 For every formula φ(x̄; ȳ) and integer k, the set of parameters b̄ for which

dp-rk(φ(x̄; b̄)) = k is definable.
⊕2 Let ā be a tuple and A a set of parameters. Then there is a formula

φ(x̄) ∈ tp(ā/A) such that dp-rk(φ(x̄)) = dp-rk(ā/A).
⊕3 The formula φ(x0, . . . , xn−1) has dp-rank n if and only if there are formulas

θk(xk) of dp-rank 1 and a formula ψ(x0, . . . , xn−1) of dp-rank < n such that φ(x̄)
contains the definable set

∧

k<n θk(xk) \ ψ(x̄). In fact, ψ(x̄) can even be taken
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as a hypersurface (meaning that when we project on the first variable, all fibers
have dp-rank < n− 1).
⊕3′ Assume that T has no non-realised generically stable type. Then ⊕3 holds

with ψ(x̄) = ⊥.
⊕4 The formula φ(x0, . . . , xn−1) has dp-rank ≥ k if and only if its projection

to some k variables has dp-rank k.

Note the following consequence: in dp-minimal theories, one can give an al-
ternative, equivalent definition of dp-rank as follows. A formula has dp-rank at
least 1 if and only if it is infinite. Then inductively, a formula φ(x0, . . . , xn−1)
in n free variables has dp-rank n if and only if ⊕3 is satisfied. Finally using ⊕4,
a general formula φ(x0, . . . , xn−1) has dp-rank k, where k ≤ n is maximal such
the projection of φ to some k variables has dp-rank k.
Elimination of ∃∞ is necessary for ⊕1 to hold. Without it, we still can show

a weaker statement: the set of parameters b̄ such that dp-rk(φ(x̄; b̄)) > k is
type-definable.
It is proved in [9] that in a dp-minimal divisible ordered group, any infinite

definable set in dimension 1 has non-empty interior. We then deduce from ⊕3′

that under the same hypothesis, any definable set in n variables has dp-rank n
if and only if it has non-empty interior. We will in fact prove this directly in
Section 3.4.
Finally, notice that the hypersurface ψ(x̄) in ⊕3 is necessary in general. For

example, in the theory of pure equality the formula x0 6= x1 has dp-rank 2 but
does not contain a rectangle.

Acknowledgements Thanks to Sergei Starchenko for motivating me to work
on Conjecture 2.1. Thanks also to Itay Kaplan for reading some previous versions
of this paper. Finally, many thanks to the referee for a careful reading of the
paper and a number of useful comments and corrections.

§1. Setting and basic facts. Throughout, T is a complete theory, which we
do not always assume to be NIP and U is a monster model. We write M ≺+ N
to mean M ≺ N and N is |M |+-saturated.
The notation φ0 means ¬φ and φ1 means φ.
If M ≺+ N and p ∈ S(N), then p is M -invariant if for any b, b′ ∈ N and any

formula φ(x; y), b ≡M b′ implies p ⊢ φ(x; b) ↔ φ(x; b′). If N is not specified, we
mean N = U . If M is omitted, we mean “for some M such thatM ≺+ N”. Any
M -invariant type over N extends in a unique way to a global M -invariant type.
Thus there is no harm in considering only global invariant types.
Let I = (ai : i ∈ I) be any sequence. We define the Ehrenfeucht-Mostowski

type (or EM-type) of I over A to be the set of L(A)-formulas φ(x1, . . . , xn)
such that U |= φ(ai1 , . . . , ain) for all i1 < · · · < in ∈ I, n < ω. If I is an
indiscernible sequence, then for every n, the restriction of the EM-type of I to
formulas in n variables is a complete type over A. If I is any sequence and J
is any infinite linear order, then using Ramsey’s theorem and compactness, we
can find an indiscernible sequence J indexed by J and realising the EM-type of
I (see [13, Lemma 5.1.3]).
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As usual, we say that two types p, q ∈ S(N) are weakly orthogonal if p(x)∪q(y)
defines a complete type in two variables overN . If p and q areM -invariant types,
we say they are orthogonal if they are weakly orthogonal as global types. Note
that this implies that p|N and q|N are weakly orthogonal for any N such that
M ≺+ N .
An important notion in this work is that of commuting types. If p(x) and q(y)

are two global invariant types, then p(x) ⊗ q(y) denotes tp(a, b/U) where b |= q
and a |= p|Ub. We say that p and q commute if p(x)⊗q(y) = q(y)⊗p(x). We say
that p and q commute over M1 if p(x)⊗ q(y)|M1

= q(y)⊗ p(x)|M1
. Note that by

associativity of ⊗, if p and q commute, then p commutes with q(n) = q⊗ · · · ⊗ q.
The following observation will be used frequently: Assume that p and q are

M -invariant global types. Let M ≺+ N . Build successively b |= q|N , a |= p|Nb

and I a Morley sequence of q over Nab. Then the sequence b+ I is indiscernible
over Na if and only if p and q commute.
Of course, if p and q are orthogonal, then they commute. In NIP theories, we

can consider commuting as a kind of weak form of orthogonality. This may seem
exaggerated since for example a type may commute with itself, but it turns out
to be a useful intuition. It is also motivated by the study of distal theories (see
[10]) where in fact the two notions coincide (and this can be taken as a definition
of distal theories amongst NIP theories).

Recall that, in an NIP theory, a global invariant type p is generically stable if
it is both definable and finitely satisifiable over a small model. This is equivalent
to saying that p commutes with itself: p(x1) ⊗ p(x2) = p(x2) ⊗ p(x1) (see [11,
Theorem 2.29]).

We recall also the notion of strict non-forking from [1]. Let M be a model
of an NIP theory. A sequence (bi)i<ω is strictly non-forking over M if for each
i < ω, tp(bi/b<iM) is strictly non-forking overM which means that it extends to
a global type tp(b∗/U) such that both tp(b∗/U) and tp(U/Mb∗) are non-forking
overM . We will only need to know two facts about strict non-forking sequences:

(Existence) Given b ∈ U and M |= T , there is a sequence b = b0, b1, . . . which
is strictly non-forking over M . We might call such a sequence a strict Morley
sequence of tp(b/M).

(Witnessing property) If the formula φ(x; b) forks overM , then for any strictly
non-forking sequence b = b0, b1, . . . , the type {φ(x; bi) : i < ω} is inconsistent.

If φ(x; y) is an NIP formula, we let alt(φ) be the alternation number of φ,
namely the maximal n for which there is an indiscernible sequence (bi : i < ω)
and a tuple a with ¬(φ(a; bi) ↔ φ(a; bi+1)) for all i < n. If (bi : i < ω) is
indiscernible and {φ(x; bi) : i < alt(φ)/2+1} is consistent, then {φ(x; bi) : i < ω}
is also consistent.

1.1. Dp-rank and dp-minimality. Sequences (Ii : i < k) are said to be
mutually indiscernible over A if each Ii is indiscernible over A ∪ I6=i.
We briefly recall the definition of dp-rank and refer the reader to [11, Chapter

4] for more information. We will only need to consider finite dp-ranks, hence we
restrict our definition to this case.
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Definition 1.1. Let π(x) be a partial type over some set A and n < ω. Then
π(x) is of dp-rank ≤ n if for any a |= π(x) and any n + 1 sequences I0, . . . , In
mutually indiscernible over A, there is k ≤ n such that Ik is indiscernible over
Aa.
The partial type π is of dp-rank n (written dp-rk(π(x)) = n) if it is of dp-rank

≤ n, but not ≤ n− 1.

One can check that this definition does not depend on the choice of A over
which π(x) is defined.
We will often write dp-rk(a/A) instead of dp-rk(tp(a/A)).
If π(x) is a partial type over A, then the definition implies immediately that

dp-rk(π(x)) = maxp dp-rk(p) where p ranges over all complete A-types extending
π(x).

Proposition 1.2 ([4]). Dp-rank is sub-additive: for any a, b and A, we have
dp-rk(a, b/A) ≤ dp-rk(a/Ab) + dp-rk(b/A).

Equality need not hold as we will see in Section 3. However, it is always the
case that dp-rk(φ(x) ∧ ψ(y)) = dp-rk(φ(x)) + dp-rk(ψ(y)), where x and y are
disjoint tuples of variables.
A theory T is dp-minimal if every one-type has dp-rank at most 1. Equiva-

lently, T is dp-minimal if for every set A, infinite sequences I0, I1 of tuples and
every element a, if I0 is indiscernible over AI1 and I1 is indiscernible over AI0,
then either I0 or I1 is indiscernible over Aa. By Proposition 1.2, every n-tuple
ā has dp-rank at most n (over any set A).
Any dp-minimal theory is NIP.

§2. Invariant types. Our guiding conjecture in this section is the following
which first appeared in [2].

Conjecture 2.1. Let T be NIP and M |= T . Let φ(x; d) ∈ L(U) be a for-
mula, non-forking over M . Then there is θ(y) ∈ tp(d/M) such that the partial
type {φ(x; d′) : d′ ∈ θ(U)} is consistent.

First, a few basic observations:
· As φ(x; d) does not fork overM , it extends to someM -invariant type p. (Re-

call that in NIP theories, non-forking and invariance are the same over models,
[1].)
· If p is finitely satisfiable, then in particular, φ(x; d) has a solution a in M .

Then we can take θ(y) = φ(a; y). In this case, the formula φ(x; d) also extends
to the definable type x = a.
· If p is definable, then we may take θ(y) to be the φ-definition of p.

Hence the interesting case is when p is neither definable nor finitely satisfiable.
This is where the ideas mentioned in the introduction become useful.

The (p, q)-theorem. We note that this conjecture can be seen as a definable
version of the (p, q)-theorem from finite combinatorics; the statement of which
we recall now. Let φ(x; y) be a formula. We define the dual VC-dimension of
φ(x; y) as the maximal n < ω (if it exists) for which there are tuples b0, . . . , bn−1

and (aC : C ⊆ n) such that

|= φ(aC ; bk) ⇐⇒ k ∈ C.
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If such a maximal n does not exist, we say that φ(x; y) has infinite dual VC-
dimension. A formula has finite dual VC-dimension if and only if it is NIP (see
[11, Chapter 6]).

Fact 2.2 ((p, q)-theorem). Given integers p ≥ q, there is an integer n such
that the following holds. Let φ(x; y) be a formula of dual VC-dimension < q and
let W ⊆ M |y| be the set of tuples b for which φ(x; b) is not empty. Let Y ⊂ W
be finite and assume that for every Y0 ⊆ Y of size p, we can find Y1 ⊆ Y0 of
size q and a ∈M such that Y1 ⊆ φ(a;M), then there are a0, . . . , an−1 such that
Y ⊆

∨

i<n φ(ai;M).

See [11, Chapter 6] for more details and for a proof of a special case. This
theorem was used in [2] to prove uniformity of honest definitions. We refer the
reader to [7] for the original proof.
Let T be NIP and M |= T . Assume that φ(x; d) ∈ L(U) does not fork over

M . By lowness (see [11, Proposition 5.38]), there is ψ(y) in L(M) such that for
any d′ |= ψ(y), the formula φ(x; d′) does not fork over M . Let W ⊆ Sy(M) be
the set of types containing the formula ψ(y). As noted in [2, Proposition 25],
the (p, q)-theorem implies that we can write W =

⋃

i<nWi such that for each
i < n, {φ(x; d′) : d′ ∈ U , tp(d′/M) ∈ Wi} is consistent (and thus does not fork
over M).
Conjecture 2.1 and compactness imply that we can choose the sets Wk to be

clopens. In fact, the converse is also true: if we can choose the Wk’s to be
definable, then Conjecture 2.1 follows since tp(b/M) must lie in one of them.

Finally, note that it is enough to prove the conjecture when T is countable,
because we can restrict to a countable T containing φ(x; y). Then we can also
assume that M is countable: if it is not, we can replace it with a countable
submodel over which φ(x; d) does not fork.

2.1. Recognising definable types. The following lemma holds in any the-
ory and is the key to identifying definable types.

Lemma 2.3. An M -invariant type p(x) is definable if and only if for every
M -finitely satisfiable type q(y), p(x)⊗ q(y)|M = q(y)⊗ p(x)|M .

Proof. If p is definable, then it is known (and easy to see) that it commutes
with every finitely satisfiable type (see [11, Lemma 2.23]). Conversely, assume
that p commutes with everyM -finitely satisfiable type as in the statement of the
proposition. We first show that p is an heir of its restriction to M . Assume that
this is not the case. Then there is φ(x; y) ∈ L(M) and d ∈ U such that p ⊢ φ(x; d)
and for all b ∈ M , p ⊢ ¬φ(x; b). Let q be any global coheir of tp(d/M). Then
p(x) ⊗ q(y) ⊢ φ(x; y) by construction, but necessarily, q(y) ⊗ p(x) ⊢ ¬φ(x; y).
This contradicts the hypothesis.
To conclude it is now enough to show that p|M has a unique heir to U . Let

p0, p1 be two global heirs of p|M . If p0 6= p1, then for some formula φ(x; b) ∈ L(U),
we have p0 ⊢ φ(x; b) and p1 ⊢ ¬φ(x; b). Let a0 |= p0|Mb and a1 |= p1|Mb. By
the heir property, we know that both tp(b/Ma0) and tp(b/Ma1) are finitely
satisfiable in M . Let q0 (resp. q1) be a global extension of tp(b/Ma0) (resp.
tp(b/Ma1)) which is finitely satisfiable in M . As both a0 and a1 realise p|M , we
have q0(y)⊗p(x) ⊢ φ(x; y) whereas q1(y)⊗p(x) ⊢ ¬φ(x; y). But as q0|M = q1|M ,
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we have p(x)⊗q0(y) ⊢ φ(x; y) ⇐⇒ p(x)⊗q1(y) ⊢ φ(x; y). We get a contradiction
to the commutativity hypothesis. ⊣

In the study of the dp-minimal case, we will work by induction on the number
of variables. Hence the following will be useful.

Lemma 2.4. Let T be NIP. Let φ(x, y; d) ∈ L(U) and M |= T such that
φ(x, y; d) does not fork over M . Assume that there are (a, b) |= φ(x, y; d),
tp(a, b/U) is M -invariant and tp(b/U) is finitely satisfiable in M . Then there is
b0 ∈M such that φ(x; b0, d) does not fork over M .

Proof. Let (di : i < ω) be a strict Morley sequence of tp(d/M). Let n
be larger than the alternation number of φ(x; y). Then b satisfies the for-
mula (∃x)

∧

k<n φ(x, y; dk). Therefore there is b0 ∈ M satisfying the same for-
mula. We claim that φ(x; b0, d) does not fork over M . Indeed, there is a′ such
that

∧

k<n φ(x; b0, dk) holds. By hypothesis on n, this implies that the type
{φ(x; b0, di) : i < ω} is consistent and therefore φ(x; b0, d) does not fork over
M . ⊣

Corollary 2.5. Assume that T is NIP. If all invariant 1-types are finitely
satisfiable in a small model, then all invariant types are.

Now to show Conjecture 2.1 by induction it would be enough to consider the
case where for every M -invariant type extending φ(x̄; d) none of the induced
one-types are finitely satisfiable.

2.2. One variable.

Lemma 2.6. Let B ⊂ U and let a ∈ U be a tuple such that dp-rk(a/B) = n.
Let b̄1, . . . , b̄n in U be infinite sequences, mutually indiscernible over B, none of
which is indiscernible over Ba. Let φ(x; y) ∈ L, |x| = |a|.
Then there are formulas ψ(x) ∈ tp(a/Bb̄1..b̄n) and θl(y) ∈ L(Bb̄1..b̄n) l = 0, 1,

such that:
•0 for each b ∈ B|y|, one of θ0(b) or θ1(b) holds;
•1 for l = 0, 1, U |= θ(y) ∧ ψl(x) → φl(x; y).

Proof. Let r ∈ Sy(Bb̄1..b̄n) be finitely satisfiable in B. Let r′ be any global
extension of r to a type finitely satisfiable in B. Let l = l(r′) ∈ {0, 1} be such
that r′ |= φl(a; y).
Assume that we can find c |= r such that |= ¬φl(a; c). Then let J be a

Morley sequence of r′ over everything and c̄ = c+J . The sequences b̄1, . . . , b̄n, c̄
are mutually indiscernible over B and none of them is indiscernible over Ba.
This contradicts the fact that dp-rk(a/B) = n. Thus by compactness, there are
θr(y) ∈ r and ψr(x) ∈ tp(a/Bb̄1..b̄n) such that |= θr(y) ∧ ψr(x) → φl(x; y). In
particular, l depends only on r, not on r′, and we can write l = l(r).
Let S ⊂ Sy(Bb̄1..b̄n) be the set of types finitely satisfiable in B. It is a closed

set, thus compact and contains all types realised in B. We can extract from
the family {θr(y) : r ∈ S} a finite subcover {θr(y) : r ∈ S∗}. For l = 0, 1,
let S∗

l = {r ∈ S∗ : l(r) = l} and define θl(y) =
∨

r∈S∗

l

θr(y). Also define

ψ(x) =
∧

r∈S∗ ψr(x).

We have that θ0, θ1 cover S, in particular, θ0(B) ∪ θ1(B) = B|y|. Also for
l = 0, 1, ψ(x) ∈ tp(a/Bb̄1..b̄n) and U |= θl(y) ∧ ψ(x) → φl(x; y). ⊣
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Lemma 2.7. LetM ≺+ N1 ≺+ N and let a ∈ U be a tuple such that dp-rk(a/N) =
n. Let b̄1, . . . , b̄n in U be infinite sequences, mutually indiscernible over N ,
none of which is indiscernible over Na. Assume also that tp(ab̄1..b̄n/N) is M -
invariant. Then

tp(a/N1b̄1..b̄n) ⊢ tp(a/N).

More precisely, given φ(x; y) ∈ L, |x| = |a|, there are formulas θl(y) ∈
L(N1b̄1..b̄n) (l = 0, 1) and ψ(x) ∈ tp(a/N1b̄1..b̄n) such that:
•0 for each b ∈ N |y|, one of θ0(b) or θ1(b) holds;
•1 for l = 0, 1, U |= θl(y) ∧ ψ(x) → φl(x; y).

Proof. Let ψ(x), θl(y) be given by Lemma 2.6 with B = N .
Write θl(y) = θl(y; b̄1, . . . , b̄n, e) and ψ(x) = ψ(x; b̄1, . . . , b̄n, e) with e ∈ N . As

tp(ab̄1..b̄n/N) is M -invariant, we may replace e by any e′ ≡M e. In particular,
we may assume that e ∈ N1. This gives what we want. ⊣

Our first theorem is stated for a type of dp-rank 1 in an arbitrary theory.

Theorem 2.8. (T any theory) Let p be a global M -invariant type of dp-rank
1. Then p is either finitely satisfiable or definable.

Proof. Assume that p is not definable. Then there is a global type q finitely
satisfiable in M such that p does not commute with q. Take N ≻M sufficiently
saturated. Let φ(x; y) ∈ L, d ∈ N such that φ(x; d) ∈ p.
Let (a, b) |= p ⊗ q|N , then let I be a Morley sequence of q over Nab and

let b̄ = b + I. The sequence b̄ is indiscernible over N , but not over Na. Let
M ≺+ N1 ≺+ N with tp(N1/Md) finitely satisfiable in M .
Apply Lemma 2.7 to a, N1, N and b̄, with n = 1. The second part of the

conclusion gives formulas θl(y), ψ(y) ∈ L(N1b̄). Write θl(y) = θl(y; b̄, e) and
ψ(x) = ψ(x; b̄, e) with e ∈ N1.
Since φ(x; d) ∈ p, we know that the formula θ1(d; b̄, e) holds. As tp(b̄/N) is

finitely satisfiable in M , there is b̄0 ∈M such that

b̄0 |= θ1(d; z̄, e) ∧ (∃x)(∀y)(θ1(y; z̄, e) → φ(x; y)).

Since N1 is a model, there is a0 ∈ N1 such that (∀y)(θ1(y; b̄0, e) → φ(a0; y))
holds. In particular φ(a0; d) holds. As tp(N1/Md) is finitely satisfiable inM , we
can find a′0 ∈M satisfying φ(x; d). As φ(x; d) was any formula in p, this proves
that p is finitely satisfiable in M . ⊣

Hence if T is dp-minimal, Conjecture 2.1 is proved for any formula φ(x; d),
|x| = 1.

2.3. Two variables. In this section and the next one, we assume for sim-
plicity that T is dp-minimal and try to deal with formulas in more than one
variable.
The next proposition solves Conjecture 2.1 for formulas in two variables.

Proposition 2.9. Assume that T is dp-minimal. Let φ(x1, x2; d) ∈ L(U) be
non-forking over M ; |x1| = |x2| = 1. Then there is θ(y) ∈ tp(d/M) such that
∧

d′∈θ(U) φ(x1, x2; d
′) is consistent.
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Proof. Fix some model M ≺ N , N is very saturated and let φ(x1, x2; d) ∈
L(N) be non-forking over M . Let a1 â2 |= φ(x1, x2; d) such that tp(a1, a2/N)
is non-forking over M . By Lemma 2.4, we may assume that p1 = tp(a1/N)
is not finitely satisfiable in M . Therefore it is definable and since it is not
generically stable, it does not commute with itself. Also we may assume that
p = tp(a1, a2/N) is not definable, therefore there is some type q ∈ S(N) finitely
satisfiable in M such that p does not commute with q.
Now let c1, c2 ∈ U such that (a1ˆa2, c2, c1) |= p⊗ q ⊗ p1|N . Let I be a Morley

sequence of p1 over everything and J a Morley sequence of q over everything.
Then the sequences c̄1 = c1+I and c̄2 = c2+J are mutually indiscernible over N
(because the types p1 and q commute). But neither of them is indiscernible over
Na1a2. Take some M ≺+ N1 ≺+ N such that tp(N1/Md) is finitely satisfiable
in M . As the dp-rank of a1ˆa2 over N is 2 (by Proposition 1.2), we can apply
Lemma 2.7. We conclude that tp(a1ˆa2/c̄1c̄2N1) ⊢ tpφ(a1ˆa2/N) as witnessed
by some ψ(x; c̄1, c̄2, e), θl(y; c̄1, c̄2, e), l = 0, 1, with e ∈ N1.
As tp(c̄2/Nc̄1) is finitely satisfiable in M , there is c̄′2 ∈M such that:

|= θ1(d; c̄1, c̄
′
2, e) ∧ (∃x)(∀y)(θ1(y; c̄1, c̄

′
2, e) → φ(x; y)).

Let Θ(d; c̄1, c̄
′
2, e) be this conjunction. Since tp(c̄1/N) is definable over M ,

there is a formula dΘ(y; z̄2, t̄) ∈ L(M) such that for all y, z̄2, t̄ ∈ N , we have
dΘ(y; z̄2, t̄) ↔ Θ(y; c̄1, z̄2, t̄). As tp(e/Md) is finitely satisfiable in M , we can
find e′ ∈M such that dΘ(d; c̄′2, e

′) holds. Then unwinding, we see that the type
{φ(x; d′) : d′ |= dΘ(y; c̄′2, e

′)} is consistent, as required. ⊣

2.4. More variables. The proof of the two-variable case relied on the fact
that non-forking formulas in one variable extend to definable types. However
the conclusion we obtain is weaker and this prevents us from going on to higher
arities. In this section, we do our best to pursue nonetheless. We manage to
make an induction go through, but with an even weaker property.
In this section, we assume that T is countable.

We start with a local version of Lemma 2.3.

Lemma 2.10. Let M ≺+ N and let a ∈ U such that p = tp(a/N) is M -
invariant. Let q ∈ Sy(M) and b ∈ q(N). The following are equivalent:
(i) p⊗ q̃|M = q̃ ⊗ p|M for every global coheir q̃ of q.
(ii) for every formula φ(x; y) ∈ L(M) such that a |= φ(x; b), there is θ(y) ∈ q

such that for any b′ ∈ θ(M), a |= φ(x; b′).

Proof. (i) ⇒ (ii): Assume that (i) holds and let φ(x; y) ∈ L(M) such that
a |= φ(x; b). Then (i) implies that there is no coheir q̃ of q such that q̃ |= ¬φ(a; y).
In other words, q∪{¬φ(a; y)} is not finitely satisfiable inM . This exactly means
that for some θ(y) ∈ q, θ(M) ∩ ¬φ(a;M) = ∅, hence φ(a; b′) holds for every
b′ ∈ θ(M).
(ii) ⇒ (i): Assume (ii). Let φ(x; y) ∈ L(M) such that p ⊗ q ⊢ φ(x; y) and

θ(y) ∈ L(M) given by (ii). Let q̃ a global coheir of q, and we have to show
that q̃ ⊢ φ(a; y). Assume not, then q̃ ⊢ ¬φ(a; y) ∧ θ(y). But that formula is not
realised in M . Contradiction. ⊣

Hence to solve Conjecture 2.1, it is enough to prove that given M ≺+ N and
φ(x; d) ∈ L(N) non-forking over M , there is a ∈ φ(U ; d), tp(a/N) does not fork
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over M and commutes over M with every coheir of tp(d/M). (Because then,
taking θ(y) ∈ tp(d/M) as in point (ii) of the lemma, we have that {φ(x; b′) : b′ ∈
θ(U)} is consistent.)
We will not succeed in finding such a type, instead we will obtain a weaker

property.

Lemma 2.11. Let M ≺ M1 ≺+ N and let a ∈ U such that p = tp(a/N) is
M -invariant. Let q ∈ Sy(M) and b ∈ q(N). The following are equivalent:
(i) p⊗ q̃|M1

= q̃ ⊗ p|M1
for every global coheir q̃ of q extending tp(b/M1);

(ii) for every formula φ(x; y) ∈ L(M1) such that a |= φ(x; b), there is θ(y) ∈
tp(b/M1) such that for any b′ ∈ θ(M), a |= φ(x; b′).

Proof. We assume that tp(b/M1) is finitely satisfiable in M , otherwise ev-
erything is trivial.
(i) ⇒ (ii): Assume that (i) holds and let φ(x; y) ∈ L(M1) such that a |= φ(x; b).

Then (i) implies that there is no global coheir q̃ of q extending tp(b/M1) such that
q̃ |= ¬φ(a; y). Therefore the partial type tpy(b/M1) ∪ {¬φ(a; y)} is not finitely
satisfiable in M . Hence there is θ(y) ∈ tp(b/M1) such that θ(M) ⊆ φ(a;M).
(ii) ⇒ (i): Assume (ii). Let φ(x; y) ∈ L(M1) such that p ⊗ q ⊢ φ(x; y) and

θ(y) ∈ L(M1) given by (ii). Let q̃ a global coheir of q extending tp(b/M1), and
we have to show that q̃ ⊢ φ(a; y). Assume not, then q̃ ⊢ ¬φ(a; y) ∧ θ(y). But
that formula is not realised in M . Contradiction. ⊣

We introduce the notion of “a2-forking” as defined in Cotter & Starchenko’s
paper [3]. For this, we assume that T is NIP.
Assume we have M ≺+ N and a2 ∈ U such that tp(a2/N) is M -invariant.

We say that a formula ψ(x, a2; d) ∈ L(Na2) a2-divides over M if there is an M -
indiscernible sequence (di : i < ω) inside N with d0 = d and {ψ(x, a2; di) : i < ω}
is inconsistent. We define a2-forking in the natural way: the formula ψ(x, a2; d)
a2-forks overM if it implies a finite disjunction of formulas ψi(x, a2; di) ∈ L(Na2)
each of which a2-divides over M .

Fact 2.12. Notations being as above, the following are equivalent:
(i) ψ(x, a2; d) does not a2-divide over M ;
(ii) ψ(x, a2; d) does not a2-fork over M ;
(iii) if (di : i < ω) is a strict Morley sequence of tp(d/M) inside N , then

{ψ(x, a2; di) : i < ω} is consistent;
(iv) there is a1 |= ψ(x, a2; d) such that tp(a1, a2/N) is M -invariant.

The proof of the equivalences of (i)-(iii) can be found in the Appendix of [3].
The proof is an easy adaptation of the corresponding facts for usual dividing and
forking proved in [1]. It is assumed in [3] that tp(a2/N) is M -definable, but this
is only used through Remark 5.11 there which only needs M -invariance.
It remains to show the equivalence to (iv). It is clear that (iv) implies (iii).

Conversely assume that (iv) does not hold. Then ψ(x, a2; d) implies a finite
disjunction of formulas of the form θ(x, a2; e, e

′) = ¬(ζ(x, a2; e) ↔ ζ(x, a2; e
′)),

with e, e′ ∈ N , tp(e/M) = tp(e′/M). By NIP, the formula θ(x, y; e, e′) divides
over M (since it does not extend to an invariant type) hence θ(x, a2; e, e

′) a2-
divides over M which implies that ψ(x, a2; d) a2-forks over M .
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Let M ≺+ N , M is countable and d ∈ N . We can find M ≺ M1 ≺ N such
that:
•0 M1 is countable;
•1 tp(d/M1) is finitely satisfiable in M ;
•2 for every finite m ∈M1, there is d′ ∈M1 such that (m, d′) ≡M (m, d);
•3 for every finite m ∈ M1, there is a strict Morley sequence (mi : i < ω) of

tp(m/M) in M1, with m0 = m;

It easy to build such a model in ω steps: first fix a global coheir q̃ of tp(d/M).
Let M0 =M , and having built Mk take Mk+1 ⊇Mk to satisfy •2, •3 where m
is taken in Mk. Then move Mk+1 so that tp(d/Mk+1) = q̃|Mk+1. Having done
this inductively for all k, let M1 be the union of the Mk’s.

Proposition 2.13. Assume T is countable and dp-minimal. Let M ≺M1 ≺+

N , and d ∈ N as above. Let a1, a2 ∈ U , |a1| = 1, such that p = tp(a1, a2/N) is
M -invariant, φ0(a1, a2; d) holds for some d ∈ N and tp(a2/N) commutes over
M1 with every coheir of tp(d/M) extending tp(d/M1).
Then there is a′1 ∈ U such that φ0(a

′
1, a2; d) holds, tp(a

′
1, a2/N) is M -invariant

and commutes over M1 with every coheir of tp(d/M) extending tp(d/M1).

Proof. We say that a tuple â a2, |a| = |a1|, is Γ-good, when:
– Γ = {(ψφ(x1, x2), θφ(x2; d)) : φ ∈ ΓL}; where ψφ, θφ ∈ L(M1);
– ΓL ⊆ L(M1) and each φ ∈ ΓL has the form φ(x1, x2; y), |xi| = |ai|, |y| = |d|;
– for each φ(x1, x2; y) ∈ ΓL, we have
|= ψφ(a, a2) ∧ θφ(a2; d) and
|= (∀x, y)(ψφ(x, a2) ∧ θφ(a2; y) → φ(x, a2; y)).

Claim 1: If â a2 is Γ-good, where
ΓL = {φ ∈ L(M1) : φ = φ(x1, x2; y) ∈ tp(a, a2, d/M1)},
then tp(a, a2/N) commutes over M1 with every coheir of tp(d/M) extending

tp(d/M1).
Proof: We have to check condition (ii) of the Lemma 2.11. Let φ(x1, x2; y) ∈

L(M1) such that â a2 |= φ(x1, x2; d). By hypothesis on tp(a2/N), and Lemma
2.11, there is dθ(y) ∈ tp(d/M1) such that for every b ∈ M , we have dθ(b) →
θφ(a2; b). Then for each b ∈ dθ(M), we have |= φ(a, a2; b). Hence the claim is
proved.

Fix an enumeration of formulas φ(x1, x2; y) in L(M1), of order type ω for which
φ0 is the first formula. Assume that we are given a1, a2 as in the statement and
some Γ, ΓL finite, such that a1 â2 is Γ-good. Let ψ∗(x1, x2; g) ∈ L(M1) be the
conjunction of ψφ(x1, x2) for φ ∈ ΓL. If a1ˆa2 commutes over M1 with every
coheir of tp(d/M) extending tp(d/M1), we are done. Otherwise, there is such
a coheir q̃ such that p = tp(a1, a2/N) does not commute with q̃ over M1. Let
Iˆa1a2 b̂ realise q̃

ω ⊗ p⊗ q̃ over N and set b̄ = b+ I. Then b̄ is indiscernible over
M1a2 (because tp(a2/N) commutes with q̃ over M1), but it is not indiscernible
over M1a1a2 by assumption.
Let φ(x1, x2; y) be the least formula in L(M1) which is not in ΓL and such

that φ(a1, a2; d) holds. We can apply Lemma 2.6 with (a,B, n, b̄1..b̄n) there
being (a1,M1a2, 1, b̄) here. It gives us formulas ψ(x1, a2; b̄, e) ∈ tp(a1/M1a2b̄),
θl(y) = θl(a2, b̄, e; y), l = 0, 1, e ∈M1 such that:



12 PIERRE SIMON

(∗) ψ(x1, a2; b̄, e) ∧ θl(a2, b̄, e; y) → φl(x1, a2; y).

Claim 2: We have |= θ1(d).
Proof: We first show that tp(d/M1a2b̄) is finitely satisfiable in M1. So let

ζ(y;m1, a2, b̄) ∈ tp(d/M1a2b̄). By •2, there is d′ ∈ M1 such that (m1, d
′) ≡M

(m1, d). As tp(a2, b̄/N) is M -invariant, we have d′ |= ζ(y;m1, a2, b̄) as required.
It follows that one of θ0(d) or θ1(d) must hold. But since φ(a1, a2; d) holds, θ0(d)
cannot hold by (∗). So the claim is proved.

Claim 3: tp(b̄/M1a2d) is finitely satisfiable in M .
Proof: Let φ(x̄;m1, a2, d) ∈ tp(b̄/M1a2d), m1 ∈ M1. By •2, there is d′ ∈

M1 such that m1 d̂
′ ≡M m1 d̂. As tp(a1a2b̄/N) is M -invariant, we also have

φ(x̄;m1, a2, d
′) ∈ tp(b̄/M1a2). By construction, and using that tp(a2/N) com-

mutes with q̃ over M1, b̄ realizes a Morley sequence of q̃ over M1a2. Hence
tp(b̄/M1a2) is finitely satisfiable in M . We thus get some b̄′ ∈ M such that
φ(b̄′;m1, a2, d

′) holds, but then so does φ(b̄′;m1, a2, d) since m1 d̂ and m1 d̂
′

have the same type over Ma2. This proves the claim.

Let (ei, gi : i < n) ∈ M1 be a sufficiently long strict Morley sequence over
M with (e0, g0) = (e, g). By M -invariance of tp(a1a2b̄/N), ψ(a1, a2; b̄, ei) ∧
ψ∗(a1, a2; gi) holds for all i < n.
By Claim 3, there is b̄′ ∈M satisfying:
– (∃x)

∧

i<n ψ(x, a2; b̄
′, ei) ∧ ψ∗(x, a2; gi);

– (∀x, y)ψ(x, a2; b̄′, e) ∧ θ1(a2, b̄′, e; y) → φ(x, a2; y);
– θ1(a2, b̄

′, e; d).
By Fact 2.12 and having taken n large enough, the first point implies that

ψ(x, a2; b̄
′, e) ∧ ψ∗(x, a2; g) does not a2-fork over M . So we can find a′1 realising

that formula such that tp(a′1, a2/N) is M -invariant.
Set Γ′

L = ΓL ∪ {φ(x1, x2; y)} and Γ′ = Γ ∪ {(ψ(x1, x2), θ1(x2; d))}, then the
pair a′1 â2 is Γ′-good.

Now to prove the proposition, we iterate the above procedure using a′1 â2
instead of a1, a2 and Γ′ instead of Γ. If we stop at some finite stage, we have
what we want. If not, then we have defined a sequence ak1 , k < ω of tuples and
increasing sets Γk. Let a′1 ∈ U be such that tp(a′1, a2/N) is an accumulation
point of tp(ak1 , a2/N). Then a′1 â2 is Γ-good, where Γ =

⋃

k<ω Γk and its type
over N is M -invariant. Hence by the first claim, we are done. ⊣

Remark 2.14. Why do we bother with M1? The problem is that to make sure
that Γ increases throughout the construction, we need it to remain finite. So
we can only deal with a countable set of parameters. This is the role of M1: it
controls a priori the parameters from ψ and θ1.

2.5. Directionality. Recall that an NIP theory T is of small directionality,
if given a model M and p ∈ S(M), then for any finite set ∆ of formulas, the
global coheirs of p determine only finitely many ∆-types (and thus p has at most
2|T | coheirs). It is of medium directionality if it is not of small directionality and
if the global coheirs of every such p determine at most |M | ∆-types (and thus p
has at most |M ||T | coheirs).
Those notions are defined and investigated by Kaplan and Shelah in [5].
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Theorem 2.15. If T is countable, dp-minimal and of small or medium direc-
tionality, then Conjecture 2.1 holds.

Proof. Let M |= T be countable, M ≺+ N and φ(x1, . . . , xn; d) ∈ L(N)
non-forking over M . By the remark after Lemma 2.10, we need to prove that
there is ā = (a1, . . . , an) ∈ φ(U ; d), tp(ā/N) does not fork overM and commutes
over M with every coheir of tp(d/M).
Let Q ⊂ Sy(U) be a countable set of coheirs of q = tp(d/M) such that for

every finite ∆, and any coheir q̃ of q, there is s ∈ Q such that q̃ and s have the
same restriction to instances of formulas in ∆. Let s̃ =

⊗

s∈Q s (the product

being taken in any order). Let also q̃ be a strictly non-forking coheir of q (which
exists by [1, Proposition 3.7 (1)]). Finally, let ē in N realize s̃⊗ q̃(ω).
We can find a countable model M1 such that M ≺ M1 ≺ N , tp(ē/M1) =

s̃ ⊗ q̃(ω)|M1
and •2, •3 are satisfied with ē instead of d. Without loss, assume

that d ∈ ē and call d̄ = (di : i < ω) the realisation of q̃(ω) in ē.
We now build by induction on k ≤ n tuples (ak1 , . . . , a

k
n) |= φ(x1, . . . , xn; d)

such that tp(ak1 , . . . , a
k
n/N) isM -invariant and tp(ak1 , . . . , a

k
k/N) commutes with

every coheir of tp(ē/M) extending tp(ē/M1).
As φ(x1, . . . , xn; d) does not fork overM , there is (a01, . . . , a

0
n) |= φ(x1, . . . , xn; d)

such that tp(a01, . . . , a
0
n/N) is M -invariant.

Assume that for some k < n, we have found (ak1 , . . . , a
k
n). For l ≤ k, set

ak+1
l = akl . Fix some m > alt(φ) and define

φk(x1, . . . , xk+1; d̄) = (∃xk+2, . . . , xn)
∧

i<m

φ(x1, x2, . . . , xn; di).

Note that byM -invariance, (ak1 , . . . , a
k
k+1) |= φk. By Proposition 2.13, we may

find ak+1
k+1 ∈ U such that (ak1 , . . . , a

k
k, a

k+1
k+1) |= φk and tp(ak1 , . . . , a

k
k, a

k+1
k+1/N) is

M -invariant and commutes with every coheir of tp(ē/M) extending tp(ē/M1).
Next, by the properties of strict non-forking sequences, we know that the for-
mula φ(ak1 , . . . , a

k
k, a

k+1
k+1, xk+2, . . . , xn; d) does not (ak1 , . . . , a

k
k, a

k+1
k+1)-fork over

M . Hence we may find ak+1
k+2, . . . , a

k+1
n ∈ U such that φ(ak+1

1 , . . . , ak+1
n ; d̄) holds

and tp(ak+1
1 , . . . , ak+1

n /N) is M -invariant. This finishes the induction.
Let ā = (an1 , . . . , a

n
n).

Claim: p = tp(ā/N) commutes over M with every coheir of tp(d/M).
Proof: By construction, p commutes over M1 with s̃ ⊗ q̃(ω). In particular,

p commutes over M with any s ∈ Q. Let q̃ be any coheir of tp(d/M) and
ψ(x; y) ∈ L(M) a formula. Assume that p ⊢ ψ(x; d). Let s ∈ Q be such that
s and q̃ have the same restriction to instances of ψ. Then p commutes with s,
hence s ⊢ ψ(a; y), so q̃ ⊢ ψ(a; y). As this is true for all ψ, p commutes with q
over M .
This finishes the proof. ⊣

At this point one would hope that every dp-minimal theory is of small or
medium directionality, but unfortunately this is not true. In fact RCF has large
directionality (see [5]).
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§3. Dp-rank. In this section, we will always distinguish points a, b, . . . from
tuples ā, b̄, . . . . We do not work in T eq and in fact most of our results do not
carry through to imaginaries.

The reader should have in mind the definition and basic properties of dp-rank
as recalled in Section 1.1.

Assumption: From now on, T is a dp-minimal (one-sorted) theory.

3.1. Additivity and acl-dimension. To begin with, we characterise when
dp-rank is additive, i.e., when dp-rk(ā, b̄/A) = dp-rk(ā/Ab̄) + dp-rk(b̄/A). By
an immediate induction, this is equivalent to dp-rk(a, b̄/A) = dp-rk(a/Ab̄) +
dp-rk(b̄/A) for all a, b̄, A.
We say that acl satisfies exchange if for any base A and any two points a, b, we

have b ∈ acl(Aa)\acl(A) =⇒ a ∈ acl(Ab). In this case, acl defines a pregeometry
and gives rise to a dimension in the usual way.

Observation 3.1 (T is dp-minimal). Assume that dp-rank is additive, then
acl satisfies exchange.

Proof. Note that for a point a, we have dp-rk(a/A) = 1 ⇐⇒ a /∈ acl(A).
Let A, a, b such that b ∈ acl(Aa) \ acl(A). Necessarily, a /∈ acl(A). Then

dp-rk(ab/A) = dp-rk(a/A) + dp-rk(b/aA) = 1. We also have dp-rk(ab/A) =
dp-rk(b/A) + dp-rk(a/bA) = 1 + dp-rk(a/bA). Hence dp-rk(a/bA) = 0 and
a ∈ acl(bA). ⊣

We now show the converse.

Proposition 3.2 (T is dp-minimal). Assume that acl satisfies exchange, then,
over any base A:
•0 dp-rank is additive;
•1 dp-rank coincides with acl-dimension;
•2 if a1, . . . , an are acl-independent, then we can find mutually indiscernible

non-constant sequences I1, . . . , In such that Ik begins with ak.

Proof. It is enough to prove •2 (because it shows that dp-rank is bounded
below by acl-dimension, and the opposite inequality follows from sub-additivity).
We show it by induction on n. For n = 1, it is clear.
Assume it for n and let a1, . . . , an+1 be acl-independent over some base A.

Then a1, . . . , an are acl-independent over Aan+1, hence by induction hypothesis,
we can find non-constant sequences I1, . . . , In mutually indiscernible over Aan+1

and Ik starts with ak.

Claim: an+1 /∈ acl(A, I1, . . . , In).
If this is not true, then by exchange, there are some finite set B ⊂ A∪I1∪· · ·∪

In, k ≤ n and b ∈ Ik such that b /∈ acl(B), but b ∈ acl(Ban+1). Now increase
all the sequences to be of order type Q. We see that there are infinitely many
points having the same type as b over Ban+1. A contradiction.

We can therefore find a sequence In+1 which is indiscernible overAI1 . . . In and
begins with an+1. By Ramsey’s theorem, we can make the sequences I1, . . . , In
mutually indiscernible over AIn+1 which gives what we want. ⊣

Here is a simple example where dp-rank is not equal to acl-dimension. Take
L = {R} and T says that R defines a graph-theoretic tree (a graph with no



DP-MINIMALITY: INVARIANT TYPES AND DP-RANK 15

cycle) where each node has infinite degree. Given two points a, b, either a and b
are in different connected components, or there is a unique path between a and
b. The length of this path is called the distance between a and b. In this latter
case, all the elements in the path are in acl(a, b). Furthermore acl(a) = {a}
for any a. Take aRb, then a, b are acl-independent, however one can check that
dp-rk(a, b) = 1.
Note that T is ω-stable: over a model M there is a unique type of Morley

rank ω at infinite distance of all a ∈ M , and for each n < ω and a ∈ M , there
is a unique type of Morley rank n of an element at distance n from a and at
distance > n from all other points of M . Also T is dp-minimal: this last fact
can be checked directly, or can be seen to follow from [9, Theorem 4.7] which
says that any order-theoretic tree is dp-minimal.

3.2. Strong witnesses of dp-rank. The main technical result of this section
is a generalisation of •2 above which does not involve acl-independence.
Let A be a set of parameters and I = (ci : i ∈ I) an A-indiscernible sequence

indexed by a dense order I. We will say that a tuple ā breaks I over A if for
some u ∈ I, ā breaks I at cu which means that there are v < u < w and a
formula φ(ā, y) with parameters in A such that either:
· for all i ∈ (v, w), φ(ā, ci) holds if and only if i = u

or
· for all i ∈ (v, w) \ {u}, φ(ā, ci) holds if and only if i > u.
In particular, I is not indiscernible over Aā.
Let I = (ci : i ∈ Q) be A-indiscernible and ā a tuple. Assume that ā breaks

the sequence I at k different places, then dp-rk(ā/A) ≥ k. Indeed, assume for
example that ā breaks I at c0, . . . , ck−1. We can divide I into k sequences
I0 = (ci : i < 1/2), I1 = (ci : 1/2 < i < 3/2), . . . , Ik−1 = (ci : (2k − 1)/2 < i).
The sequences (Ii : i < k) are mutually indiscernible over A and none remains
indiscernible over Aā.
The following is an easy exercise on indiscernible sequences.

Lemma 3.3. Let p ∈ S(A) and n < ω. Assume that dp-rk(p) ≥ n and let
a |= p, then there are sequences I0, . . . , In−1 mutually indiscernible over A,
Ik = (cki : i ∈ Q), such that for each k < n, a breaks the sequence Ik at ck0 .

Proof. Start with sequences J0, . . . , Jn−1 witnessing that dp-rk(tp(a/A)) ≥
n. So the Jk’s are mutually indiscernible over A and none of them remains
indiscernible over Aa. Without loss, assume that each Jk is indexed by a very
saturated dense linear order with no endpoints.
Write J0 = (ci : i ∈ J ). As J0 is not indiscernible overAa, there are u < v ∈ J

and a formula φ(x; y,m) with parameters m ∈ A ∪ (ci : i ∈ J \ [u, v]) such that
|= φ(a; cu,m) ∧ ¬φ(a; cv ,m). Let J ′ be an interval of J containing u, v and
disjoint from the indices of elements of m∩J0. Let J ′

0 = (ciˆm : i ∈ J ′). By NIP
(finite alternation), one can partition J ′ into finitely many convex subsets such
that the truth value of φ(a; y ẑ) is constant on each. It is then easy to extract
from J ′

0 a subsequence I0 indexed by Q such that a breaks I0 at some point.
Doing inductively the same for each Jk, we obtain what we want. ⊣
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Proposition 3.4 (T is dp-minimal). Assume that dp-rk(a0, . . . , an−1/A) =
r, then for some indices i1, . . . , ir ∈ n, there are (non-constant) mutually indis-
cernible sequences (over A) I1, . . . , Ir starting respectively with ai1 , . . . , air .

Proof. We prove the result by induction on n. Assume that dp-rk(ā, b/A) =
r, where ā = (a0, . . . , an−1) and let J1, . . . , Jr be given by Lemma 3.3 applied
to ā̂ b. If dp-rk(ā/A) = r, we conclude by induction. Otherwise, there is some
sequence, say J1, which is indiscernible over Aā.
Write, J1 = (ci : i ∈ Q) such that ā̂ b breaks J1 at c0. Set b0 = b and for every

0 < k < ω, find some bk such that

tp(ā, bk, (ci+k)i∈Q/A) = tp(ā, b, (ci)i∈Q/A).

In particular ā̂ bk breaks the sequence J1 at ck.
Let b = (b′i : i < ω) be a sequence indiscernible over Aā and realising the

EM-type of (bk : k < ω) over Aā.

Claim: dp-rk(ā/Ab) ≥ r − 1.
Assume that dp-rk(ā/Ab) ≤ r−2. Then we cannot construct r−1 sequences as

in the statement of the proposition. By compactness, we can find some formula
φ(xā, b̄) ∈ tp(ā/Ab) which ensures this (where b̄ ∈ b). Then by the induction
hypothesis, any ā′ satisfying φ(xā, b̄) has dp-rank over Ab̄ which is ≤ r−2. Also,
again by compactness, there is some formula ψ(ȳ) ∈ tp(b̄/A) such that the same
holds for φ(xā, b̄

′) whenever b̄′ |= ψ(ȳ).
By construction of b, we can find such a b̄′ in the original sequence (bk : k < ω).

Let m = |b̄′| and without loss b ∈ b̄′. So we have dp-rk(ā/Ab̄′) ≤ r− 2. Consider
the tuple b̄′ˆā. By sub-additivity its dp-rank over A is ≤ m+ r−2. On the other
hand, it breaks the sequence J1 at m different places, and it also breaks each of
the sequences J2, . . . , Jr. Hence dp-rk(b̄′, ā/A) ≥ m+ r − 1. This contradiction
proves the claim.

Now: we have dp-rk(ā/Ab) ≥ r − 1 and b is indiscernible over Aā. As all the
points in the original sequence (bk : k < ω) have the same type over Aā, we may
assume that b is in b. By induction hypothesis, we find sequences I1, . . . , Ir−1

each starting with a point from the tuple ā and mutually indiscernible over Ab.
Let Ir be indiscernible over AI1, . . . , Ir−1ā and realise the EM-type of b over it.
As all elements from b have the same type over Aā, we may assume that the
sequence Ir starts with b. So we are done. ⊣

Note that conversely, if there are sequences I1, . . . , Ir as in the statement
of the theorem, then we have dp-rk(a1, . . . , an/A) ≥ r, as witnessed by those
sequences.
Part of the following corollary was observed during the proof. The third bullet

is immediate, and the other two follow from the proposition by compactness.

Corollary 3.5. Assume that T is dp-minimal.
•1 If dp-rk(ā/A) = r, then there is φ(x̄) ∈ tp(ā/A) such that dp-rk(φ(x̄)) = r.
•2 Let φ(x; y) be a formula over A. Then the set {c : dp-rk(φ(x; c)) ≤ r} is

open over A.
•3 Assume that dp-rk(a1, . . . , an/A) = r, then there are i1, . . . , ir such that

dp-rk(ai1 , . . . , air/A) = r.
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We give examples of theories of finite rank where the first two bullets fail.
Let L = {En, Fn, c : n < ω}, where En and Fn are binary relations and c is a

constant symbol. The axioms of T say that En and Fn are equivalence relations
with only infinite classes. Each En+1 (resp. Fn+1) refines En (resp. Fn) and the
Fn’s are cross-cutting with respect to the En’s. The theory T admits elimination
of quantifiers in the language L and is stable.
Consider the type {xEnc ∧ xFnc : n < ω}. Then that type has dp-rank 1, it

is in fact a minimal type. However any formula in it has dp-rank 2.
To obtain an example where the second bullet fails, we modify slightly the

previous one. Consider a two sorted structure (M,S). The first sort M is a
model of the previous theory. The second sort S is isomorphic to (ω;<). There
is in addition a binary relation R(x; s) ⊆M×S interpreted so that R(a; k) holds
if and only ifM |= aEkc∧aFkc. It is not too hard to see that this theory is NIP.
Now in a saturated model, dp-rk(R(x; s)) ≤ 1 holds if and only if

∧

n<ω s > n,
which is not an open condition.
In fact those two theories can be interpreted in a dp-minimal theory. For

the first one, simply take L0 = {en(x; y)} and M0 an L0-structure where each
en defines an equivalence relation with only infinite classes and en+1 refines en.
Then the first structure M is definable in M2

0 .
To deal with the second one, add a sort (ω,<) to M0 and a binary pred-

icate r(x; s) interpreted so that r(M0, n) is some en-class and the sequence
(r(M0, n) : n < ω) is decreasing with non empty intersection. Call M1 the
resulting structure. The structure (M,S) above can be defined in M2

1 .
We sketch a proof that M1 is dp-minimal. To obtain quantifier elimination,

first add to (ω,<) predicates dn(x, y) saying that x and y are at distance n, then
add a function symbol f from the main sort to the order sort defined so that
f(x) is maximal such that R(x; f(x)) holds (or equal to 0 if no such value exists).
Now consider a point x and two mutually indiscernible sequences I = (āi : i < ω)
and J = (b̄i : i < ω). Without loss (using f), everything lives in the main sort.
As we have EQ in a binary language, we may assume that āi = ai and b̄i = bi
are singletons. Also, we may assume that none of the ai’s or bi’s is equal to x.
Then the sequence I can fail to be indiscernible over x for one of two reasons:
either for some n, i < ω, ¬(a0ena1) and xenai or f(ai) 6= 0 for all i, f(x) 6= 0
and the sequence (f(ai) : i < ω) is not indiscernible over f(x). The same goes
for J . It is then routine to check that none of the four senari can happen.

3.3. Characterising dp-rank. We now aim at showing ⊕3 from Theorem
0.3 which says that a set of maximal dp-rank is a product of 1-dimensional sets
minus a hypersurface. To simplify the exposition, we first deal with an easy case,
when the structure is linearly ordered.

3.4. The linearly ordered case. In this section (M,≤) is a dp-minimal
densely ordered structure and assume that any definable set in dimension 1 is
the union of an open set and finitely many points. By Theorem [9, Theorem
3.6], this holds in particular if M expands a divisible ordered group.
An open box of Un is a definable set of the form {(x0, . . . , xn−1) : ak < xk <

bk} for some ak, bk ∈ U , ak < bk. Note that an open box of Un has dp-rank n.
A tuple ā lies in the interior of a set φ(x̄) if it lies in some open box included in
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φ(x̄). This is a definable condition, hence the interior of a definable set is again
definable.

Proposition 3.6. With the assumptions above, let φ(x̄) ∈ L(A) be a definable
subset of Mn which is of dp-rank n. Then φ(x̄) has non-empty interior (that is,
contains some n-dimensional open box).

Proof. We prove the result by induction on n. By assumption, the result
is true for n = 1. Assume that we know it for n. Consider a formula φ(x, ȳ),
|ȳ| = n, of dp-rank n + 1. By Proposition 3.4, we can find two non-constant
mutually indiscernible sequences (ai : i < ω) and (b̄j : j < ω) such that φ(ai, b̄j)
holds for all i, j. Pick some i < ω and consider the set φ(ai, ȳ). This is a subset
of Mn, which contains each b̄j. Let ψ(ai, ȳ) be its interior. Then by induction
hypothesis, the set φ(ai, ȳ)∧¬ψ(ai, ȳ) has dp-rank < n. Hence all the b̄j ’s lie in
ψ(ai, ȳ).
Fix j < ω. Then by compactness, there is some open box θj(ȳ) defined over U

such that b̄j |= θj(ȳ) and θj(ȳ) is included in each ψ(ai, ȳ). Consider the set of
all a ∈ U such that φ(a;U) contains θj(U). This is a definable set which contains
all the ai’s. In particular, it is infinite and therefore has non-empty interior. Let
ψj(x) be an open interval in it. Then ψj(x) ∧ θj(ȳ) is an open box included in
φ(x, ȳ). ⊣

Using Corollary 3.5 we conclude that the dp-rank of a set X coincides with
the maximal n such that some projection of X to Mn has non-empty interior.
One therefore has a nice dimension theory to work with. In fact, one could hope
to prove that definable sets in any dimension are tame in some sense: take for
example a definable set X in M2. Then we know from the theorem above that
X \X has dp-rank 1. It should then be possible to show that such a set cannot
be too complicated. Since the plane can be linearly ordered by a lexicographic
ordering, the results in [9] might be relevant. We will not pursue this.

Corollary 3.7. Dp-rank is definable: for every formula φ(x̄; ȳ) the set of
tuples b̄ such that dp-rk(φ(x̄; b̄)) = k is a definable set.

Proof. One can express in a first order way the fact that a set contains some
k-dimensional box. Then the result follows from the remark above. ⊣

3.5. The distal case. We now generalise the previous result to any dp-
minimal theory which has no generically stable types. First recall some defini-
tions: A generically stable type p is a global type which is both definable and
finitely satisfiable in some small model M . Equivalently, it is an M -invariant
type whose Morley sequence is totally indiscernible. The restriction of a generi-
cally stable type to a subtuple of variables is again generically stable. Hence if
there is a non-realised generically stable type of some arity, there is one of arity
one. Clearly, if the structure admits a linear order, then there is no non-realised
generically stable type, since there is no non-constant totally indiscernible se-
quence.
An NIP theory is called distal ([10],[11, Chapter 9]) if the following property

is satisfied: whenever I0+I1+I2 is an A-indiscernible sequence of tuples, I0 and
I2 are infinite and b̄ is a tuple, if I0+ I2 is indiscernible over Ab̄, then I0+ I1+ I2
is indiscernible over Ab̄. It is easy to see from the definition that a distal theory
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cannot have a totally indiscernible, non-constant, sequence (take b̄ to be a tuple
in I1). In particular, it cannot have a non-realised generically stable type. It is
shown in [10, Corollary 2.30], also [11, Corollary 9.19], that the converse holds
for dp-minimal theories: A dp-minimal theory T is distal if and only if it has
no non-realised generically stable types. In particular, any linearly ordered dp-
minimal theory is distal (hence any o-minimal or weakly-o-minimal theory) and
also Th(Qp) is distal.

Theorem 3.8. Assume that T is distal (and dp-minimal). Let φ(x̄) ∈ L(A)
have dp-rank n = |x̄| over A. Then φ(x̄) contains a product θ0(x0) ∧ · · · ∧
θn−1(xn−1) where each θk(xk) ∈ L(U) defines an infinite set.

Proof. We prove the result by induction on n. For n = 1 it is clear. Assume
that we know it for n and let φ(x, ȳ) have dp-rank n + 1 over A, |ȳ| = n.
Take (a0, b1, . . . , bn) satisfying φ(x, ȳ) such that dp-rk(a0, b̄/A) = n + 1. By
Proposition 3.4, we can find sequences (I, J1, . . . , Jn) mutually indiscernible over
A such that I starts with a0 and Jk starts with bk. Without loss, I is ordered by
ω + ω and we can write I = (ai : i < ω + ω). By indiscernability, φ(ai, b̄) holds
for all i. Also, dp-rk(b̄/IA) = n as witnessed by the sequences (J1, . . . , Jn).
Let I0 = (ai : i < ω) and I1 = (ai : ω < i < ω + ω). By distality of T , for

any a such that I0 + (a) + I1 is indiscernible over A, φ(a, b̄) holds. Therefore by
compactness, there is a formula θ0(x) ∈ tp(aω/IA) such that |= θ0(x) → φ(x, b̄).
Let ψ(ȳ) = ∀x(θ0(x) → φ(x, ȳ)). Then ψ(ȳ) is a formula over IA satisfied by
b̄. As dp-rk(b̄/IA) = n, also dp-rk(ψ(ȳ)) = n. We now apply the induction
hypothesis to ψ(ȳ) to obtain θ1(x1), . . . , θn(xn). ⊣

Note that conversely, if a set contains such a conjunction, then it has dp-rank
n.

3.6. The general case. We now deal with the general case.

Definition 3.9. A definable set φ(x0, . . . , xn−1) is called a hypersurface if
for every a0, the set φ(a0, x1, . . . , xn−1) has dp-rank < n− 1.

By convention, the formula x0 6= x0 is the only hypersurface in dimension 1.
Note that a hypersurface φ(x0, . . . , xn−1) has dp-rank < n.

Theorem 3.10 (T is dp-minimal). Let φ(x̄) ∈ L(A) have dp-rank n = |x̄|.
Then there are formulas θk(xk) ∈ L(U), k = 0, . . . , n − 1 defining infinite sets
and a hypersurface ψ(x̄) ∈ L(U) such that

∧

k<n θk(xk) → (φ(x̄) ∨ ψ(x̄)).

Proof. We prove the result by induction on n. It is clear for n = 1. Assume
that we know it for n and let φ(x0, x̄) ∈ L(A) have dp-rank n + 1 over A. As
in the proof of Theorem 3.8, we can find a sequence I = (ai : i < ω) and b̄ such
that I is indiscernible over Ab̄, dp-rk(b̄/IA) = n and φ(ai, b̄) holds for all i.
By NIP, we can build a maximal sequence (a′0, . . . , a

′
l−1), such that:

· I ′ := I ′0 + (ai : i ≥ l) is indiscernible over A, where the sequence I ′0 =
(a0, a

′
0, a1, a

′
1, . . . , al−1, a

′
l−1);

· ¬φ(a′k, b̄) holds for all k < l;
· dp-rk(b̄/IA+ {a′k : k < l}) = n.
Take a∗ such that the sequence I ′0+(al, a∗)+(ai : i > l) is indiscernible over A.

Let q(x̄) = tp(b̄/AI ′). By maximality of the sequence (a′k : k < l) the partial type
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q(x̄) ∧ ¬φ(a∗, x̄) has dp-rank < n. By continuity (Corollary 3.5, •1), there is a
formula ζ(x̄) ∈ q(x̄) such that dp-rk(ζ(x̄)∧¬φ(a∗, x̄)) < n. By Corollary 3.5, •2,
there is some formula θ0(x0) ∈ tp(a∗/AI

′) such that dp-rk(ζ(x̄) ∧ ¬φ(a′, x̄)) <
n for all a′ satisfying θ0(x0). Let ψ0(x0, x̄) = θ0(x0) ∧ ζ(x̄) ∧ ¬φ(x0, x̄). By
construction ψ0(x0, x̄) is a hypersurface.
The induction hypothesis applied to ζ(x̄) gives θ1(x1), . . . , θn(xn) and a hy-

persurface ψ′(x̄). Then define ψ(x0, x̄) = ψ0(x0, x̄) ∨ ψ′(x̄).
By unwinding the definitions, one sees that the formulas θ0(x0), . . . , θn(xn)

and ψ(x0, x̄) have the required properties. ⊣

Notice that conversely, if we can find such θk(xk) and hypersurface ψ(x̄), then
the set φ(x̄) has dp-rank n.
As already mentioned in the introduction, the hypersurface is necessary: take

for example the formula x0 6= x1 in the theory of equality. It has dp-rank 2, but
does not contain a product θ0(x0) ∧ θ1(x1) of infinite 1-dimensional sets.

Remark 3.11. In many cases, I expect that the formula ψ(x̄; ȳ) defining the
hypersurface can be chosen to be stable. However, I do not know a sufficient
condition that would ensure that.

Corollary 3.12. Assume that T is dp-minimal and eliminates ∃∞. Let
φ(x̄; ȳ) be a formula and k < ω. Then the set of b̄’s such that dp-rk(φ(x̄; b̄)) = k
is definable.

Proof. We show this by induction on n = |x̄|. By Corollary 3.5, it is enough
to treat the case k = n.
A formula in dimension 1 has dp-rank 1 if and only if it is infinite. Thus the

case n = 1 follows from elimination of ∃∞. Assume that we have established the
result for n and let φ(x0, x̄; ȳ) be a formula, x̄ = (x1, . . . , xn). Let b̄ be such that
dp-rk(φ(x0, x̄; b̄)) = n. Then Theorem 3.10 gives us formulas θk(xk; ē), k ≤ n
and a hypersurface ψ(x0, x̄; ē), where we have made the parameters ē appear.
By induction hypothesis and the n = 1 case, the fact that θk(xk; ē) is infinite for
all k and the fact that ψ(x0, x̄; ē) is a hypersurface are expressible by a formula
ζ(ē). (This is where it is important that ψ(x0, x̄; ē) is a hypersurface and not
merely a set of dp-rank < n.) It follows that for any b̄′ such that

|= ∃z̄



ζ(z̄) ∧





∧

k≤n

θk(xk; z̄) → (φ(x0, x̄; b̄
′) ∨ ψ(x0, x̄; z̄))







 ,

the set φ(x0, x̄; b̄
′) has dp-rank n. Therefore the condition “dp-rk(φ(x0, x̄; b̄)) =

n” is an open condition in b̄. However we know from Corollary 3.5, •2, that it is
also closed. Hence it is definable. ⊣

Problem 3.13. Study to what extent some of those results can be generalised
(in a weaker form) to arbitrary NIP theories of finite rank.
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