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Abstract. We prove that it is consistent that ℵω is strong limit,
2ℵω is large and the universality number for graphs on ℵω+1 is
small. The proof uses Prikry forcing with interleaved collapsing.

1. Introduction

If µ is an infinite cardinal, a universal graph on µ is a graph with
vertex set µ which contains an isomorphic induced copy of every such
graph. More generally, a family F of graphs on µ is jointly universal if
every graph on µ is isomorphic to an induced subgraph of some graph
in F . We denote by uµ the least size of a jointly universal family of
graphs on µ, and record the easy remarks that uµ ≤ 2µ and that if
uµ ≤ µ then uµ = 1. If µ = µ<µ, then by standard results in model
theory there exists a saturated (and hence universal) graph on µ. It
follows that under GCH and the hypothesis that µ is regular, uµ = 1.
A standard idea in model theory (the construction of special models)
shows that under GCH we have uµ = 1 for singular µ as well: we
fix 〈µi : i < cf(µ)〉 a sequence of regular cardinals which is cofinal in
µ, build a graph G which is the union of an increasing sequence of
induced subgraphs Gi where Gi is a saturated graph on µi, and argue
by repeated applications of saturation that G is universal.

Questions about the value of uµ when µ < µ<µ have been investigated
by several authors. We refer the reader to papers by Džamonja and
Shelah [4, 3], Kojman and Shelah [6], Mekler [10] and Shelah [13].

We will consider the case when µ is a successor cardinal κ+ and
2κ > κ+. When κ is regular it is known that:
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(1) It is possible to produce models where uκ+ is arbitrarily large
[6], for example by adding many Cohen subsets of κ over a
model of GCH.

(2) It is possible to produce models where κ<κ = κ, 2κ is arbitrarily
large and uκ+ = κ++ [4] by iterated forcing over a model of
GCH.

The question whether we can have uκ+ = 1 when 2κ > κ+ remains
mysterious for general values of κ, though it is known [10, 13] to have
a positive solution for κ = ω.

When κ is singular then questions about uκ+ become harder, since
we have fewer forcing constructions available. Džamonja and Shelah
[4] found a line of attack on this kind of question, where the key idea
is that we will prepare a large cardinal κ by means of iterated forcing
which preserves its large cardinal character, and only at the end of the
construction will we force to make κ become a singular cardinal. By
this method Džamonja and Shelah produced models where κ is singular
strong limit of cofinality ω, 2κ is arbitrarily large and uκ+ ≤ κ++.

In [4] the final step in the construction is Prikry forcing, so that in
the final model κ is still rather large by some measures, for example
it is still a cardinal fixed point. In this paper we will use a forcing
poset defined by Foreman and Woodin [5] which will make κ become
ℵω. In some joint work with Magidor and Shelah [2], we obtain similar
results where the final step is a form of Radin forcing which changes
the cofinality of κ to uncountable values such as ω1.

Our main result is this: it is consistent relative to a supercompact
cardinal that ℵω is strong limit, 2ℵω = ℵω+3, and uℵω+1 ≤ ℵω+2. In the
rest of this Introduction we give an overview of the proof, and conclude
with a guide to the structure of the paper.

The Foreman-Woodin poset is a variation of Prikry forcing, which
adds a Prikry sequence κi of inaccessible cardinals cofinal in κ, and
in addition collapses all but finitely many cardinals between successive
points on the Prikry sequence so that κ becomes ℵω. The only param-
eter needed to define Prikry forcing is a normal measure U0, but the
Foreman-Woodin forcing has an additional parameter F which is a fil-
ter on the set of functions representing elements of a certain complete
Boolean algebra in Ult(V, U0).

We will start with a ground model V in which κ is a supercompact
cardinal, which has been prepared so as to be indestructible under κ-
directed closed forcing, and 2κ = κ+3. We will define an iterated forcing
poset Q∗ by iterating for κ+4 many steps with supports of size less than
κ, forcing at each stage i with a poset Qi which is κ-directed closed and
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has a strong form of κ+-cc. The cardinal κ will still be supercompact
in V Q∗ , and this will enable us to choose a normal measure U0 and
filter F , which can be used as parameters to define a Foreman-Woodin
forcing P.

The key idea is that the poset Qi will anticipate the results of forcing
over V Q∗ with P. To be more specific, at each stage i of the construction
a suitable form of diamond sequence will be used to produce “guesses”
Wi and Fi at the final values of U0 and F , and there will be many
stages i at which these guesses are correct (in the sense that Wi and
Fi are the restrictions to V Pi of U0 and F).

At stage i there is a poset Pi which is computed from Wi and Fi
in the same way that P is computed from U0 and F . If the guesses
made at stage i are correct then the final P-generic object will induce
a Pi-generic object. The poset Qi aims to add a P-name for a graph on
κ+, whose interpretation absorbs all graphs in the extension of stage i
by the induced Pi-generic object.

Our final model will be obtained by halting the construction at a
suitable stage i∗ of cofinality κ++, and forcing with Pi∗ . The point
here (an idea which comes from [4]) is that we can read off a universal
family of size κ++ from a cofinal set of stages below i∗, and we are in
a situation where 2κ = κ+3.

We conclude this section with an overview of the paper and a couple
of remarks:

• In Section 2 we discuss the filter F which is used in defining P
and give an account of its main properties.
• In Section 3 we construct the forcing P and prove various key

facts about it using the properties of F .
• In Section 4 we construct the “anticipation forcing” Q and prove

that it has certain properties. Most notably Q is κ-compact and
has a strong form of the κ+-chain condition.
• In Section 5 we describe the main iteration Q∗ and prove a key

technical fact by a master condition argument.
• In Section 6 we prove the main theorem.
• In Section 7 we discuss generalisations, related work and some

natural open problems.

Remark. Foreman and Woodin’s paper [5] actually defines a supercom-
pact Radin forcing with interleaved Cohen forcing, and its projection
to a Radin forcing with interleaved Cohen forcing controlled by certain
filters. Our forcing P here is a version of the projected forcing, with
the Cohen forcing replaced by collapsing forcing and the Radin forcing
simplified to the special case of Prikry forcing. P is also a close relative
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of the forcing poset used by Woodin to obtain the failure of SCH at ℵω
from optimal hypotheses, the difference being that in Woodin’s forcing
poset the constraining filters are generic over the relevant ultrapowers.
Our approach was dictated by the necessity to have the “approxima-
tions” Pi be well-behaved forcing posets, in a context where they can
neither be obtained as projections of supercompact Prikry forcing with
interleaved collapsing nor constructed from filters which are generic
over ultrapowers. Of course, all this work traces back ultimately to
Magidor’s original model for the failure of SCH at ℵω [8].

2. Constraints and filters

We start by assuming that 2κ = κ+n for some n < ω and that κ
is 2κ-supercompact. We will fix U an ultrafilter on Pκκ

+n witnessing
the 2κ-supercompactness of κ, and let j : V → M = Ult(V, U) be the
associated ultrapower map. We let U0 be the projection of U to an
ultrafilter on κ via the map x 7→ x ∩ κ. We remind the reader of some
standard facts.

(1) U = {A ⊆ Pκκ
+n : j“κ+n ∈ j(A)}, and [F ]U = j(F )(j“κ+n) for

every function F with dom(F ) ∈ U .
(2) U concentrates on the set of x ∈ Pκκ+n such that x ∩ κ is an

inaccessible cardinal less than κ and ot(x) = (x∩κ)+n. We will
denote this set by Agood, and for x ∈ Agood we let κx = x ∩ κ
and λx = ot(x).

(3) U0 is a normal measure on κ, and U0 = {B ⊆ κ : κ ∈ j(B)}.
We let j0 : V → M0 = Ult(V, U0) be the associated ultrapower
map, and note that [f ]U0 = j0(f)(κ) for every function f with
dom(f) ∈ U0.

(4) There is an elementary embedding k : M0 → M such that
k ◦ j0 = j, which is given by the formula k : [f ]U0 7→ j(f)(κ).

We now fix an integer m with n < m < ω, and define a family of
forcing posets: for α and β inaccessible with α < β we let C(α, β) =
Coll(α+m, < β). We note that when α < β < γ we have that C(α, β) ⊆
C(α, γ) and the inclusion map is a complete embedding: in particular,
if G is C(α, γ)-generic over V then G ∩C(α, β) is C(α, β)-generic over
V .

Definition 2.1. A U-constraint is a function H such that dom(H) ∈
U , dom(H) ⊆ Agood and H(x) ∈ C(κx, κ) for all x ∈ dom(H).

It is easy to see that CM(κ, j(κ)) is the set of objects of the form
[H]U for some U -constraint H.

Definition 2.2. Let H and H ′ be U -constraints.
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(1) H ≤ H ′ if and only if dom(H) ⊆ dom(H ′) and H(x) ≤ H ′(x)
for all x ∈ dom(H).

(2) H ≤U H ′ if and only if {x : H(x) ≤ H ′(x)} ∈ U , or equivalently
[H]U ≤ [H ′]U .

Remark. Since m > n, and κ+nM ⊆ M by the hypothesis that U wit-
nesses the κ+n-supercompactness of κ, it is easy to see that CM(κ, j(κ))
is κ+n+1-closed in V . It follows that any ≤U -decreasing sequence of U -
constraints of length less than κ+n+1 has a ≤U -lower bound.

We define the complete Boolean algebra B(α, β) to be the regular
open algebra of the forcing poset C(α, β), and then let B = BM(κ, j(κ))
and B0 = BM0(κ, j0(κ)). We note that for every α < κ the poset
C(α, κ) is κ-cc and has cardinality κ, so that B(α, κ) has cardinality κ:
by elementarity we see that B0 has cardinality j0(κ) in M0, so that in
V we have |B0| = 2κ.

Remark. Officially elements of B(α, κ) are regular open subsets of the
poset C(α, κ), so that B(α, κ) is not literally a subset of Vκ. However,
since C(α, κ) has the κ-chain condition, B(α, κ) is the direct limit of
the sequence of algebras 〈B(α, γ) : γ < κ〉, so that we may identify
B(α, κ) with a subset of Vκ. With this identification we may represent
elements of B0 in the form [h]U0 , where h is a function from κ to Vκ.

This becomes important later, when we use such functions h as com-
ponents of forcing conditions in the poset P. When we move to a generic
extension W with the same Vκ but new subsets of κ, we will need to
know that h can still be interpreted as a function which returns an
element of B(α, κ) on argument α.

Following Foreman and Woodin, we define a filter Fil(H) on B0 from
each U -constraint H.

Definition 2.3. Let H be a U -constraint and let A ∈ U . We define a
function b(H,A) as follows:

dom(b(H,A)) = {κx : x ∈ dom(H) ∩ A},
and

b(H,A)(α) =
∨
{H(x) : x ∈ dom(H) ∩ A and κx = α}.

In the definition of b(H,A)(α) we are forming the Boolean supremum
of a nonempty subset of C(α, κ), thereby defining a nonzero element
of B(α, κ). Since {κx : x ∈ dom(H) ∩ A} ∈ U0, the function b(H,A)
is defined on a U0-large set and so represents a nonzero element of the
Boolean algebra B0 in the ultrapower M0.
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Lemma 2.4. Let H be a U-constraint and let A1, A2 ∈ U be such that
A2 ⊆ A1. Then dom(b(H,A2)) ⊆ dom(b(H,A1)) and b(H,A2)(α) ≤
b(H,A1)(α) for all α ∈ dom(b(H,A2)).

Proof. Straightforward. �

It follows immediately that the set {[b(H,A)]U0 : A ∈ U} forms a
filter base on B0.

Definition 2.5. Let H be a U -constraint. Then Fil(H) is the filter
generated by {[b(H,A)]U0 : A ∈ U}.

Lemma 2.6. If H2 ≤U H1 then Fil(H1) ⊆ Fil(H2).

Proof. Straightforward. �

Lemma 2.7. For every U-constraint H and every Boolean value b in
B0, there is H ′ ≤U H such that either b ∈ Fil(H ′) or ¬b ∈ Fil(H ′).

Proof. We may assume that b is non-zero. Let b = [f ]U0 , where f(α) ∈
B(α, κ) and f(α) is non-zero for all α ∈ dom(f). Let A0 = {x ∈
dom(H) : κx ∈ dom(f)} and observe that A0 ∈ U .

For each x in A0, we may choose H∗(x) ≤ H(x) such that either
H∗(x) ≤ f(κx) or H∗(x) ≤ ¬f(κx). Let A1 = {x ∈ A0 : H∗(x) ≤
f(κx)}. If A1 ∈ U then define H ′ = H∗ � A1, otherwise define H ′ =
H∗ � (A0 − A1).

If A1 ∈ U then consider the function b(H ′, A1). For every relevant
α we see that b(H ′, A1)(α) is computed as a Boolean supremum of
values which are bounded by f(α), so that b(H ′, A1)(α) ≤ f(α). Hence
[b(H ′, A1)]U0 ≤ [f ]U0 , and accordingly b ∈ Fil(H ′). Similarly if A1 /∈ U
then ¬b ∈ Fil(H ′). �

Lemma 2.8. For every U-constraint H there is H ′ ≤U H such that
Fil(H ′) is an ultrafilter on B0.

Proof. This follows immediately from the preceding lemmas, the obser-
vation that |B0| = 2κ, and the fact that any ≤U -decreasing 2κ-sequence
of U -constraints has a lower bound, �

Lemma 2.9. Let H ′ and H ′′ be U-constraints such that Fil(H ′) is an
ultrafilter on B0 and H ′′ ≤U H ′. Then Fil(H ′) = Fil(H ′′).

Proof. Straightforward. �

It will be convenient for the arguments of Section 5 to formulate
these ideas in a slightly different language. Recall that there is an
elementary embedding k : M0 → M such that k ◦ j0 = j, given by the
formula k : [f ]U0 7→ j(f)(κ).
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Lemma 2.10. For any U-constraint H,

Fil(H) = {b ∈ B0 : [H]U ≤B k(b)}.

Proof. Let f be a typical function representing an element b of B0,
that is to say dom(f) ∈ U0 and f(α) ∈ B(α, κ) for all α. Now k(b) =
j(f)(κ), and [H]U = j(H)(j“κ+n), so that easily [H]U ≤ j(f)(κ) if and
only if {x ∈ dom(H) : H(x) ≤ f(κx)} ∈ U .

If b ∈ Fil(H) then by definition there is a set A ∈ U such that
[b(H,A)]U0 ≤ [f ]U0 , that is to say B =def {α : b(H,A)(α) ≤ f(α)} ∈
U0. Now let A′ = A ∩ dom(H) ∩ {x : κx ∈ B}. Clearly A′ ∈ U ; fix
x ∈ A′ and observe that H(x) ≤ b(H,A)(κx) ≤ f(κx), where the first
inequality holds because x ∈ dom(H) ∩ A and the second one holds
because κx ∈ B. We have shown that {x ∈ dom(H) : H(x) ≤ f(κx)} ∈
U , so that [H]U ≤B k(b).

Conversely, if [H]U ≤B k(b) we let A = {x ∈ dom(H) : H(x) ≤
f(κx)}. Then dom(b(H,A)) = {κx : x ∈ A}. For every α in this set we
have that

b(H,A)(α) =
∨
{H(x) : x ∈ A and κx = α} ≤ f(α),

where the second claim follows since (by the definition of A) we are
forming the Boolean supremum of a set of values which is bounded by
f(α). �

We conclude this discussion of constraints and filters by collecting
some technical facts about filters of the form Fil(H) which will be useful
when we define the forcing poset P.

Definition 2.11. A U0-constraint is a partial function h from κ to Vκ
such that dom(h) ∈ U0, dom(h) is a set of inaccessible cardinals, and
h(α) ∈ B(α, κ) for all α ∈ dom(h).

Clearly B0 is the set of objects of the form [h]U0 where h is a U0-
constraint.

Definition 2.12. Let h and h′ be U0-constraints.

(1) h ≤ h′ if and only if dom(h) ⊆ dom(h′) and h(α) ≤ h′(α) for
all α ∈ dom(h).

(2) h ≤Uo h′ if and only if {α : h(α) ≤ h′(α)} ∈ U0 or equivalently
[h]U0 ≤ [h′]U0 .

Lemma 2.13. Let h be a U0-constraint and let H be a U-constraint.
If [h]U0 ∈ Fil(H), then there is B ∈ U such that b(H,B) ≤ h.
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Proof. Observe that by definition there is A ∈ U such that b(H,A) ≤U0

h, and define

B = {x ∈ A : b(H,A)(κx) ≤ h(κx)}.
It is routine to check that this B works. �

We now record some crucial properties of filters of the form Fil(H).
In the sequel we will limit attention to the special case in which Fil(H)
is an ultrafilter, but only Lemma 2.20 actually requires this assumption.

Lemma 2.14 (κ-completeness Lemma). Let H be a U-constraint, let
η < κ and let 〈hi : i < η〉 be a sequence of U0-constraints such that
[hi] ∈ Fil(H) for all i. Then there exists a U0-constraint h such that
[h] ∈ Fil(H) and h ≤ hi for all i.

Proof. Appealing to Lemma 2.13 we choose for each i < η a set Bi ∈ U
such that b(H,Bi) ≤ hi. Let B =

⋂
iBi, then B ∈ U and it follows

from Lemma 2.4 that b(H,B) ≤ b(H,Bi) ≤ hi for all i < η. �

Definition 2.15. Given a set s ∈ Vκ and a U0-constraint h, we define

h � s = h � {α : s ∈ Vα}.

Lemma 2.16 (Normality lemma). Let H be a U-constraint, let I ⊆ Vκ
and let 〈hs : s ∈ I〉 be an I-indexed family of U0-constraints such that
[hs]U0 ∈ Fil(H) for all s. Then there exists a U0-constraint h such that
[h]U0 ∈ Fil(H) and h � s ≤ hs for all s.

Proof. Choose for each s ∈ I a set As ∈ U such that b(H,As) ≤ hs. By
the normality of U it follows that if we set A = {x ∈ dom(H) : ∀s ∈
I ∩ Vκx x ∈ As} then A ∈ U . Let h = b(H,A).

To show this works we fix α ∈ dom(h) and s ∈ I ∩ Vα. By definition

h(α) =
∨

x∈A,κx=α

H(x).

For every x involved in this supremum we have s ∈ Vκx , so that x ∈ As.
Hence easily

h(α) = b(H,A)(α) ≤ b(H,As)(α) ≤ hs(α).

�

With a view towards the forcing construction of Section 3 we define
the notion of lower part.

Definition 2.17. A lower part is a finite sequence

(p0, κ1, p1, . . . , κk, pk)

such that:
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(1) k ≥ 0.
(2) κi is an inaccessible cardinal less than κ for 1 ≤ i ≤ k, and

κ1 < κ2 < . . . < κk.
(3) With the convention that κ0 = 0 and κk+1 = κ, pi ∈ C(κi, κi+1)

for 0 ≤ i ≤ k.

Given lower parts s and t with

s = (p0, κ1, . . . , κi−1, pi−1),

we say that t ≤ s if and only if

t = (q0, κ1, . . . , κi−1, qi−1)

and qi ≤ pi for all i.

Definition 2.18. A set X of lower parts is downwards closed if and
only if for all s ∈ X and all t ≤ s we have t ∈ X.

Now let us fix H a U -constraint such that Fil(H) is an ultrafilter.

Definition 2.19. h is an upper part if and only if h is a U0-constraint
such that [h] ∈ Fil(H).

The fact that Fil(H) is maximal is at the heart of the following
crucial lemma.

Lemma 2.20 (Capturing Lemma). Let X be a downwards closed set
of lower parts and let h be an upper part. Then there exists an upper
part h+ ≤ h such that

(1) For all α, β ∈ dom(h+) with α < β, h+(α) ∈ C(α, β).
(2) For all lower parts s, exactly one of the two following statements

holds:
(a) For all α ∈ dom(h+) such that s ∈ Vα, there exists q ≤

h+(α) such that s_(α, q) ∈ X.
(b) For all α ∈ dom(h+) such that s ∈ Vα, there does not exist

q ≤ h+(α) such that s_(α, q) ∈ X.
(3) For all lower parts s, and all α, β ∈ dom(h+) such that s ∈ Vα

with α < β, IF there is q ≤ h+(α) such that s_(α, q) ∈ X
THEN

{q ∈ C(α, β) : s_(α, q) ∈ X}
is dense below h+(α) in C(α, β).

Proof. Strengthening h if necessary, we may assume that h = b(H,A)
for some A ∈ U . Fix for the moment a lower part s, and let

As ⊆ {x ∈ dom(H) ∩ A : s ∈ Vκx}
be such that As ∈ U and one of the following statements holds:
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(Case One) For all x ∈ As there is q ≤ H(x) such that s_(κx, q) ∈ X.

(Case Two) For no x ∈ As is there q ≤ H(x) such that s_(κx, q) ∈ X.

We now choose Hs ≤ H such that dom(Hs) = As, and if s falls
in Case One then s_(κx, H

s(x)) ∈ X for all x ∈ As, and then let
hs = b(Hs, As). By Lemma 2.9, Fil(Hs) = Fil(H) and so hs is a
legitimate upper part.

Claim One: If there exist α ∈ dom(hs) and p ≤ hs(α) such that
s_(α, p) ∈ X, then

{r ∈ C(α′, κ) : s_(α′, r) ∈ X}
is dense below hs(α′) in C(α′, κ) for all α′ ∈ dom(hs).

Proof of Claim One: Fix some α and p ≤ hs(α) with s_(α, p) ∈ X, and
recall that hs(α) =

∨
x∈As,κx=αH

s(x). It follows that there is x ∈ As
such that κx = α and p is comparable with Hs(x), and we may fix
p′ ≤ p,Hs(x). Since X is downwards closed, s_(α, p′) ∈ X. Since
x ∈ As and p′ ≤ Hs(x) ≤ H(x), s falls in Case One above and so
s_(κx, H

s(x)) ∈ X for all x ∈ As.
Let α′ ∈ dom(hs), let q ∈ C(α, κ) be arbitrary with q ≤ hs(α′), and

observe that arguing as above there is x ∈ As such that κx = α′ and
q is comparable with Hs(x); if we now choose r ≤ q,Hs(x) then it
follows from the downwards closedness of X and the definition of Hs

in Case One that s_(κx, r) ∈ X.

Claim Two: For all α ∈ dom(hs), if there is p ≤ hs(α) with s_(α, p) ∈
X then there is an inaccessible cardinal βs(α) < κ such that hs(α) ∈
C(α, βs(α)) and

{r ∈ C(α, β) : s_(α, r) ∈ X}
is dense below hs(α) in C(α, β) for all β ≥ βs(α).

Proof of Claim Two: By the preceding claim,

{r ∈ C(α, κ) : s_(α, r) ∈ X}
is dense below hs(α) in C(α, κ), and since X is downwards closed this
set is open. Choose a maximal antichain A below hs(α) consisting of
points in this set, and then appeal to the κ-chain condition to find
βs(α) < κ such that A ⊆ C(α, βs(α)).

Let
Bs = {β : ∀α < β βs(α) < β}.

Since U0 is normal, Bs ∈ U0.
To finish the proof, use Lemma 2.16 to find an upper part h− such

that h− � s ≤ hs for all s, and let

B = {β : ∀s ∈ Vβ β ∈ Bs and ∀α < β h−(α) ∈ Vβ}.
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By normalityB ∈ U0, and so we may define an upper part h+ = h− � B.

Claim Three: h+ is as required.

Proof of Claim Three: It is immediate from the definitions that h+ ≤ h,
and Clause 1) from the conclusion is satisfied.

Towards showing Clauses 2) and 3), suppose that α ∈ dom(h+),
s ∈ Vα, q ≤ h+(α) and s_(α, q) ∈ X. By construction h+(α) ≤ hs(α).

By Claim One above,

{r ∈ C(α′, κ) : s_(α′, r) ∈ X}

is dense below hs(α′) in C(α′, κ) for all α′ ∈ dom(hs). So if s ∈ Vα′ and
α′ ∈ dom(h+), then since h+(α′) ≤ hs(α′) this same set is dense below
h+(α′) and so Clause 2) is satisfied.

By Claim Two above,

{r ∈ C(α, β) : s_(α, r) ∈ X}

is dense below hs(α) for all β ≥ βs(α). If β ∈ dom(h+) with α < β
then (since β ∈ B) we have that h+(α) ∈ Vβ and also β ∈ Bs, so that
βs(α) < β and hence

{r ∈ C(α, β) : s_(α, r) ∈ X}

is dense below h+(α). This shows that Clause 3) is satisfied. �

Definition 2.21. If X is a downwards closed set of lower parts and
h+ is an upper part satisfying the conclusion of the Capturing Lemma
then we say that h+ captures X.

3. The forcing P and its properties

3.1. The filter. In the last section we used the 2κ supercompactness
of κ to show that there exists a U -constraint H such that Fil(H) is an
ultrafilter. We then established that if F is an ultrafilter of the form
Fil(H) then F has three properties:

I. (κ-completeness) Let η < κ and let 〈hi : i < η〉 be a sequence
of upper parts. Then there exists an upper part h such that
h ≤ hi for all i.

II. (normality) Let I be a set of lower parts and let 〈hs : s ∈ I〉 be
an I-indexed family of upper parts. Then there exists an upper
part h such that h � s ≤ hs for all s.

III. (capturing) Let X be a downwards closed set of lower parts and
let h be an upper part. Then there exists an upper part h+ ≤ h
such that h+ captures X.
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Remark. In III above, the last part implies immediately that if there
is q ≤ h+(α) such that s_(α, q) ∈ X then

{q ∈ C(α, κ) : s_(α, q) ∈ X}

is dense below h+(α) in C(α, κ).

For the rest of this section we will weaken our assumptions on κ, to
be precise we will assume only that:

(1) κ is measurable, and U0 is a normal measure on κ, with associ-
ated ultrapower map j0 : V −→M0 = Ult(V, U0).

(2) 2κ = κ+n and n < m < ω.

(3) F is an ultrafilter on B0 = C(κ, jo(κ))M0 with properties I-III.

3.2. The forcing. We now fix a filter F satisfying properties I-III
above, and use F to define a forcing poset P. Conditions in P are pairs
(s, h) such that:

(1) s is a lower part.
(2) h is an upper part.

When p = (s, h) we will refer to s as the stem or lower part of p, and
to h as the upper part of p.

Suppose that p = (s, h) and q = (s′, h′) are conditions where s =
(p0, α1, p1, . . . , αk, pk) and s′ = (q0, β1, q1, . . . , βl, pl). Then q ≤ p if and
only if

(1) αi = βi and qi ≤ pi for 1 ≤ i ≤ k.
(2) βi ∈ dom(h) and qi ≤ h(βi) for k < i ≤ l.
(3) h′ ≤ h.

q is a direct extension of p if q ≤ p and in addition k = l. We write
q ≤∗ p in this case.

The generic object for P is a sequence

f0, κ1, f1, κ2, f2 . . .

where the κi form an increasing and cofinal ω-sequence of inaccessible
cardinals less than κ (which will be generic for the Prikry forcing de-
fined from U0), fi is C(ω, κ1)-generic and fi is C(κi, κi+1)-generic for
i > 0. The condition (s, h) where s = (p0, α1, p1, . . . , αk, pk) carries the
information that

(1) κi = αi and pi ∈ fi for 1 ≤ i ≤ k.
(2) κi ∈ dom(h) and h(κi) ∈ fi for i > k.

Lemma 3.1. The forcing poset P has the κ+-cc.
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Proof. Let (s, h) and (s, h′) be two conditions with the same stem s.
Since [h]U0 , [h

′]U0 ∈ F and F is a filter, it is easy to find h′′ such
that [h′′]U0 ≤ [h]U0 , [h

′]U0 . h′′ ≤U0 h, h′, and if we let B = {α :
h′′(α) ≤ h(α) and h′′(α) ≤ h′(α)} then h′′ � B ≤ h, h′. The condition
(s, h′′ � B) is clearly a lower bound for (s, h) and (s, h′). �

The following Lemma is straightforward.

Lemma 3.2. Let p = (s, h) where s = (p0, α1, p1, . . . , αk, pk), and let
1 ≤ i ≤ k. Then the forcing poset P ↓ p is isomorphic to

D× (P′ ↓ (t, h)),

where

D = C(ω, α1) ↓ p0 × . . .× C(αi−1, αi) ↓ pi−1,

P′ is defined just like P except that αi plays the role of ω, and

t = (pi, αi+1, . . . , αk, pk).

3.3. The Prikry Lemma.

Lemma 3.3 (Prikry Lemma for P). Let Φ be a sentence in the forcing
language and let p ∈ P, then there is a direct extension q ≤ p which
decides Φ.

Proof. We begin the proof with a construction that is done uniformly
for all conditions p.

For each lower part t, if there is an upper part h such that (t, h)
decides Φ then we fix such an upper part ht. Appealing to Property
II for F , we find h0 ≤ h such that h0 � t ≤ ht for all relevant t. So
for every t, if there exists any h such that (t, h) decides Φ then (t, h0)
decides Φ.

We now define two sets of lower parts:

X+ = {t : (t, h0) 
 Φ},

and

X− = {t : (t, h0) 
 ¬Φ}.
It is clear that both X+ and X− are downwards closed. By two appeals
to Property III we obtain h1 ≤ h0 such that h1 captures both X+ and
X−.

Now let p = (s, h). As in the proof of Lemma 3.1, we may find an
upper part h∗ such that h∗ ≤ h, h1. Let (t, h∗∗) ≤ (s, h∗) be a condition
deciding Φ, with lh(t) chosen minimal among all such extensions of
(s, h∗). We will show that lh(t) = lh(s), establishing that (t, h∗∗) is a
direct extension of (s, h) and thereby proving the Lemma.
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We will assume that (t, h∗∗) 
 Φ, the proof in the case when it forces
¬Φ is the same. Suppose for a contradiction that lh(t) > lh(s), and let
t be the concatenation of a shorter lower part t− and a pair (α, q). Since
t is longer than s, we have that α ∈ dom(h∗) and q ≤ h∗(α) ≤ h1(α).
By the construction of h0 we have also that (t, h0) 
 Φ, so that t ∈ X+.

We claim that (t−, h∗∗) 
 Φ, which will contradict the hypothesis
that lh(t) was chosen minimal and establish the Lemma.

Towards the claim we observe that, since h1 captures X+ and q ≤
h1(α), for every β, γ ∈ dom(h1 � t−) with β < γ the set {r : t−

_
(β, r) ∈

X+} is dense below h1(β) in C(β, γ). We will use this to show that the
set of conditions which force Φ is dense below (t−, h∗∗) in P, establishing
the claim that (t−, h∗∗) 
 Φ.

It will suffice to show that any extension of (t−, h∗∗) with a properly
longer lower part can be extended to force Φ. Consider such an exten-
sion of the form (t′_(γ0, q0)_ . . ._(γi, qi), h

∗∗∗), where t′ ≤ t− and with-
out loss of generality i > 0. Since q0 ≤ h1(γ0) and q0 ∈ C(γ0, γ1), by the
remarks in the preceding paragraph there is r ≤ q0 with r ∈ C(γ0, γ1)
such that (t−

_
(γ0, r), h

0) 
 Φ.
It is now easy to verify that by strengthening q0 to r we obtain a

condition (t′_(γ0, r)
_ . . ._(γi, qi), h

∗∗∗) which extends (t−
_

(γ0, q), h
0),

and so forces Φ. This concludes the proof. �

Remark. The proof of the Prikry Lemma extends without any change
to the forcing poset P′ defined in Lemma 3.2.

3.4. Analysing names for bounded subsets of κ. It is clear that
the forcing poset P collapses all cardinals in the open intervals (ω+m, κ1)
and (κmi , κi+1) for i > 0. One of the main applications of the Prikry
Lemma is to show that no other cardinals are collapsed, so that κ
becomes ℵω in the generic extension.

Lemma 3.4. Let G be P-generic and let

f0, κ1, f1, κ2, f2 . . .

be the generic sequence added by G. Let x ∈ V [G] be a bounded subset
of (κ+m

i )V for some i > 0. Then x ∈ V [f0 × . . .× fi−1].

Proof. Working below a suitable condition, we may use Lemma 3.2 to
view V [G] as a two-step extension V [G′][g] where g = f0 × . . . × fi−1

and G′ is generic for P′, a version of P in which κi plays the role of ω.
Let x = iG(ẋ), where ẋ is a P-name for a subset of γ for some

γ < κ+m
i . We may view ẋ as a P′-name for a D-name for a subset of γ,

where D = C(ω, κ1)× . . .× C(κi−1, κi).
Since P′ satisfies the Prikry Lemma, it is easy to see that the D-name

denoted by ẋ lies in V , so that x ∈ V [f0 × . . .× fi−1] as required. �
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Using Lemma 3.4, standard chain condition and closure arguments
imply that only the cardinals in the intervals (ω+m, κ1) and (κmi , κi+1)
are collapsed by P. For the purposes of some later arguments, we will
prove a more refined version of Lemma 3.4. The point at stake here
is that a priori it seems that a name for a bounded subset of κ may
depend on an arbitrarily large initial segment of the generic object, and
this would cause major difficulties in the chain condition arguments of
Section 4.

Given an increasing sequence ~α = 〈α1, . . . , αk〉 of inaccessible cardi-
nals less than κ, we define

D(~α) = C(ω, α1)× . . .× C(αk−1, αk).

Lemma 3.5. Let µ, η < κ and let ẋ be a P-name for a subset of µ.
Let h be an upper part and let S be the set of increasing sequences
〈α1, . . . , αk〉 where αi < η and αi is inaccessible.

Then there exist an ordinal β with µ, η < β < κ, names 〈ẏ~α : ~α ∈ S〉
and an upper part h′ ≤ h with min(dom(h′)) > β such that for every
~α = (α1, . . . , αk) ∈ S:

(1) ẏ~α is a D(~α_β) name for a subset of µ.
(2) If t = (∅, α1, ∅, . . . , αk, ∅) then (t, h′) 
 ẋ = ẏ~α. That is to say

that if G is P-generic with (t, h′) ∈ G, and

f0, α1, f1, α2, f2 . . .

is the corresponding generic sequence, then iG(ẋ) = if (ẏ~α),
where f = f0 × . . .× fk−1 × (fk � β).

Proof. As in the first step of the proof of the Prikry Lemma, we find
h0 ≤ h such that for every lower part t = (p0, β1, . . . , βk, pk), if there are
an upper part h′ and a D(〈β1, . . . , βk〉) -name ẏ such that (t, h′) 
 ẋ = ẏ
then (t, h0) 
 ẋ = ẏ.

For each ~α = (α1, . . . , αk) ∈ S, each inaccessible δ with µ, η < δ < κ
and each canonical D(~α_δ)-name ẏ for a subset of µ, let X(~α, δ, ẏ) be
the set of lower parts s such that

s = (q0, α1, q1, . . . , αk, qk, γ, r)

for some γ > δ, and (s, h0) 
 ẋ = ẏ. Since this is a downwards
closed set of lower parts, we may find h~α,δ,ẏ ≤ h0 which captures it.
Using Lemmas 2.14 and 2.16 we may then find an upper part h1 such
that h1 � δ ≤ h~α,δ,ẏ for all ~α, δ, ẏ, and also min(dom(h1)) > µ, η.
By shrinking dom(h1) if necessary, we will also arrange that dom(h1)
consists of Mahlo cardinals.
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Fix for the moment a sequence ~α = 〈α1, . . . , αk〉 ∈ S. Fix some
γ ∈ dom(h1) and consider the condition

((∅, α1, ∅, . . . , ∅, αk, ∅, γ, h1(γ)), h1).

Working as in the proof of Lemma 3.4, we may find r ≤ h1(γ) and
h∗ ≤ h1 such that

((∅, α1, ∅, . . . , ∅, αk, ∅, γ, r), h∗) 
 ẋ = ẏ

where ẏ is a canonical D(~α_γ)-name for a subset of µ. Since D(~α_γ)
has the γ-cc and γ is Mahlo, ẏ is a canonical D(~α_δ)-name for some
inaccessible δ with µ, η < δ < γ.

By construction r ≤ h1(γ) ≤ h~α,δ,ẏ(γ). By the choice of h0, we see
that

((∅, α1, ∅, . . . , ∅, αk, ∅, γ, r), h0) 
 ẋ = ẏ.

By the choice of h1, for every γ1, γ2 ∈ dom(h1) with δ < γ1 < γ2 the
set of r∗ ∈ C(γ1, γ2) such that

((∅, α1, ∅, . . . , ∅, αk, ∅, γ1, r
∗), h0) 
 ẋ = ẏ

is dense below h1(γ1). So for every γ1 ∈ dom(h1) with δ < γ1

((∅, α1, ∅, . . . , ∅, αk, ∅, γ1, h
1(γ1)), h1) 
 ẋ = ẏ,

which implies that

((∅, α1, ∅, . . . , ∅, αk, ∅), h1 � δ) 
 ẋ = ẏ.

To record their dependence on ~α, we write δ~α for δ and ẏ~α for ẏ.
Let β be the supremum of the δ~α for ~α ∈ S, and let h′ = h1 � β. It is

now easy to see that the ordinal β, upper part h′ and family of names
〈ẏ~α : ~α ∈ S〉 are as required.

�

3.5. Characterisation of genericity. We will need one more techni-
cal fact about P, namely a characterisation of the generic object. Sim-
ilar “geometric” characterisations for other Prikry-type forcing posets
appear at many places [9, 11, 1] in the literature.

Lemma 3.6 (Genericity Lemma). Let

f0, κ1, f1, . . .

be such that

(1) fi is C(ω, κ1)-generic for i = 0 and C(κi, κi+1)-generic for i >
0.

(2) For all upper parts h there is an integer s such that κt ∈ dom(h)
and h(κt) ∈ ft for all t ≥ s.

Then this is a generic sequence for P.
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Proof. For our later convenience we define C0 = C(ω, κ1) and Ci =
C(κi, κi+1) for i > 0. We make the remark that by an easy application
of Easton’s Lemma the filters f0, . . . , fn are mutually generic, that is
f0 × . . .× fn is generic over V for C0 × . . .× Cn.

We now fix E a dense open set in P, with the ultimate goal of showing
that E meets the filter on P generated by

f0, κ1, f1, . . .

To achieve this goal we need to “canonise” E in a sense to be made
precise later.

By a familiar diagonal intersection argument, there is an upper part
h0 such that for every lower part s,

∃h (s, h) ∈ E ⇐⇒ (s, h0 � s) ∈ E.

Since the set E is open, it is easy to see that if we let

X0 = {s : (s, h0 � s) ∈ E}

then X0 is a downwards closed set of lower parts.
Applying Property III repeatedly we construct downwards closed

sets Xn and upper parts hn such that:

(1) hn+1 ≤ hn.
(2) hn+1 captures Xn.
(3) Xn+1 is the set of lower parts s such that for some (equivalently,

for every) α ∈ dom(hn+1) such that s ∈ Vα there is q ≤ hn+1(α)
with s_(q, α) ∈ Xn.

We appeal to Property I to find an upper part h∞ such that h∞ ≤ hn
for all n. By the hypotheses, we find an integer k such that κl dom(h∞)
and h∞(κl) ∈ fl for all l ≥ k.

Claim.

{(q0, . . . , qk−1) : ∃j (q0, κ1, . . . , κk−1, qk−1) ∈ Xj}
is dense in C0 × . . .× Ck−1.

Proof. Let (p0, . . . , pk−1) ∈ C0× . . .×Ck−1, and consider the condition

((p0, κ1, . . . , κk−1, pk−1, κk, h∞(κk)), h∞).

Since E is dense there is an extension

((q0, κ1, . . . , κk−1, qk−1, κ̄k, qk, . . . , κ̄k+j−1, qk+j−1), h) ∈ E

for some j > 0. Call the lower part of this extension s, and observe
that by construction of h0 we have (s, h0 � s) ∈ E so that s ∈ X0.
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Now observe that κ̄k+j−1 ∈ dom(h∞) and qk+j−1 ≤ h∞(κ̄k+j−1) ≤
h1(κ̄k+j−1), so that

(q0, κ1, . . . , κk−1, qk−1, κ̄k, qk, . . . , κ̄k+j−2, qk+j−2) ∈ X1.

Stepping backwards in the obvious way we eventually obtain that

(q0, κ1, . . . , κk−1, qk−1) ∈ Xj.

�

Since f0 × . . . × fk−1 is generic, we obtain conditions qi ∈ fi for
i < k such that t ∈ Xj where t = (q0, κ1, . . . , κk−1, qk−1). Since t ∈ Xj,
κk, κk+1 ∈ dom(hj) and κk < κk+1,

{p ∈ Ck : t_(κk, p) ∈ Xj−1}
is dense below hj(κk). Also hj(κk) ∈ fk because h∞(κk) ∈ fk and
h∞ ≤ hj. So we may find q∗j ∈ fj such that

t_(κj, q
∗
j ) ∈ Xj−1.

Repeating this argument j times we construct q∗i ∈ fi for k ≤ i < k+ j
such that

u = t_(κj, q
∗
j , . . . , κk+j−1, q

∗
k+j−1) ∈ X0,

that is to say that (u, h0 � u) ∈ E.
But it is now easy to verify that (u, h0 � u) is in the filter generated

by the sequence of (fi): simply observe that

(1) qi ∈ fi for i < k.
(2) q∗i ∈ fi for k ≤ i < k + j.
(3) h0(κi) ∈ fi for i ≥ k + j.

This concludes the proof of the Genericity Lemma. �

4. The forcing Q and its properties

We work throughout with the same hypotheses as in Section 3. In
particular F has properties I, II and III and P is the Prikry-type forcing
defined from F . Let 2κ

+
= λ, and let T be a tree of height κ+ such

that T has at least λ branches and each level of T has size at most
κ+. Let 〈xβ : β < λ〉 enumerate a sequence of distinct branches, and
enumerate Levα(T ) as 〈t(α, i) : i < |Levα(T )|〉 for each α < κ+.

Definition 4.1. Let A be a function such that dom(A) is a bounded set
of inaccessible cardinals less than κ, and A(α) ∈ B(α, κ) with A(α) 6= 0
for all α ∈ dom(A). Let s = (q0, α0, q1, . . . , αk, qk) be a lower part, and
let η < κ. Then s is harmonious with A past η if and only if for all j
such that αj ≥ η we have αj ∈ dom(A) and qj ≤ A(αj).
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Let 〈Ġα : α < λ〉 enumerate all the canonical P-names for graphs on
κ+. We define a forcing poset Q.

Conditions in Q are quadruples (A,B, t, f) such that:

(1) A is a function such that dom(A) is a bounded set of inaccessible
cardinals less than κ, and A(α) ∈ B(α, κ) with A(α) 6= 0 for all
α ∈ dom(A).

(2) B is an upper part.
(3) t is a triple (ρ, a, b) where ρ < κ, a ∈ [κ+]<κ and b ∈ [λ]<κ.
(4) f is a sequence 〈fη,β : η < ρ, β ∈ b〉 such that each function fη,β

has domain a.
(5) fη,β(ζ) ∈ {xβ � ζ} × κ for all η < ρ, β ∈ b and ζ ∈ a.
(6) For every η ∈ dom(A) ∩ ρ, every lower part s harmonious with

A past η, and every β, γ ∈ b and ζ ′, ζ ∈ a such that fη,β(ζ ′) =
fη,γ(ζ

′) 6= fη,β(ζ) = fη,γ(ζ),

(s, B) 
 ζ ′Ġβζ ⇐⇒ ζ ′Ġγζ.

Remark. In the last clause, if s is one of the relevant stems then all
ordinals appearing in s are less than ssup(dom(A)).

Let q = (A,B, t, f) and q′ = (A′, B′, t′, f ′) be two conditions in Q.
Then q′ ≤ q if and only if:

(1) dom(A) is an initial segment of dom(A′), and A′ � dom(A) = A.
(2) B′ ≤ B, that is dom(B′) ⊆ dom(B) and B′(α) ≤ B(α) for all

α ∈ dom(B′).
(3) For all α ∈ dom(A′) \ dom(A), α ∈ dom(B) and A′(α) ≤ B(α).
(4) If we let t = (ρ, a, b) and t′ = (ρ′, a′, b′) then ρ ≤ ρ′, a ⊆ a′ and

b ⊆ b′.
(5) f ′η,β(ζ) = fη,β(ζ) for all η < ρ, β ∈ b and ζ ∈ a.

Remark. The forcing poset Q is intended to add (among other things)
a generic function h from κ to Vκ of the right general form to be an
upper part. If we ultimately force with some version of P for which
the generic function h is a legitimate upper part, then we will add a
generic sequence x which eventually obeys h but we do not know past
which point on x this will begin to happen. This motivates the notion
of “harmonious past η”, and also explains why each η gets its own set
of functions fη,β.

Lemma 4.2. If GQ is Q-generic then:

(1) If we let hGQ =
⋃
{Ap : p ∈ GQ} then hGQ is a function,

dom(hGQ) is unbounded in κ, and for every upper part h we
have that α ∈ dom(hGQ) and hGQ(α) ≤ h(α) for all large enough
α ∈ dom(h).



20 JAMES CUMMINGS, MIRNA DŽAMONJA, AND CHARLES MORGAN

(2) For all η < κ and β < λ, if we let F
GQ
η,β =

⋃
{fpη,β : p ∈ GQ}

then F
GQ
η,β is a function with domain κ+.

Proof. For the first claim, we suppose that ν < κ, h is an upper part,
and q is an arbitrary condition. Let µ ∈ dom(Bq) with µ > ν, and
define r = (Ar, Br, tr, f r) as follows: Ar = Aq ∪ {(µ,Bq(µ))}, Br is
some upper part such that Br ≤ Bq, h and µ < min(dom(Br)), tr = tq

and f r = f q.
We must verify that r is a condition and r ≤ q. The only non-

trivial point is to see that r satisfies Clause 6) in the definition of
conditionhood in Q. Let t be a lower part harmonious with Ar past
η. There are now two cases. If t is harmonious with Aq past η then
(t, Br) ≤ (t, Bq), and we are done by Clause 6) for q. Otherwise t =
s_〈µ, p〉 for some p ≤ Bq(µ) and s harmonious with Aq past η, (t, Br) ≤
(s, Bq), and again we are done by Clause 6) for q.

For the second claim, we fix ζ, η, β and then find a ⊇ aq, b ⊇ bq

and ρ ≥ ρq such that η < ρ, ζ ∈ a, β ∈ b. We then define r =
(Ar, Br, tr, f r) as follows: Ar = Aq, Br = Bq, tr = (ρ, a, b) and f r

is chosen to extend f q and to be such that the values f rη′,β′(ζ
′) for

(η′, ζ ′, β′) ∈ (ρ× a× b) \ (ρq × aq × bq) are all distinct from each other
and from any of the values f qη′,β′(ζ

′) for (η′, ζ ′, β′) ∈ ρq × aq × bq. This
choice ensures that Clause 6) in the definition of conditionhood holds,
so that r is a condition with r ≤ q. �

We recall that for a regular uncountable cardinal ν, a poset R is ν-
compact if and only if the following condition holds: for every X ⊆ R
with |X| < ν, if every finite subset of X has a lower bound then X has
a lower bound.

Lemma 4.3. Q is κ-compact.

Proof. Let µ < κ, and let {qi : i < µ} be a set of conditions in Q such
that for any finite subset s of µ the set {qi : i ∈ s} has a lower bound.
Let qi = (Ai, Bi, ti, f i), and choose for each finite s ⊆ µ a condition
rs = (As, Bs, ts, f s) which is a lower bound for {qi : i ∈ s}.

We will define r = (Ar, Br, tr, f r) as follows:

• Ar =
⋃
i<µA

i.

• Br is some upper part such that ssup(dom(Ar)) < dom(Br)
and Br ≤ Bs for all s.
• tr = (ρr, ar, br) where ρr =

⋃
i<µ ρ

i, ar =
⋃
i<µ a

i, br =
⋃
i<µ b

i.

• If there is some i such that (η, ζ, β) ∈ ρi×ai×bi, then f rη,β(ζ) =

f iη,β(ζ). As in the proof of Lemma 4.2, we choose the values of

f rη,β(ζ) for (η, ζ, β) ∈ ρr×ar×br\
⋃
i<µ(ρi×ai×bi) to be distinct
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from each other and from all values in {f rη,β(ζ) : (η, ζ, β) ∈⋃
i<µ(ρi × ai × bi)}.

We note that by our hypotheses the definition of f rη,β(ζ) yields a unique
value.

As usual, the main issue is to verify that Clause 6) holds. This is
straightforward: if f rη,β(ζ) = f rη,β′(ζ) 6= f rη,β(ζ ′) = f rη,β′(ζ

′), then for
some finite s we have f sη,β(ζ) = f sη,β′(ζ) 6= f sη,β(ζ ′) = f sη,β′(ζ

′), and so we
are done because Br ≤ Bs. �

Corollary 4.4. The poset Q is κ-directed closed and also has the fol-
lowing property, which was dubbed “parallel countable closure” in [2]:
if 〈q0

i : i < ω〉 and 〈q1
i : i < ω〉 are decreasing sequences of conditions

such that q0
i and q1

i are compatible for all i, then there is q such that
q ≤ q0

i , q
1
i for all i.

We recall that for an regular cardinal ν, a poset R is strongly ν+-
cc if and only if the following condition holds: for every ν+-sequence
〈ri : i < ν+〉 of conditions in R, there exist a club set E ⊆ ν+ and a
regressive function f on E ∩ cof(ν) such that for all i and j, if f(i) =
f(j) then ri is compatible with rj.

Lemma 4.5. Q is strongly κ+-cc.

Proof. Let qi = (Ai, Bi, ti, f i) ∈ Q for i < κ+, and let ti = (ρi, ai, bi).
We recall that dom(f iη,β) = ai for all η < ρi and β ∈ bi. Let µi =

ot(ai). Let ẋiβ be a P-name for the set of pairs (ν, ν ′) such that ζĠβζ ′,
where ζ and ζ ′ are respectively the νth and ν ′th elements of ai.

Appealing to Lemma 3.5 and Property I we may assume, shrinking
Bi if necessary, that for every β ∈ bi there exist an ordinal γiβ < κ

and names ẏiβ,~α for every increasing finite sequence ~α of ordinals from

ssup(dom(Ai)), such that Bi “reduces” ẋiβ to ẏiβ,~α which is a name in

the product of collapses D(~α_〈γiβ〉) for the edge set of a graph on the

vertex set µi.
We will enumerate

⋃
i<κ+ b

i as 〈β :  < κ+〉. To make the rest
of the proof more readable, we will observe the following notational
conventions:

(1) The letter i and its typographic variations will denote indices
for conditions in Q on the sequence 〈qi : i < κ+}.

(2) The letter ζ and its variations will denote elements of
⋃
i<κ+ a

i,
and the letter β and its variations will denote elements of

⋃
i<κ+ b

i.
(3) The letter  and its variations will denote indices for ordinals

less than λ on the sequence 〈β :  < κ+〉.
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(4) Given a set x ⊆ κ+ with |x| < κ, the letter σ and its variations
will denote indices for elements of x, enumerated in increasing
order.

(5) Given a set y ⊆
⋃
i<κ+ b

i with |y| < κ, the letter τ and its
variations will denote indices for elements of { : β ∈ y}, again
enumerated in increasing order. Note that variations of τ denote
indices (in κ) for indices (in κ+) for elements of λ.

(6) The letter φ and its variations will denote indices for elements
t ∈ Levζ(T ) on the sequence 〈t(ζ, φ) : φ < |Levζ(T )〉.

(7) The letter ψ and its variations will denote the second entries in
pairs drawn from T × κ.

We define functions Fn with domain κ+ for n < 6 as follows:

(1) F0(i) = (ρi, ot(ai), ot({ : β ∈ bi})).
(2) F1(i) = ai ∩ i.
(3) F2(i) = { < i : β ∈ bi}.
(4) F3(i) = Ai.
(5) F4(i) is the set of 5-tuples (η, σ, τ, φ, ψ) where η < ρi, σ < ot(ai),

τ < ot({ : β ∈ bi}), φ < i, ψ < κ, and if we let ζ be the σth

element of ai and β = β for  the τ th element of { : β ∈ bi}
then f iη,β(ζ) = (t(ζ, φ), ψ).

(6) F5(i) is the set of 3-tuples (τ, γ, Y ) where τ < ot({ : β ∈ bi}),
γ < κ, Y ∈ Vκ, and if we let β = β for  the τ th element of
{ : β ∈ bi} then γ = γiβ, and Y is the function specified by

setting Y (~α) = ẏiβ,~α for each increasing finite sequence ~α from

ssup(dom(Ai)).

Remark. F4(i) is best viewed as a partial function on triples (η, σ, τ)
which records a code for the value of f iη,β(ζ) when this is “permissible”.
The criterion for permissibility is that (after decoding σ and τ to obtain
ζ and β) the first entry (xβ � ζ) in f iη,β(ζ) is enumerated before i in the
enumeration of level ζ of the tree T . The point is that we are aiming
ultimately to define a regressive function so we can only record limited
information.

In a similar vein, F5 is a total function which records values of γiβ
and ẏiβ,~α.

Now let F (i) = (F0(i), F1(i), F2(i), F3(i), F4(i), F5(i)), so that

F (i) ∈ κ3 × [i]<κ × [i]<κ × Vκ × [κ3 × i× κ]<κ × [κ2 × Vκ]<κ.

We fix an injective map H from

κ3 × [κ+]<κ × [κ+]<κ × Vκ × [κ3 × κ+ × κ]<κ × [κ2 × Vκ]<κ
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to κ+. Since κ<κ = κ, we may fix a club set E0 ⊆ κ+ such that if
i ∈ E0 ∩ cof(κ) then

rge(H � κ3 × [i]<κ × [i]<κ × Vκ × [κ3 × i× κ]<κ × [κ2 × Vκ]<κ) ⊆ i,

so that in particular H ◦ F is regressive on E0 ∩ cof(κ).
Let E1 be the club subset of κ+ consisting of those i such that for

all i′ < i:

(1) ai
′ ⊆ i.

(2) { : β ∈ bi
′} ⊆ i.

(3) For all ζ ∈ ai′ and β ∈ bi′ , xβ � ζ = t(ζ, φ) for some φ < i.
(4) For all β, β∗ ∈ bi′ with β 6= β∗, xβ � i 6= xβ∗ � i.

We claim that the function H ◦ F and the club set E0 ∩E1 serve as
a witness to the strong κ+-cc for Q. To see this, let i′ < i be points in
E0 ∩ E1 ∩ cof(κ) such that F (i′) = F (i). We will show that qi

′
and qi

are compatible.
We start by decoding the assertion that Fn(i′) = Fn(i) for n < 4.

Directly from the definition we see that:

(1) ρi
′
= ρi = ρ∗ say.

(2) ot(ai
′
) = ot(ai) = µ∗ say.

(3) ot({ : β ∈ bi
′}) = ot({ : β ∈ bi}) = ε∗ say.

(4) ai
′ ∩ i′ = ai ∩ i = r0 say. Since ai

′ ⊆ i by Clause 1) in the
definition of E1, ai

′ \ i′ and ai \ i are disjoint and ai
′ ∩ ai = r0.

(5) { < i′ : β ∈ bi
′} = { < i : β ∈ bi} = r1 say. As in the last

claim, { ≥ i′ : β ∈ bi
′} and { ≥ i : β ∈ bi} are disjoint and

{ : β ∈ bi ∩ bi
′} = r1.

(6) Ai
′
= Ai = A∗ say.

Claim. When both sides are defined, f i
′

η,β(ζ) = f iη,β(ζ).

Proof. We will use the fact that F4(i′) = F4(i). Since both sides are
defined, η < ρ∗, ζ ∈ ai′ ∩ ai and β ∈ bi′ ∩ bi. By the remarks in the
preceding paragraph, ζ ∈ r0 and β = β for some  ∈ r1.

Since r0 is the common initial segment of ai
′

and ai, we have ot(ai
′ ∩

ζ) = ot(ai ∩ ζ) = σ say. Similarly  has the same index (say τ) in the
increasing enumerations of { : β ∈ bi

′} and { : β ∈ bi}.
Now let f i

′

η,β(ζ) = (xβ � ζ, ψ′), let f iη,β(ζ) = (xβ � ζ, ψ), and let

xβ � ζ = t(β, φ). Since i ∈ E1, i′ < i, β ∈ bi
′

and ζ ∈ ai
′
, it follows

from Clause 3) in the definition of E1 that φ < i.
By the definition of F4, the set F4(i) contains the tuple (η, σ, τ, φ, ψ).

This is the unique tuple in F4(i) which begins with (η, σ, τ), and since
F4(i′) = F4(i) this tuple also appears in F4(i′). It follows that ψ = ψ′

and so f i
′

η,β(ζ) = f iη,β(ζ). �



24 JAMES CUMMINGS, MIRNA DŽAMONJA, AND CHARLES MORGAN

We will now define q∗ = (A∗, B∗, t∗, f ∗), which will be a lower bound
for qi and qi

′
.

• Recall that ρ∗ = ρi
′

= ρi. We set a∗ = ai
′ ∪ ai, b∗ = bi

′ ∪ bi,
t∗ = (ρ∗, a∗, b∗).
• Recall that A∗ = Ai = Ai

′
.

• Let B∗ be some upper part such that B∗ ≤ Bi′ , Bi.
• We define f ∗η,β(ζ) for all η < ρ∗, ζ ∈ a∗ and β ∈ b∗. Naturally

we set f ∗η,β(ζ) = f i
′

η,β(ζ) when ζ ∈ ai′ and η ∈ bi′ , and similarly

we set f ∗η,β(ζ) = f iη,β(ζ) when ζ ∈ ai and η ∈ bi. As we argued

already the sequences f i
′

and f i agree sufficiently for this to
make sense.

To define f ∗η,β(ζ) for η < ρ∗ and (ζ, β) ∈ a∗ × b∗ \ (ai × bi ∪
ai
′ × bi′), we will proceed as in the proof of Lemma 4.3. That is

to say we will choose suitable values whose second coordinates
are distinct from each other, and also distinct from any value
appearing as a second coordinate of f ∗η,β(ζ) for η < ρ∗ and

(ζ, β) ∈ ai × bi ∪ ai′ × bi′ .
It is routine to check that if q∗ is a condition then it is a common

refinement of qi
′

and qi, and also that q∗ satisfies all the clauses in the
definition of Q except possibly for the final Clause 6). With a view to
verifying this clause, suppose that η ∈ dom(A∗) ∩ ρ∗, s is a lower part
harmonious with A∗ past η, and

f ∗η,β′(ζ
′) = f ∗η,β(ζ ′) 6= f ∗η,β′(ζ) = f ∗η,β(ζ).

where ζ ′ < ζ and β′ = β′ , β = β for some ′ < .
By the construction of f ∗, it is immediate that all four of the pairs

in {ζ ′, ζ} × {β′, β} lie in the set ai
′ × bi′ ∪ ai × bi.

If all four pairs above lie in ai
′ × bi′ , then we are done by Clause 6)

for qi
′

and the fact that B∗ ≤ Bi′ . A similar argument works if all four
pairs lie in ai× bi. From this point we assume that we are not in either
of these cases.

Now recall that a∗ = ai
′ ∪ ai = r0 ∪ (ai

′ \ r0) ∪ (ai \ r0), where
r0 < ai

′ \ r0 < ai \ r0. Similarly if we let s = { : β ∈ bi
′ ∪ bi}, then

s = r1 ∪ ({ : β ∈ bi
′} \ r1) ∪ ({ : β ∈ bi} \ r1), where r1 < { : β ∈

bi
′} \ r1 < { : β ∈ bi} \ r1.
An easy case analysis 1 shows that there are only two possibilities:

1In figure 1, all pairs (ζ∗, ∗) with (ζ∗, β∗) ∈ ai
′ × bi′ lie in the region shaded

with forward-sloping diagonal lines, and all pairs (ζ∗, ∗) with (ζ∗, β∗) ∈ ai× bi lie
in the region shaded with backward-sloping diagonal lines. Points in {ζ ′ζ}× {′, }
must all lie in the shaded region, and must not all lie in subregions shaded in a
single direction.
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′



̄

{j : βj ∈ bi − r1}

{j : βj ∈ bi
′ − r1}

r0 ai − r0ai
′ − r0

r1

ζζ ′

Figure 1. Subcase 2b: ̄ is the “clone” of .

Case 1: ′ and  are both in r1, ζ ′ ∈ ai′ \ r0, ζ ∈ ai \ r0.

Case 2: ζ ′ and ζ are both in r0, ′ ∈ bi′ \ r1,  ∈ bi \ r1.

We will first show that Case 1 is not possible. To dismiss Case 1,
assume that we are in this case and recall that

f ∗η,β′(ζ
′) = f ∗η,β(ζ ′) 6= f ∗η,β′(ζ) = f ∗η,β(ζ),

from which it follows that xβ′ � ζ = xβ � ζ. Since i ∈ E1, i′ < i
and β′, β ∈ bi

′
, it follows from clause 4 in the definition of E1 that

xβ′ � i 6= xβ � i. By the case assumption we have ζ ∈ ai\r0 = ai\(ai∩i),
so that in particular ζ ≥ i. This is a contradiction, so Case 1 does not
occur.

We now assume that we are in Case 2. In order to use the information
coded in the equality of F (i′) and F (i), we make some definitions:

• σ′ is the index of ζ ′ in the increasing enumeration of ai
′ ∩ ai.

• σ is the index of ζ in the increasing enumeration of ai
′ ∩ ai.

• τ ′ is the index of ′ in the increasing enumeration of { : β ∈
ai
′}.

• τ is the index of  in the increasing enumeration of { : β ∈ ai}.
By definition, F5(i′) (which is equal to F5(i)) contains the tuples

(τ ′, γi
′

β′ , Y
′) and (τ, γiβ, Y ), where Y ′(~α) = ẏi

′

β′,~α and Y (~α) = ẏiβ,~α for α
any increasing finite sequence from ssup(dom(A)).
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Recall that s is a lower part harmonious with A∗ past η, and η ∈
dom(A∗) ∩ ρ∗. Let

s = (p0, α1, p1, . . . , αk, pk),

and let ~α = 〈α1, . . . , αk〉. By the choice of Bi′ and the definitions of
the names ẋi

′

β′ and ẏi
′

β′,~α, (s, Bi′) reduces the truth value of ζ ′Ġβ′ζ (a

Boolean value for P) to the truth value of σ′ẏi
′

β′,~ασ (a Boolean value

for the product of collapses D(~α_γi
′

β′)). Similarly (s, Bi′) reduces the

truth value of ζ ′Ġβζ to the truth value of σ′ẏiβ,~ασ.

Subcase 2a: τ ′ = τ .

In this subcase γi
′

β′ = γiβ = γ∗ say, and Y ′ = Y , so that in particular

ẏi
′

β′,~α = ẏiβ,~α. It is then immediate from the preceding discussion that,

since (s, B∗) is a common refinement of (s, Bi′) and (s, Bi), (s, B∗) 

ζ ′Ġβ′ζ ⇐⇒ ζ ′Ġβζ.

Subcase 2b: τ ′ 6= τ .

In this subcase we will consider a “cloned” version β̄ of β lying in bi
′
,

which we define by setting β̄ = β̄ for ̄ the element with index τ in the
increasing enumeration of { : β ∈ bi

′}. The argument from subcase

2a shows that (s, B∗) 
 ζ ′Ġβ̄ζ ⇐⇒ ζ ′Ġβζ.

Since β′ ∈ bi
′

and ζ ′ ∈ ai
′
, and also i′ < i and i ∈ E1, it follows

from Clause 3 in the definition of E1 that xβ′ � ζ ′ = t(ζ ′, φ) for some
φ < i. Now since f i

′

η,β′(ζ
′) = f iη,β(ζ ′), xβ′ � ζ ′ = xβ � ζ = t(ζ ′, φ), so that

the set F4(i) contains some tuple (η, σ′, τ, φ, ψ) coding the statement
“f iη,β(ζ ′) = (t(ζ ′, φ), ψ)”. This tuple is also in F4(i′), and decoding its

meaning we find that f i
′

η,β̄
(ζ ′) = (t(ζ ′, φ), ψ) = f iη,β(ζ ′). Since ζ ∈ ai

′

also, a similar argument shows that f i
′

η,β̄
(ζ) = f iη,β(ζ ′).

So now we have f i
′

η,β′(ζ
′) = f i

′

η,β̄
(ζ ′) and f i

′

η,β′(ζ
′) = f i

′

η,β̄
(ζ ′), so that

(by Clause 6) for the condition qi
′
) (s, Bi′) 
 ζ ′Ġβ′ζ ⇐⇒ ζ ′Ġβ̄ζ.

So (s, B∗) 
 ζ ′Ġβ′ζ ⇐⇒ ζ ′Ġβζ. and we are done.
�

5. The main construction

We will start with a model V0 in which GCH holds and κ is super-
compact. In this model we define in the standard way [7] a “Laver
preparation” forcing L, and let V1 = V0[G0] where G0 is L-generic over
V0. Let A be the poset Add(κ+, κ+3)V1 , let G1 be A-generic over V1,
and let V = V1[G1].
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Let T be the complete binary tree of height κ+ as defined in V .
Clearly T has κ+3 branches and every level of T has size at most κ+.
For use later we fix an enumeration 〈xβ : β < κ+3〉 of a set of dis-
tinct branches, and enumerations 〈t(α, i) : i < |Levα(T )|〉 of the levels
Levα(T ) of T .

Since 2κ
+3

= κ+4 in V , a theorem of Shelah [14] implies that in V
we have ♦κ+4(cof(κ++)).

Working in V , we will define a forcing iteration with < κ-supports
of length κ+4. Each iterand Qi will either be trivial forcing or will be
κ-closed, parallel countably closed (in the sense of Corollary 4.4) and
strongly κ+-cc. By a suitable adaptation of arguments of Shelah [12],
this is sufficient to show that the whole iteration will be κ-directed
closed and strongly κ+-cc. We refer the reader to [2] for a detailed
account of the chain condition proof, noting (for the experts) that the
property “parallel countably closed” follows from the property “count-
ably closed plus well-met” used in [12] and is sufficient to make the
proof from that paper work.

The cardinality of the final iteration Q∗ will be κ+4. We will have
2κ = κ+4 in V Q∗ , while 2κ = κ+3 in the intermediate models of the the
iteration. We note that by the closure of Q∗, the terms “Vκ” and “Pκµ”
have the same meanings in V , V Q∗ , and every intermediate model.

As we build the iteration Q∗, we will also (using the diamond from

V ) construct a sequence of names Ṡi such that

• Ṡi is a Q∗ � i-name for every i < κ+4.
• Ṡi names a pair (Wi, Fi) where Wi ⊆ P (κ), Fi is a family of

partial functions from κ to Vκ, and dom(H) ∈ Wi for all H ∈ Fi.
• If G∗ is Q∗-generic, and (W,F ) ∈ V [G∗] with W ⊆ P (κ) and F

a family of functions from sets in W to Vκ, then

{i ∈ κ+4 ∩ cof(κ++) : W ∩ V [G∗ � i] = Wi and F ∩ V [G∗ � i] = Fi}

is stationary in V [G∗].

This is possible because:

• Pairs (W,F ) as above in the extension by Q∗ may be coded as
subsets of κ+4, and names for them may be coded as subsets of
Q∗ × κ+4.
• If we enumerate the conditions in Q∗ as 〈qj : j < κ+4〉, then
Q∗ � i = {qj : j < i} for almost all i ∈ κ+4 ∩ cof(κ++).
• Q∗ preserves stationary subsets of κ+4, by virtue of being κ+-cc.

We refer the reader to [2] for a more detailed discussion of this kind of
construction.
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We observe that by κ+-cc, if i < κ+4 with cf(i) > κ then every
subset of Vκ in the extension by Q∗ � i is in the extension by Q∗ � j for
some j < i. We observe also that each of the properties I-III can be
formulated as ∀∃ assertions about the power set of Vκ.

The considerations in the last paragraph imply a crucial reflection
statement for Properties I-III: If G∗ is Q∗-generic, in V [G∗] we have
a normal measure U0 and filter F with properties I-III, and we set
F = {h : [h]U ∈ F}, then for almost all i with cf(i) > κ we have that:

• U0 ∩ V [G∗ � i] and F ∩ V [G∗ � i] are elements of V [G∗ � i].
• In V [G∗ � i], U0 ∩ V [G∗ � i] is a normal measure and the func-

tions in F ∩ V [G∗ � i] represent a filter with properties I-III.

After these preliminaries we can specify the iterands Qi of the iter-
ation Q∗. We assume that G∗ � i is Q∗ � i-generic and that (Wi, Fi) is

the realisation of Ṡi, and work in V [G∗ � i]. We will set Qi to be trivial
forcing unless we have the conditions:

• cf(i) = κ++.
• Wi is a normal measure on κ.
• {[h]Wi

: h ∈ Fi} is an ultrafilter satisfying properties I-III.

In this case we will let Qi be the forcing Q from Section 4, defined in
V [G∗ � i] from the parameters Wi, Fi, 〈xβ : β < κ+3〉, and a suitable

enumeration 〈Ġiβ : β < κ+3〉 of canonical names for graphs.
We recall from the Introduction we will ultimately force over V [G∗]

with a poset P of the type discussed in Section 3. The forcing P will
be defined from some normal measure U0 and ultrafilter F , and the
point of the diamond machinery in the definition of Qi is to anticipate
the poset P (and in particular P-names for graphs on κ+). To be a
bit more precise, we will actually anticipate U0 and F where F = {h :
[h]U0 ∈ F}, or to put it another way F is the set of upper parts for the
poset P.

Recall further from Section 4 that in the case when Qi is not trivial
forcing, part of the generic object for Qi will be a partial function hi
from κ to Vκ such that

• dom(hi) is an unbounded set of inaccessible cardinals
• dom(hi) is eventually contained in each measure one set for the

measure Wi.
• For all h ∈ Fi, hi(α) ≤ h(α) for all large enough α ∈ dom(h).

The following Lemma will be used in Section 6 to show that often
enough Qi does its job, by adding a P-name for a graph which will
absorb all graphs whose names lie in V [G∗ � i].
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Lemma 5.1. Let G∗ be Q∗-generic. Then in V [G∗] there is an ultrafil-
ter U on Pκκ

+4 such that if U0 is the projection of U to κ, and we per-
form the construction of Section 2 to produce an ultrafilter F = Fil(H)
for some U-constraint H, then there are stationarily many i < κ+4 such
that:

(1) U0 ∩ V [G∗ � i] = Wi.
(2) F ∩ V [G∗ � i] = Fi, where F = {h : [h]U0 ∈ F}.
(3) hi ∈ F .

Before starting the proof, we emphasise that the diamond property
ensures that there many i where the first two clauses are satisfied.
What takes work is arranging that the the third clause is also satisfied.

Proof. We will construct U as in the standard proof of Laver’s inde-
structibility result [7], with the proviso that we will be very careful
about the construction of the master condition.

We begin by falling back to the initial model V0, where we will choose
an embedding j : V0 →M with critical point κ witnessing that κ is µ-
supercompact for some very large µ, and with the additional properties
that the forcing poset A ∗Q∗ is the iterand at stage κ in the iteration
j(L), and that the least point greater than κ in the support of the
iteration j(L) is greater than µ.

Recall that V = V0[G0][G1] where G0 is L-generic and G1 is A-
generic. By standard arguments, for any choice of a generic object
Htail for j(L)/G0 ∗ G1 ∗ G∗ over the model V [G∗], we have j“G0 ⊆
G0∗G1∗G∗∗Htail. We may therefore lift j to obtain a generic embedding
j : V0[G0] → M [G0 ∗ G1 ∗ G∗ ∗ Htail]. In order to lift further, we will
need to construct master conditions.

We will now work in V [G∗] and perform a recursive construction of
length κ+4, choosing a decreasing sequence of conditions (ri, ai, qi) with
(ri, ai, qi) ∈ j(L)/(G0 ∗G1 ∗G∗)∗ j(A)∗ j(Q∗ � i). We will arrange that

ri 
 ai ≤ j“G1,

so that forcing below (ri, ai) we obtain Htail ∗ H1 such that j can be
lifted to j : V0[G0][G1]→M [G0 ∗G1 ∗G∗ ∗Htail ∗H1]. Keeping this in
mind, we will also arrange that

(ri, ai) 
 qi ≤ j“(G∗ � i).
Using the hypothesis that j witnesses µ-supercompactness and the

remark that G1 ∈ M [j(G0)], we may argue that for any choice of
Htail we have j“G1 ∈ M [G0 ∗ G1 ∗ G∗ ∗ Htail]. Since j(A) is j(κ+)-
directed closed we may find a “strong master condition” a ∈ j(A) with
a ≤ j“G1. We will therefore choose r0 to be the trivial condition in
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j(L)/(G0 ∗ G1 ∗ G∗), a0 to be (a name for) a condition a ∈ j(A) with
a ≤ j“G1, and q0 as (a name for) the empty sequence.

The limit stages are straightforward, since the choice of µ and j gives
enough closure to take lower bounds. If Qi is trivial it is easy to define
suitable ri+1, ai+1 and qi+1. so we assume that Qi is non-trivial.

Forcing below (ri, ai, qi) we can obtain a generic object Htail∗H1∗H∗i
such that there is a lifted embedding j : V [G∗ � i]→M [j(G0∗G1)∗H∗i ],
where j(G0 ∗G1) = G0 ∗G1 ∗G∗ ∗Htail ∗H1. Let gi be the Qi-generic
filter added at stage i by G∗, and let hi be the partial function from κ
to Vκ added by gi.

To take the next step, we ask whether it is possible that the set
{j(h)(κ) : h ∈ Fi} has a non-zero lower bound: more formally, we
ask whether there is a condition extending (ri, ai, qi) which forces this
set to have a non-zero lower bound, and define (r′, a′, q′) to be such a
condition if it exists and to be (ri, ai, qi) otherwise. In the case that
(r′, a′, q′) forces that {j(h)(κ) : h ∈ Fi} has a non-zero lower bound,
we let b name the Boolean greatest lower bound for this set. In either
case we force below (r′, a′, q′), lift j and work in M [j(G0 ∗G1) ∗H∗i ] to
define a condition in j(Qi).

Let 〈f iη,β : η < κ, β < κ+3〉 be the family of functions added by gi.

We define Q = (AQ, BQ, tQ, fQ) as follows:

• tQ = κ× j“κ+ × j“κ+3.
• For all η < κ, α < κ+ and β < κ+3, fQη,j(β)(j(α)) = j(f iη,β(α)).

• If the Boolean value b is not defined, then:
(1) AQ = hi.
(2) BQ is some upper part such that κ ∩ dom(BQ) = 0 and

BQ ≤ j(B) for all upper parts B ∈ Fi.
If b is defined, then:

(1) AQ = hi ∪ {(κ, b)}.
(2) BQ is some upper part such that (κ + 1) ∩ dom(BQ) = 0

and BQ ≤ j(B) for all upper parts B ∈ Fi.

In the case when the Boolean value b is not defined, it is routine to
check that Q is a condition in j(Qi) and Q ≤ j“gi. This is essentially
the argument of Lemma 4.3 applied to the directed (hence linked) set
j“gi. In the case that b is defined, the definition of b ensures that we
will still have Q ≤ j“gi so long as we can verify that Q is a condition.
As usual the only issue is Clause 6) in the definition of conditionhood.

So suppose that η ∈ dom(hi) ∩ κ,

fQη,j(β)(j(ζ)) = fQη,j(β′)(j(ζ)) 6= fQη,j(β)(j(ζ
′)) = fQη,j(β′)(j(ζ

′)),
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and y is a lower part which is harmonious with AQ past η. Let x be
the largest initial segment of y which lies in Vκ, so that either y = x or
y = x_〈κ, p〉 where p ≤ b.

By elementarity and the definition of Q,

f iη,β(ζ) = f iη,β′(ζ) 6= f iη,β(ζ ′) = f iη,β′(ζ
′).

We now choose q ∈ gi such that η < ρq, ζ, ζ ′ ∈ aq, β, β′ ∈ bq, and
dom(Aq) contains every ordinal in [η, κ) which is mentioned in y. It is
easy to see that x is harmonious with Aq past η, and hence (as q is a
condition) (x,Bq) 
 ζ ′Ġβζ ⇐⇒ ζ ′Ġβ′ζ.

By elementarity (x, j(Bq)) 
 j(ζ ′)j(Ġβ)j(ζ) ⇐⇒ j(ζ ′)j(Ġβ′)j(ζ).
To finish we just observe that by definition (and the choice of b in the
case when it is defined, which ensures that b ≤ j(Bq)(κ) ) (y,BQ) ≤
(x, j(Bq)).

Having chosen Q as above, we let ri+1 = r′, ai+1 = a′, and qi+1 be
the unique condition such that qi+1 � j(i) = q′ and qi+1(j(i)) = Q.

At the end of the construction, we obtain (r∗, a∗, q∗) ∈ j(L)/(G0 ∗
G1 ∗G∗) ∗ j(A) ∗ j(Q∗) such that

r∗ 
 a∗ ≤ j“G1,

and

(ri, ai) 
 q∗ ≤ j“G∗.

Forcing below (r∗, a∗, q∗) we obtain a generic object Htail ∗H1 ∗H∗ and
a lifted embedding j : V [G]→M [j(G0 ∗G1) ∗H∗]. Following the idea
of the Laver construction we define U = {A ∈ (Pκκ

+4)V [G] : j“κ+4 ∈
j(A)}. Since Htail ∗ H1 ∗ H∗ is generic over V [G] for highly closed
forcing we have U ∈ V [G], and so U is an ultrafilter witnessing the κ+4

supercompactness of κ in V [G]. By the results in Section 2, we may
use U to define a U -constraint H such that Fil(H) is an ultrafilter. It
is easy to check that if U0 is the projection of U to a normal measure
on κ, and F is the set of upper parts associated with Fil(H), then

F = {h : h is a U0-constraint and j(h)(κ) ≥ j(H)(j“κ+4)}.
By the diamond property, there is a stationary set of i ∈ κ+4 ∩

cof(κ+2) such that U0 ∩V [G � i] = Wi and F ∩V [G � i] = Fi. For each
such i, we observe that for all h

h ∈ Fi =⇒ h ∈ F =⇒ j(h)(κ) ≥ j(H)(j“κ+4).

So {j(h)(κ) : h ∈ Fi} has a nonzero lower bound, and by the Truth
Lemma there is a condition in Htail ∗H1 ∗H∗i which extends (ri, ai, qi)
and forces this. So when we chose qi+1, we arranged that j(hi)(κ) is
the Boolean infimum of {j(h)(κ) : h ∈ Fi}. Since j(H)(j“κ+4) is a
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lower bound for this set, j(hi)(κ) ≥ j(H)(j“κ+4), and hence hi ∈ F as
required.

�

6. Universal graphs

We are now ready to prove the main result. By the results of Section
5, we will assume that we have in V [G] a measure U0 on κ, a filter F
(with associated set of upper parts F ) and a stationary set S such that
for every i ∈ S:

(1) U0 ∩ V [G � i] = Wi.
(2) F ∩ V [G � i] = Fi.
(3) hi ∈ F .

We now let P be the forcing poset defined from U0 and F as in
Section 3, and force with P over V [G], obtaining a generic sequence

x = f0, κ1, f1, κ2, f2 . . .

By the characterisation of genericity from Lemma 3.6, we see that for
every i ∈ S x is Pi-generic over V [G � i], where Pi is the forcing defined
in V [G � i] from Wi and Fi.

We now define for each i ∈ S a graph Ui ∈ V [G][x], which will embed
every graph on κ+ in V [G � i][x]. We begin by using the criterion for
genericity to choose some j such that κk ∈ dom(hi) and hi(κk) ∈ fk
for all k ≥ j. We set η = κj.

The underlying set of the graph Ui is T×κ, and the edges are defined
as follows:

(z, δ)Ui(z′, δ′) if and only if there exist a lower part t and a condition
q ∈ Qi such that

(1) q ∈ gi.
(2) (t, Bq) is in the generic filter on Pi corresponding to the generic

sequence x.
(3) t is harmonious with Aq past η.
(4) There exist β ∈ bq and distinct ζ, ζ ′ ∈ aq such that:

(a) f qη,β(ζ) = (z, δ), f qη,β(ζ ′) = (z′, δ′), and (t, Bq) 
 ζĠiβζ ′.
Since 〈Ġiβ : β < κ+3〉 enumerates all Pi-names for graphs on κ+, it

will suffice to verify that the generic function f iη,β is an embedding of

Giβ (the realisation of the name Ġiβ) into the graph Ui. One direction is

easy: if f iη,β(ζ)Uif iη,β(ζ ′) then by definition there is (t, Bq) in the generic

filter on Pi induced by x such that (t, Bq) 
 ζĠiβζ ′, and so by the Truth

Lemma ζGiβζ ′.
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For the converse direction, suppose that ζGiβζ ′. We may find a
condition (s, B) in the generic filter induced by x on Pi, such that
(s, B) 
 ζĠiβζ ′. Let s = q0, κ1, q1, . . . , κn, qn. Extending the condition
(s, B) if need be, we may assume that n ≥ j. Since (s, B) is in the
generic filter induced by x, we have that qm ∈ fm for m ≤ n, while
κm ∈ dom(B) and B(κm) ∈ fm for m > n.

By the properties of the forcing poset Qi, we may find a condition q in
gi such that ssup(dom(Aq)) > κn, dom(Bq) ⊆ dom(B), Bq(α) ≤ B(α)
for all α ∈ dom(B), β ∈ bq and ζ, ζ ′ ∈ aq.

Recall now that κk ∈ dom(hi) and hi(κk) ∈ fk for all k ≥ j, and
also that η = κj and n ≥ j. Let n̄ be the largest k such that κk <
ssup(dom(Aq)).

Define a lower part t as follows:

t = q′0, κ1, q
′
1, . . . , κn̄, q

′
n̄

where:

(1) q′k = qk for k < j.
(2) q′k = qk ∪ Aq(κk) for j ≤ k ≤ n.
(3) q′k = Aq(κk) ∪B(κk) for n < k ≤ n̄.

We note that since q ∈ gi and hi is added by gi, A
q is an initial

segment of hi and hi(α) ≤ Bq(α) for all α ∈ dom(hi) \ dom(Aq).
For j ≤ k ≤ n we have that qk ∈ fk and Aq(κk) = hi(κk) ∈ fk, so
that qk ∪ Aq(κk) is a condition and lies in fk. For n < k ≤ n̄, again
Aq(κk) = hi(κk) ∈ fk and also B(κk) ∈ fk, so that Aq(κk) ∪B(κk) is a
condition and lies in fk.

We will verify that t is harmonious with Aq past η, (t, Bq) extends
(s, B), and (t, Bq) is in the filter generated by x. This will suffice,
since it will then be clear that t and q will serve as witnesses that
f iη,β(ζ)Uif iη,β(ζ ′).

The harmoniousness is immediate from the definitions. (t, Bq) ex-
tends (s, B) because q′k ≤ qk for k ≤ n, q′k ≤ B(κk) for n < k ≤ n̄, and
Bq ≤ B. We already checked that q′k ∈ fk for all k ≤ n̄, so to finish
we just need to see that Bq(κk) ∈ fk for all k > n̄; this is immediate
because hi(κk) ≤ Bq(κk) for all such k, and also hi(κk) ∈ fk for all
k ≥ j.

To finish the construction of a small family of universal graphs, we
will fix i∗ ∈ S which is a limit of points of S, and an increasing κ++-
sequence of points iη ∈ S which is cofinal in i∗. By routine chain
condition arguments, every Pi∗-name for a graph on κ+ may be viewed
as a Piη -name for some η < κ++. We now consider the model V [G �
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i∗][x]. The family of graphs {Uiη : η < κ++} is universal in this model,

where 2κ = 2κ
+

= κ+3 and of course κ = ℵω.
We have proved:

Theorem 6.1. It is consistent from large cardinals that ℵω is strong
limit, 2ℵω = 2ℵω+1 = ℵω+3, and there is a family of size ℵω+2 of graphs
on ℵω+1 which is jointly universal for all such graphs.

7. Afterword

There is some flexibility in the proof of Theorem 6.1, in particular it
would be straightforward to modify the construction so that in the final
model 2ℵω = ℵω+k for an arbitrary k such that 3 ≤ k < ω. Larger values
can probably be achieved but would require a substantial modification
to the construction.

Theorem 6.1 leaves a number of natural questions open:

• Can we have a failure of SCH at ℵω with uℵω+1 = 1?
• On a related topic, what is the exact value of uℵω+1 in the model

of Theorem 6.1?
• As far as the authors are aware, the only known results on the

value of uκ+ for κ singular strong limit and 2κ > κ+ are con-
sistency results of the kind proved in this paper. In particular,
we lack a forcing technique to show that uκ+ can be arbitarily
large.

For κ regular adding Cohen subsets to κmakes uκ+ arbitrarily
large, is there an analogous result for κ singular?
• The class of graphs is a very simple class of structures. What

can be done in more complex classes?
• In the model of Theorem 6.1, GCH fails cofinally often below
ℵω, and in fact 2ℵn = ℵn+4 for unboundedly many n < ω. Is
the conclusion consistent if we demand that GCH holds below
ℵω?

The authors’ joint paper with Magidor and Shelah [2] contains some
related work, in which the final “Prikry type” forcing is a version of
Radin forcing and we obtain models where µ is singular strong limit of
uncountable cofinality, SCH fails at µ and uµ+ < 2µ.
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[4] Mirna Džamonja and Saharon Shelah. On the existence of universal models.
Archive for Mathematical Logic, 43(7):901–936, 2004.

[5] Matthew Foreman and Hugh Woodin. The generalized continuum hypothesis
can fail everywhere. Annals of Mathematics, 133(1):1–35, 1991.

[6] Menachem Kojman and Saharon Shelah. Nonexistence of universal orders in
many cardinals. The Journal of Symbolic Logic, 57(3):875–891, 1992.

[7] Richard Laver. Making the supercompactness of κ indestructible under κ-
directed closed forcing. Israel Journal of Mathematics, 29(4):385–388, 1978.

[8] Menachem Magidor. On the singular cardinals problem. I. Israel Journal of
Mathematics, 28:1–31, 1977.

[9] Adrian Mathias. Sequences generic in the sense of Prikry. Journal of the Aus-
tralian Mathematical Society, 15(4):409–414, 1973.

[10] Alan Mekler. Universal structures in power ℵ1. Journal of Symbolic Logic,
55(2):466–477, 1990.

[11] William J. Mitchell. How weak is a closed unbounded ultrafilter? In Logic
Colloquium ’80 (Prague, 1980), volume 108 of Studies in Logic and the Foun-
dations of Mathematics, pages 209–230. North-Holland, Amsterdam, 1982.

[12] Saharon Shelah. A weak generalization of MA to higher cardinals. Israel Jour-
nal of Mathematics, 30(4):297–306, 1978.

[13] Saharon Shelah. On universal graphs without instances of CH. Annals of Pure
and Applied Logic, 26(1):75–87, 1984.

[14] Saharon Shelah. Diamonds. Proceedings of the American Mathematical Society,
138:2151–2161, 2010.

Department of Mathematical Sciences, Carnegie Mellon Univer-
sity, Pittsburgh PA 15213-3890, USA

E-mail address: jcumming@andrew.cmu.edu

School of Mathematics, University of East Anglia, Norwich, NR4
7TJ, UK

E-mail address: M.Dzamonja@uea.ac.uk

Department of Mathematics, University College London, Gower
Street, London, WC1E 6BT, UK

E-mail address: charles.morgan@ucl.ac.uk


	1. Introduction
	2. Constraints and filters
	3. The forcing P and its properties
	3.1. The filter
	3.2. The forcing
	3.3. The Prikry Lemma
	3.4. Analysing names for bounded subsets of 
	3.5. Characterisation of genericity

	4. The forcing Q and its properties
	5. The main construction
	6. Universal graphs
	7. Afterword
	References

