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THE COMPLEXITY OF INDEX SETS OF CLASSES OF COMPUTABLY

ENUMERABLE EQUIVALENCE RELATIONS

URI ANDREWS AND ANDREA SORBI

Abstract. Let ¤c be computable reducibility on computably enumerable equivalence relations
(or ceers). We show that for every ceer R with infinitely many equivalence classes, the index sets
ti : Ri ¤c Ru (with R non-universal), ti : Ri ¥c Ru, and ti : Ri �c Ru are Σ0

3 complete, whereas
in case R has only finitely many equivalence classes, we have that ti : Ri ¤c Ru is Π0

2 complete,
and ti : Ri ¥c Ru (with R having at least two distinct equivalence classes) is Σ0

2 complete. Next,
solving an open problem from [1], we prove that the index set of the effectively inseparable ceers
is Π0

4 complete. Finally, we prove that the 1-reducibility pre-ordering on c.e. sets is a Σ0
3 complete

pre-ordering relation, a fact that is used to show that the pre-ordering relation ¤c on ceers is a Σ0
3

complete pre-ordering relation.

1. Introduction

Given equivalence relations R and S on the set ω of natural numbers, we say that R is reducible
to S (in symbols: R ¤c S), if there exists a computable function f such that

p@x, yqrx R y ô fpxq S fpyqs.

Given a class A of equivalence relations on ω, one says that R is A complete, if R P A, and S ¤c R,
for every S P A. This reducibility, and this notion of completeness, have turned out to be very
useful tools for measuring the complexity of equivalence relations naturally arising in mathematics,
and, in particular, in computable model theory and in computability theory (where equivalence
relations on structures can be viewed as relations on numbers via identification of structures with
numbers, thanks to suitable indexings). For instance, Fokina, S. Friedman, Harizanov, Knight,
McCoy, and Montalbán [8] show Σ1

1 completeness of the isomorphism relations for various familiar
classes of computable structures, including computable groups, computable torsion abelian groups,
computable torsion-free abelian groups, abelian p-groups. On the other hand, Fokina, S. Friedman,
and Nies [7] show that other familiar equivalence relations arising from computability are Σ0

3 com-
plete, including computable isomorphism of c.e. sets. (In Corollary 4.11 we give another proof of
this result.) Other interesting mathematical applications of reducibility ¤c appear in [4], [11], [12],
[9].
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The reducibility ¤c, as well as the notion of A-completeness, can obviously be extended to pre-
ordering relations on ω. Ianovski, R. Miller, Ng, and Nies [13] characterize the arithmetical com-
plexity of several pre-orders of interest to computability theory, for instance showing that almost
inclusion ��, and ¤T on c.e. sets, are Σ0

3 complete.

There is already a non-trivial literature concerning the restriction of ¤c to computably enumerable
equivalence relations (abbreviated as ceers): pioneering papers in this regard include (in chronolog-
ical order) Ershov [5], Bernardi and Sorbi [2], Montagna [15], Lachlan [14], Gao and Gerdes [10],
Andrews, Lempp, Miller, Ng, San Mauro, and Sorbi [1]. These papers study Σ0

1 complete (also
called universal) ceers, and the degree structure of ceers under ¤c. We investigate and classify the
arithmetical complexity of some index sets of ceers. Throughout the paper, we refer to some fixed
universal computable numbering tRi : i P ωu of all ceers (see [1]), where “computable” means that
the set txi, x, yy : x Ri yu is c.e., and “universal” means that for every such computable number-
ing tSi : i P ωu of all ceers, there exists a computable function f such that Si � Rfpiq, for all i.
Extending results in [10], we give complete characterizations in the arithmetical hierarchy of the
complexity of the index sets ti : Ri ¤c Ru (with R non-universal), ti : Ri ¥c Ru, and ti : Ri �c Ru:
if R has infinitely many equivalence class then all these sets are Σ0

3 complete, whereas if R has only
finitely many equivalence classes, we have that ti : Ri ¤c Ru is Π0

2 complete, and ti : Ri ¥c Ru
(with R having at least two distinct equivalence classes) is Σ0

2 complete. Solving a problem in [1],
we prove that the index set of the effectively inseparable ceers is Π0

4 complete.

In the last section of the paper we consider ¤c on pre-ordering relations on ω. The literature
regarding the restriction of ¤c (as a reducibility on pre-orders) to computably enumerable pre-
orders, includes, among others, the papers Pour El and Kripke [18], Montagna and Sorbi [16], and
Ianovski, R. Miller, Ng, and Nies [13]: these papers are mainly dedicated to the investigation of Σ0

1

complete pre-orders naturally arising in logic. We prove that the pre-ordering relation ¤c on ceers
(viewed as a pre-order on their indices) is a Σ0

3 complete pre-ordering relation. The proof goes by
first showing that the 1-reducibility pre-ordering on c.e. sets is a Σ0

3 complete pre-ordering relation.

1.1. Background. The reader is referred to [20] for all computability theoretic notions that are
used, but not explicitly introduced, in this paper. For more information on ceers, their structure
under ¤c, bibliography, and even history, our basic reference is [1]. Given a ceer E, we say that
a sequence tEs : s P ωu of equivalence relations on ω is a computable approximation to E, if the
following conditions hold: the set txx, y, sy : x Es yu is computable; E0 is the identity equivalence
relation; for all s, Es � Es�1; the equivalence classes of Es are finite; there exists at most one
pair rxsEs , rysEs of equivalence classes, such that rxsEs X rysEs � H, but rxsEs�1 � rysEs�1 (we
say in this case that the equivalence relation E collapses x and y at stage s� 1); and finally E ��
tEt. Every ceer has computable approximations; in fact we can show (see [1]) that there exists

a uniform sequence tRi,s : i, s P ωu of equivalence relations such that the set txi, x, y, sy : x Ri,s yu
is computable, and for every i, the sequence tRi,s : s P ωu is a computable approximation to Ri.

2. Computing the complexity of index sets of ceers above, below, or equivalent
to a given ceer

Index sets of classes of ceers of natural computability theoretic interest have been investigated for
the first time by Gao and Gerdes [10]. Index sets of the form ti : Ri ¤c Ru, ti : R ¤c Riu,
ti : Ri �c Ru, for particular choices of R, are classified in [10] to be Σ0

3 complete: for instance, this
is the case when R is the identity relation on the natural numbers. In this section we completely
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classify all index sets of this type, thus showing for instance (see Corollary 2.6) that if R is a ceer
with infinitely many equivalence classes then ti : R ¤c Riu, ti : Ri �c Ru are always Σ0

3 complete,
and if R has infinitely many classes and is not universal then ti : Ri ¤c Ru is always Σ0

3 complete.

Theorem 2.1. Let R be a non-universal ceer with infinitely many classes. Then pΣ0
3,Π

0
3q ¤1 pti |

Ri �c Ru, ti | Ri ¦c R&Ri §c Ruq (where pΣ0
3,Π

0
3q ¤1 pA,Bq means that for every Σ0

3 set C, there
is a computable function which reduces C to A, and the complement of C to B: see [20, p. 66] for
this notation).

Proof. Fix a Σ0
3 complete set S :� ti | pDlqrWgpi,lq � ωsu, where g is a computable function (the

fact that every Σ0
3 set can be expressed in this way is an easy consequence of the proof of [20,

Corollary IV.3.7]). We construct a function which, on input i, outputs an index of a ceer E so that
if i P S then E �c R, and if i R S then E and R are ¤c-incomparable.

Given i, we describe the enumeration of the ceer E based on the enumeration of the sets Wgpi,lq for
various l. It will be clear from the construction that an index for E can be uniformly found in i.

Requirements and their strategies. Given i, we have three kinds of requirements:

Ql : Wgpi,lq � ω ñ E �c R.

Nj : p@l   jqrWgpi,lq � ωs ñ ϕj does not give a reduction witnessing E ¤c R.

Pk : p@l   kqrWgpi,lq � ωs ñ ϕk does not give a reduction witnessing R ¤c E.

Let us fix some computable priority ordering on the requirements. We first describe the action
taken by each requirement individually.

Q-requirements. A Ql-requirement acts as follows: When initialized, Ql is given a finite set of dis-
tinct E-equivalence classes rb1sE , . . . , rbnsE of numbers created due to higher priority requirements
(we will formally define a number being created by a requirement below). Ql is also given a finite
set of elements c1, . . . cn. Ql works under the assumption that the classes rbisE are pairwise distinct,
and the rcisR are pairwise distinct. If either of these assumptions becomes incorrect, Ql will be
re-initialized. Ql collapses all remaining elements (those created for lower priority requirements)
into one class rdsE , and, beginning with that one class, copies R, using a computable coding func-
tion x ÞÑ apxq. At every stage wherein minpω rWgpi,lqq increases, Ql again E-collapses every new
element which is created due to a lower priority requirement, to d, and continues building its copy
of R, E-collapsing codes of elements exactly as the corresponding elements are collapsed by R. If
no higher priority requirement acts ever again and in fact tc1, . . . , cnu are non-equivalent in R, and
Ql acts infinitely often (as Wgpi,lq � ω), then we will argue that E �c R. Whenever Ql acts, it
restrains all elements created so far.

N -requirements. An Nj requirement acts as follows: We fix a universal ceer T . When initialized,
Nj selects new elements ap0q, ap1q P ω, and E-collapses these elements if and only if 0 and 1 collapse
in T . If at some stage, ϕjpap0qq and ϕjpap1qq converge, and

0 T 1 ô ϕjpap0qq R ϕjpap1qq,

then Nj selects a new element ap2q, E-collapsing (for m,n ¤ 2) apmq to apnq if and only if m T n.
If at a later stage, ϕjpap2qq converges and

p@n,m ¤ 2qrn T mô ϕjpapnqq R ϕjpapmqqqs,
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then Nj selects a new element ap3q. The construction proceeds as such. We will argue that if
no higher priority requirement re-initializes Nj , then Nj can choose only finitely many elements
tapiq : i ¤ ku, otherwise, we would have T ¤c R via the map i ÞÑ ϕjpapiqq, which contradicts non-
universality of R. Thus, ϕj can not be a reduction of E to R. Whenever Nj chooses an element
apkq, by initialization it restrains all elements ¤ apkq.

P -requirements. A Pk-requirement acts as follows: Pk searches for elements x   y P ω so that ϕk
converges on all inputs ¤ y, ϕkpxq and ϕkpyq are not restrained by higher priority requirements (so
that it is allowed to E-collapse ϕkpxq and ϕkpyq), and x��R y. If such are found, then Pk collapses
ϕkpxq and ϕkpyq in E. If, at a later stage, x R y, then Pk is injured and begins again. If, in fact,
there are only finitely many elements restrained by higher priority requirements, then some pair of
elements x, y will eventually be found so that x��R y, and either already ϕkpxq E ϕkpyq, or ϕkpxq
and ϕkpyq are not restrained by higher priority requirements (since R has infinitely many classes).
But then we cause ϕkpxq E ϕkpyq. This contradicts ϕk being a reduction of R to E after all. As
Pk never minds things collapsing, it places no restraints.

Environments for the requirements. A Ql-requirement uses a parameter γlpsq � xc1, . . . , cny, and

values of a finite function, aQl px, sq, which approximates the function x ÞÑ apxq described in the

above informal discussion for Q-requirements. An Nj-requirement uses a parameter aNj px, sq, which

approximates the numbers apxq described in the above informal discussion for N -requirements. In
the following, we will often omit the superscripts Q, or N , when the exact choice will be clear from
the context. A Pk-requirement uses parameters xkpsq, ykpsq, which approximate the numbers x, y,
described in the above informal discussion for P -requirements. If R is either a Q-requirement or an
N -requirement, the construction also uses a parameter ρRpsq to record the elements that R wants
to restrain.

Construction. To tackle N -requirements, we fix a universal ceer T , with computable approxima-
tions tTsusPω. At stage s, to initialize a requirement R means one of the following:

 if R � Ql, then we set γlpsq, alpx, sq to be undefined for all x; and we set ρQlpsq � H;
 if R � Nj , then we set ajpx, sq to be undefined, all x; and we set ρNj psq � H;
 if R � Pk, then we set xkpsq, ykpsq to be undefined.

At stage s ¡ 0 we say that a requirement R requires attention if either R is initialized, or

 R � Ql and s is xi, ly-expansionary, i.e., minpω rWgpi,lq,sq ¡ minpω rWgpi,lq,s�1q. Or
 R � Nj and ϕj,spajpx, sqq converges, where x is the greatest number in the domain of
ajp , sq, and

p@n,m ¤ xqrn Ts mô ϕj,spajpn, sqq Rs ϕj,spajpm, sqqqs.

Or
 R � Pk, and ϕk,s converges on all z ¤ ykpsq, and either xkpsq��Rs ykpsq and ϕk,spxkpsqq��Es
ϕk,spykpsqq, and both ϕk,spxkpsqq and ϕk,spykpsqq have been E-collapsed to elements re-
strained by higher priority strategies; or at least one of the values ϕk,spxkpsqq and ϕk,spykpsqq
has not as yet been E-collapsed to any element restrained by higher priority strategies, and
xkpsq��Rs ykpsq and ϕk,spxkpsqq��Es ϕk,spykpsqq; or xkpsq Rs ykpsq.

At stage s ¡ 0 a number z is said to have been created by a requirement R, if
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 R � Ql, and z is Es-equivalent to some ci, where γlptq � xc1, . . . , ci, . . . cny, or to some
alpx, tq, for some t ¤ s;

 R � Nj , and z is Es-equivalent to some ajpx, tq, for some t ¤ s;

a number is new at s, if it is bigger than all numbers (that are Es-equivalent to numbers) so far
mentioned in the construction.

We are now ready to give the construction.

Step 0. Initialize all requirements.

Step s� 1. Let R be the least requirement that requires attention at stage s� 1. We say that R
acts at s� 1. Notice that there always exists such a requirement, as at each stage infinitely many
requirements are initialized. We distinguish the following cases. (For simplicity, when describing
the various parameters, or the various approximations to the equivalence relations, or to partial
computable functions, we omit to mention the stage s: thus for instance, x��R y has to be read as
x��Rs y, and so on.)

(1) If R � Ql, then we take action as follows:
(a) if Ql is initialized, then let n be the number of the distinct equivalence classes created

by E, up to s, as the result of the actions taken by the higher priority requirements,
and let tb1, . . . , bnu be representatives of these equivalence classes. Choose γl to be the
least (by code) n-tuple of numbers that are currently pairwise non-equivalent in R;

(b) if there exist 1 ¤ i, j ¤ n, i � j, such that ci R cj (where ci and cj are the i-th and
j-th components, respectively, of γl), then initialize Ql;

(c) if neither of the previous two cases holds then:
(i) take the least number x for which alpxq is not defined, and define alpxq to be a

new number;
(ii) for every z ¤ alpxq such that z��E bi for each bi, and z��E alpyq for each existing

alpyq, then E-collapse z and alp0q;
(iii) E-collapse existing alpyq and alpzq if y R z;

put into ρQlps � 1q all numbers bi, 1 ¤ i ¤ n, and alpyq, y ¤ x, where x is the greatest
number for which alp q is defined.

(2) If R � Nj then we act as follows:
(a) if Nj is initialized then we appoint new elements ajp0q and ajp1q;
(b) otherwise, let x be the greatest number such that alp q is defined: for every y, z ¤ x,

E-collapse all ajpyq, ajpzq if y T z; finally, appoint a new ajpx� 1q;
put in ρNj ps � 1q all numbers ajpiq, i ¤ x, where x is the greatest number for which ajp q
is defined.

(3) If R � Pk then we act as follows:
(a) if Pk is initialized then appoint xk and yk so that xxk, yky is the least pair xx, yy for

which x   y, x��R y, and xx, yy ¡ xxkptq, ykptqy, for every t ¤ s;
(b) if xk ��R yk and ϕkpxkq��E ϕkpykq, but both ϕkpxkq and ϕkpykq are already E-equivalent

to restrained elements, i.e., elements belonging to the set

Spsq :� tz : pDRqrR has higher priority than Pk & z P ρRpsqsu

then initialize Pk;
(c) if xk ��R yk and ϕkpxkq ��E ϕkpykq, and at least one of them has not as yet been E-

collapsed to a restrained element, then E-collapse ϕkpxkq and ϕkpykq;
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(d) if xk R yk, then initialize Pk.

After acting, end the stage, and initialize all lower priority requirements.

Verification. We now check that the construction works.

Lemma 2.2. If every higher priority requirement acts only finitely often, then Pk acts only finitely
often.

Proof. Assume that every higher-priority requirement acts only finitely often, and suppose, towards
a contradiction, that Pk acts infinitely often. Let s be the last stage at which a higher-priority
requirement acts. Let S be the set of all elements E-equivalent to some element in Spsq which is
the finite set restrained by higher priority actions by stage s, as in (3b) of step s� 1. Thus S is the
union of finitely many E-equivalence classes. For Pk to act infinitely often, we must have ϕk total,
and by (3a) and (3d), we test all possible choices of xk, yk, with xk   yk and xk ��R yk: for each
one of these pairs (by definition of Pk requiring attention) we have that ϕkpxkq, ϕkpykq P S and
ϕkpxkq��E ϕkpykq. But this would imply that there exists a 1-1 function from the infinitely many
distinct equivalence classes of R to the finitely many equivalence classes in S. Therefore, we must
have that either Pk eventually does not require attention because ϕk is not total; or we find xk, yk
such that xk ��R yk, ϕkpxkq, ϕkpykq P S, and ϕkpxkq E ϕkpxkq; or (3c) applies. �

Lemma 2.3. If every higher priority requirement acts only finitely often, then Nj acts only finitely
often.

Proof. Suppose, towards a contradiction, that Nj acts infinitely often. Let s be the last stage at
which a higher priority requirement acts, i.e. Nj is initialized for the last time at stage s. We
consider the assignments of ajpkq after stage s. Then for each n,m,

n T mô ϕjpajpnqq R ϕjpajpmqq.

Thus the function i ÞÑ ϕjpajpiqq gives a reduction of T to R. This yields a contradiction since R is
non-universal, showing that Nj acts only finitely often. �

Lemma 2.4. Suppose that Wgpi,lq is finite for each l. Then E is ¤c-incomparable to R.

Proof. By assumption, each Ql acts only finitely often, so by Lemmas 2.2 and 2.3, every requirement
acts only finitely often.

We now argue that since each requirement acts only finitely often, each succeeds. Since every re-
quirement acts only finitely often, we can consider the final assignments of ajpkq for the requirement
Nj . Either ϕj is not total or for some ajpnq, ajpmq,

ajpnq E ajpmq ô n T m,

but not

n T mô ϕjpajpnqq R ϕjpajpmqq.

Thus ϕj is not a reduction of E to R, and Nj is satisfied. Since Pk acts only finitely often and R has
infinitely many classes, either ϕk is not total or there are xk, yk so that xk ��R yk but ϕkpxkq E ϕkpykq.
Thus ϕk is not a reduction of R to E, and Pk is satisfied. �

Lemma 2.5. Suppose that for some l, Wgpi,lq � ω. Then E �c R.
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Proof. Let Ql be of highest priority so that Wgpi,lq � ω. By Lemmas 2.2 and 2.3, every higher
priority requirement acts only finitely often. Consider the least stage t at which every higher
priority action stops acting, giving n distinct equivalence classes. Further, consider a stage s ¡ t
where Ql has found (through (1a) and (1d)) the appropriate choice of n R-non-equivalent elements,
thus choosing the final γl. After this stage s, every time Ql picks a number alpxq, then this is
the final value of alpx, sq, and Ql creates a class rds, with d � alp0q, which contains all elements
previously created for all lower priority requirements, and it will also contain all elements later
created for lower priority requirements (when Ql acts again, it will E-collapse them to d). We now
provide reductions witnessing that E �c R.

To see E ¤c R, consider the function f constructed as follows: We begin with the finitely many
elements created for higher priority requirements, which are grouped into finitely many finite E-
equivalence classes, as created at stage s: rb1sE � rb1sEs , . . . , rbnsE � rbnsEs . We have found
c1, . . . , cn so that bi E bj if and only if ci R cj , so that the assignment bk ÞÑ ck satisfies

p@1 ¤ h, k ¤ nqrbh E bk ô ch R cks.

Let T be the set of elements a P ω created on a Ql-stage after s (i.e., a stage ¥ s where minpω r
Wgpi,lqq increases). Note that d P T . For any a P T , a is created to copy R on some number,
i.e. a � alpxq for some x. So, consider the function f ,

fpxq �

$'&
'%
ci, if x P rbisEs , some 1 ¤ i ¤ n,

y, if x P T , say x � alpyq,

0, otherwise.

(Notice that 0 � fpalp0qq � fpdq.) The numbers x not created on Ql-stages, are either in some
rbisEs , or are created for lower priority requirements: in this latter case, x E d, for which we have
defined fpxq � fpdq. This function f is computable and witnesses that E ¤c R.

For the converse, the mapping x ÞÑ alpxq provides a reduction from R to E. �

This concludes the proof of the theorem.

�

Corollary 2.6. The following hold:

(1) If R is any ceer with infinitely many classes, then ti | Ri �c Ru is Σ0
3 complete.

(2) If R is any ceer with infinitely many classes, then ti | Ri ¥c Ru is Σ0
3 complete.

(3) If R is any non-universal ceer with infinitely many classes, then ti | Ri ¤c Ru is Σ0
3

complete.
(4) If R is universal, then ti | Ri ¤c Ru � ω, thus is decidable.
(5) If R has only finitely many classes, then ti | Ri ¤c Ru is Π0

2 complete.
(6) If R has finitely many, but at least 2, classes, then ti | Ri ¥c Ru is Σ0

2 complete.
(7) If R has only one class, then ti | Ri ¥c Ru � ω, thus is decidable.
(8) If R has finitely many, but at least 2, classes, then ti | Ri �c Ru is d-Σ0

2 complete (i.e.,
ti | Ri �c Ru is the intersection of a Σ0

2 and a Π0
2 set, and if X is any set which is the

intersection of a Σ0
2 and a Π0

2 set, then X ¤m ti | Ri �c Ru).

Proof. It is straightforward to check that the proposed sets lie in the appropriate level of the
arithmetical hierarchy. To how hardness, we prove the items one by one.
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(1) There are two cases. If R is universal, this is exactly Theorem 5.1 in [1]. If R is non-
universal, this follows directly from the previous theorem.

(2) If R is universal, then the claim follows from (1). If not, then it follows from the previous
theorem.

(3) This follows from the previous theorem.
(4) Trivial.
(5) Note that if R has k classes, then E ¤ R if and only if E has ¤ k classes. It is easy to show

that having ¤ k classes is a Π0
2 complete property: E has ¤ k classes if and only if

p@x0, . . . , xkqpDi, j ¤ kqri � j&xi E xjs.

Let us now show that this property is Π0
2 hard. It is known that Inf � ti | Wi infiniteu is

Π0
2 complete: it is easy to see that there is a computable function f such that, for every i,

Efpiq is a ceer satisfying:

i P Inf ñ r0sEfpiq
� ω,

i R Inf ñ pDxqp@y ¥ xq
�
rysEfpiq

� tyu
�
.

(6) If R has k ¥ 2 classes, then E ¥c R holds if and only if E ¦c S, where S has k � 1 classes.
Thus, by (5), this is Σ0

2 complete.
(7) Trivial.
(8) By combining the arguments in (5) and (6). Note that if R has exactly one class, then

ti | Ri �c Ru � ti | Ri ¤c Ru is Π0
2 complete by (5).

�

3. The index set of the effectively inseparable ceers

A pair of disjoint sets A,B is effectively inseparable (shortly, e.i.) if there exists a partial computable
function ψ (called a productive function for the pair) such that, for every pair of c.e. indices u, v,

A �Wu &B �Wv &Wu XWv � Hñ ψpu, vq Ó &ψpu, vq RWu YWv.

It is not difficult to see:

Lemma 3.1. Every e.i. pair of c.e. sets, has a total productive function.

Proof. The proof is similar to the one showing that every productive set has a total productive
function, see e.g. [20, p. 41]. �

A ceer R is called effectively inseparable (shortly, e.i.), see [1], if every pair of distinct equivalent
classes rasR, rbsR is e.i. . If indices for productive functions for the various pairs of equivalence
classes can be found uniformly (i.e., there exists a computable function g such that, for every pair
a, b, if a ��R b then ϕgpa,bq is a productive function for the pair rasR, rbsR), then R is said to be
uniformly effectively inseparable (or, shortly, u.e.i.), [1]. It is proved in [1] that the index set of the
u.e.i. ceers is Σ0

3 complete, and is posed as an open question whether the index set of the e.i. ceers
is Π0

4 complete. In the following theorem we answer this question.

Theorem 3.2. The index set of the e.i. ceers is Π0
4 complete.
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Proof. It is straightforward to check that the index set of the e.i. ceers is Π0
4. Now, every Π0

4 set
S can be described as S � ti : p@jqrWgpi,jq is cofinitesu: this is an easy consequence of the fact

that the index set ti : Wi is cofiniteu is Σ0
3 complete (see e.g., [20, p. 66]). Therefore, we can fix

a recursive function gpi, jq so that S :� ti | p@jqrWgpi,jq is cofinitesu is a Π0
4 complete set. We now

produce a function which, on input i, uniformly produces a ceer E so that E is e.i. if and only if
i P S. In what follows, we describe the enumeration of E for a given i.

Given a set X let Xr2s denote the collections of all subsets of X consisting of exactly two elements.
We fix a pair of recursive bijections m : ωr2s Ñ ω and n0 : p2ωqr2s Ñ ω, where 2ω is the set of even

elements of ω. We then define n : ωr2s Ñ ω so that npxq � n0pxq if x P p2ωqr2s, and npxq � mpxq
otherwise.

Requirements and strategies. We have the following requirements, where a   b, i.e., ta, bu P

ωr2s.

P a,bj :rj,8q �Wgpi,mpa,bqq XWgpi,npa,bqq & a��E bñ fa,bj is a productive function for rasE , rbsE ,

(where fa,bj is a computable function being constructed by this requirement)

Na,b
j :rj,8q �Wgpi,mpa,bqq XWgpi,npa,bqq & a, b P p2ωqr2s ñ ϕj is not productive for rasE , rbsE .

The requirements are partitioned, in the obvious way, into P -requirements and N -requirements.

Remark 3.3. If i P S then for every r, Wgpi,rq is cofinite, and thus for every a � b there is ja,b

such that rja,b,8q �Wgpi,mpa,bqqXWgpi,npa,bqq: hence if a��E b, and we satisfy P a
1,b1

ja1,b1
, where a1 and b1

are the least elements in the E-equivalence classes of a and b, respectively, then we guarantee that

fa
1,b1

ja1,b1
is a productive function for the pair rasE , rbsE .

Vice versa, if i R S, then there is r such that Wgpi,rq is not cofinite, nor is any Wgpi,r1qXWgpi,rq, and
thus if a, b P 2ω, a � b, are such that npa, bq � r, then for every j, one has rj,8q � Wgpi,mpa,bqq X

Wgpi,npa,bqq. In this case, if we satisfy all Na,b
j -requirements, then we guarantee that the pair

rasE , rbsE is not effectively inseparable.

We will never cause non-equal even elements a, b to become E-equivalent, and in fact each even

number will be the least element in its equivalence class. Na,b
j -requirements will only pose restraints

asking that two elements not become equivalent, but will never cause E-collapse.

We fix any priority ordering of order type ω in which if j   j1 then P a,bj   P a,bj1 .

We first describe the actions of each requirement separately. The reader should think of a, b as the
least numbers in their respective equivalence classes, and a � b.

P -Requirements. A P a,bj -requirement performs the standard effective inseparability strategy: it

builds a computable function f � f ja,b as follows. For the least (by code) pair u, v, on which fpu, vq

is still undefined, define fpu, vq to be an odd number y larger than any number considered so
far: if y is observed to be enumerated into Wu, cause y E b; if y is observed to be enumerated

into Wv, then cause y E a. The strategy for P a,bj acts every time the least element of rj,8q r
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Wgpi,mpa,bqqXWgpi,npa,bqq enters Wgpi,mpa,bqqXWgpi,npa,bqq, i.e. when there is evidence that eventually

rj,8q � Wgpi,mpa,bqq X Wgpi,npa,bqq: we say that in this case the strategy P a,bj takes the infinite

outcome; otherwise P a,bj takes the finite outcome. It is clear that either P a,bj takes the infinite

outcome infinitely many times (we say that in this case that P a,bj has outcome 8), or from some

point on, P a,bj always takes the finite outcome (we say that in this case that P a,bj has outcome f.)

We summarize as follows:

outcome 8 : rj,8q �Wgpi,mpa,bqq XWgpi,npa,bqq;

outcome f : rj,8q �Wgpi,mpa,bqq XWgpi,npa,bqq.

N -Requirements. An Na,b
j -requirement acts only if, and immediately after, P a,bj has taken the finite

outcome, and its action is as follows: Choose a pair u, v so that we (via the Recursion Theorem)
control the enumeration of Wu and Wv. Let Wu enumerate rasE and Wv enumerate rbsE , and wait
for a stage when ϕjpu, vq converges to a value, say y. If y P rasE Y rbsE , then the requirement does
nothing further. Otherwise, we distinguish:

Case 1: y is an odd number chosen as fa
1,b1

j1 pu1, v1q for some j1, a1, b1 with a1, b1 least numbers in their

equivalence classes, and a1 � a (if a1 � a and b1 � b, the requirement acts symmetrically). In this
case, we enumerate y into Wv. We place a restraint for y to never enter ras.

Case 2: Not case 1. In this case, we enumerate y into Wu and place a restraint for y to never enter
rbs.

Every time the least element of rj,8q XWgpi,mpa,bqq XWgpi,npa,bqq enters Wgpi,mpa,bqq XWgpi,npa,bqq,

Na,b
j will be injured, so if rj,8q � Wgpi,mpa,bqq X Wgpi,npa,bqq, then N will not prevent effective

inseparability of the pair ras, rbs.

The Recursion Theorem. In carrying on the strategies for the N -requirements, we use indices that
we control by the Recursion Theorem, or, more precisely, we make use of a computable sequence of
fixed points. Equivalently, we fix a single index e so that we control ϕe by the Recursion Theorem,
and we then take a countable sequence of indices peiqiPω for the columns ϕeipjq � ϕepxi, jyq. We
can then make choices about convergence and values of each of the ϕei in any order we wish, as we
are simply controlling the single function ϕe.

Alternatively, since a computable sequence of indices can be viewed as the range of a computable
function f , a formal justification to this argument is also provided by the Case Functional Recursion
Theorem, see [3]: see also [17] for useful comments about this theorem.

Lemma 3.4 (Case Functional Recursion Theorem). Given a partial computable functional F , there
is a total computable function f such that, for every e, x,

F pf, e, xq � ϕfpeqpxq.

The tree of strategies. We organize the construction on a tree T , which is a set of strings on the
alphabet tg,8, fu. With respect to the above discussion of requirements and their outcomes, it is

convenient to use also an additional outcome g, which for a requirement P a,bj or Na,b
j , will record

the fact that at least one among a, b is not the least number in its equivalence class.
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The tree T , and the function

R : T ÝÑ Requirements,

assigning requirements to the nodes of T , are defined as follows, where λ denotes the empty string.

Definition 3.5. λ P T , and Rpλq is the highest priority P -requirement.

 If σ P T , and Rpσq � P a,bj is a P -requirement, then σpxoy P T , for o P tg,8, fu:

– all requirements P a,bj1 for j1 ¡ j are declared to be cancelled by σpx8y. (Since if

rj,8q �Wgpi,mpa,bqqXWgpi,npa,bqq, then rj1,8q �Wgpi,mpa,bqqXWgpi,npa,bqq for all j1 ¥ j,

thus the requirement P a,bj1 need not be considered again below σpx8y.) Rpσpx8yq is

the highest priority P -requirement not assigned to any τ � σ and not cancelled by any
τ � σpx8y.

– If a, b are both even, then Rpσpxfyq � Na,b
j ; otherwise Rpσpxfyq is the highest priority

P -requirement not assigned to any τ � σ and not cancelled by any τ � σ.
– Rpσpxgyq is the highest priority P -requirement not assigned to any τ � σ and not

cancelled by any τ � σ.
 If σ P T , and Rpσq is an N -requirement, then σpxfy P T (by construction, a, b will be the

least elements in their respective equivalence classes, so we do not consider the g outcome);
Rpσpxfyq is the highest priority P -requirement not assigned to any τ � σ and not cancelled
by any τ � σ.

 No other string on t8, f, gu lies in T .

The elements of T are ordered by the lexicographical order ¤, generated by the ordering on the
alphabet, for which g   8   f: thus σ ¤ τ if σ � τ or, for the least i such that σ, τ are both
defined on i, and σpiq � τpiq, we have that σpiq   τpiq: in this latter case we also write σ  L τ .

The environments of the strategies. Notice that the function R, assigning requirements to nodes,
is computable. For every σ, we also call Rpσq a strategy. Each strategy has several parameters: if

Rpσq � P a,bj then it uses the parameter fσ,s (approximating the function fa,bj of the above informal

description), whereas if Rpσq is an N -requirement, then it uses the parameters uσpsq, vσpsq, and
yσpsq (approximating u, v, y of the above informal description).

The construction. At stage s we define a finite string δs of length |δs| ¤ s, which approxi-
mates the true path at stage s. The string δs is defined by substages: at substage n, we de-
fine σn � δsæn. A number is new at any substage of stage s ¡ 0 if it is bigger than all
numbers already E-collapsed to numbers so far mentioned in the construction. If σ � σn and

Rpσq � P ja,b is a P -strategy, then a stage s is σ-expansionary if for no t   s did we have σ � δt,

or min
�
rj,8qr pWgpi,mpa,bqq,s XWgpi,npa,bq,sq

�
has increased since the last stage t   s which was

σ-true, i.e., at which σ � δt. A number z is created by Rpσq at s, if z is in the range of fσ,s; or, z is
appointed as uσpsq or vσpsq, or yσpsq. At stage s, we initialize a strategy Rpσq if we set fσ,s � H

and we set uσpsq, vσpsq, and yσpsq to be undefined. If y has been created by Rpσq � P a,bj , by stage

s, then y is active at s if Rpσq has not been initialized after y has been created, and Rpσq has not
as yet E-collapsed y to either a or b.

Stage 0. Initialize all strategies Rpσq.
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Stage s � 1. Proceed according to the following substages (as in the proof of Theorem 2.1, when
describing the various parameters, or the various approximations to c.e. sets, partial computable
functions, or E, we omit mentioning the stage s):

Substage 0. Let δs�1æ0 � λ.

Substage n� 1. If n � s then go to next stage. Otherwise, take the first relevant case that applies
below:

(1) Suppose that Rpσnq � P a,bj .

(a) If one among a, b is not the least element of its E-equivalence class, then let σn�1 �
σnpxgy.

(b) If s is a σn-expansionary stage, let σn�1 � σan x8y. Then extend fσn by considering
the least (by code) pair pu, vq on which fσn is not defined, and define fσnpu, vq � y,
for some new odd y ¡ a, b. Also, if fσnpu

1, v1q � y1 has been already defined, and up
to now y1 has been active, but currently y1 PWu1 YWv1 , then

(i) if y1 PWu1 then E-collapse y1 and b;
(ii) if y1 PWv1 then E-collapse y1 and a.

(c) Otherwise, let σn�1 � σan xfy.

(2) If Rpσnq � Na,b
j , then let σn�1 � σan xfy. We act according to the first applicable case among

the following:
(a) Rpσnq is initialized: assume by the Recursion Theorem that u and v are indices that

we control, such that u and v are new numbers; let uσps� 1q � u, vσps� 1q � v;
(b) ϕjpu, vq converges to some number y (where u � uσpsq, v � vσpsq, and we define

yσps� 1q � y);
(i) if s� 1 is the first σn-true stage at which ϕjpu, vq converges, then end the stage

(thus initializing all strategies of lower priority);

(ii) if y is E-equivalent to some active fτ pu
1, v1q created by Rpτq � P a

1,b1

j1 , with

τax8y � σn, and ta1, b1u � ta, bu, then if a1 � a, enumerate y into Wv; otherwise
(i.e., a1 � a, but b1 � b), enumerate y into Wu; (notice that by the way require-

ments are assigned to strings in T , there is no τax8y � σn with Rpτq � P a,bj1 ,

any j1). Also, enumerate rasE into Wu and rbsE into Wv.
(iii) if y P rasE Y rbsE then enumerate rasE into Wu, and enumerate rbsE into Wv;
(iv) otherwise, enumerate rasE Y tyu in Wu, and rbsE in Wv.

At the end of the stage, initialize all strategies Rpτq, with τ ¥ δs�1. Define Es�1 to be the least
equivalence relation generated by Es plus the pairs E-collapsed at stage s � 1. This ends Stage
s� 1.

Finally, let

E � Ei �
¤
s

Es.

The verification. The following holds:

Lemma 3.6. There exists an infinite path tp through the tree T such that, for every n,

tpæn � lim inf
s

δsæn,
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(where the lim inf is taken with respect to the lexicographical order of strings of T ), and tpæn
eventually does not end the stage.

Proof. The proof is by induction on n. Suppose that the claim is true of n, and let s0 be the least
stage such that there is no σ-true stage s ¥ s0 for any σ  L tpæn, and tpæn does not end the stage
at s: thus s0 ¡ n. If there is a stage s1 ¥ s0 such that tpænaxgy � δs1 , then for every tpæn-true
s ¥ s1 we have tpænaxgy � δs, and if s ¡ n� 1 then tpænaxgy does not end the stage, and clearly
tpæn � 1 � tpænaxgy. If for almost all true tpæn-true stages s ¥ s0 we have tpænaxfy � δs, then
tpæn � 1 � tpænaxfy, and tpæn � 1 ends at most twice, at any such s: namely, if s � n � 1, and
when we act through (2bi) of the construction. Otherwise there exist infinitely many true tpæn-true
stages s ¥ s0 at which tpænax8y � δs: thus tpæn� 1 � tpænax8y and tpæn� 1 does not end the
stage at any such s ¡ n� 1. �

Lemma 3.7. Let σ be so that σ � tp and σaxgy � tp. If σ is an Na,b
j or P a,bj strategy, then a and

b are the least numbers in their respective equivalence classes.

Proof. Immediate. �

Lemma 3.8. At every stage s, in any equivalence class rcsEs there is at most one element which
is even or active. If, at some stage s where c is not new, the class rcsEs contains no even or active
element, then for all t ¡ s, rcsEt contains no even or active element. Similarly, if at some stage

s where c is not new, rcsEs contains no element active for requirement P a,bj , then at no stage does

rcsE contain an element active for requirement P a,bj .

Proof. We prove the first claim by induction. This is clearly true at stage 0 where every equivalence
class has size 1. When we activate a new number, we choose it to be a new odd element, thus is
inequivalent to any even or active number. When we collapse classes ras and rys, it is because some
element y1 in rys is active and equals fσpa

1, b1q for some a1 P ras and some b1 (or symmetrically, it
equals fσpc

1, a1q for some a1 P ras and some c1). We then make y1 inactive and collapse rys to ras.
Thus there is still at most one even or active element in the class ras. The second statement is
proved analogously: Any element which becomes active is new, thus is not E-equivalent to c, and
the property of not containing an even or active element is preserved when a second class collapses
with rcs. The last statement is similar. �

Lemma 3.9. Every even number is the least number in its E-equivalence class.

Proof. By the previous lemma, no two even numbers are ever equivalent.

We now show that if a is even, then a is the least number in its equivalence class. By the previous
conclusion, it is enough to show that for every s, and odd number y, if y is E-collapsed to a at s,
then y ¡ a. Assume that the claim is true of all odd numbers y1 already E-collapsed to a at stages

s1   s. An odd number y can be moved to rasEs at s, either because (1bi) or (1bii) for some P a,bj ,

but then y ¡ a, by choice of y ¡ a, b in (2); or y is E-collapsed, through (1bi) or (1bii) for some

P y
1,b1

j1 , to some some odd number y1 previously E-collapsed to a, but then by induction and, again,

choice of y by (1b) of the construction, we have y ¡ y1 ¡ a. �

Lemma 3.10. If i P S then for every a, b, if a��E b, the pair rasE , rbsE is e.i. . On the other hand,
if i R S then there are a, b even numbers such that Wgpi,npa,bqq is co-infinite, and the pair rasE , rbsE
is not e.i.
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Proof. If i P S, then (see Remark 3.3) for every a, b there exists a minimal j, such that rj,8q �
Wgpi,mpa,bqqXWgpi,npa,bqq. Now, if a��E b, and a, b are the least numbers in their respective equivalence

classes, then there exists n such that Rptpænq � P a,bj and tpæpn � 1q � tpænax8y. (Notice that,

under these assumptions, for every j1   j there is a node τj1 such that Rpτj1q � P a,bj1 , and τaj1 xfy � tp,

and for every j1 ¡ j there is no node τ � tp such that Rpτq � P a,bj1 .) It is clear by the construction

that ftpæn is a computable function witnessing that the pair rasE , rbsE is e.i. . Thus every pair of
distinct E-equivalence classes is e.i. , as on the true path the corresponding requirement relative to
the least numbers in the classes, is satisfied.

Assume now that i R S. Then, by surjectivity of the function n0, there exists a pair a, b of distinct
even numbers such that, for every j, rj,8q � Wgpi,mpa,bqq XWgpi,npa,bqq. By Lemma 3.9, for every

j there is a (unique) node τj � tp such that Rpτjq � P a,bj and τaj xfy � tp. We show that, for

every j, ϕj can not be a total productive function for the disjoint pair rasE , rbsE . Let s0 be the

least stage such that there is no τ -true stage s ¥ s0 for any τ  L τ
a
j xfy, and no τ � τj ends the

stage after s0. At the least τaj xfy-stage following s0 we appoint the last choice of u � u
τaj xfy

psq,

and v � v
τaj xfy

psq. If we do not find y as in (2b) of the construction, then ϕj is not total. So

assume that ϕjpu, vq converges to y, which is the final value of y
τaj xfy

psq. We claim that rasE �Wu,

rbsE � Wv, Wu XWv � H, but y P Wu YWv, which implies that ϕj is not a productive function.
Now, it is clear that rasE � Wu, rbsE � Wv, since there are infinitely many stages s at which we
enumerate rasEs into Wu and rbsEs into Wv. It is also clear that y P Wu YWv. It remains to see

that Wu XWv � H. Assume that Rpτaj xfyq enumerates y into Wu: the case in which Rpτaj xfyq
enumerates y into Wv is similar.

By initialization in (2a) and Lemma 3.8, the number y will never be equivalent to an element active

for a τ ¡ τaj xfy.

For y to eventually become E-equivalent to a or b, it must be equivalent at stage s0 to some active

element d for some Rpτq � P a
1,b1

j1 with τax8y � τj . By our use of the outcome g, a1, b1 are the

least numbers in their equivalence classes (and so are a and b), and since there is no such τ with

τax8y � τj and Rpτq � P a,bj1 , any j1, we may conclude that ta1, b1u � ta, bu. If a1 � a, then

Rpτaj xfyq enumerates y P Wv, contrary to assumption. Therefore a � a1: we can exclude the sub-

case b � b1, because otherwise P ja,b would be cancelled along the true path, by the way requirements

are assigned to nodes of the tree, and the fact that in this case we would have j1   j. Thus we are
left to consider the case a � a1 and b � b1. If d remains active at all future stages, then y cannot
be equivalent to any even number by Lemma 3.8. Otherwise, y collapses with a1 or b1. In either
case, it cannot in the future collapse with b, since all three of a1, b1, b are the least elements of their
equivalence classes and b R ta1, b1u. �

This concludes the proof of the theorem. �

It is proved in [1] that the class of u.e.i. ceers is properly contained in the class of e.i. ceers (by
showing that there is an e.i. ceer that is not universal, whereas all u.e.i. ceers are universal). This
conclusion is also a consequence of the previous theorem:

Corollary 3.11. The u.e.i. ceers form a proper subclass of the e.i. ceers.
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Proof. The claim follows immediately by the fact that the index set of the u.e.i. ceers is Σ0
3, whereas

the index set of the e.i. ceers is Π0
4 complete. �

4. The complexity of ¤c itself

An obvious generalization of computable reducibility from equivalence relations to pre-orders is the
following: Given pre-orders R,S on the natural numbers, we say that R is computably reducible
(or, simply, reducible) to S (notation: R ¤c S) if there is a computable function f such that, for
all x, y, x R y if and only if fpxq S fpyq. Recently Ianovski, Miller, Nies and Ng [13] have used
this reducibility to classify the complexity of several pre-orders which appear in mathematics and
computability theory. For instance they show that the pre-order ¤, where i ¤ j if Wi ¤T Wj , is
Σ0
4 complete.

In this section we prove that the reducibility ¤c on ceers induces a Σ0
3 complete pre-order on

numbers, where we write i ¤c j if Ri ¤c Rj . This will follow from the next result, which in turn
shows that the pre-ordering relation ¤1 on numbers induced by 1-reducibility on c.e. sets (for
which we write i ¤1 j if Wi ¤1 Wj) is Σ0

3 complete.

Theorem 4.1. ¤1 is a Σ0
3 complete pre-order: in fact, for any given Σ0

3 pre-order ¨, there is a
computable function f so that Wfpiq is infinite for all i and

p@i, jqri ¨ j ôWfpiq ¤1 Wfpjqs.

Proof. It is straightforward to check that ¤1 is Σ0
3. Let ¨ be a Σ0

3 complete pre-order. We construct
a uniform enumeration of Va for each a as follows. Since ¨ is Σ0

3, as in the proof of Theorem 2.1,
we can fix a recursive g so that

a ¨ bô pDkqrWgpa,b,kq � ωs.

Requirements and their strategies. We have requirements:

Qkij : Wgpi,j,kq � ω ñ Vi ¤1 Vj ;

P kij : p@l ¤ kqrWgpi,j,lq � ωs ñ rϕk does not m-reduce Vi to Vjs;

Iki : the set Vi contains at least k elements.

Let us fix a priority ordering on the requirements. We now outline the strategies to meet the
requirements.

Q-requirements. A Qkij-requirement builds a computable set Aki,j as follows: whenever minpω r
Wgpi,j,kqq increases, it adds a new element a to Aki,j . At such stages, if this is the mth element

(i.e., a � aki,jpmq, where we write aki,jpnq for the nth element of Aki,j), and some n   m is enumerated

into Vi, then the strategy enumerates aki,jpnq into Vj . As such, if there are infinitely many stages

where minpω r Wgpi,j,kqq increases (and no higher priority requirement ruins the coding), then

n ÞÑ aki,jpnq is a 1-reduction of Vi into Vj .
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P -requirements. A P kij-requirement acts as follows: to diagonalize and ensure that ϕk is not an

m-reduction, we pick x larger than any element mentioned before. We wait for ϕkpxq to converge.
If it converges to an element which lies already in Vj , then we restrain x out of Vi. If it converges
to an element not restrained out of Vj by any higher priority requirement, we enumerate ϕkpxq
into Vj and do not enumerate x into Vi (again, we place a restraint against this). We now suppose
that ϕkpxq is restrained out of Vj for a higher-priority requirement: suppose it is restrained due

to being a witness chosen for a higher priority P -requirement. Then P ki,j simply enumerates x

into Vi. If, later, ϕkpxq is enumerated into Vj , then that higher-priority P -requirement will have

injured P kij , which we allow. Now suppose ϕkpxq is restrained due to being in the set Ak
1

i1,j for a

higher-priority Qk
1

i1,j-requirement. Suppose it is the nth element of the set Ak
1

i1,j , i.e., ϕkpxq � ak
1

i1jpnq,

and n � x or i1 � i. We then put ϕkpxq into Vj and n into Vi1 , and we restrain x out of Vi. In a

subsequent paragraph we will analyze in more detail how P kij interacts with several higher priority

requirements, and how to deal with the case n � x and i1 � i.

I-requirements. An Iki requirement simply selects new unrestrained elements and enumerates them
into Vi to ensure Vi has size at least k.

The environments. At stage s of the construction, we use several parameters. A Q-requirement
Qki,j uses the parameters Aki,jpsq, a

k
i,jpn, sq, approximating respectively the set Aki,j and the witness,

coding whether or not n is in Vi, as in the informal description of the strategy for Qki,j ; in other

words, the mapping n ÞÑ aki,jpn, sq approximates a computable function that 1-reduces Vi to Vj .

After the last initialization of Qki,j (if eventually it stops being re-initialized), whenever we define

aki,jpm, sq, for some m, then this will be also the last value aki,jpmq � aki,jpm, sq. Notice that without
loss of generality we may assume

n   aki,jpn, sq.

A P -requirement P ki,j uses the parameter xki,jpsq, which approximates the witness x, as described

in the above description of the strategy for P ki,j . For each i, j, k, P ki,j also uses a parameter Ski,jpsq,
which is a finite set of numbers representing the restraint that these numbers not enter Vi. For
every i, in the construction below we build Vi in stages, so that tVi,s | s P ωu is a computable
approximation to Vi.

Interaction of P ki,j with more than one requirement. We now need to analyze in detail what happens

when we want to act for P ki,j at a stage when ϕkpxq, with x � xki,j , has not as yet been enumerated

into Vj , and in fact is restrained out of Vj for a higher-priority requirement R. Assume that ϕkpxq

converges to, say, y. If R � P k0j,i0 , for some i0, k0, and we have that y � xk0j,i0 , then, as already
observed, the conflict is just solved by priority: we enumerate x in Vi, and if R acts, then R
initializes P ki,j .

The problematic case is when there are j1, k
1
0, and y1, such that R � Q

k10
j1,j

, and y � a
k10
j1,j
py1q: then

we are able to act as desired, i.e. enumerate y into Vj , but at the same time keeping correctness of

a
k10
j1,h

py1q, only if there is no restraint in enumerating also y1 into Vj1 .

Now in turn, a restraint on y1 can have been put either by a higher priority P k1j1,i1 , if y1 � xk1j1,i1 ,
but then again the conflict is solved, as above, by priority; or, y1 is restrained by a higher priority

Q
k11
j2,j1

, if y1 is of the form y1 � a
k11
j2,j1

py2q.
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This suggests the following definition:

Definition 4.2. Define the sequence y0, y1, . . . , yh, . . . by steps:

Step 0: Let y0 � y, and j0 � j.

Step 1: If there is no restraint on y0, or there are unique i0, k0 such that y0 � xk0j0,i0 , then y1 is

undefined; otherwise there exist unique j1, k
1
0, y1 such that y0 � a

k10
j1,j0

py1q;

Step h� 1: If there is no restraint on yh, or there are unique ih, kh such that yh � xkhjh,ih then yh�1

is undefined; otherwise there exist unique jh�1, k
1
h, yh�1 such that yh � a

k1h
jh�1,jh

pyh�1q.

Notice that at each step of the above inductive definition, the various disjuncts are exclusive: this
claim (and the claims on uniqueness of jh, ih, kh, k

1
h) are justified (see Lemma 4.4) by the fact that

strategies for different requirements use disjoint sets of witnesses and numbers.

Lemma 4.3. The sequence y0, y1, . . . , yh, . . . is finite.

Proof. For every r, if

yr � a
k1r
jr�1,jh

pyr�1q

then yr�1   yr. Thus the sequence must terminate. �

As currently y R Vj , and assuming correctness of the various functions a
k1r
jr,ir

p q relative to higher

priority requirements, we have that, for every r, yr R Vjr . So the strategy for P ki,j in relation to
restraints posed by higher priority requirements is the following:

(1) if the last entry of the sequence is yh with yh P S
k1

j1,i1 where P k
1

j1,i1 has higher priority, then

enumerate xki,j into Vi; we have xki,j P Vi, but y � ϕkpx
k
i,jq R Vj , unless P khjh,ih acts and places

yh into Vjh , but in this case all requirements of lower priority than P k
1

j1,i1 , including P ki,j , are
initialized;

(2) if the last entry of the sequence is yh�1 with yh � a
k1h
jh�1,jh

pyh�1q where yh�1 is not restrained

by higher priority requirements and either jh�1 � i or yh�1 � xki,j , then enumerate each yr
with r ¤ h � 1 into Vjr . We have, as desired, y � ϕkpx

k
i,jq P Vj , but xki,j R Vi; our action

has not injured the higher priority requirements (in this case, only Q-requirements) since
all relative 1-reductions have been corrected, having (for all r ¤ h)

yr�1 P Vjr�1 ô akrjr�1,jr
pyr�1q � yr P Vjr .

In this case, we keep xki,j in Ski,j to restrain lower priority requirements from ever causing

xki,j to enter Vi.

(3) if the last entry of the sequence is yh�1 with yh � a
k1h
jh�1,jh

pyh�1q where jh�1 � i and

yh�1 � xki,j , then we cannot keep xki,j out of Vi while enumerating y into Vj , due to higher

priority Q-requirements. In this case, P ki,j adds xki,j to Ski,j and then unassigns xki,j (and will

thus choose a new xki,j when acting next). We will argue below, using the fact that ¨ is a

pre-order, that if P ki,j is injured infinitely often in this way, then i ¨ j.
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Construction. At stage s� 1 we may enumerate new elements into some of the sets tVi,s : i P ωu,
thus obtaining their new approximations tVi,s�1 : i P ωu. We may also update the definition of
some of the parameters. It is understood that if Vi, or a parameter, is not updated then its value
is the same as at the previous stage.

At the end of a given stage s, we may initialize a requirement R: For this, if R � Qki,j , then we set

Aki,jpsq � H, and each aki,jpn, sq to be undefined; if R � P ki,j , then we set xki,jpsq to be undefined

and Ski,jpsq � H.

We say that a requirement R requires attention at stage s ¡ 0, if R has not acted since last being
initialized, or

(1) R � Qki,j and s is xi, j, ky-expansionary, i.e., minpωzWgpi,j,kq,sq ¡ minpω rWgpi,j,kq,`q where

` is the last stage where Qki,j acted; or

(2) R � P ki,j and either xki,jpsq is not defined or ϕk,spx
k
i,jpsqq converges and

xki,jpsq P Vi,s ô ϕk,spx
k
i,jpsqq P Vj,s.

At odd stages, we take care of P -requirements and Q-requirements. At nonzero even stages, we
take care of the I-requirements.

Stage 0. Initialize all requirements.

Stage 2s�1. Let R be the least P - or Q-requirement that requires attention. (Notice that cofinitely
many such requirements have never acted.) We say that R acts at 2s � 1. For simplicity in the
following, when writing down the various parameters, we do not explicitly mention the stage s.

(1) If R � Qki,j , then pick a new element a and place it into Aki,j : if a is the m-th element of

Aki,j in order of magnitude then define a � aki,jpmq. For all n   m, if n P Vi, then enumerate

aki,jpnq into Vj .

(2) If R � P ki,j then

(a) if xki,j is not defined, then define it to be a new element and add xki,j to Ski,j ;

(b) if ϕkpx
k
i,jq converges and ϕkpx

k
i,jq R Vj , then consider the sequence y0, y1, . . . , yh, . . . of

Definition 4.2 (approximated at stage 2s� 1):

(i) if the last entry of the sequence is yh � xk
1

i1,j1 with yh P S
k1

i1,j1 where P k
1

i1,j1 has

higher priority, then enumerate xki,j into Vi, remove xki,j from Ski,j , and initialize
all lower priority requirements;

(ii) if the last entry of the sequence is yh�1 with yh � a
k1h
jh�1,jh

pyh�1q where jh�1 � i

or yh�1 � xki,j , then enumerate each yr with r ¤ h� 1 into Vjr and initialize all
lower priority requirements;

(iii) if the last entry of the sequence is yh�1 with yh � a
k1h
jh�1,jh

pyh�1q where jh�1 � i

and yh�1 � xki,j , then unassign xki,j .

Go to Stage 2s� 2.
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Stage 2s�2. If s � xi, ky, and Vi has less than k elements, then choose new numbers and enumerate
them into Vi, so that the set has at least k elements.

This ends the construction.

Verification. It is left to verify that the construction works.

The following Lemma observes that in case (2bi), there is never any injury to enumerating xki,j into

Vi and in case (2bii), there is never any injury to enumerating the yr into Vjr .

Lemma 4.4. For any i, j, j1, k, k1, if pj, kq � pj1, k1q, then xki,j is never in Sk
1

i,j1. There is never an

element aki,jpyq in Sk
1

j,j1 for any i, j, j1, k, k1.

Proof. Each time xki,j is chosen, it is chosen to be a new number, and a number enters Sk
1

i,j1 only

after it has already been xk
1

i,j1 . Each time aki,jpyq is chosen and each time xk
1

j,j1 is chosen, they are

chosen to be new numbers, and no number enters Sk
1

j,j1 unless it has already been xk
1

j,j1 . �

Lemma 4.5. No P -requirement initializes lower-priority requirements infinitely often.

Proof. Let R be a P -requirement. Suppose, by induction, none of the higher-priority P -requirement
initializes lower-priority requirements infinitely often. Let s then be a stage after which R is
never initialized by a higher-priority requirement. If, after stage s, R ever initializes lower-priority
requirements, it is through case (2bi) or (2bii). In either case, then R never acts again, so it can
initialize lower-priority requirements at most once after stage s. �

Lemma 4.6. If i ª j then P ki,j is satisfied.

Proof. Let s be a stage when P ki,j is never initialized by a higher-priority requirement after stage

s. We first argue that R cannot be initialized via (2biii) infinitely many times. Suppose oth-
erwise. Then, each time it is initialized, consider the sequence j0, j1, . . . , jh�1 where jh�1 � i.
Let a0, a1, . . . , an be a simple sub-path (i.e., if jm and jn are equal, then we replace the sequence
j0, . . . , jm, . . . , jn, . . . , jh�1 by the sequence j0, . . . , jm, jn�1, . . . , jh�1, and repeat this algorithm un-
til all the elements of the sequence are distinct). By the pigeonhole principle, for infinitely many
initializations, this sequence a0, . . . , an is the same. But then, the requirements Qkmam�1,am are acting
infinitely often. Thus, using that ¨ is a preorder, am�1 ¨ am for each m ¤ n, and thus i ¨ j.

Thus, we can consider a stage t ¡ s such that P ki,j is never initialized after stage t. Let x � xki,j
at some stage after t. This is the final value of xki,j . Subsequently, either ϕkpx

k
i,jq diverges, in

which case P ki,j does not act anymore, and is satisfied as ϕk is not total; or, ϕkpx
k
i,jq converges.

In this latter case, it either never acts, in which case ϕkpx
k
i,jq P Vj , but since xki,j P S

k
i,j , we have

that xki,j R Vi, so P ki,j is satisfied; or it acts once more through (2bi), in which case xki,j P Vi, but

ϕkpx
k
i,jq R Vj ; or it acts through (2bii): in this case we get xki,j R Vi, and ϕkpx

k
i,jq P Vj . In all cases,

P ki,j is satisfied. �

Lemma 4.7. If i ª j, then Vi does not m-reduce to Vj.

Proof. By Lemma 4.6, every P ki,j is satisfied. �

Lemma 4.8. If i ¨ j, then Vi ¤1 Vj.



20 U. ANDREWS AND A. SORBI

Proof. Let k be least number such that Wgpi,j,kq � ω. By Lemma 4.5, every P -requirement of

priority higher than Qki,j initializes Qki,j only finitely often. After the last time Qki,j is initialized,

every time Qki,j acts, it defines more and more values of the coding function aki,jp q, and keeps it

correct as a 1-reducibility, by putting aki,jpnq into Vj if and only if n P Vi. �

Lemma 4.9. For every pair i, k, the requirement Iki is satisfied.

Proof. The proof is trivial. �

�

We are now ready to show that the pre-order ¤c on indices of ceers is Σ0
3 complete.

Corollary 4.10. ¤c is a Σ0
3 complete pre-order.

Proof. It is straightforward to check that ¤c is Σ0
3. Since for infinite c.e. sets X,Y , RX ¤c RY if

and only if X ¤1 Y (where RX is the ceer where aRXb if and only if a � b or a, b P X. See e.g.
[1, 4, 19, 6, 10]) the above reduction allows us to reduce ¨ into ¤c as well. �

The following corollaries are immediate consequence of Theorem 4.1, the first of which appears in
[7]:

Corollary 4.11 ([7]). The equivalence relation �1 is a Σ0
3 complete equivalence relation.

Proof. Trivial by Theorem 4.1, since an equivalence relation is a symmetric pre-ordering relation.
�

Corollary 4.12. �c is a Σ0
3 complete equivalence relation.

Proof. Trivial by Corollary 4.10. �
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