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MEASURABLE PERFECT MATCHINGS FOR

ACYCLIC LOCALLY COUNTABLE BOREL GRAPHS

CLINTON T. CONLEY AND BENJAMIN D. MILLER

Abstract. We characterize the structural impediments to the ex-
istence of Borel perfect matchings for acyclic locally countable Bor-
el graphs admitting a Borel selection of finitely many ends from
their connected components. In particular, this yields the exis-
tence of Borel matchings for such graphs of degree at least three.
As a corollary, it follows that acyclic locally countable Borel graphs
of degree at least three generating µ-hyperfinite equivalence rela-
tions admit µ-measurable matchings. We establish the analogous
result for Baire measurable matchings in the locally finite case, and
provide a counterexample in the locally countable case.

Introduction

A graph on a set X is an irreflexive symmetric subset G of X ×X .
An involution is a permutation which is its own inverse, and a matching

of G is an involution of a subset of X whose graph is contained in G.
Such a matching is perfect if its domain is X itself.
A G-path is a sequence (xi)i≤n such that xi G xi+1, for all i < n. We

say that G is connected if there is a G-path between any two points
of X . More generally, the equivalence relation generated by a graph
G on X is the smallest equivalence relation on X containing G, and
the connected components of G are the equivalence classes [x]G of this
relation. A graph G is acyclic if there is at most one injective G-path
between any two points. When G is acyclic, the G-distance between
two points of the same connected component of G is one less than the
number of points along the unique injective G-path between them. A
tree is an acyclic connected graph.
A straightforward recursive analysis yields a characterization of the

existence of perfect matchings for acyclic graphs. Here we consider
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2 C.T. CONLEY AND B.D. MILLER

the substantially more subtle question of the existence of measurable
perfect matchings for acyclic definable graphs.
A Polish space is a separable topological space admitting a com-

patible complete metric. A subset of such a space is Borel if it is in
the σ-algebra generated by the underlying topology. A standard Borel

space is a set X equipped with the family of Borel sets associated with
a Polish topology on X . Every subset of a standard Borel space inher-
its the σ-algebra consisting of its intersection with each Borel subset of
the original space; this restriction is again standard Borel exactly when
the subset in question is Borel (see, for example, [Kec95, Corollary 13.4
and Theorem 15.1]). A function between standard Borel spaces is Bor-
el if pre-images of Borel sets are Borel. We will take being Borel as
our notion of definability.
The G-degree of a point y is given by degG(y) = |{x ∈ X | x G y}|.

A graph is locally countable if every point has countable G-degree, and
locally finite if every point has finite G-degree. A graph is n-regular if
every point has G-degree n. We say that a graph has degree at least n if
every point has G-degree at least n. The existence of perfect matchings
can be reduced to the case of graphs of degree at least two (modulo a
minor caveat in the Borel setting).
A G-ray is a sequence (xn)n∈N with the property that xn G xn+1, for

all n ∈ N. We say that a sequence (xn)n∈N has G-degree two on even

indices if degG(x2n) = 2, for all n ∈ N. Note that if G has degree at
least three, then there are no such sequences.
When G is acyclic, we say that injective G-rays (xn)n∈N and (yn)n∈N

are end equivalent if there exist i, j ∈ N with xi+n = yj+n, for all n ∈ N.
We say that a set X ⊆ XN selects a finite non-empty set of ends from
every connected component of G if X ∩ [x]NG is a finite non-empty union
of end-equivalence classes, for all x ∈ X .

Theorem A. Suppose that X is a Polish space, G is an acyclic locally

countable Borel graph on X of degree at least two, and there is a Bor-

el set selecting a finite non-empty set of ends from every connected

component of G. Then there is a Borel set B ⊆ X such that:

(1) The restriction of G to B is two-regular.

(2) Every connected component of G contains at most one connected

component of the restriction of G to B.

(3) No two points of B of G-degree at least three have odd G-

distance from one another.

(4) There is a Borel perfect matching of G off of B.

In particular, if there are no injective G-rays of G-degree two on even

indices, then the set B is empty, thus G has a Borel perfect matching.
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There are well-known examples of acyclic two-regular Borel graphs
which do not have Borel perfect matchings, and a result of Marks
yields acyclic n-regular Borel graphs which do not have Borel perfect
matchings, for all natural numbers n ≥ 3 (see [Mar, Theorem 1.5]).
A Borel probability measure on a Polish space X is a function µ,

assigning to each Borel set B ⊆ X an element of [0, 1], with the prop-
erty that µ(X) = 1 and µ(

⋃
n∈N Bn) =

∑
n∈N µ(Bn), for every sequence

(Bn)n∈N of pairwise disjoint Borel subsets of X . A Borel set B ⊆ X is
µ-null if µ(B) = 0, and µ-conull if its complement is µ-null.
Following the usual abuse of language, we say that an equivalence re-

lation is countable if its classes are countable, and finite if its classes are
finite. We say that a countable Borel equivalence relation on a standard
Borel space is hyperfinite if it is the union of an increasing sequence
(Fn)n∈N of finite Borel subequivalence relations, and µ-hyperfinite if
there is a µ-conull invariant Borel set on which it is hyperfinite.
A well-known result of Adams and Jackson-Kechris-Louveau (see

[JKL02, Lemma 3.21]) ensures that if G is an acyclic locally countable
Borel graph on X , then the equivalence relation generated by G is µ-
hyperfinite if and only if there is a µ-conull G-invariant Borel set on
which there is a Borel set selecting a finite non-empty set of ends from
every connected component of G that has injective G-rays. Theorem
A therefore yields the following corollary.

Theorem B. Suppose that X is a Polish space, G is an acyclic locally

countable Borel graph on X of degree at least two and with no injective

G-rays of G-degree two on even indices, and µ is a Borel probability

measure on X for which the equivalence relation generated by G is µ-
hyperfinite. Then there is a µ-conull G-invariant Borel set on which G
has a Borel perfect matching.

By a result of Lyons-Nazarov, a wide class of regular bipartite Borel
graphs (notably including any bipartite Cayley graphing of the Ber-
noulli shift action of a nonamenable group) admit µ-measurable match-
ings (see [LN11]). The general case of µ-measurable matchings for
(not necessarily bipartite) Cayley graphings of Bernoulli shifts of non-
amenable groups is discussed in [CL].
A subset of a Polish space is meager if it is a countable union of

nowhere dense sets, and comeager if its complement is meager. In con-
trast with the measure-theoretic setting, a well-known result of Hjorth-
Kechris implies that every countable Borel equivalence relation is hy-
perfinite on a comeager invariant Borel set (see, for example, [KM04,
Theorem 12.1]). However, there are acyclic locally finite Borel graphs
of degree at least two which do not admit Borel sets selecting a finite



4 C.T. CONLEY AND B.D. MILLER

non-empty set of ends on any comeager invariant Borel set (see, for
example, the graph T0 of [HM09]). Nevertheless, an entirely different
approach yields an analog of Theorem B in this context.

Theorem C. Suppose that X is a Polish space and G is an acyclic

locally finite Borel graph on X of degree at least two and with no injec-

tive G-rays of G-degree two on even indices. Then there is a comeager

G-invariant Borel set on which G has a Borel perfect matching.

However, we provide an example of an ℵ0-regular Borel graph which
does not have a Borel perfect matching on a comeager invariant Borel
set. Some rather general sufficient conditions for the existence of Baire
measurable matchings of graphs are presented in [KM] and [MU].
The paper is organized as follows. In §1, we mention a pair of ele-

mentary facts concerning matchings outside of the definable context.
In §2, we establish Theorem A. And in §3, we establish Theorems B
and Theorem C, and describe the example mentioned above.

1. Matchings using choice

Here we establish a pair of elementary facts, whose proofs will later
prove useful in the definable setting.
Clearly the existence of a perfect matching for a graph on a non-

empty set necessitates that the graph in question has degree at least
one. The following observation allows one to focus upon graphs of
degree at least two.

Proposition 1.1. Suppose that X is a set and G is a graph on X.

Then there is a set Y ⊆ X, on which G has degree at least two, with

the property that if there is a matching ι of G whose domain contains

X \ Y , then X \ Y is an ι-invariant set on which every other such

matching agrees with ι.

Proof. The G-boundary of a set Y ⊆ X , denoted by ∂G(Y ), is the
set of points in Y which are G-related to at least one point out-
side of Y . Let α denote the supremum of the ordinals β for which
there exists x ∈ X such that |β| ≤ |[x]G|, and recursively define a
decreasing sequence (Xβ)β≤α of subsets of X by setting X0 = X ,
Xλ =

⋂
β<λX

β, Xλ+2n+1 = {x ∈ Xλ+2n | degG↾Xλ+2n(x) ≥ 2}, and

Xλ+2n+2 = Xλ+2n+1 \ ∂G↾Xλ+2n(Xλ+2n \Xλ+2n+1), for all limit ordinals
λ and natural numbers n such that the corresponding indices are at
most α.
Set Y = Xα. As Xα = Xα+1, it follows that G ↾ Y has degree at

least two. And a straightforward transfinite induction shows that if ι is
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a matching of G whose domain contains X \Y , then ι(x) is the unique
G-neighbor of x in Xλ+2n for all limit ordinals λ, natural numbers n,
and x ∈ Xλ+2n \ Xλ+2n+1, whereas ι(x) is the unique G-neighbor of
x in Xλ+2n \Xλ+2n+1 for all limit ordinals λ, natural numbers n, and
x ∈ Xλ+2n+1 \Xλ+2n+2.

In the absence of definability requirements, the following completes
the analysis of the existence of perfect matchings for acyclic graphs.

Proposition 1.2. Suppose that X is a set and G is an acyclic graph

on X of degree at least one whose connected components have at most

one point of G-degree exactly one. Then G has a perfect matching.

Proof. A transversal of an equivalence relation is a set intersecting
every equivalence class in exactly one point. We will recursively define a
sequence (Xn)n∈N of pairwise disjoint subsets ofX , as well as a sequence
φn : X2n → X2n+1 of functions whose graphs are contained in G, with
the property that the graph Gn = G ↾ (X \

⋃
m<2n Xm) has degree at

least one and X2n is a transversal of the equivalence relation generated
by Gn, containing every point of Gn-degree exactly one.
We begin by fixing a transversal X0 ⊆ X of the equivalence rela-

tion generated by G, containing every point of G-degree exactly one.
Suppose now that n ∈ N and we have already found (Xm)m≤2n. Fix
a function φn : X2n → X \

⋃
m≤2n Xm whose graph is contained in G,

and set X2n+1 = φn(X2n) and X2n+2 = ∂G(X \
⋃

m≤2n+1 Xm).

Set φ =
⋃

n∈N φn, and observe that the involution ι = φ ∪ φ−1 is a
perfect matching of G.

2. Borel matchings

We will frequently employ the following well-known fact.

Theorem 2.1 (Lusin-Novikov). Suppose that X and Y are Polish

spaces and R ⊆ X × Y is a Borel set whose vertical sections are

all countable. Then projX(R) is Borel and there are Borel functions

φn : projX(R) → Y such that R =
⋃

n∈N graph(φn).

Proof. See, for example, [Kec95, Theorem 18.10].

There is a natural analog of Proposition 1.1 in the Borel setting.

Proposition 2.2. Suppose that X is a Polish space and G is a locally

finite Borel graph on X. Then there is a Borel set B ⊆ X, on which

G has degree at least two, with the property that if there is a matching

ι of G whose domain contains X \B, then the latter is an ι-invariant
set on which every other such matching agrees with ι. In particular, it

follows that the restriction of every such matching to X \B is Borel.
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Proof. Following the proof of Proposition 1.1, our assumption that G
is locally finite ensures that Xα = Xω, and Theorem 2.1 implies that
the set B = Xω is Borel.
Again by Theorem 2.1, there are Borel functions φn : X → X such

that the equivalence relation generated by G is
⋃

n∈N graph(φn). We say
that a function i : N → N codes a function on the connected component
of x off of B if φi(m)(x) = φi(n)(x) and neither is in B, for all m,n ∈ N

such that φm(x) = φn(x) and neither is in B. The corresponding
function ι : [x]G \B → [x]G \B is then given by

ι(y) = z ⇐⇒ ∃m,n ∈ N (y = φm(x), z = φn(x), and i(m) = n).

Note that if ι is a matching of G on X \B, then ι(y) = z if and only if
there is a function i : N → N, coding a matching of G on the connected
component of x off of B, which sends y to z. As the set of (x, i) ∈ X×I
for which i codes a matching of G on the connected component of x off
of B is Borel, as is the set of (i,m, n, x, y, z) ∈ N

N×N×N×X×X×X
for which y = φm(x), z = φn(x), and i(m) = n, it follows that the graph
of ι is analytic, in the sense that it is the image of a Borel subset of
a standard Borel space under a Borel function. As functions between
Polish spaces with analytic graphs are Borel (see, for example, [Kec95,
Theorem 14.12]), it follows that ι is Borel.

Remark 2.3. Proposition 1.1 also has an analog in the more general
setting of locally countable Borel graphs, granting that we slightly relax
the requirement that the matching is Borel. To be specific, in this case
one can check that the set A = Xα is analytic, and that the graph
of the unique matching of G ↾ (X \ A) is both relatively analytic and
co-analytic. Here it is worth noting that our other results generalize
to Borel graphs on analytic sets. It is also worth noting that, off of a
meager or µ-null G-invariant Borel set, this yields the full conclusion
of Proposition 2.2.

Proposition 1.2 also has a natural analog in the Borel setting, albeit
only when the equivalence relation generated by the graph in question
is particularly simple. A reduction of an equivalence relation E on X
to an equivalence relation F on Y is a function π : X → Y such that
x1 E x2 ⇐⇒ π(x1) F π(x2), for all x1, x2 ∈ X . A Borel equivalence
relation on a Polish space is smooth if it is Borel reducible to equality
on a Polish space.

Proposition 2.4. Suppose that X is a Polish space and G is an acyclic

locally countable Borel graph on X of degree at least one, each of whose

connected components have at most one point of G-degree exactly one,
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whose induced equivalence relation is smooth. Then G has a Borel

perfect matching.

Proof. Following the proof of Proposition 1.2, Theorem 2.1 ensures that
we can choose the functions φn and the sets Xn to be Borel, in which
case the corresponding matching is also Borel.

Beyond the smooth case, the purely combinatorial and definable set-
tings are quite different. The graph generated by a function f : X → X
is the graph Gf on X with respect to which two distinct points are re-
lated if f sends one to the other. A function f : X → X is aperiodic if
fn is fixed-point free, for all n > 0.

Proposition 2.5 (Laczkovich). There is a Polish space X and an

aperiodic Borel automorphism T : X → X with the property that GT

does not have a Borel perfect matching.

Proof. We say that a Borel probability measure µ on X is T -quasi-
invariant if µ(B) = 0 ⇐⇒ µ(T (B)) = 0, for all Borel sets B ⊆ X .
And we say that a Borel probability measure µ on X is T -ergodic if
µ(B) ∈ {0, 1}, for all T -invariant Borel sets B ⊆ X .
An I-coloring of a graph G on X is a function c : X → I with the

property that ∀(x, y) ∈ G c(x) 6= c(y). It is easy to see that GT has
a Borel perfect matching if and only if GT has a Borel two-coloring,
or equivalently, if there is a Borel set B ⊆ X such that B and T (B)
partition X . And the latter is ruled out by the existence of a Borel
probability measure on X which is T -quasi-invariant and T 2-ergodic.
As Lebesgue measure is well known to be ergodic and quasi-invariant

with respect to irrational rotations of the circle, it follows that the latter
do not have Borel (or even Lebesgue measurable) matchings.

Remark 2.6. The above argument goes through just as well using
Baire category in lieu of Lebesgue measure.

Remark 2.7. The existence of such measures (or topologies with cor-
responding notions of Baire category) for graphs generated by aperiodic
Borel automorphisms is, in fact, equivalent to the inexistence of Borel
perfect matchings. This follows from a dichotomy theorem of Louveau’s
(see, for example, [Mil12, Theorem 15]).

Let E0 denote the equivalence relation on 2N given by

x E0 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m).

The Harrington-Kechris-Louveau E0 dichotomy ensures that, under
Borel reducibility, this is the minimal non-smooth Borel equivalence
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relation (see [HKL90, Theorem 1.1]). Arguments of Dougherty-Jack-
son-Kechris can be used to show that a countable Borel equivalence re-
lation on a Polish space is hyperfinite if and only if it is Borel reducible
to E0 (see, for example, [DJK94, Theorem 1]), and Slaman-Steel and
Weiss have noted that every Borel automorphism of a Polish space
generates a hyperfinite Borel equivalence relation (see, for example,
[DJK94, Theorem 5.1]). In particular, it follows that the smoothness
of the equivalence relation in Proposition 2.4 cannot be weakened.
Among graphs generated by aperiodic Borel functions, there are es-

sentially no further examples without Borel matchings. The tail equiv-
alence relation on X induced by a function f : X → X is given by

x Et(f) y ⇐⇒ ∃m,n ∈ N fm(x) = fn(y).

Note that ifG is the graph generated by f , then Et(f) is the equivalence
relation generated by G.
The injective part of f is the set {x ∈ X | f ↾ [x]Et(f) is injective}.

When f is countable-to-one, Theorem 2.1 ensures that the injective
part of f is a Borel set on which f is a Borel automorphism.

Proposition 2.8. Suppose that X is a Polish space and f : X → X
is a countable-to-one Borel surjection. Then Gf has a Borel perfect

matching, off of the injective part of f .

Proof. By Theorem 2.1, there is a Borel function g : X → X such
that (f ◦ g)(x) = x, for all x ∈ X . Off of the Et(f)-saturation of⋂

n∈N g
n(X), the involution agreeing with g on

⋃
n∈N g

2n(X \ g(X)) and
with f on

⋃
n∈N g

2n+1(X \ g(X)) is a Borel perfect matching of Gf . So
it only remains to produce a Borel perfect matching of Gf on the Et(f)-
saturation of the set

B = {x ∈
⋂

n∈N g
n(X) | x is not in the injective part of f}.

Towards this end, define A = {x ∈ B | |f−1(x)| ≥ 2}. As Proposition
2.4 allows us to throw out an Et(f)-invariant Borel set on which Et(f)
is smooth, we can assume that for all x ∈ B, there exist m,n ∈ N

such that (f ↾ B)−m(x), fn(x) ∈ A. For each x ∈ A, let n(x) denote
the least positive natural number n for which fn(x) ∈ A, and define
A′ = {x ∈ A | n(x) is odd}. We then obtain a Borel perfect matching
of Gf on B \A′ by associating f 2i+1(x) with f 2i+2(x) for all i ∈ N and
x ∈ A′ with 2i+ 2 < n(x), as well as f 2i(x) with f 2i+1(x) for all i ∈ N

and x ∈ A\A′ with 2i+1 < n(x). As the equivalence relation generated
by the restriction of Gf to A′∪ ([B]Et(f) \B) is smooth, Proposition 2.4
yields an extension to a Borel perfect matching of Gf on [B]Et(f).
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We now turn our attention to another class of Borel graphs without
Borel perfect matchings. The line-and-point graph associated with a
graph G on X is the graph on the disjoint union of X with the set
E = {{x, y} | x G y} of unordered edges of G, in which two elements
of X ∪ E are related if one of them is in X , one of them is in E, and
the former is an element of the latter.
Note that if G is a Borel graph on a standard Borel space, then the

set of unordered edges of G inherits a standard Borel structure from
G, thus the line-and-point graph of G can also be viewed as a Borel
graph on a standard Borel space.
Observe also that if a graph has an injective ray, then its line-and-

point graph has an injective ray of degree two on even indices. Together
with the following proposition, this is part of the motivation for focus-
ing on graphs without such rays in our later results.

Proposition 2.9. Suppose that X is a Polish space and G is an acyclic

Borel graph on X. Then G is generated by an aperiodic Borel function

if and only if its line-and-point graph has a Borel perfect matching.

Proof. If f : X → X is an aperiodic function generating G, then the
fact that f is fixed-point free ensures that {x, f(x)} is an unordered
edge of G for all x ∈ X , and the fact that f 2 is fixed-point free ensures
that the involution ι associating x with {x, f(x)} is injective. As the
fact that f generates G ensures that ι is surjective, it is necessarily a
perfect matching of the line-and-point graph of G.
Conversely, if ι is a perfect matching of the line-and-point graph of

G, then the function f , sending each point x to the unique point y
with the property that ι(x) = {x, y}, generates G. The definition of f
ensures that both f and f 2 are fixed-point free, and the acyclicity of G
ensures that fn is fixed-point free for all n > 2, thus f is aperiodic.

Remark 2.10. One can drop the acyclicity of G in the statement of
Proposition 2.9 by weakening the hypothesis that G is generated by
an aperiodic Borel function to the hypothesis that G is generated by a
Borel function for which both f and f 2 are fixed-point free.

Remark 2.11. When G is an acyclic locally countable Borel graph of
degree at least two, the hypothesis that G is generated by an aperiodic
Borel function is equivalent to the apparently weaker hypothesis that
G is generated by a Borel function.

We next consider the combinatorially simplest examples of Borel
graphs which are not induced by Borel functions.
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Proposition 2.12. There is a Polish space X and an acyclic two-

regular Borel graph G on X which is not induced by a Borel function,

thus there is such a graph which does not have a Borel perfect matching.

Proof. The graph L0 of [HM09] yields an example of an acyclic two-
regular Borel graph on a Polish space which is not induced by a Borel
function. Proposition 2.9 then ensures that the corresponding line-
and-point graph has no Borel perfect matching (and clearly it is not
induced by a Borel function, since the restriction of the square of an
aperiodic such function to 2× 2N would generate L0).

Remark 2.13. It is not difficult to verify that the fact we used in the
parenthetical remark above is far more general. Namely, a Borel graph
on a Polish space is generated by a Borel function if and only if its
line-and-point graph is generated by a Borel function.

Among graphs for which such combinatorially simple graphs can be
isolated in a Borel fashion, there are essentially no further examples
without Borel matchings.

Proposition 2.14. Suppose that X is a Polish space, G is an acyclic

locally countable Borel graph on X of degree at least two, and there is

a Borel set B ⊆ X such that:

(1) The restriction of G to B is two-regular.

(2) Every connected component of G contains exactly one connected

component of the restriction of G to B.

(3) Every connected component of G contains two points in B, with

G-degree at least three, having odd G-distance from one another.

Then there is a Borel perfect matching of G.

Proof. Let A denote the set of points of B of G-degree at least three,
and let A′ denote the set of initial points of injective G-paths whose
initial and terminal points are in A, whose other points are not in A,
and along which there are an even number of points. As Proposition 2.4
allows us to throw out a G-invariant Borel set on which the equivalence
relation generated by G is smooth, we can assume that for all x ∈ B,
there are points of A′ on either side of x, in the sense that for both G-
neighbors y of x in B, there is an injective G-path of the form (x, y, . . .)
whose terminal point is in A′. By Theorem 2.1, there is a Borel set
A′′ ⊆ A′ consisting of exactly one point from every pair of points in A′

between which there is an injective G-path whose other points are not
in A′ and along which there are an odd number of points. Then there
is a Borel perfect matching of the restriction of G to A′′ ∪ (B \ A′),
and Proposition 2.4 yields an extension of the latter to a Borel perfect
matching of G.
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We can now establish the main result of this section.

Theorem 2.15. Suppose that X is a Polish space, G is an acyclic

locally countable Borel graph on X of degree at least two, and there is

a Borel set selecting a finite non-empty set of ends from every connected

component of G. Then there is a Borel set B ⊆ X such that:

(1) The restriction of G to B is two-regular.

(2) Every connected component of G contains at most one connected

component of the restriction of G to B.

(3) No two points of B of G-degree at least three have odd G-

distance from one another.

(4) There is a Borel perfect matching of G off of B.

In particular, if there are no injective G-rays of G-degree two on even

indices, then the set B is empty, thus G has a Borel perfect matching.

Proof. Fix a Borel set B ⊆ [X ]N selecting a finite non-empty set of ends
from every connected component of G. By Theorem 2.1, we can assume
that the set B selects exactly n ends from every connected component
of G, for some n > 0.
If n = 1, then G is generated by the Borel function f : X → X

associating to each point x its unique G-neighbor y for which there is
an injective G-ray in B of the form (x, y, . . .), in which case Proposition
2.8 allows us to take B to be the injective part of f .
If n = 2, then let A denote the set of all points x with two distinct

G-neighbors y for which there are injective G-rays in B of the form
(x, y, . . .). Proposition 2.14 allows us to take B to be the set of x in A
for which there do not exist y, z ∈ A ∩ [x]G of G-degree at least three
having odd G-distance from one another.
If n > 2, then [JKL02, Lemma 3.19] ensures that the equivalence

relation generated by G is smooth, in which case Proposition 2.4 allows
us to take B to be the empty set.

3. Measurable matchings

We begin this section with a fact which, despite being quite well
known, seems not to have previously appeared in the form we require.

Proposition 3.1 (Adams, Jackson-Kechris-Louveau). Suppose that X
is a Polish space, G is an acyclic locally countable Borel graph on X,

and µ is a Borel probability measure on X for which the equivalence

relation generated by G is µ-hyperfinite. Then there are G-invariant

Borel sets A,B ⊆ X such that:

(1) The equivalence relation generated by G is smooth on A.
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(2) There is a Borel set selecting a finite non-empty set of ends

from every connected component of the restriction of G to B.

(3) The set A ∪B is µ-conull.

Proof. This follows from the proof of [JKL02, Lemma 3.21].

Remark 3.2. Although unnecessary for our arguments, it is worth
noting that [JKL02, Lemma 3.19] allows us to strengthen condition (2)
in Proposition 3.1 to the existence of a Borel set selecting one or two
ends from every connected component of the restriction of G to B.

Remark 3.3. It is also worth noting that, using a fairly straightfor-
ward metamathematical argument, Proposition 3.1 can also be estab-
lished from [JKL02, Lemma 3.21] itself, as opposed to its proof. But
this approach seems rather needlessly roundabout.

As a corollary, we obtain the following.

Theorem 3.4. Suppose that X is a Polish space, G is an acyclic locally

countable Borel graph on X of degree at least two and with no injective

G-rays of G-degree two on even indices, and µ is a Borel probability

measure on X for which the equivalence relation generated by G is µ-
hyperfinite. Then there is a µ-conull G-invariant Borel set on which G
has a Borel perfect matching.

Proof. Let A and B denote the G-invariant Borel sets whose existence
is granted by Proposition 3.1. Proposition 2.4 yields a Borel perfect
matching of G on A, and Proposition 2.15 yields a Borel perfect match-
ing of G on B, thus there is a Borel perfect matching of G on A∪B.

In the context of Baire category, we obtain the analogous result for
locally finite graphs.

Theorem 3.5. Suppose that X is a Polish space and G is an acyclic

locally finite Borel graph on X of degree at least two and with no injec-

tive G-rays of G-degree two on even indices. Then there is a comeager

G-invariant Borel set on which G has a Borel perfect matching.

Proof. Let X denote the set of pairs (S, T ) of finite subsets of X , where
S ⊆ T and both are contained in a connected component of G. This
set inherits a standard Borel structure from X . Let G denote the graph
on X given by

G = {((S, T ), (S ′, T ′)) ∈ X × X | (S, T ) 6= (S ′, T ′) and T ∩ T ′ 6= ∅}.

By [CM, Proposition 3], there is a Borel N-coloring c of G.
We will now define a decreasing sequence (Xs)s∈N<N of Borel subsets

of X such that the graph G ↾ Xs has degree at least two and no
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injective (G ↾ Xs)-ray has (G ↾ Xs)-degree two on even indices, for
all s ∈ N

<N. We will simultaneously produce an increasing sequence
(ιs)s∈N<N of Borel matchings of G such that the domain of ιs is X \Xs,
for all s ∈ N

<N.
Once we have constructed these, for each p ∈ N

N we will define
Xp =

⋂
n∈N Xp↾n and ιp : X \ Xp → X \ Xp by ιp(x) = ιp↾n(x), where

n ∈ N is sufficiently large that x ∈ X \Xp↾n. As each ιp is necessarily a
Borel matching of G with domain X \Xp, it will only remain to show
that the details of our construction ensure the existence of p ∈ N

N

for which the saturation of Xp with respect to the equivalence relation
generated by G is meager.
We begin by setting X∅ = X and ι∅ = ∅. Suppose now that we have

already defined Xs and ιs. Let Xs denote the set of pairs (S, T ) ∈ X
which satisfy the following conditions:

(1) The inclusion ∂G↾Xs
(Xs \ S) ⊆ T ⊆ Xs holds.

(2) The graph G ↾ (Xs \ S) has degree at least two.
(3) No injective (G ↾ (Xs\S))-path passing through both a point in

∂G↾Xs
(Xs \S) and a point in ∂G↾Xs

(T ) has (G ↾ (Xs \S))-degree
two on even indices.

(4) There is a perfect matching of G ↾ S.

We will extend ιs by adding perfect matchings of the graphs G ↾ S in a
Borel fashion, using the fact that the sets T provide buffers preventing
these new matchings from interacting with one another, at least among
pairs (S, T ) on which our coloring c of G is constant.
For each i ∈ N, define Xsa(i) ⊆ Xs by

Xsa(i) = Xs \
⋃

{S | ∃T ((S, T ) ∈ Xs and c(S, T ) = i)}.

Theorem 2.1 ensures that these sets are Borel.

Lemma 3.6. Suppose that i ∈ N and s ∈ N
<N. Then G ↾ Xsa(i) has

degree at least two.

Proof. Suppose that x ∈ Xsa(i). If x is not in ∂G↾Xs
(Xsa(i)), then

degG↾Xsa(i)
(x) = degG↾Xs

(x) ≥ 2. If x is in ∂G↾Xs
(Xsa(i)), then there

exists (S, T ) ∈ Xs such that c(S, T ) = i and x is in ∂G↾Xs
(Xs \ S).

Condition (1) ensures that x ∈ T , and since c is an N-coloring of G,
it follows that (S, T ) is the unique such pair. Condition (2) therefore
implies that degG↾Xsa(i)

(x) = degG↾(Xs\S)(x) ≥ 2.

Lemma 3.7. Suppose that i ∈ N and s ∈ N
<N. Then there is no

injective (G ↾ Xsa(i))-ray of (G ↾ Xsa(i))-degree two on even indices.
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Proof. If (xk)k∈N is an injective (G ↾ Xsa(i))-ray of (G ↾ Xsa(i))-degree
two on even indices, then condition (3) ensures that xk /∈ ∂G↾Xs

(Xsa(i))
for all k ∈ N, thus (xk)k∈N is a (G ↾ Xs)-ray of (G ↾ Xs)-degree two on
even indices, a contradiction.

Condition (4) ensures that ιs extends to a Borel matching ιsa(i) of G
with domain X \Xsa(i).
As noted earlier, it only remains to show that there exists p ∈ N

N

for which the saturation of Xp with respect to the equivalence relation
generated by G is meager. We will establish the stronger fact that
∀∗p ∈ N

N∀∗x ∈ X [x]G∩Xp = ∅. Note that {(p, x) ∈ N
N×X | x ∈ Xp}

is Borel. By the Kuratowski-Ulam Theorem (see, for example, [Kec95,
Theorem 8.41]), it is enough to show that ∀x ∈ X∀∗p ∈ N

N x /∈ Xp.
For this, it is enough to show that ∀s ∈ N

<N∀x ∈ Xs∃i ∈ N x /∈ Xsa(i).
Towards this end, suppose that s ∈ N

<N and x ∈ Xs.

Lemma 3.8. There is a finite set S ⊆ Xs such that x ∈ S, G ↾ (Xs\S)
has degree at least two, and G ↾ S has a perfect matching.

Proof. We say that a set Y ⊆ X is G-connected if the graph G ↾ Y is
connected. We will recursively construct increasing sequences (ιk)k∈N
of matchings of G and (Sk)k∈N of finite G-connected subsets of Xs

containing x such that the domain of ιk is Sk, for all k ∈ N. We begin by
fixing y ∈ Xs for which x G y, and setting ι0 = (x y) and S0 = {x, y}.
Given ιk and Sk, observe that for each connected component C of
G ↾ (Xs \Sk), there is at most one point z ∈ C such that |C ∩Gz| = 1.
Let ιk+1 denote the minimal extension of ιk to an involution which
associates every such z with the unique element of C∩Gz, and let Sk+1

denote the domain of ιk+1. This completes the recursive construction.
Set ι =

⋃
k∈N ιk and S =

⋃
k∈N Sk. Clearly x is in S, the restriction

of G to Xs \ S has degree at least two, and ι is a perfect matching of
G ↾ S, so it only remains to show that S is finite. But if S is infinite,
then we can recursively construct an injective (G ↾ Xs)-ray (x2k)k∈N
with the property that S ∩ [x2k]G↾(Xs\Sk) is infinite and x2k+1 is the
unique G-neighbor of x2k in Xs \ Sk, for all k ∈ N. But then (xk)k∈N
has (G ↾ Xs)-degree two on even indices, a contradiction.

Lemma 3.9. There is a finite set T ⊆ Xs, with S∪∂G↾Xs
(Xs \S) ⊆ T ,

such that no injective (G ↾ (Xs \ S))-path passing through both a point

in ∂G↾Xs
(Xs \S) and a point in ∂G↾Xs

(T ) has (G ↾ (Xs \S))-degree two

on even indices.

Proof. It is enough to show that for all z ∈ Xs \ S, there exists n ∈ N

such that there is no injective (G ↾ (Xs\S))-path beginning at z, having
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(G ↾ (Xs \ S))-degree two on even indices, and along which there are
n points. Towards this end, observe that if there are arbitrarily long
injective (G ↾ (Xs \ S))-paths of (G ↾ (Xs \ S))-degree two on even
indices beginning at some point x0, then we can recursively choose
xn /∈ {xm | m < n} such that there are arbitrarily long injective
(G ↾ (Xs \ S))-paths of (G ↾ (Xs \ S))-degree two on even indices
extending (xk)k≤n, in which case (xk)k∈N is an injective (G ↾ (Xs \S))-
ray of (G ↾ (Xs \ S))-degree two on even indices, a contradiction.

As (S, T ) ∈ Xs, it follows that i = c(S, T ) is as desired.

We close the paper by noting that the above result fails in the more
general locally countable setting.

Theorem 3.10. There is a Polish space X and an acyclic ℵ0-regular

Borel graph G on X which does not have a Borel perfect matching on

a comeager Borel set.

Proof. We will find Polish spaces X and Y and a Borel set R ⊆ X×Y ,
whose horizontal and vertical sections are countably infinite, such that
for no comeager Borel set C ⊆ X is there a Borel injection φ : C → Y
whose graph is contained in R. For such R, let GR denote the graph
on the disjoint union of X and Y in which two points are related if one
of them is in X , one of them is in Y , and the corresponding pair is in
R. As long as we are able to simultaneously ensure that GR is acyclic,
it will have the desired properties.
Towards this end, we will recursively define Rn ⊆ Sn ⊆ 2n×2n. The

sets Rn will provide increasingly precise approximations to the set R
we seek, whereas the sets Sn will provide restrictions on the construc-
tion aimed at ruling out the existence of injections whose graphs are
contained in R. We will obtain Rn+1 and Sn+1 from the sets

R′
n+1 = {(u a (i), v a (i)) | i < 2 and u Rn v}

and

S ′
n+1 = {(u a (i), v a (j)) | i, j < 2 and u Rn v}

by either adding a pair to the former or subtracting pairs from the
latter, depending on whether n is even or odd. Define a function
proj0 : 2

<N × 2<N → 2<N by setting proj0(u, v) = u. In order to ensure
that the construction can continue, we will proceed in such a fashion
that for all n ∈ N, the following conditions hold:

(1) ∀u ∈ 2n∃v ∈ 2n u Sn v.
(2) ∀v ∈ 2n∃u ∈ 2n \ proj0(Rn) u Sn v.
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We will describe the exact fashion in which this is accomplished in
terms of sequences un, vn ∈ 2n, for n ∈ N. We can already define
the sequences of the form u2n and v2n+1. In fact, these need only be
chosen in such a fashion that the corresponding sets {u2n | n ∈ N} and
{v2n+1 | n ∈ N} are dense in 2<N, in the sense that

∀t ∈ 2<N∃m,n ∈ N t ⊑ u2m, v2n+1.

The remaining sequences will be chosen during the construction.
We begin by setting R0 = ∅ and S0 = {(∅, ∅)}. Suppose now that

n ∈ N and we have already found R2n and S2n satisfying conditions (1)
and (2). By the former, there exists v2n ∈ 22n such that u2n S2n v2n. It
then follows that the sets

R2n+1 = R′
2n+1 ∪ {(u2n a (0), v2n a (1))}

and S2n+1 = S ′
2n+1 satisfy conditions (1) and (2) as well. By the latter,

there exists u2n+1 ∈ 22n+1 \ proj0(R2n+1) such that u2n+1 S2n+1 v2n+1.
It then follows that the sets R2n+2 = R′

2n+2 and

S2n+2 = S ′
2n+2 \ {(u2n+1 a (0), v) | v 6= v2n+1 a (1)}

also satisfy conditions (1) and (2). This completes the recursive con-
struction. Define R ⊆ 2N × 2N by

R = {(u a x, v a x) | n ∈ N, u Rn v, and x ∈ 2N}.

A simple induction using the definition of Rn reveals that each of
the graphs GRn

is acyclic, from which it follows that so too is GR.
Another simple induction utilizing the density of {u2n | n ∈ N} and

{v2n+1 | n ∈ N} along with the definition of Rn and Sn ensures that
the sets Un = {x ∈ 2N | |Rx| ≥ n} and Vn = {y ∈ 2N | |Ry| ≥ n} are
dense and open. Fix homeomorphisms φn of 2N with the property that
E0 =

⋃
n∈N graph(φn), and note that the set Z =

⋂
m,n∈N φ

−1
m (Un ∩ Vn)

is a countable intersection of dense open sets, so the subspace topology
on Z is Polish (see, for example, [Kec95, Theorem 3.11]), and a subset
of Z is comeager if and only if it is comeager when viewed as a subset
of 2N. Set X = Y = Z, and observe that when viewed as a subset of
X × Y , every horizontal and vertical section of R is countably infinite.
Suppose, towards a contradiction, that there is a comeager Borel set

C ⊆ 2N for which there is a Borel injection φ : C → 2N whose graph is
contained in R. As the definitions of Rn and G ensure that

graph(φ) ⊆
⋃

n∈N{(u2n a (0) a x, v2n a (1) a x) | x ∈ 2N},

there exists n ∈ N for which the set of x ∈ 2N with the property that
φ(u2n a (0) a x) = v2n a (1) a x is non-meager. By localization
(see, for example, [Kec95, Proposition 8.26]), there exists r ∈ 2<N such
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that φ(u2n a (0) a r a x) = v2n a (1) a r a x, for comeagerly
many x ∈ 2N. Fix m ≥ n with v2n a (1) a r ⊑ v2m+1, noting
that u2m+1 is incompatible with u2n a (0) and φ necessarily sends
sequences beginning with u2m+1 a (0) to sequences beginning with
v2m+1 a (1). Again appealing to the above restriction on the graph
of φ imposed by the definitions of Rn and G, there exists ℓ > m for
which u2m+1 a (0) ⊑ u2ℓ and the set of x ∈ 2N with the property
that φ(u2ℓ a (0) a x) = v2ℓ a (1) a x is non-meager. By one more
appeal to localization, there exists s ∈ 2<N with the property that
φ(u2ℓ a (0) a s a x) = v2ℓ a (1) a s a x, for comeagerly many
x ∈ 2N. As u2m+1 a (0) ⊑ u2ℓ, it follows that v2m+1 a (1) ⊑ v2ℓ. And
since v2n a (1) a r ⊑ v2m+1, it follows that v2n a (1) a r ⊑ v2ℓ. Fix
t ∈ 2<N such that v2ℓ a (1) a s = v2n a (1) a r a t, and observe that

φ(u2ℓ a (0) a s a x) = v2ℓ a (1) a s a x

= v2n a (1) a r a t a x

= φ(u2n a (0) a r a t a x),

for comeagerly many x ∈ 2N. As u2m+1 is incompatible with u2n a (0)
and extended by u2ℓ, it follows that u2ℓ is incompatible with u2n a (0),
thus u2ℓ a (0) a s a x and u2n a (0) a r a t a x are distinct
sequences with the same image under φ, a contradiction.

Remark 3.11. The same idea can, in fact, be used to rule out the
existence of a comeager Borel set C ⊆ 2N for which there is a finite-to-
one Borel function φ : C → Y whose graph is contained in R.

Remark 3.12. It is tempting to try to strengthen the conclusion of
Theorem 3.10 to show that any Borel matching of G has meager do-
main, but this is impossible. Indeed, any locally countable Borel graph
has a countable Borel edge coloring [KST99, Proposition 4.10], and at
least one of these colors must use a non-meager set of vertices.
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