DECIDABILITY AND CLASSIFICATION OF THE THEORY OF INTEGERS WITH PRIMES

ITAY KAPLAN AND SAHARON SHELAH

Abstract

We show that under Dickson's conjecture about the distribution of primes in the natural numbers, the theory $\operatorname{Th}(\mathbb{Z},+, 1,0, \operatorname{Pr})$ where Pr is a predicate for the prime numbers and their negations is decidable, unstable and supersimple. This is in contrast with $T h(\mathbb{Z},+, 0, \operatorname{Pr},<)$ which is known to be undecidable by the works of Jockusch, Bateman and Woods.

1. Introduction

It is well known that Presburger arithmetic $T_{+,<}=T h(\mathbb{Z},+, 0,1,<)$ is decidable and enjoys quantifier elimination after introducing predicates for divisibility by n for every natural number $n>1$ (see e.g., Mar02, Corollary 3.1.21]). The same is true for $T_{+}=\operatorname{Th}(\mathbb{Z},+, 0,1)$. This is, of course, in contrast to the situation with the theory of Peano arithmetics or $T h(\mathbb{Z},+, \cdot, 0,1)$ which is not decidable.

If we are interested in classifying these theories in terms of stability theory, quantifier elimination gives us that T_{+}is superstable of U-rank 1 , while $T_{+,<}$is dp-minimal (a subclass of dependent, or NIP, theories, see e.g., DGL11, Sim11, OU11]).

Over the years there has been quite extensive research on structures with universe \mathbb{Z} or \mathbb{N} and some extra structure, usually definable from Peano. A very good survey regarding questions of decidability is Bès01] and a list of such structures defining addition and multiplication is available in Kor01.

2010 Mathematics Subject Classification. 03C45, 03F30, 03B25, 11A41.

Key words and phrases. Model theory, Decidability, Primes, Dickson's conjecture.
The first author would like to thank the Israel Science foundation for partial support of this research (Grant no. $1533 / 14)$.

The research leading to these results has received funding from the European Research Council, ERC Grant Agreement n. 338821 . No. 1082 on the second author's list of publications.

Less research was done on classifying these structures stability-theoretically. For instance, in Poi14, Theorem 25] and also in [PS14] it is proved that $T h\left(\mathbb{Z},+, 0, P_{q}\right)$ is superstable of U-rank ω, where P_{q} is the set of powers of q.

In this paper we are interested in adding a predicate Pr for the primes and their negations and we consider $T_{+, \operatorname{Pr}}=\operatorname{Th}(\mathbb{Z},+, 0,1, \operatorname{Pr})$ and $T_{+, \operatorname{Pr},<}=\operatorname{Th}(\mathbb{Z},+, 0,1, \operatorname{Pr},<)$. The language $\{+, 0,1, \operatorname{Pr}\}$ allows us to express famous number-theoretic conjectures such as the twin prime conjecture (for every n, there are at least n pairs of primes/negation of primes of distance 2), and a version of Goldbach's conjecture (all even integers can be expressed as a difference or a sum of primes). Adding the order allows us to express Goldbach's conjecture in full.

Up to now, the only known results about the theory are under a strong number-theoretic conjecture known as Dickson conjecture (D) (see below), which is also the assumption in the works of Jockusch, Bateman and Woods. In BJW93, Woo13, they proved that assuming Dickson conjecture, $\operatorname{Th}(\mathbb{N},+, 0, \operatorname{Pr})$ is undecidable and even defines multiplication. It follows immediately that $T_{+, P r,<}$ is undecidable and as complicated as possible in the sense of stability theory. This also explains why we need Pr to include also the negation of primes: by relatives of the Goldbach Conjecture (which are proved, see e.g., Tao13), every positive integer greater than N is a sum of K primes for some fixed K, N, and hence the positive integers themselves are also definable from the positive primes.

Conjecture 1.1 (D). (Dickson, 1904 (Dic04) Let $k \geq 1$ and $\bar{f}=\left\langle f_{i} \mid i<k\right\rangle$ where $f_{i}(x)=$ $a_{i} x+b_{i}$ with a_{i}, b_{i} non-negative integers, $a_{i} \geq 1$ for all $i<k$. Assume that the following condition holds:
$\star_{\bar{f}}$ There does not exist any integer $n>1$ dividing all the products $\prod_{i<k} f_{i}(s)$ for every (non-negative) integer s.

Then there exist infinitely many natural numbers m such that $f_{i}(m)$ is prime for all $i<k$.

Note that in fact the condition $\star_{\bar{f}}$ follows easily from the conclusion that there are infinitely many m 's with $f_{i}(m)$ prime for all $i<k$. See also Remark 2.6.

For a discussion of this conjecture see Rib89.
Our main result is the following.
Theorem 1.2. Assuming (D), the theory $T_{+, \operatorname{Pr}}$ is decidable, unstable and supersimple of $U-\operatorname{rank} 1$.

In essence (D) implies that the set of primes is generic up to congruence conditions (while it is not generic in the sense of [CP98]), and this allows us to get quantifier elimination in a suitable language. Forking then turns out to be trivial: forking formulas are algebraic (Theorem 3.2).

To show that $T_{+, P r}$ is unstable we show that it has the independence property (see Proposition (3.6). This turns out to follow from the proof of the Green-Tao theorem about arithmetic progressions in the primes GT08 (i.e., without using (D)), as was told to us in a private communication by Tamar Ziegler (but we also show that this follows from (D)).

Acknowledgments. We would like to thank Tamar Ziegler for telling us about (D) and for her input on the Green-Tao theorem (see Proposition (3.6).

We would also like to thank Carl Jockusch, Philipp Hieronymi, Lou van den Dries and Alexis Bès for reassuring us that the results stated here are new.

2. Quantifier elimination

In this section we will prove quantifier elimination in $T_{+, P r}$ assuming (D) in a suitable language.

Let us first note some useful facts about (D).

Remark 2.1. Given a sequence of linear maps $\left\langle f_{i} \mid i<k\right\rangle$ where $f_{i}(x)=a_{i} x+b_{i}$ as in (D), $\star_{\bar{f}}$ holds iff for every prime $p<N, p$ does not divide $\prod_{i<k} f_{i}(s)$ for all $s \in \mathbb{Z}$ where $N=$ $\max \left(\left\{a_{i} \mid i<k\right\} \cup\{k\}\right)+1$.

Proof. If $\star_{\bar{f}}$ fails, then there is some prime p such that p divides $\prod_{i<k} f_{i}(s)$ for all s. Let $P(X) \in \mathbb{Z}[X]$ be the polynomial $\prod_{i<k} f_{i}(X)$. Let $P_{p}=P(\bmod p) \in \mathbb{F}_{p}[x]$ (where \mathbb{F}_{p} is the prime field of size p). It follows that $P_{p}(a)=0$ for all $a \in \mathbb{F}_{p}$. So either $P_{p}=0$ or $k \geq \operatorname{deg}\left(P_{p}\right) \geq p$, hence $p \leq k$ or $\prod_{i<k} a_{i} \equiv 0(\bmod p)$ (as the leading coefficient) which means that for some $i<k, a_{i} \geq p$, so $p<N$ and we are done.

Lemma 2.2. Assume (D). Then (D) holds also when we allow b_{i} to be negative.
Proof. Suppose that $\left\langle f_{i} \mid i<k\right\rangle$ is a sequence of linear maps $f_{i}(x)=a_{i} x+b_{i}$ where $a_{i} \geq 1$ and $b_{i} \in \mathbb{Z}$, and assume that $\star_{\bar{f}}$ holds. Let N be as in Remark 2.1. Let $K=N$! (enough to take the product of the primes below N). Suppose that $l \in \mathbb{N}$ is such that $l K+b_{i}>0$ for all
$i<k$. Let $f_{i}^{\prime}(x)=a_{i} x+a_{i} l K+b_{i}$. Then $a_{i} \geq 1, b_{i}^{\prime}=a_{i} l K+b_{i}>0$, so let us show that $\star_{\bar{f}^{\prime}}$ holds (where $\bar{f}^{\prime}=\left\langle f_{i}^{\prime} \mid i<k\right\rangle$). Note that when we compute N in Remark 2.1, we only use k and a_{i} which haven't changed, so by that remark, it is enough to check that for no prime $p<N, \prod_{i<k} f_{i}^{\prime}(s) \equiv 0(\bmod p)$ for all s. But for such p 's, $f_{i}^{\prime}(s)=f_{i}(s)+a_{i} l K \equiv f_{i}(s)$ $(\bmod p)$, so $\prod_{i<k} f_{i}^{\prime}(s) \equiv \prod_{i<k} f_{i}(s) \not \equiv 0(\bmod p)$.

By (D), there are infinitely many integers m such that $f_{i}^{\prime}(m)$ is prime for all $i<k$. But $f_{i}^{\prime}(m)=a_{i} m+a_{i} l K+b_{i}=a_{i}(m+l K)+b_{i}$. Hence substituting $m+l K$ for m we get what we wanted.

Lemma 2.3. Assuming (D), given $f_{i}(x)=a_{i} x+b_{i}$ with a_{i}, b_{i} integers, $a_{i} \geq 1$ for all $i<k$ and $g_{j}(x)=c_{j} x+d_{j}$ with c_{j}, d_{j} integers, $c_{j} \geq 1$ for all $j<k^{\prime}$, if $\star_{\bar{f}}$ holds for $\bar{f}=\left\langle p_{i} \mid i<k\right\rangle$ and $\left(a_{i}, b_{i}\right) \neq\left(c_{j}, d_{j}\right)$ for all i, j then there are infinitely many natural numbers m for which $f_{i}(m)$ is prime and $g_{j}(m)$ is composite for all $i<k, j<k^{\prime}$.

Before giving the proof, we note that this lemma generalizes Lemma 1 from BJW93, which was key in the proof there of the undecidability of $T_{+, \operatorname{Pr},<}$.

Corollary 2.4. [BJW93, Lemma 1](Assuming) Let b_{0}, \ldots, b_{n-1} be an increasing sequence of natural numbers, and assume that there is no prime p such that $\left\{b_{i}(\bmod p) \mid i<n\right\}=$ p. Then there are infinitely many natural numbers x such that $x+b_{0}, \ldots, x+b_{n-1}$ are consecutive primes.

Proof of Corollary. This is immediate from Lemma 2.3 by taking $f_{i}(x)=x+b_{i}$ and $g_{j}(x)=$ $x+c_{j}$ where c_{j} run over all numbers between the b_{j} 's.

Proof of Lemma. By induction on k^{\prime}. For $k^{\prime}=0$ there is nothing to prove by (D) and Lemma 2.2 .

Suppose the lemma is true for k^{\prime} and prove it for $k^{\prime}+1$. It is enough to prove that for any n, there is some $m>n$ such that $f_{i}(m)$ is prime for all $i<k$ and $g_{j}(m)$ is not prime for all $j<k^{\prime}$.

Fix n. We may assume by enlarging it that for no $m>n$ is it the case that $f_{i}(m)=g_{j}(m)$ for $i<k, j \leq k^{\prime}$.

Let $m>n$ be so that $f_{i}(m)$ is prime for all $i<k$ and $g_{j}(m)$ is composite for all $j<k^{\prime}$. If it happens that $g_{k^{\prime}}(m)$ is composite, then we are done, so suppose that $q=g_{k^{\prime}}(m)$ is prime.

Let $f_{i}^{\prime}(x)=a_{i}(q x+m)+b_{i}$ and $g_{j}^{\prime}(x)=c_{j}(q x+m)+d_{j}$ for $i<k$ and $j<k^{\prime}+1$. Then $g_{k^{\prime}}^{\prime}(x)=c_{j} q x+q$ is composite for all $x \geq 1$ (so that $c_{j} x+1 \geq 2$). Hence it is enough to find m^{\prime} large enough so that $f_{i}^{\prime}\left(m^{\prime}\right)$ is prime for all $i<k$ and $g_{j}^{\prime}\left(m^{\prime}\right)$ is composite for all $j<k^{\prime}$.

By the induction hypothesis, it is enough to check that $\star_{\bar{f}^{\prime}}$ holds (because $\left(a_{i} q, a_{i} m+b_{i}\right) \neq$ $\left.\left(c_{j} q, c_{j} m+d_{j}\right)\right)$. Suppose that $p>1$ is a prime which divides $\prod_{i<k} f_{i}^{\prime}(s)$ for all s. Hence $\prod_{i<k} f_{i}^{\prime}(s) \equiv 0(\bmod p)$, and if $p \neq q$, it follows (as q is invertible modulo p) that $\prod_{i<k} f_{i}(s) \equiv$ $0(\bmod p)$ for all $s-\mathrm{a}$ contradiction. If $p=q$, then $f_{i}^{\prime}(x) \equiv a_{i} m+b_{i} \equiv f_{i}(m)(\bmod q)$ for all x, hence for some $i<k, f_{i}(m)=q=g_{k^{\prime}}(m)$, contradicting our choice of m.

Expand the language $L=\{+, \operatorname{Pr}, 0,1\}$ to include the Presburger predicates P_{n} for $2 \leq$ $n<\omega$ interpreted as $P_{n}(x) \Leftrightarrow x \equiv 0(\bmod n)$, and also the predicates Pr_{n} for $2 \leq n<$ ω interpreted as $\operatorname{Pr}_{n}(x) \Leftrightarrow P_{n}(x) \wedge \operatorname{Pr}(x / n)$. We need the latter predicate in order to eliminate the quantifiers from $\varphi(x)=\exists y(n y=x \wedge \operatorname{Pr}(y))$. We also add negation (as a unary function). We need negation because of formulas of the form $\varphi(x, y)=\operatorname{Pr}(x-y)=$ $\exists w(w+y=x \wedge \operatorname{Pr}(w))$.

Let L^{*} be the resulting language $\left\{+,-, 1,0, \operatorname{Pr}, \operatorname{Pr}_{n}, P_{n} \mid 2 \leq n<\omega\right\}$, and let $T_{+, \operatorname{Pr}}^{*}$ be the complete theory of M^{*} - the structure with universe \mathbb{Z} in L^{*}. Note that all the new predicates are definable from L.

Remark 2.5. The condition $\star_{\bar{p}}$ of Dickson's conjecture is first-order expressible in L^{*}. This means that for every tuple $a_{i}, i<k$ of positive integers, there is a formula $\varphi_{\bar{a}}\left(y_{0}, \ldots, y_{k-1}\right)$ such that for any choice of $b_{i} \in \mathbb{Z}$ for $i<k, M^{*} \models \varphi_{\bar{a}}(\bar{b})$ iff $\star_{\bar{f}}$ holds where $f_{i}(x)=a_{i} x+b_{i}$. Proof. Recall Remark 2.1 and the choice of N from there (which depends only on $\left\langle a_{i} \mid i<k\right\rangle$ and k). Let $\varphi_{\bar{a}}(\bar{y})$ say that for every prime $p<N$, for some $0 \leq x<p$, for all $i<k$, $\neg P_{p}\left(a_{i} x+y_{i}\right)$. Note that $\varphi_{\bar{a}}$ is quantifier-free in L^{*} (as it contains 1).

Remark 2.6. Given $\bar{f}=\left\langle f_{i} \mid i<k\right\rangle$ as in Remark 2.1, if there are more than $2 k$ integers m such that $f_{i}(m)$ is prime or a negation of a prime, then $\star_{\bar{f}}$ holds. Indeed, otherwise there is some prime p which witnesses this, but then for some i and three different m 's, $\left|p_{i}(m)\right|=p$ - a contradiction.

Lemma 2.7. $T_{+, P r}^{*}$ eliminates quantifiers in L^{*} provided (D).
Proof. We start with the following observation.
\diamond By Remark 2.5 and Lemma 2.3, our assumption that Dickson's conjecture holds translates into a first order statement: for every n and every choice of positive integers $\left\langle a_{i} \mid i<k\right\rangle$ and $\left\langle a_{j}^{\prime} \mid j<k^{\prime}\right\rangle$ and for all $\left\langle b_{i} \mid i<k\right\rangle$ and $\left\langle b_{j}^{\prime} \mid j<k^{\prime}\right\rangle$, if $\varphi_{\bar{a}}(\bar{b})$ holds and $\left(a_{i}, b_{i}\right) \neq\left(a_{j}^{\prime}, b_{j}^{\prime}\right)$ for all i, j then there are at least n elements x with $\bigwedge_{i<k} \operatorname{Pr}\left(a_{i} x+b_{i}\right) \wedge \bigwedge_{i<k^{\prime}} \neg \operatorname{Pr}\left(a_{j}^{\prime} x+b_{j}^{\prime}\right)$. Conversely, By Remark 2.6, if there are more than $2 k$ such elements x, then $\varphi_{\bar{a}}(\bar{b})$ holds. Together, $\varphi_{\bar{a}}(\bar{b}) \wedge \bigwedge_{i, j}\left(a_{i}, b_{i}\right) \neq$ $\left(a_{j}^{\prime}, b_{j}^{\prime}\right)$ holds iff there are more than $2 k$ elements x with

$$
\bigwedge_{i<k} \operatorname{Pr}\left(a_{i} x+b_{i}\right) \wedge \bigwedge_{i<k^{\prime}} \neg \operatorname{Pr}\left(a_{j}^{\prime} x+b_{j}^{\prime}\right) .
$$

(Recall that Pr is contains the primes and their negations.)
In order to prove quantifier elimination we will use a back-and-forth criteria. Namely, suppose that $\mathfrak{C} \models T_{+, P r}^{*}$ is a monster model (very large, saturated model) and that $h: A \rightarrow B$ is an isomorphism of small substructures A, B. Given $a \in \mathfrak{C} \backslash A$ we want to extend h so that its domain contains a.

We may assume, by our choice of language (which includes $P r_{n}$ and -), that both A and B are groups such that if $c \in A$ and $\mathfrak{C} \models P_{n}(a)$ then $c / n \in A$ and similarly for B. Why? for such a c, elements of the group generated by adding c / n to A have the form $m(c / n)+b$ for $m \in \mathbb{Z}$ and $b \in A$. We have to show that the map taking c / n to $h(c) / n$ and extends h is an isomorphism. For instance, we have to show that if $\mathfrak{C} \models \operatorname{Pr}(m(c / n)+b)$ then $\mathfrak{C} \models \operatorname{Pr}(m(h(c) / n)+h(b))$. But $\mathfrak{C} \models \operatorname{Pr}(m(c / n)+b)$ iff $\mathfrak{C} \models \operatorname{Pr}_{n}(m c+n b)$. Similarly we deal with Pr_{m} and P_{m}.

Let $p^{a, A, h}(x)=\operatorname{tp}^{\mathrm{qf}}(a / A)$, and let $q^{a, A, h}(x)=h\left(p^{a, A, h}\right)$. Let $p_{\equiv}^{a, A, h}=p^{a, A, h} \upharpoonright L_{\equiv}^{*}$ and $p_{P r}^{a, A, h}=p^{a, A, h} \upharpoonright L_{P r}^{*}$, where $L_{\equiv}^{*}=L^{*} \backslash\{\operatorname{Pr}, \operatorname{Pr} \mid 2 \leq n<\omega\}$ and $L_{P r}^{*}=L^{*} \backslash\left\{P_{n} \mid 2 \leq n<\omega\right\}$, so that $p^{a, A, h}=p_{\overline{=}}^{a, A, h} \cup p_{P r}^{a, A, h}$, and we have to realize $q^{a, A, h}$.

Claim 2.8. It is enough to prove that we can realize $q_{P r}^{a, A, h}=h\left(p_{P r}^{a, A, h}\right)$ for all A, a and h as above.

Proof. Easily, as we included 1 in the language, $q_{\cong}^{a, A, h}$ is isolated by $\{x \neq c \mid c \in B\}$ and equations of the form $x \equiv k(\bmod n)$ for $k<n$, and for every $n<\omega$ there is exactly one $k<n$ with such an equation appearing in $q^{a, A, h}$. Also, every finite set of such equations is implied by one such equation (e.g., if the equations are $\left\{x \equiv k_{i}(\bmod n)_{i} \mid i<s\right\}$ then take
$x \equiv k\left(\bmod \prod\right)_{i<s} n_{i}$ where k is such that this equation is in $\left.q^{a, A, h}\right)$. Hence it is enough to show that $x \equiv k(\bmod n) \cup q_{P r}^{a, A, h}(x)$ is consistent ($q_{P r}^{a, A, h}$ already contains $\{x \neq c \mid c \in B\}$). As $a \equiv k(\bmod n), b=(a-k) / n \in \mathfrak{C}$. Let $p^{b, A, h}=\operatorname{tp}^{\mathrm{qf}}(b / A)$ so by our assumption there is some $d \in \mathfrak{C}$ such that $d \models h\left(p^{b, A, h}\right)_{P r}$. Then $n d+k \models q_{P r}^{a, A, h}(x)$ and of course satisfies the equation $x \equiv k(\bmod n)$.

$$
\text { Let } p_{P r_{0}}^{a, A, h}=p^{a, A, h} \upharpoonright L_{P r_{0}} \text { where } L_{P r_{0}}=L_{P r} \backslash\left\{P r_{n} \mid 2 \leq n<\omega\right\} \text {. }
$$

Claim 2.9. It is enough to prove that we can realize $q_{P r_{0}}^{a, A, h}=h\left(p_{P r_{0}}^{a, A, h}\right)$ for all A, a and h as above.

Proof. This is similar to Claim 2.8, It is enough to show that $q_{P r_{0}}^{a, A, h}(x) \cup \Sigma(x)$ is consistent where Σ is a finite set of formulas from $q_{P r}^{a, A, h} \backslash q_{P r_{0}}^{a, A, h}$. So Σ consists of formulas of the form $\operatorname{Pr}_{n}(m x+c)$ or its negation for $m \in \mathbb{Z}, 1<n \in \mathbb{N}$ and $c \in B$. Without loss of generality, by replacing the n 's with their product N and $\operatorname{Pr}_{n}(m x+c)$ by $\operatorname{Pr}_{N}((N / n)(m x+c)$), we may assume that all the n 's appearing in Σ are equal to $n>1$. Let $b=(a-k) / n$ where $a \equiv k$ $(\bmod n)$ and $k<n$. Let $p^{b, A, h}=\operatorname{tp}^{\mathrm{qf}}(b / A)$. By our assumption there is some $d \in \mathfrak{C}$ such that $d \models h\left(p^{b, A, h}\right)_{P r_{0}}$. Let us check that $n d+k \models q_{P r_{0}}^{a, A, h}(x) \cup \Sigma(x)$.

First, if $\varphi(x, c) \in q_{P r_{0}}^{a, h}(x)(c$ a tuple from $B)$ then $\mathfrak{C} \models \varphi\left(a, h^{-1}(c)\right)$ so that $\mathfrak{C} \models$ $\varphi\left(n b+k, h^{-1}(c)\right)$ so $d \models \varphi(n x+k, c)$ so $n d+k \models \varphi(x, c)$.

Now, suppose that $\operatorname{Pr}_{n}(m x+c) \in \Sigma$.
Then $\mathfrak{C} \models \operatorname{Pr}_{n}\left(m a+h^{-1}(c)\right)$, so $\mathfrak{C} \models \operatorname{Pr} r_{n}\left(m(n b+k)+h^{-1}(c)\right)$. Hence $m(n b+k)+$ $h^{-1}(c)$ is divisible by n which means that $m k+h^{-1}(c)$ is divisible by n, and as h is an isomorphism (and the language includes 1), so is $m k+c$, hence $m(n d+k)+c$ is also divisible by n. Moreover the quotient $e=\left[m k+h^{-1}(c)\right] / n \in A$ maps to $e^{\prime}=[m k+c] / n \in B$. As $\mathfrak{C} \models \operatorname{Pr}(m b+e)$, it follows that $\mathfrak{C} \models \operatorname{Pr}\left(m d+e^{\prime}\right)$, so that $\mathfrak{C} \models \operatorname{Pr}_{n}(m(n d+k)+c)$. The same logic works if $\neg \operatorname{Pr}_{n}(m x+c) \in \Sigma$.

Divide into cases.
Case 1. There are infinitely many solutions to $p_{P r_{0}}^{a, A, h}$.
Given any finite set $\Sigma \subseteq q_{P r_{0}}$, it has the form

$$
\left\{\operatorname{Pr}\left(m_{i} x+c_{i}\right) \mid i<k\right\} \cup\left\{\neg \operatorname{Pr}\left(m_{j}^{\prime} x+c_{j}^{\prime}\right) \mid j<k^{\prime}\right\}
$$ where $m_{i}, m_{j}^{\prime} \in \mathbb{Z}$ and $c_{i}, c_{j}^{\prime} \in B$ (it also includes formulas of the form $x \neq c$). As ${ }^{1}$ $\mathfrak{C} \models \forall x \operatorname{Pr}(x) \leftrightarrow \operatorname{Pr}(-x)$, we may assume that $m_{i}, m_{j}^{\prime} \geq 1$. Also, it is of course impossible that $\left(m_{i}, c_{i}\right)=\left(m_{j}^{\prime}, c_{j}^{\prime}\right)$. By \diamond, it is enough to check that $\mathfrak{C} \models \varphi_{\bar{m}}(\bar{c})$ where $\bar{m}=\left\langle m_{i} \mid i<k\right\rangle$ and $\bar{c}=\left\langle c_{i} \mid i<k\right\rangle$ and $\varphi_{\bar{m}}$ is from Remark [2.5, As $\varphi_{\bar{m}}$ is quantifier-free, and as $\mathfrak{C} \models \varphi_{\bar{m}}\left(h^{-1}(\bar{c})\right.$) (because $h^{-1}(\Sigma)$ has infinitely many solutions and by \diamond), we are done.

Case 2. There are only finitely many solutions to $p_{P_{r_{0}}}$.
By \diamond, and as $\mathfrak{C} \models \forall x \operatorname{Pr}(x) \leftrightarrow \operatorname{Pr}(-x)$, there are some $m_{i} \geq 1, e_{i} \in A$ such that $\left\{\operatorname{Pr}\left(m_{i} x+e_{i}\right) \mid i<k\right\}$ already has finitely many solutions. Hence $\varphi_{\bar{m}}(\bar{e})$ fails, so for some $p<N$ (see Remark [2.5), there is some $i<k$ such that $P_{p}\left(m_{i} a+e_{i}\right)$. But as $\operatorname{Pr}\left(m_{i} a+e_{i}\right)$, it must be that $\pm p=m_{i} a+e_{i}$. As $\pm p, e_{i} \in A$, and as A is closed under dividing by m_{i}, it follows that $a \in A$, and we are done.

3. Decidability and classification

We start with the decidability result that is now almost immediate.
Corollary 3.1. The theory $T_{+, \text {Pr }}^{*}$ is decidable and hence so is $T_{+, \operatorname{Pr}}$ provided that Dickson's conjecture holds.

Proof. Observing the proof of Lemma [2.7, we see that we can recursively enumerate the axioms that we used. Let us denote this set by Σ. Let Σ^{\prime} be the complete quantifier-free theory of \mathbb{Z} in L^{*}. Then Σ^{\prime} is recursive and contained in $T_{+, \operatorname{Pr}}^{*}$.

Then the proof gives us that if M_{1}, M_{2} are two saturated models of $\Sigma \cup \Sigma^{\prime}$, then they are isomorphic (start with A, B being the structures generated by 1 in M_{1}, M_{2} respectively). This implies that $\Sigma \cup \Sigma^{\prime}$ is complete and hence decidable.

Now we turn to classification in the sense of She90, where one is interested in classifying theories by finding "classes" having interesting properties in the class and outside of it. The most studied such class is that of stable theories, which is a very well-behaved and wellunderstood class. Containing it is the class of simple theories, and among them the "simplest"

[^0]simple theories are supersimpe of U-rank 1 . For the definition of simple and supersimple theories we refer the reader to e.g., [TZ12, Chapter 7, Definition 8.6.3].

Theorem 3.2. Assuming (D), $T_{+, P r}^{*}$ (and $T_{+, P r}$) is supersimple of U-rank 1: if $\varphi(x, a)$ forks over A where x is a singleton and a is some tuple from A then φ is algebraic (i.e., $\left.\varphi \vdash \bigvee_{i<k} x=c_{i}\right)$.

Proof. The proof is similar to that of Lemma 2.7.
Let $N \supseteq A$ be an $|A|^{+}$-saturated model. Suppose that φ forks over A but is not algebraic. Extend φ to a type $p(x) \in S(N)$ which is non-algebraic over N. So p forks over A, and hence it divides over A. Hence it divides over acl (A) (see e.g., [CK12, Proof of Lemma 3.21]), so we may assume that $A=\operatorname{acl}(A)$. By quantifier elimination we may assume that p is quantifier free.

Recalling the notation from the proof of Lemma [2.7, we have the following claim.

Claim 3.3. It is enough to prove that for every type $q(x) \in S(N)$, if $q_{P r}=q \upharpoonright L_{P r}^{*}$ divides over A, then $q_{P r}$ is algebraic.

Proof. We want to show that p is algebraic, thus getting a contradiction. Let $\left\langle N_{i} \mid i<\omega\right\rangle$ be an indiscernible sequence over A starting with $N_{0}=N$ in \mathfrak{C}, which witnesses that p divides over A.

Let $p_{\equiv}=p \upharpoonright L_{\equiv}^{*}$.
As $\left.p_{\equiv}\right|_{A} \mid \vdash p_{\equiv} \vdash \bigcup\left\{p_{\equiv}\left(x, N_{i}\right) \mid i<\omega\right\}$, it follows that $\bigcup\left\{p_{P r}\left(x, N_{i}\right) \mid i<\omega\right\} \cup \Sigma$ is inconsistent for some finite Σ, which is isolated by a formula of the form $x \equiv k(\bmod n)$ for some $k<n$.

Let $c \vDash p$. Then $c \equiv k(\bmod n)$, and let $d=(c-k) / n$. Then $[\operatorname{tg}(d / N)]_{P r}$ divides over A as witnessed by the same sequence $\left\langle N_{i}\right| i\langle\omega\rangle$ (let $r=\operatorname{tp}(d / N)$, then if $d^{\prime} \models$ $\bigcup\left\{r_{P r}\left(x, N_{i}\right) \mid i<\omega\right\}$ then $\left.n d^{\prime}+k \models \Sigma \cup \bigcup\left\{p_{P r}\left(x, N_{i}\right) \mid i<\omega\right\}\right)$. Hence, $[\operatorname{tg}(d / N)]_{P r}$ is algebraic, i.e., $d \in N$, but then so is c.

Claim 3.4. It is enough to prove that for every type $q(x) \in S(N)$, if $q_{P r_{0}}=q \upharpoonright L_{P r_{0}}^{*}$ divides over A, then $q_{P r_{0}}$ is algebraic.

Proof. This is similar to the proof of Claim 3.3,

By Claim 3.3, it is enough to prove that for any $q(x) \in S(N)$, if $q_{P r}$ divides over A then $q_{P r}$ is algebraic. Suppose that $q_{P r}$ divides over A and let $\left\langle N_{i} \mid i<\omega\right\rangle$ be as in the proof of Claim 3.3. There is some finite set of formulas $\Sigma(x, N) \subseteq q_{P r} \backslash q_{P r_{0}}$ such that $\bigcup\left\{q_{P r_{0}}\left(x, N_{i}\right) \cup \Sigma\left(x, N_{i}\right) \mid i<\omega\right\}$ is inconsistent. As in the proof of Lemma 2.7, we may assume that for some $n \in \mathbb{N}, \Sigma$ consists of formulas of the form $\operatorname{Pr}(m x+c)$ for $c \in N$ and $m \in \mathbb{Z}$. Let $d \models q$, and assume that $d \equiv k(\bmod n)$ for $k<n$. Then for some $e \in \mathfrak{C}, d=n e+k$, and $[\operatorname{tg}(e / N)]_{P r_{0}}$ divides over A (let $r=\operatorname{tp}(e / N)$, then if $e^{\prime} \models \bigcup\left\{r_{P r_{0}}\left(x, N_{i}\right) \mid i<\omega\right\}$ then $n e^{\prime}+k \models \bigcup\left\{q_{P r_{0}}\left(x, N_{i}\right) \cup \Sigma\left(x, N_{i}\right) \mid i<\omega\right\}$, as in the proof of Lemma 2.7). Hence this type is algebraic and hence so is q.

Claim 3.5. It is enough to prove that if $\Sigma(x)$ is a finite set of formulas of the form $\operatorname{Pr}(m x+c)$ or $\neg \operatorname{Pr}(m x+c)$ for $m \in \mathbb{Z}$ and $c \in N$, which has infinitely many solutions, then Σ does not divide over A.

Proof. Use Claim 3.4. We have to prove that if $q_{P r_{0}}$ divides over A then it is algebraic. Suppose it is not, and let $\Sigma \subseteq q_{P r_{0}}$ be finite such that $\Sigma(x) \cup\{x \neq c \mid c \in N\}$ divides over A. Then Σ has infinitely many solutions and is of the right form, so we are done.

Let $\Sigma(x)$ be as in Claim 3.5,
Then $\Sigma\left(x, \bar{c}, \bar{c}^{\prime}\right)=\left\{\operatorname{Pr}\left(m_{i} x+c_{i}\right) \mid i<k\right\} \cup\left\{\neg \operatorname{Pr}\left(m_{j}^{\prime} x+c_{j}^{\prime}\right) \mid j<k^{\prime}\right\}$, for $m_{i}, m_{j}^{\prime} \in \mathbb{Z}$ and $c_{i}, c_{j}^{\prime} \in N$. Now take an indiscernible sequence $\left\langle\bar{c}_{\alpha} \mid \alpha<\omega\right\rangle$ starting with $\left\langle c_{i} \mid i<k\right\rangle \frown$ $\left\langle c_{j}^{\prime} \mid j<k^{\prime}\right\rangle$ over A. Consider a finite union of the form $\bigcup\left\{\Sigma\left(x, \bar{c}_{\alpha}, \bar{c}_{\alpha}^{\prime}\right) \mid \alpha<l\right\}$. Then by indiscernibility it cannot be that $\left(m_{i}, c_{i, \alpha}\right)=\left(m_{j}^{\prime}, c_{j, \beta}^{\prime}\right)$ for some $\alpha, \beta<l, i<k$ and $j<k^{\prime}$. Hence by (D), it is enough to show that $\star_{\bar{f}}$ holds for $\bar{f}=\left\langle f_{i, \alpha} \mid i<k, \alpha<l\right\rangle$ where $f_{i, \alpha}(x)=$ $m_{i} x+c_{i, \alpha}$, that is, we have to show that $\varphi_{\bar{m}}\left(\left\langle\bar{c}_{\alpha} \mid \alpha<l\right\rangle\right)$ holds (see Remark 2.5).

We have to check that if r is a prime, smaller than some natural number which depends only on \bar{m}, k and l, (so in particular a standard prime number), for some $0 \leq t<r$, for all $i<k$ and $\alpha<l, m_{i} t+c_{i, \alpha} \not \equiv 0(\bmod r)$. If this does not happen for r, then, as $c_{i, \alpha} \equiv c_{i}$ $(\bmod r)$, we get that for all $0 \leq t<r$, for some $i<k, m_{i} t+c_{i} \equiv 0(\bmod r)$. But this means that Σ cannot have infinitely many solutions by Remark 2.6 - contradiction.

We move to NIP. We will show that $T_{+, P r}$ has the independence property IP (and thus the theory is not NIP), and even the n-independence property. This shows in particular that
$T_{+, P r}$ is unstable. We will recall the definition in the proof of Theorem 3.7, but the interested reader may find more in [Sim15 (about NIP) and [CPT14] (on n-dependence).

We will use the following proposition.
Proposition 3.6. For all $n<\omega$ and $s \subseteq n$ there is an arithmetic progression $\langle a t+b \mid t<n\rangle$ of natural numbers such that $a t+b$ is prime iff $t \in s$.

Proof. As we said in the introduction, according to a private communication with Tamar Ziegler, this follows from the proof of the Green-Tao theorem about arithmetic progression of primes [GT08].

We give a very detail-free explanation of why this should be true. Heuristically, the primes below N behave like a random set of density $1 / \log N$, so the number of $x, d \leq N$ such that $x+d, x+2 d, \ldots, x+k d$ are all primes is $N^{2} /(\log N)^{k}$. If we skip the i 'th element in the sequence (i.e., we do not ask it to be prime), then the number is $N^{2} /(\log N)^{k-1}$. Hence, we may remove all the prime arithmetic progressions and still find some sequence where i 'th element is not prime.

We will however give a proof that relies on (D). Fix n and s. Let $b=n!+1$. Use Lemma 2.3, with the linear maps $x+b, 2 x+b, \ldots, n x+b$. By Remark 2.1, it is enough to check that for all primes $p \leq n$, for some $t<p, k t+b \not \equiv 0(\bmod p)$ for all $1 \leq k \leq n$. But $b \equiv 1(\bmod p)$ so this holds for $t=0$.

Theorem 3.7. (Without assuming Dickson's conjecture) $T_{+, P r}$ has the independence property and even the n-independence property. Hence so does $T_{+, P r}^{*}$.

Proof. We use only Proposition 3.6. To say that T is n-independent, we have to find a formula $\varphi\left(x, y_{1}, \ldots, y_{n}\right)$ such that for all $k<\omega$, there are tuples $a_{i, j}$ for $i<n, j<k$ inside some model $M \models T$ such that for every subset $s \subseteq k^{n}$, there is some $b_{s} \in M$ with $M \models \varphi\left(b_{s}, a_{0, j_{0}}, \ldots a_{n-1, j_{n-1}}\right)$ iff $\left(j_{0}, \ldots, j_{n-1}\right) \in s$. This of course implies the independent property.
The formula we take is $\varphi\left(x, y_{1}, \ldots, y_{n}\right)=\operatorname{Pr}\left(x+y_{1}+\cdots+y_{n}\right)$, and we work in \mathbb{Z}.
Given k, by Proposition 3.6 there is an arithmetic progression of length $k^{n} \cdot 2^{\left(k^{n}\right)}$, which we write as $\left\langle\bar{c}_{s} \mid s \subseteq k^{n}\right\rangle$ where $\bar{c}_{s}=\left\langle c_{s, l} \mid l<k^{n}\right\rangle$, such that for each subset $s \subseteq k^{n}$ and $l<k^{n}$, $\operatorname{Pr}\left(c_{s, l}\right)$ iff $\left(j_{0}, \ldots, j_{n-1}\right) \in s$ where $j_{i}<k$ are (unique) such that $l=\sum_{i<n} j_{i} k^{i}$.

Suppose this progression has difference $d>0$. Now we choose $a_{i, j}$ for $i<n, j<k$ and b_{s} for $s \subseteq k^{n}$ as follows.

Let $a_{0, j}=j \cdot d$ for $j<k$ and in general, for $i<n, a_{i, j}=j d \cdot k^{i}$. Let $b_{s}=c_{s, 0}$.
Now note that

$$
c_{s, 0}+\sum_{i<n}\left(j_{i} d\right) k^{i}=c_{s, \sum_{i<n} j_{i} \cdot k^{i}} .
$$

And so we are done.

References

[Bès01] Alexis Bès. A survey of arithmetical definability. Bull. Belg. Math. Soc. Simon Stevin, (suppl.):1-54, 2001. A tribute to Maurice Boffa.
[BJW93] P. T. Bateman, C. G. Jockusch, and A. R. Woods. Decidability and undecidability of theories with a predicate for the primes. J. Symbolic Logic, 58(2):672-687, 1993.
[CK12] Artem Chernikov and Itay Kaplan. Forking and dividing in NTP_{2} theories. Journal of Symbolic Logic, 77(1):1-20, 2012.
[CP98] Z. Chatzidakis and A. Pillay. Generic structures and simple theories. Ann. Pure Appl. Logic, 95(1-3):71-92, 1998.
[CPT14] Artem Chernikov, Daniel Palacin, and Kota Takeuchi. On n-dependence. 2014. arXiv:1411.0120
[DGL11] Alfred Dolich, John Goodrick, and David Lippel. Dp-minimality: basic facts and examples. Notre Dame J. Form. Log., 52(3):267-288, 2011.
[Dic04] L. E. Dickson. A new extension of Dirichlet's theorem on prime numbers. Messenger of mathematics, 33:155-161, 1904.
[GT08] Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2), 167(2):481-547, 2008.
[Kor01] Ivan Korec. A list of arithmetical structures complete with respect to the first-order definability. Theoret. Comput. Sci., 257(1-2):115-151, 2001. Weak arithmetics.
[Mar02] David Marker. Model Theory: An Introduction. Springer, 2002.
[OU11] Alf Onshuus and Alexander Usvyatsov. On dp-minimality, strong dependence and weight. Journal of symbolic logic, 76(3):737-758, 2011.
[Poi14] Bruno Poizat. Supergénérix. J. Algebra, 404:240-270, 2014. À la mémoire d'Éric Jaligot. [In memoriam Éric Jaligot].
[PS14] Daniel Palacin and Rizos Sklinos. On superstable expansions of free abelian groups. preprint, arXiv: 1405.0568, 2014.
[Rib89] Paulo Ribenboim. The book of prime number records. Springer-Verlag, New York, second edition, 1989.
[She90] Saharon Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, second edition, 1990.
[Sim11] Pierre Simon. On dp-minimal ordered structures. Journal of Symbolic Logic, 76(2):448-460, 2011.
[Sim15] Pierre Simon. A Guide to NIP Theories (Lecture Notes in Logic). Cambridge University Press, 2015.
[Tao13] Terence Tao. Every odd number greater than 1 is the sum of at most five primes. Mathematics of Computation, 83(286):997-1038, jun 2013.
[TZ12] Katrin Tent and Martin Ziegler. A course in model theory, volume 40 of Lecture Notes in Logic. Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012.
[Woo13] Alan Robert Woods. Some problems in logic and number theory, and their connections. In New studies in weak arithmetics, volume 211 of CSLI Lecture Notes, pages 271-388. CSLI Publ., Stanford, CA, 2013. Dissertation, University of Manchester, Manchester, 1981, With an obituary by Costas Dimitracopoulos.

Itay Kaplan, The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel

E-mail address: kaplan@math.huji.ac.il
URL: https://sites.google.com/site/itay80/

Saharon Shelah, The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel

Saharon Shelah, Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

E-mail address: shelah@math.huji.ac.il
URL: http://shelah.logic.at/

[^0]: ${ }^{1}$ Here we use the fact that Pr contains both the primes and their negations.

