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DECIDABILITY AND CLASSIFICATION OF THE THEORY OF

INTEGERS WITH PRIMES

ITAY KAPLAN AND SAHARON SHELAH

Abstract. We show that under Dickson’s conjecture about the distribution of primes in

the natural numbers, the theory Th (Z,+, 1, 0, P r) where Pr is a predicate for the prime

numbers and their negations is decidable, unstable and supersimple. This is in contrast with

Th (Z,+, 0, P r,<) which is known to be undecidable by the works of Jockusch, Bateman and

Woods.

1. Introduction

It is well known that Presburger arithmetic T+,< = Th (Z,+, 0, 1, <) is decidable and en-

joys quantifier elimination after introducing predicates for divisibility by n for every natural

number n > 1 (see e.g., [Mar02, Corollary 3.1.21]). The same is true for T+ = Th (Z,+, 0, 1).

This is, of course, in contrast to the situation with the theory of Peano arithmetics or

Th (Z,+, ·, 0, 1) which is not decidable.

If we are interested in classifying these theories in terms of stability theory, quantifier

elimination gives us that T+ is superstable of U -rank 1, while T+,< is dp-minimal (a subclass

of dependent, or NIP, theories, see e.g., [DGL11, Sim11, OU11]).

Over the years there has been quite extensive research on structures with universe Z or N

and some extra structure, usually definable from Peano. A very good survey regarding ques-

tions of decidability is [Bès01] and a list of such structures defining addition and multiplication

is available in [Kor01].
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Less research was done on classifying these structures stability-theoretically. For instance,

in [Poi14, Theorem 25] and also in [PS14] it is proved that Th (Z,+, 0, Pq) is superstable of

U -rank ω, where Pq is the set of powers of q.

In this paper we are interested in adding a predicate Pr for the primes and their negations

and we consider T+,P r = Th (Z,+, 0, 1, P r) and T+,P r,< = Th (Z,+, 0, 1, P r,<). The language

{+, 0, 1, P r} allows us to express famous number-theoretic conjectures such as the twin prime

conjecture (for every n, there are at least n pairs of primes/negation of primes of distance 2),

and a version of Goldbach’s conjecture (all even integers can be expressed as a difference or

a sum of primes). Adding the order allows us to express Goldbach’s conjecture in full.

Up to now, the only known results about the theory are under a strong number-theoretic

conjecture known as Dickson conjecture (D) (see below), which is also the assumption in the

works of Jockusch, Bateman and Woods. In [BJW93, Woo13], they proved that assuming

Dickson conjecture, Th (N,+, 0, P r) is undecidable and even defines multiplication. It follows

immediately that T+,P r,< is undecidable and as complicated as possible in the sense of stability

theory. This also explains why we need Pr to include also the negation of primes: by relatives

of the Goldbach Conjecture (which are proved, see e.g., [Tao13]), every positive integer greater

than N is a sum of K primes for some fixed K,N , and hence the positive integers themselves

are also definable from the positive primes.

Conjecture 1.1 (D). (Dickson, 1904 [Dic04]) Let k ≥ 1 and f̄ = 〈fi | i < k〉 where fi (x) =

aix + bi with ai, bi non-negative integers, ai ≥ 1 for all i < k. Assume that the following

condition holds:

⋆f̄ There does not exist any integer n > 1 dividing all the products
∏

i<k fi (s) for every

(non-negative) integer s.

Then there exist infinitely many natural numbers m such that fi (m) is prime for all i < k.

Note that in fact the condition ⋆f̄ follows easily from the conclusion that there are infinitely

many m’s with fi (m) prime for all i < k. See also Remark 2.6.

For a discussion of this conjecture see [Rib89].

Our main result is the following.

Theorem 1.2. Assuming (D), the theory T+,P r is decidable, unstable and supersimple of

U -rank 1.
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In essence (D) implies that the set of primes is generic up to congruence conditions (while

it is not generic in the sense of [CP98]), and this allows us to get quantifier elimination in

a suitable language. Forking then turns out to be trivial: forking formulas are algebraic

(Theorem 3.2).

To show that T+,P r is unstable we show that it has the independence property (see Proposi-

tion 3.6). This turns out to follow from the proof of the Green-Tao theorem about arithmetic

progressions in the primes [GT08] (i.e., without using (D)), as was told to us in a private

communication by Tamar Ziegler (but we also show that this follows from (D)).

Acknowledgments. We would like to thank Tamar Ziegler for telling us about (D) and for

her input on the Green-Tao theorem (see Proposition 3.6).

We would also like to thank Carl Jockusch, Philipp Hieronymi, Lou van den Dries and

Alexis Bès for reassuring us that the results stated here are new.

2. Quantifier elimination

In this section we will prove quantifier elimination in T+,P r assuming (D) in a suitable

language.

Let us first note some useful facts about (D).

Remark 2.1. Given a sequence of linear maps 〈fi | i < k〉 where fi (x) = aix + bi as in (D),

⋆f̄ holds iff for every prime p < N , p does not divide
∏

i<k fi (s) for all s ∈ Z where N =

max ({ai | i < k} ∪ {k}) + 1.

Proof. If ⋆f̄ fails, then there is some prime p such that p divides
∏

i<k fi (s) for all s. Let

P (X) ∈ Z [X] be the polynomial
∏

i<k fi (X). Let Pp = P (mod p) ∈ Fp [x] (where Fp is

the prime field of size p). It follows that Pp (a) = 0 for all a ∈ Fp. So either Pp = 0 or

k ≥ deg (Pp) ≥ p, hence p ≤ k or
∏

i<k ai ≡ 0 (mod p) (as the leading coefficient) which

means that for some i < k, ai ≥ p, so p < N and we are done. �

Lemma 2.2. Assume (D). Then (D) holds also when we allow bi to be negative.

Proof. Suppose that 〈fi | i < k〉 is a sequence of linear maps fi (x) = aix + bi where ai ≥ 1

and bi ∈ Z, and assume that ⋆f̄ holds. Let N be as in Remark 2.1. Let K = N ! (enough to

take the product of the primes below N). Suppose that l ∈ N is such that lK + bi > 0 for all
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i < k. Let f ′

i (x) = aix+ ailK + bi. Then ai ≥ 1, b′i = ailK + bi > 0, so let us show that ⋆f̄ ′

holds (where f̄ ′ = 〈f ′

i | i < k〉). Note that when we compute N in Remark 2.1, we only use

k and ai which haven’t changed, so by that remark, it is enough to check that for no prime

p < N ,
∏

i<k f
′

i (s) ≡ 0 (mod p) for all s. But for such p’s, f ′

i (s) = fi (s) + ailK ≡ fi (s)

(mod p), so
∏

i<k f
′

i (s) ≡
∏

i<k fi (s) 6≡ 0 (mod p).

By (D), there are infinitely many integers m such that f ′

i (m) is prime for all i < k. But

f ′

i (m) = aim+ ailK + bi = ai (m+ lK) + bi. Hence substituting m+ lK for m we get what

we wanted. �

Lemma 2.3. Assuming (D), given fi (x) = aix+ bi with ai, bi integers, ai ≥ 1 for all i < k

and gj (x) = cjx+ dj with cj , dj integers, cj ≥ 1 for all j < k′, if ⋆f̄ holds for f̄ = 〈pi | i < k〉

and (ai, bi) 6= (cj, dj) for all i, j then there are infinitely many natural numbers m for which

fi (m) is prime and gj (m) is composite for all i < k, j < k′.

Before giving the proof, we note that this lemma generalizes Lemma 1 from [BJW93], which

was key in the proof there of the undecidability of T+,P r,<.

Corollary 2.4. [BJW93, Lemma 1](Assuming (D)) Let b0, . . . , bn−1 be an increasing sequence

of natural numbers, and assume that there is no prime p such that {bi (mod p) | i < n} =

p. Then there are infinitely many natural numbers x such that x + b0, . . . , x + bn−1 are

consecutive primes.

Proof of Corollary. This is immediate from Lemma 2.3 by taking fi (x) = x+ bi and gj (x) =

x+ cj where cj run over all numbers between the bj’s. �

Proof of Lemma. By induction on k′. For k′ = 0 there is nothing to prove by (D) and Lemma

2.2.

Suppose the lemma is true for k′ and prove it for k′ +1. It is enough to prove that for any

n, there is some m > n such that fi (m) is prime for all i < k and gj (m) is not prime for all

j < k′.

Fix n. We may assume by enlarging it that for no m > n is it the case that fi (m) = gj (m)

for i < k, j ≤ k′.

Let m > n be so that fi (m) is prime for all i < k and gj (m) is composite for all j < k′. If

it happens that gk′ (m) is composite, then we are done, so suppose that q = gk′ (m) is prime.
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Let f ′

i (x) = ai (qx+m) + bi and g′j (x) = cj (qx+m) + dj for i < k and j < k′ + 1. Then

g′k′ (x) = cjqx+ q is composite for all x ≥ 1 (so that cjx+ 1 ≥ 2). Hence it is enough to find

m′ large enough so that f ′

i (m
′) is prime for all i < k and g′j (m

′) is composite for all j < k′.

By the induction hypothesis, it is enough to check that ⋆f̄ ′ holds (because (aiq, aim+ bi) 6=

(cjq, cjm+ dj)). Suppose that p > 1 is a prime which divides
∏

i<k f
′

i (s) for all s. Hence
∏

i<k f
′

i (s) ≡ 0 (mod p), and if p 6= q, it follows (as q is invertible modulo p) that
∏

i<k fi (s) ≡

0 (mod p) for all s — a contradiction. If p = q, then f ′

i (x) ≡ aim+ bi ≡ fi (m) (mod q) for

all x, hence for some i < k, fi (m) = q = gk′ (m), contradicting our choice of m. �

Expand the language L = {+, P r, 0, 1} to include the Presburger predicates Pn for 2 ≤

n < ω interpreted as Pn (x) ⇔ x ≡ 0 (mod n), and also the predicates Prn for 2 ≤ n <

ω interpreted as Prn (x) ⇔ Pn (x) ∧ Pr (x/n). We need the latter predicate in order to

eliminate the quantifiers from ϕ (x) = ∃y (ny = x ∧ Pr (y)). We also add negation (as a

unary function). We need negation because of formulas of the form ϕ (x, y) = Pr (x− y) =

∃w (w + y = x ∧ Pr (w)).

Let L∗ be the resulting language {+,−, 1, 0, P r, Prn, Pn | 2 ≤ n < ω}, and let T ∗

+,P r be the

complete theory ofM∗ — the structure with universe Z in L∗. Note that all the new predicates

are definable from L.

Remark 2.5. The condition ⋆p̄ of Dickson’s conjecture is first-order expressible in L∗. This

means that for every tuple ai, i < k of positive integers, there is a formula ϕā (y0, . . . , yk−1)

such that for any choice of bi ∈ Z for i < k, M∗ |= ϕā

(

b̄
)

iff ⋆f̄ holds where fi (x) = aix+ bi.

Proof. Recall Remark 2.1 and the choice of N from there (which depends only on 〈ai | i < k〉

and k). Let ϕā (ȳ) say that for every prime p < N , for some 0 ≤ x < p, for all i < k,

¬Pp (aix+ yi). Note that ϕā is quantifier-free in L∗ (as it contains 1). �

Remark 2.6. Given f̄ = 〈fi | i < k〉 as in Remark 2.1, if there are more than 2k integers m

such that fi (m) is prime or a negation of a prime, then ⋆f̄ holds. Indeed, otherwise there is

some prime p which witnesses this, but then for some i and three different m’s, |pi (m)| = p

— a contradiction.

Lemma 2.7. T ∗

+,P r eliminates quantifiers in L∗ provided (D).

Proof. We start with the following observation.
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♦ By Remark 2.5 and Lemma 2.3, our assumption that Dickson’s conjecture holds

translates into a first order statement: for every n and every choice of positive in-

tegers 〈ai | i < k〉 and
〈

a′j

∣

∣

∣
j < k′

〉

and for all 〈bi | i < k〉 and
〈

b′j

∣

∣

∣
j < k′

〉

, if ϕā

(

b̄
)

holds and (ai, bi) 6=
(

a′j , b
′

j

)

for all i, j then there are at least n elements x with
∧

i<k Pr (aix+ bi) ∧
∧

i<k′ ¬Pr
(

a′jx+ b′j

)

. Conversely, By Remark 2.6, if there are

more than 2k such elements x, then ϕā

(

b̄
)

holds. Together, ϕā

(

b̄
)

∧
∧

i,j (ai, bi) 6=
(

a′j , b
′

j

)

holds iff there are more than 2k elements x with

∧

i<k

Pr (aix+ bi) ∧
∧

i<k′

¬Pr
(

a′jx+ b′j
)

.

(Recall that Pr is contains the primes and their negations.)

In order to prove quantifier elimination we will use a back-and-forth criteria. Namely, suppose

that C |= T ∗

+,P r is a monster model (very large, saturated model) and that h : A → B is an

isomorphism of small substructures A,B. Given a ∈ C\A we want to extend h so that its

domain contains a.

We may assume, by our choice of language (which includes Prn and −), that both A and

B are groups such that if c ∈ A and C |= Pn (a) then c/n ∈ A and similarly for B. Why?

for such a c, elements of the group generated by adding c/n to A have the form m (c/n) + b

for m ∈ Z and b ∈ A. We have to show that the map taking c/n to h (c) /n and extends

h is an isomorphism. For instance, we have to show that if C |= Pr (m (c/n) + b) then

C |= Pr (m (h (c) /n) + h (b)). But C |= Pr (m (c/n) + b) iff C |= Prn (mc+ nb). Similarly we

deal with Prm and Pm.

Let pa,A,h (x) = tpqf (a/A), and let qa,A,h (x) = h
(

pa,A,h
)

. Let pa,A,h
≡ = pa,A,h ↾ L∗

≡
and

pa,A,h
Pr = pa,A,h ↾ L∗

Pr, where L
∗

≡
= L∗\ {Pr, Prn | 2 ≤ n < ω} and L∗

Pr = L∗\ {Pn | 2 ≤ n < ω},

so that pa,A,h = pa,A,h
≡ ∪ pa,A,h

Pr , and we have to realize qa,A,h.

Claim 2.8. It is enough to prove that we can realize qa,A,h
Pr = h

(

pa,A,h
Pr

)

for all A, a and h as

above.

Proof. Easily, as we included 1 in the language, qa,A,h
≡ is isolated by {x 6= c | c ∈ B} and

equations of the form x ≡ k (mod n) for k < n, and for every n < ω there is exactly one

k < n with such an equation appearing in qa,A,h. Also, every finite set of such equations is

implied by one such equation (e.g., if the equations are {x ≡ ki (mod n)i | i < s} then take
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x ≡ k (mod
∏

)i<sni where k is such that this equation is in qa,A,h). Hence it is enough to

show that x ≡ k (mod n) ∪ qa,A,h
Pr (x) is consistent (qa,A,h

Pr already contains {x 6= c | c ∈ B}).

As a ≡ k (mod n), b = (a− k) /n ∈ C. Let pb,A,h = tpqf (b/A) so by our assumption there is

some d ∈ C such that d |= h
(

pb,A,h
)

Pr
. Then nd+ k |= qa,A,h

Pr (x) and of course satisfies the

equation x ≡ k (mod n). �

Let pa,A,h
Pr0

= pa,A,h ↾ LPr0 where LPr0 = LPr\ {Prn | 2 ≤ n < ω}.

Claim 2.9. It is enough to prove that we can realize qa,A,h
Pr0

= h
(

pa,A,h
Pr0

)

for all A, a and h as

above.

Proof. This is similar to Claim 2.8. It is enough to show that qa,A,h
Pr0

(x) ∪ Σ (x) is consistent

where Σ is a finite set of formulas from qa,A,h
Pr \qa,A,h

Pr0
. So Σ consists of formulas of the form

Prn (mx+ c) or its negation for m ∈ Z, 1 < n ∈ N and c ∈ B. Without loss of generality, by

replacing the n’s with their product N and Prn (mx+ c) by PrN ((N/n) (mx+ c)), we may

assume that all the n’s appearing in Σ are equal to n > 1. Let b = (a− k) /n where a ≡ k

(mod n) and k < n. Let pb,A,h = tpqf (b/A). By our assumption there is some d ∈ C such

that d |= h
(

pb,A,h
)

Pr0
. Let us check that nd+ k |= qa,A,h

Pr0
(x) ∪ Σ (x).

First, if ϕ (x, c) ∈ qa,A,h
Pr0

(x) (c a tuple from B) then C |= ϕ
(

a, h−1 (c)
)

so that C |=

ϕ
(

nb+ k, h−1 (c)
)

so d |= ϕ (nx+ k, c) so nd+ k |= ϕ (x, c).

Now, suppose that Prn (mx+ c) ∈ Σ.

Then C |= Prn
(

ma+ h−1 (c)
)

, so C |= Prn
(

m (nb+ k) + h−1 (c)
)

. Hence m (nb+ k) +

h−1 (c) is divisible by n which means that mk + h−1 (c) is divisible by n, and as h is an

isomorphism (and the language includes 1), so is mk+c, hence m (nd+ k)+c is also divisible

by n. Moreover the quotient e =
[

mk + h−1 (c)
]

/n ∈ A maps to e′ = [mk + c] /n ∈ B. As

C |= Pr (mb+ e), it follows that C |= Pr (md+ e′), so that C |= Prn (m (nd+ k) + c). The

same logic works if ¬Prn (mx+ c) ∈ Σ. �

Divide into cases.

Case 1. There are infinitely many solutions to pa,A,h
Pr0

.

Given any finite set Σ ⊆ qPr0 , it has the form

{Pr (mix+ ci) | i < k} ∪
{

¬Pr
(

m′

jx+ c′j
)
∣

∣ j < k′
}
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where mi,m
′

j ∈ Z and ci, c
′

j ∈ B (it also includes formulas of the form x 6= c). As1

C |= ∀xPr (x) ↔ Pr (−x), we may assume that mi,m
′

j ≥ 1. Also, it is of course

impossible that (mi, ci) =
(

m′

j, c
′

j

)

. By ♦, it is enough to check that C |= ϕm̄ (c̄)

where m̄ = 〈mi | i < k〉 and c̄ = 〈ci | i < k〉 and ϕm̄ is from Remark 2.5. As ϕm̄

is quantifier-free, and as C |= ϕm̄

(

h−1 (c̄)
)

(because h−1 (Σ) has infinitely many

solutions and by ♦), we are done.

Case 2. There are only finitely many solutions to pPr0 .

By ♦, and as C |= ∀xPr (x) ↔ Pr (−x), there are some mi ≥ 1, ei ∈ A such that

{Pr (mix+ ei) | i < k} already has finitely many solutions. Hence ϕm̄ (ē) fails, so

for some p < N (see Remark 2.5), there is some i < k such that Pp (mia+ ei). But

as Pr (mia+ ei), it must be that ±p = mia+ ei. As ±p, ei ∈ A, and as A is closed

under dividing by mi, it follows that a ∈ A, and we are done.

�

3. Decidability and classification

We start with the decidability result that is now almost immediate.

Corollary 3.1. The theory T ∗

+,P r is decidable and hence so is T+,P r provided that Dickson’s

conjecture holds.

Proof. Observing the proof of Lemma 2.7, we see that we can recursively enumerate the

axioms that we used. Let us denote this set by Σ. Let Σ′ be the complete quantifier-free

theory of Z in L∗. Then Σ′ is recursive and contained in T ∗

+,P r.

Then the proof gives us that if M1,M2 are two saturated models of Σ ∪ Σ′, then they are

isomorphic (start with A,B being the structures generated by 1 in M1,M2 respectively). This

implies that Σ ∪ Σ′ is complete and hence decidable.

�

Now we turn to classification in the sense of [She90], where one is interested in classifying

theories by finding “classes” having interesting properties in the class and outside of it. The

most studied such class is that of stable theories, which is a very well-behaved and well-

understood class. Containing it is the class of simple theories, and among them the “simplest”

1Here we use the fact that Pr contains both the primes and their negations.
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simple theories are supersimpe of U -rank 1. For the definition of simple and supersimple

theories we refer the reader to e.g., [TZ12, Chapter 7, Definition 8.6.3].

Theorem 3.2. Assuming (D), T ∗

+,P r (and T+,P r) is supersimple of U -rank 1: if ϕ (x, a)

forks over A where x is a singleton and a is some tuple from A then ϕ is algebraic (i.e.,

ϕ ⊢
∨

i<k x = ci).

Proof. The proof is similar to that of Lemma 2.7.

Let N ⊇ A be an |A|+-saturated model. Suppose that ϕ forks over A but is not algebraic.

Extend ϕ to a type p (x) ∈ S (N) which is non-algebraic over N . So p forks over A, and hence

it divides over A. Hence it divides over acl (A) (see e.g., [CK12, Proof of Lemma 3.21]), so we

may assume that A = acl (A). By quantifier elimination we may assume that p is quantifier

free.

Recalling the notation from the proof of Lemma 2.7, we have the following claim.

Claim 3.3. It is enough to prove that for every type q (x) ∈ S (N), if qPr = q ↾ L∗

Pr divides

over A, then qPr is algebraic.

Proof. We want to show that p is algebraic, thus getting a contradiction. Let 〈Ni | i < ω〉 be

an indiscernible sequence over A starting with N0 = N in C, which witnesses that p divides

over A.

Let p≡ = p ↾ L∗

≡
.

As p≡|A| ⊢ p≡ ⊢
⋃

{p≡ (x,Ni) | i < ω}, it follows that
⋃

{pPr (x,Ni) | i < ω} ∪ Σ is incon-

sistent for some finite Σ, which is isolated by a formula of the form x ≡ k (mod n) for some

k < n.

Let c |= p. Then c ≡ k (mod n), and let d = (c− k) /n. Then [tp (d/N)]Pr divides

over A as witnessed by the same sequence 〈Ni | i < ω〉 (let r = tp (d/N), then if d′ |=
⋃

{rPr (x,Ni) | i < ω} then nd′ + k |= Σ ∪
⋃

{pPr (x,Ni) | i < ω}). Hence, [tp (d/N)]Pr is

algebraic, i.e., d ∈ N , but then so is c. �

Claim 3.4. It is enough to prove that for every type q (x) ∈ S (N), if qPr0 = q ↾ L∗

Pr0
divides

over A, then qPr0 is algebraic.

Proof. This is similar to the proof of Claim 3.3.
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By Claim 3.3, it is enough to prove that for any q (x) ∈ S (N), if qPr divides over A

then qPr is algebraic. Suppose that qPr divides over A and let 〈Ni | i < ω〉 be as in the

proof of Claim 3.3. There is some finite set of formulas Σ (x,N) ⊆ qPr\qPr0 such that
⋃

{qPr0 (x,Ni) ∪ Σ (x,Ni) | i < ω} is inconsistent. As in the proof of Lemma 2.7, we may

assume that for some n ∈ N, Σ consists of formulas of the form Prn (mx+ c) for c ∈ N and

m ∈ Z. Let d |= q, and assume that d ≡ k (mod n) for k < n. Then for some e ∈ C, d = ne+k,

and [tp (e/N)]Pr0
divides over A (let r = tp (e/N), then if e′ |=

⋃

{rPr0 (x,Ni) | i < ω} then

ne′ + k |=
⋃

{qPr0 (x,Ni) ∪Σ (x,Ni) | i < ω}, as in the proof of Lemma 2.7). Hence this type

is algebraic and hence so is q. �

Claim 3.5. It is enough to prove that if Σ (x) is a finite set of formulas of the form Pr (mx+ c)

or ¬Pr (mx+ c) for m ∈ Z and c ∈ N , which has infinitely many solutions, then Σ does not

divide over A.

Proof. Use Claim 3.4. We have to prove that if qPr0 divides over A then it is algebraic.

Suppose it is not, and let Σ ⊆ qPr0 be finite such that Σ (x)∪ {x 6= c | c ∈ N} divides over A.

Then Σ has infinitely many solutions and is of the right form, so we are done. �

Let Σ (x) be as in Claim 3.5.

Then Σ (x, c̄, c̄′) = {Pr (mix+ ci) | i < k} ∪
{

¬Pr
(

m′

jx+ c′j

) ∣

∣

∣
j < k′

}

, for mi,m
′

j ∈ Z

and ci, c
′

j ∈ N . Now take an indiscernible sequence 〈c̄α |α < ω〉 starting with 〈ci | i < k〉 ⌢
〈

c′j

∣

∣

∣
j < k′

〉

over A. Consider a finite union of the form
⋃

{Σ (x, c̄α, c̄
′

α) |α < l}. Then by

indiscernibility it cannot be that (mi, ci,α) =
(

m′

j, c
′

j,β

)

for some α, β < l, i < k and j < k′.

Hence by (D), it is enough to show that ⋆f̄ holds for f̄ = 〈fi,α | i < k, α < l〉 where fi,α (x) =

mix+ ci,α, that is, we have to show that ϕm̄ (〈c̄α |α < l〉) holds (see Remark 2.5).

We have to check that if r is a prime, smaller than some natural number which depends

only on m̄, k and l, (so in particular a standard prime number), for some 0 ≤ t < r, for all

i < k and α < l, mit + ci,α 6≡ 0 (mod r). If this does not happen for r, then, as ci,α ≡ ci

(mod r), we get that for all 0 ≤ t < r, for some i < k, mit+ ci ≡ 0 (mod r). But this means

that Σ cannot have infinitely many solutions by Remark 2.6 — contradiction. �

We move to NIP. We will show that T+,P r has the independence property IP (and thus

the theory is not NIP), and even the n-independence property. This shows in particular that
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T+,P r is unstable. We will recall the definition in the proof of Theorem 3.7, but the interested

reader may find more in [Sim15] (about NIP) and [CPT14] (on n-dependence).

We will use the following proposition.

Proposition 3.6. For all n < ω and s ⊆ n there is an arithmetic progression 〈at+ b | t < n〉

of natural numbers such that at+ b is prime iff t ∈ s.

Proof. As we said in the introduction, according to a private communication with Tamar

Ziegler, this follows from the proof of the Green-Tao theorem about arithmetic progression

of primes [GT08].

We give a very detail-free explanation of why this should be true. Heuristically, the primes

below N behave like a random set of density 1/ logN , so the number of x, d ≤ N such that

x + d, x + 2d, . . . , x + kd are all primes is N2/ (logN)k. If we skip the i’th element in the

sequence (i.e., we do not ask it to be prime), then the number is N2/ (logN)k−1. Hence,

we may remove all the prime arithmetic progressions and still find some sequence where i’th

element is not prime.

We will however give a proof that relies on (D). Fix n and s. Let b = n! + 1. Use Lemma

2.3, with the linear maps x+ b, 2x+ b, . . . , nx+ b. By Remark 2.1, it is enough to check that

for all primes p ≤ n, for some t < p, kt+ b 6≡ 0 (mod p) for all 1 ≤ k ≤ n. But b ≡ 1 (mod p)

so this holds for t = 0. �

Theorem 3.7. (Without assuming Dickson’s conjecture) T+,P r has the independence property

and even the n-independence property. Hence so does T ∗

+,P r.

Proof. We use only Proposition 3.6. To say that T is n-independent, we have to find a

formula ϕ (x, y1, . . . , yn) such that for all k < ω, there are tuples ai,j for i < n, j < k

inside some model M |= T such that for every subset s ⊆ kn, there is some bs ∈ M with

M |= ϕ
(

bs, a0,j0 , . . . an−1,jn−1

)

iff (j0, . . . , jn−1) ∈ s. This of course implies the independent

property.

The formula we take is ϕ (x, y1, . . . , yn) = Pr (x+ y1 + · · ·+ yn), and we work in Z.

Given k, by Proposition 3.6 there is an arithmetic progression of length kn ·2(k
n), which we

write as 〈c̄s | s ⊆ kn〉 where c̄s = 〈cs,l | l < kn〉, such that for each subset s ⊆ kn and l < kn,

Pr (cs,l) iff (j0, . . . , jn−1) ∈ s where ji < k are (unique) such that l =
∑

i<n jik
i.
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Suppose this progression has difference d > 0. Now we choose ai,j for i < n, j < k and bs

for s ⊆ kn as follows.

Let a0,j = j · d for j < k and in general, for i < n, ai,j = jd · ki. Let bs = cs,0.

Now note that

cs,0 +
∑

i<n

(jid) k
i = cs,

∑
i<n

ji·ki
.

And so we are done. �
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