LEFT-ORDERABLE COMPUTABLE GROUPS

MATTHEW HARRISON-TRAINOR

Abstract

Downey and Kurtz asked whether every orderable computable group is classically isomorphic to a group with a computable ordering. By an order on a group, one might mean either a left-order or a bi-order. We answer their question for left-orderable groups by showing that there is a computable left-orderable group which is not classically isomorphic to a computable group with a computable left-order. The case of bi-orderable groups is left open.

1. Introduction

A left-ordered group is a group \mathcal{G} together with a linear order \leq such that if $a \leq b$, then $c a \leq c b . \mathcal{G}$ is right-ordered if instead whenever $a \leq b, a c \leq b c$, and bi-ordered if \leq is both a left-order and a right-order. A group which admits a leftordering is called left-orderable, and similarly for right- and bi-orderings. A group is left-orderable if and only if it is right-orderable. Some examples of bi-orderable groups include torsion-free abelian groups and free groups Shi47, Vin49, Ber90. The group $\left\langle x, y: x^{-1} y x=y^{-1}\right\rangle$ is left-orderable but not bi-orderable. For a reference on orderable groups, see KM96].

In this paper, we will consider left-orderable computable groups. A computable group is a group with domain ω whose group operation is given by a computable function $\omega \times \omega \rightarrow \omega$. Downey and Kurtz DK86 showed that a computable group, even a computable abelian group, which is orderable need not have a computable order. If a computable group does admit a computable order, we say that it is computably orderable. Of course, by the low basis theorem, every orderable computable group has a low ordering.

For an abelian group, any left-ordering (or right-ordering) is a bi-ordering. An abelian group is orderable if and only if it is torsion-free. Given a computable torsion-free abelian group \mathcal{G}, Dobritsa Dob83 showed that there is another computable group \mathcal{H}, which is classically isomorphic to \mathcal{G}, which has a computable \mathbb{Z}-basis. Note that \mathcal{H} need not be computably isomorphic to \mathcal{G}. Solomon Sol02 noted that a \mathbb{Z}-basis for a torsion-free abelian group computes an ordering of that group. Hence every orderable computable abelian group is classically isomorphic to a computably orderable group.

Downey and Kurtz asked whether this is the case even for non-abelian groups:
Question 1 (Downey and Kurtz [DR00). Is every orderable computable group classically isomorphic to a computably orderable group?
If one takes "orderable" to mean "left-orderable" then we give a negative answer to this question. (We leave open the question for bi-orderable groups.)

[^0]Theorem 2. There is a computable left-orderable group which has no presentation with a computable left-ordering.

Our strategy is to build a group

$$
\mathcal{G}=\mathcal{N} \rtimes \mathcal{H} / \mathcal{R}
$$

and code information into the finite orbits of certain elements of \mathcal{N} under inner automorphisms given by conjugating by elements of $\mathcal{H} / \mathcal{R}$. This strategy cannot work to build a bi-orderable group, as in a bi-orderable group there is no generalized torsion-i.e., no product of conjugates of a single element can be equal to the identity - and hence no inner automorphism has a non-trivial finite orbit. We leave open the case of bi-orderable groups.

2. Notation

We will use caligraphic letter such as \mathcal{G}, \mathcal{N}, and \mathcal{H} to denote groups. For free groups, we will use upper case latin letters such as A, B, C, U, V, and W to denote words, while using lower case letters such as a, b, and c to denote letter variables. We use ε for the empty word, 0 for the identity element of abelian groups, and 1 for the identity element of non-abelian groups (except for free groups, where we use $\varepsilon)$.

3. The Construction

Fix ψ a partial computable function which we will specify later (see Definition 8). Let p_{i}, q_{i}, and r_{i} be a partition of the odd primes into three lists Let \mathcal{H} be the free abelian group on α_{i}, β_{i}, and γ_{i} for $i \in \omega$. We write \mathcal{H} additively. Let \mathcal{R} be the set of relations

$$
\mathcal{R}=\left\{\mathcal{R}_{i, t}: \psi_{\text {at } t}(i) \downarrow\right\}
$$

where

$$
\mathcal{R}_{i, t}=\left\{\begin{array}{ll}
p_{i}^{t} \alpha_{i}=q_{i}^{t} \beta_{i} & \text { if } \psi_{\text {at } t}(i)=0 \\
p_{i}^{t} \alpha_{i}=-q_{i}^{t} \beta_{i} & \text { if } \psi_{\text {at } t}(i)=1
\end{array} .\right.
$$

By $\psi_{\text {at } t}(i)=0$, we mean that the computation $\psi(i)$ has converged exactly at stage t (but not before) and equals zero.

The idea is that these relations force, for any ordering \leq on $\mathcal{H} / \mathcal{R}$, that if $\psi(i)=0$ then $\alpha_{i}>0 \Longleftrightarrow \beta_{i}>0$ (and if $\psi(i)=1$ then $\alpha_{i}>0 \Longleftrightarrow \beta_{i}<0$). The strategy is, in a very general sense, to use ψ to diagonalize against computable orderings of $\mathcal{H} / \mathcal{R}$. The semidirect product will add enough structure to allow us to find α_{i} and β_{i} within a computable copy of \mathcal{G}. (One cannot find α_{i} and β_{i} within a copy of $\mathcal{H} / \mathcal{R}$, since $\mathcal{H} / \mathcal{R}$ is a torsion-free abelian group.) Note that

$$
\mathcal{H} / \mathcal{R}=\left(\bigoplus_{i}\left\langle\alpha_{i}, \beta_{i}\right\rangle / \mathcal{R}_{i}\right) \oplus\left(\bigoplus\left\langle\gamma_{i}\right\rangle\right)
$$

where $\mathcal{R}_{i}=\mathcal{R}_{i, t}$ if $\psi_{\text {at } t}(i) \downarrow$ for some t, or no relation otherwise. Define

$$
\begin{array}{lll}
\mathcal{V}_{i}=\mathcal{R} \cup\left\{p_{i} \alpha_{i}=0\right\} & \mathcal{W}_{i}=\mathcal{R} \cup\left\{q_{i} \beta_{i}=0\right\} & \mathcal{X}_{i}=\mathcal{R} \cup\left\{r_{i} \gamma_{i}=0\right\} \\
\mathcal{Y}_{i}=\mathcal{R} \cup\left\{\alpha_{i}=\gamma_{i}\right\} & \mathcal{Z}_{i}=\mathcal{R} \cup\left\{\beta_{i}=\gamma_{i}\right\} . &
\end{array}
$$

[^1]Let \mathcal{N} be the free (non-abelian) group on the letters

$$
\begin{array}{r}
\left\{u_{i}: i \in \omega\right\} \cup\left\{v_{i, g}: g \in \mathcal{H} / \mathcal{V}_{i}, i \in \omega\right\} \cup\left\{w_{i, g}: g \in \mathcal{H} / \mathcal{W}_{i}, i \in \omega\right\} \\
\cup\left\{x_{i, g}: g \in \mathcal{H} / \mathcal{X}_{i}, i \in \omega\right\} \cup\left\{y_{i, g}: g \in \mathcal{H} / \mathcal{Y}_{i}, i \in \omega\right\} \cup\left\{z_{i, g}: g \in \mathcal{H} / \mathcal{Z}_{i}, i \in \omega\right\} .
\end{array}
$$

Let $\mathcal{G}=\mathcal{N} \rtimes(\mathcal{H} / \mathcal{R})$, with $g \in \mathcal{H} / \mathcal{R}$ acting on \mathcal{N} via the automorphism φ_{g} as follows:

$$
\begin{aligned}
\varphi_{g}\left(u_{i}\right) & =u_{i} & \varphi_{g}\left(v_{i, h}\right)=v_{i, \bar{g}+h} & \varphi_{g}\left(w_{i, h}\right)=w_{i, \bar{g}+h} \\
\varphi_{g}\left(x_{i, h}\right) & =x_{i, \bar{g}+h} & \varphi_{g}\left(y_{i, h}\right)=y_{i, \bar{g}+h} & \varphi_{g}\left(z_{i, h}\right)=z_{i, \bar{g}+h}
\end{aligned}
$$

Here, \bar{g} is the image of g under the quotient map $\mathcal{H} / \mathcal{R} \rightarrow \mathcal{H} / \mathcal{V}_{i}$ (or $\mathcal{H} / \mathcal{W}_{i}, \mathcal{H} / \mathcal{X}_{i}$, etc.). Recall that the semidirect product $\mathcal{G}=\mathcal{N} \rtimes(\mathcal{H} / \mathcal{R})$ is the group with underlying set $\mathcal{N} \times(\mathcal{H} / \mathcal{R})$ with group operation

$$
(n, g)(m, h)=\left(n \varphi_{g}(m), g+h\right)
$$

Note that φ_{g} permutes the letters of \mathcal{N}, and so given a word $A \in \mathcal{N}, \varphi_{g}(A)$ is a word of the same length as A. We write \mathcal{G} multiplicatively.

Lemma 3. $\mathcal{H} / \mathcal{R}$ has a computable presentation.
Proof. It suffices to show that we can decide whether or not a relation of the form

$$
\sum_{i=1}^{k} \ell_{i} \alpha_{i}+\sum_{i=1}^{k} m_{i} \beta_{i}+\sum_{i=1}^{k} n_{i} \gamma_{i}=0
$$

holds. This sum is equal to zero if and only if each $n_{i}=0$ and for each i we have $\ell_{i} \alpha_{i}+m_{i} \beta_{i}=0$. So it suffices to decide, for a given ℓ and m in \mathbb{Z}, whether $\ell \alpha_{i}=m \beta_{i}$.

Looking at $\mathcal{R}, \ell \alpha_{i}=m \beta_{i}$ if and only if either
(1) for some $t, \psi_{\text {at } t}(i)=0$ and there is $s \in \mathbb{Z}$ such that $\ell=s p_{i}^{t}$ and $m=s q_{i}^{t}$ or
(2) for some $t, \psi_{\text {at } t}(i)=1$ and there is $s \in \mathbb{Z}$ such that $\ell=s p_{i}^{t}$ and $m=-s q_{i}^{t}$. If $t>|\ell|$ or $t>|m|$ then neither of these can hold. So we just need to check, for each $t \leq|\ell|,|m|$, whether $\psi_{\text {at } t}(i)$ converges.

Lemma 4. \mathcal{G} has a computable presentation.
Proof. We just need to check that $\mathcal{H} / \mathcal{V}_{i}, \mathcal{H} / \mathcal{W}_{i}$, and so on have computable presentations. We will see that the embeddings of the computable presentation (from the previous lemma) of $\mathcal{H} / \mathcal{R}$ into these presentations are computable. Then the action φ of $\mathcal{H} / \mathcal{R}$ on \mathcal{N} is computable. We can construct a computable presentation of \mathcal{G} as the semidirect product $\mathcal{N} \rtimes(\mathcal{H} / \mathcal{R})$ under this computable action.

We need to decide whether in $\mathcal{H} / \mathcal{V}_{i}$ we have a relation

$$
\sum_{j=1}^{k} \ell_{j} \alpha_{j}+\sum_{j=1}^{k} m_{j} \beta_{j}+\sum_{j=1}^{k} n_{j} \gamma_{j}=0
$$

It suffices to decide, for a given j, whether

$$
\ell \alpha_{j}+m \beta_{j}+n \gamma_{j}=0
$$

If $j \neq i$, this is just as in the previous lemma. Otherwise, this holds if and only if p_{i} divides ℓ, q^{t} divides m for some t with $\psi_{\text {at } t}(i) \downarrow$, and $n=0$. As before, we can check this computably.

The other cases-for $\mathcal{H} / \mathcal{W}_{i}, \mathcal{H} / \mathcal{X}_{i}$, and so on-are similar.

Lemma 5. $\mathcal{H} / \mathcal{R}$ is a torsion-free abelian group.
Proof. $\mathcal{H} / \mathcal{R}$ is abelian as \mathcal{H} was abelian. Recall that

$$
\mathcal{H} / \mathcal{R}=\left(\bigoplus_{i}\left\langle\alpha_{i}, \beta_{i}\right\rangle / \mathcal{R}_{i}\right) \oplus\left(\bigoplus_{i}\left\langle\gamma_{i}\right\rangle\right)
$$

where $\mathcal{R}_{i}=\mathcal{R}_{i, t}$ if $\psi_{\text {at } t}(i) \downarrow$ for some t, or no relation otherwise. So it suffices to show that $\left\langle\alpha_{i}, \beta_{i}\right\rangle / \mathcal{R}_{i}$ is torsion-free. If \mathcal{R}_{i} is no relation, then this is obvious. So now suppose that $\psi_{\text {at } t}(i)=0$ and that

$$
k\left(m \alpha_{i}+n \beta_{i}\right)=\ell\left(p_{i}^{t} \alpha_{i}-q_{i}^{t} \beta_{i}\right)
$$

in $\left\langle\alpha_{i}, \beta_{i}\right\rangle$. Since \mathcal{H} is torsion-free, we may assume that $\operatorname{gcd}(k, \ell)=1$. Then $k m=\ell p_{i}^{t}$ and $k n=-\ell q_{i}^{t}$. So we must have $k= \pm 1$, in which case $m \alpha_{i}+n \beta_{i}$ is already zero in $\left\langle\alpha_{i}, \beta_{i}\right\rangle / \mathcal{R}_{i}$. Thus $\left\langle\alpha_{i}, \beta_{i}\right\rangle / \mathcal{R}_{i}$ is torsion-free. The case where $\psi_{\text {at } t}(i)=1$ is similar.
Lemma 6. \mathcal{G} is left-orderable.
Proof. Since $\mathcal{H} / \mathcal{R}$ is a torsion-free abelian group, it is bi-orderable. \mathcal{N} is biorderable as it is a free group. Then by the following claim, \mathcal{G} is left-orderable (see Theorem 1.6.2 of [KM96]).

Claim 7. Let $\mathcal{A} \rtimes \mathcal{B}$ be a semi-direct product of left-orderable groups. Then $\mathcal{A} \rtimes \mathcal{B}$ is left-orderable.

Proof. Let φ be the action of \mathcal{B} on \mathcal{A}. Let $\leq_{\mathcal{A}}$ and $\leq_{\mathcal{B}}$ be left-orderings on \mathcal{A} and \mathcal{B} respectively. Define \leq on $\mathcal{A} \rtimes \mathcal{B}$ as follows: $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ if $b<_{\mathcal{B}} b^{\prime}$ or $b=b^{\prime}$ and $\varphi_{b^{-1}}(a) \leq_{\mathcal{A}} \varphi_{b^{-1}}\left(a^{\prime}\right)$. This is clearly reflexive and symmetric. We must show that it is transitive and a left-ordering.

Suppose that $(a, b) \leq\left(a^{\prime}, b^{\prime}\right) \leq\left(a^{\prime \prime}, b^{\prime \prime}\right)$. Then $b \leq_{\mathcal{B}} b^{\prime} \leq_{\mathcal{B}} b^{\prime \prime}$. If $b<_{\mathcal{B}} b^{\prime \prime}$, then $(a, b) \leq\left(a^{\prime \prime}, b^{\prime \prime}\right)$, so suppose that $b=b^{\prime}=b^{\prime \prime}$. Then

$$
\varphi_{b^{-1}}(a) \leq_{\mathcal{A}} \varphi_{b^{-1}}\left(a^{\prime}\right)=\varphi_{b^{\prime-1}}\left(a^{\prime}\right) \leq_{\mathcal{A}} \varphi_{b^{\prime-1}}\left(a^{\prime \prime}\right)=\varphi_{b^{-1}}\left(a^{\prime \prime}\right)
$$

So $\varphi_{b^{-1}}(a) \leq{ }_{\mathcal{A}} \varphi_{b^{-1}}\left(a^{\prime \prime}\right)$ and so $(a, b) \leq\left(a^{\prime \prime}, b^{\prime \prime}\right)$. Thus \leq is transitive.
Given $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ we must show that $\left(a^{\prime \prime}, b^{\prime \prime}\right)(a, b) \leq\left(a^{\prime \prime}, b^{\prime \prime}\right)\left(a^{\prime}, b^{\prime}\right)$. We have that

$$
\left(a^{\prime \prime}, b^{\prime \prime}\right)(a, b)=\left(a^{\prime \prime} \varphi_{b^{\prime \prime}}(a), b^{\prime \prime} b\right) \text { and }\left(a^{\prime \prime}, b^{\prime \prime}\right)\left(a^{\prime}, b^{\prime}\right)=\left(a^{\prime \prime} \varphi_{b^{\prime \prime}}\left(a^{\prime}\right), b^{\prime \prime} b^{\prime}\right)
$$

If $b<_{\mathcal{B}} b^{\prime}$, then $b^{\prime \prime} b<_{\mathcal{B}} b^{\prime \prime} b^{\prime}$, and so $\left(a^{\prime \prime}, b^{\prime \prime}\right)(a, b) \leq\left(a^{\prime \prime}, b^{\prime \prime}\right)\left(a^{\prime}, b^{\prime}\right)$. Otherwise, if $b=b^{\prime}$ and $\varphi_{b^{-1}}(a) \leq_{\mathcal{A}} \varphi_{b^{-1}}\left(a^{\prime}\right)$, then $b^{\prime \prime} b=b^{\prime \prime} b^{\prime}$ and

$$
\begin{aligned}
\varphi_{\left(b^{\prime \prime} b\right)^{-1}}\left(a^{\prime \prime} \varphi_{b^{\prime \prime}}(a)\right) & =\varphi_{\left(b^{\prime \prime} b\right)^{-1}}\left(a^{\prime \prime}\right) \varphi_{b^{-1}}(a) \\
& \leq \mathcal{A} \varphi_{\left(b^{\prime \prime} b\right)^{-1}}\left(a^{\prime \prime}\right) \varphi_{b^{-1}}\left(a^{\prime}\right) \\
& =\varphi_{\left(b^{\prime \prime} b\right)^{-1}}\left(a^{\prime \prime} \varphi_{b^{\prime \prime}}\left(a^{\prime}\right)\right)
\end{aligned}
$$

So $\left(a^{\prime \prime}, b^{\prime \prime}\right)(a, b) \leq\left(a^{\prime \prime}, b^{\prime \prime}\right)\left(a^{\prime}, b^{\prime}\right)$.
Note that if \leq is any left-ordering on \mathcal{G}, if $\psi_{\text {at } t}(i)=0$ then $\left(\varepsilon, \alpha_{i}\right)>1$ if and only if $\left(\varepsilon, \beta_{i}\right)>1$. On the other hand, if $\psi_{\text {at } t}(i)=1$ then $\left(\varepsilon, \alpha_{i}\right)>1$ if and only if $\left(\varepsilon, \beta_{i}\right)<1$. Later, in Definition 18, we will define existential formulas $\operatorname{Same}(i)$ and Different (i) (with no parameters) in the language of ordered groups. We would like to have that for any left-ordering \leq on $\mathcal{G},(\mathcal{G}, \leq) \vDash \operatorname{Same}(i)$ if and only if $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)<1$, and $(\mathcal{G}, \leq) \models \operatorname{Different}(i)$ if and only if
$\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)<1$. We will not quite get this for every ordering \leq, but this will be true for those against which we want to diagonalize (see Lemma 9).

Definition 8. Fix a list $\left(\mathcal{F}_{i}, \leq_{i}\right)_{i \in \omega}$ of the (partial) computable structures in the language of ordered groups. Let ψ be a partial computable function with $\psi(i)=0$ if $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Different}(i)$ and $\psi(i)=1$ if $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Same}(i)$. It is possible, a priori, that we have both $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Same}(i)$ and $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Different}(i)$; in this case, let $\psi(i)$ be defined according to whichever existential formula we find to be true first.

In fact, we will discover from the following lemma that we cannot have both $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Same}(i)$ and $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Different}(i)$.

Lemma 9. Fix i. Suppose that \mathcal{F}_{i} is isomorphic to \mathcal{G} and \leq_{i} is a computable left-ordering of \mathcal{F}_{i}. Let \leq be an ordering on \mathcal{G} such that $(\mathcal{G}, \leq) \cong\left(\mathcal{F}_{i}, \leq_{i}\right)$. Then:
(1) $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$ if and only if $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$.
(2) $(\mathcal{G}, \leq) \models \operatorname{Different}(i)$ if and only if $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)<1$.

This lemma will be proved later. We will now show how to use Lemma 9 to complete proof.

Lemma 10. \mathcal{G} has no computable presentation with a computable ordering.
Proof. Let i be an index for $\left(\mathcal{F}_{i}, \leq_{i}\right)$ a computable presentation of \mathcal{G} with a computable left-ordering. Let \leq be an ordering on \mathcal{G} such that $(\mathcal{G}, \leq) \cong\left(\mathcal{F}_{i}, \leq i\right)$. Now by Lemma 9 either $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$ or $(\mathcal{G}, \leq) \models \operatorname{Different}(i)$ (but not both). Suppose first that $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$. So $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Same}(i)$. By definition, $\psi(i)=1$, say $\psi_{\text {at } t}(i)=1$. Then, in $\mathcal{H} / \mathcal{R}, p_{i}^{t} \alpha_{i}=-q_{i}^{t} \beta_{i}$. So $\left(\varepsilon, \alpha_{i}\right)>1$ if and only if $\left(\varepsilon, \beta_{i}\right)<1$, contradicting Lemma 9 and the assumption that $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$. The case of $(\mathcal{G}, \leq) \models \operatorname{Different}(i)$ is similar. Thus \mathcal{G} has no computable copy with a computable left-ordering.

All that remains to prove Theorem 2 is to define $\operatorname{Same}(i)$ and $\operatorname{Different}(i)$ and to prove Lemma 9 .

4. Same (i), Different (i), and the Proof of Lemma 9

To define $\operatorname{Same}(i)$, we would like to come up with an existential formula which says that $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$. A first attempt might be to try to find an existential formula defining $\left(\varepsilon, \alpha_{i}\right)$ and an existential formula defining $\left(\varepsilon, \beta_{i}\right)$. This cannot be done, but it will be helpful to think about how we might try to do this.

We will consider the problem of recognizing α_{i} and β_{i} inside of $\mathcal{H} / \mathcal{R}$ by their actions on \mathcal{N}. Note that α_{i} has the property that $\varphi_{\alpha_{i}}\left(v_{i, 0}\right)=v_{i, \alpha_{i}} \neq 0$, but $\varphi_{p_{i} \alpha_{i}}\left(v_{i, 0}\right)=v_{i, 0}$. So α_{i} acts with order p_{i} on some element of \mathcal{N}. In fact, it is not hard to see that the only elements which act with order p_{i} on an element of \mathcal{N} are the multiples $n \alpha_{i}$ of α_{i} where $p_{i} \nmid n$. (Note that if α_{i} acts with order p_{i} on a word in \mathcal{N}, then it either fixes or acts with order p_{i} on each letter in that word, and it acts with order p_{i} on at least one letter.)

One difficulty we have is that $\mathcal{H} / \mathcal{R}$ and \mathcal{N} are not existentially definable inside of \mathcal{G}. The problem is that if some element of \mathcal{G} satisfies a certain existential formula, then every conjugate of \mathcal{G} does as well. So it is only possible to define subsets of \mathcal{G} which are closed under conjugation. Given $S \subseteq \mathcal{G}$, let $S^{\mathcal{G}}$ be the set of all conjugates of S by elements of \mathcal{G}.

In this section, we will take for granted the following lemma about existential definability in \mathcal{G}. It will be proved in the following section. The lemma says that we can find $\mathcal{H} / \mathcal{R}$ inside of \mathcal{G}, up to conjugation, by an existential formula.
Lemma 11. $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ is \exists-definable within \mathcal{G} without parameters.
The different conjugates of $\mathcal{H} / \mathcal{R}$ cannot be distinguished from each other. Instead, we will try to always work inside a single conjugate of $\mathcal{H} / \mathcal{R}$. The following lemma tells us when we can do this.

Lemma 12. Suppose that $r, s \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ and $r s \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. Then there is $A \in \mathcal{N}$ and $g, h \in \mathcal{H} / \mathcal{R}$ such that

$$
r=(A, 0)(\varepsilon, g)\left(A^{-1}, 0\right)
$$

and

$$
s=(A, 0)(\varepsilon, h)\left(A^{-1}, 0\right) .
$$

Thus r and s commute.
The following remarks will be helpful not only here, but throughout the rest of the paper. They can all be checked by an easy computation.

Remark 13. If $r \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, then for some $A \in \mathcal{N}$ and $f \in \mathcal{H} / \mathcal{R}$ we can write r in the form

$$
r=(A, 0)(\varepsilon, f)\left(A^{-1}, 0\right)
$$

Remark 14. Let $r=(A, f)$ be an element of $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. If $K \subseteq \mathcal{H} / \mathcal{R}$, then $r \in K^{\mathcal{G}}$ if and only if $f \in K$.
Remark 15. If $\varphi_{g}(B)=B$, then

$$
(A B, 0)(\varepsilon, g)(A B, 0)^{-1}=(A, 0)(\varepsilon, g)(A, 0)^{-1}
$$

Proof of Lemma 12. Using Remark 13, let

$$
\begin{aligned}
r & =(A, 0)(\varepsilon, g)\left(A^{-1}, 0\right) & s=(B, 0)(\varepsilon, h)\left(B^{-1}, 0\right) \\
r s & =(C, 0)(\varepsilon, g+h)\left(C^{-1}, 0\right) . &
\end{aligned}
$$

By conjugating r and s by some further element of \mathcal{G} (and noting that the conclusion of the lemma is invariant under conjugation), we may assume that $A^{-1} B$ is a reduced word, that is, that A and B have no common non-trivial initial segment. Using Remark 15, we may assume that $A \varphi_{g}\left(A^{-1}\right), B \varphi_{h}\left(B^{-1}\right)$, and $C \varphi_{g+h}\left(C^{-1}\right)$ are reduced words. Indeed, if, for example, $A \varphi_{g}\left(A^{-1}\right)$ was not a reduced word, then we could write $A=A^{\prime} B$ where B is a word which is fixed by φ_{g}, and such that $A^{\prime} \varphi_{g}\left(A^{\prime-1}\right)$ is a reduced word. Then, by Remark 15 ,

$$
(A, 0)(\varepsilon, g)(A, 0)^{-1}=\left(A^{\prime} B, 0\right)(\varepsilon, g)\left(A^{\prime} B, 0\right)^{-1}=\left(A^{\prime}, 0\right)(\varepsilon, g)\left(A^{\prime}, 0\right)^{-1}
$$

So we may replace A by A^{\prime}.
We have

$$
(A, 0)(\varepsilon, g)\left(A^{-1}, 0\right)(B, 0)(\varepsilon, h)\left(B^{-1}, 0\right)=(C, 0)(\varepsilon, g+h)\left(C^{-1}, 0\right)
$$

Multiplying out the first coordinates, we get

$$
A \varphi_{g}\left(A^{-1}\right) \varphi_{g}(B) \varphi_{g+h}\left(B^{-1}\right)=C \varphi_{g+h}\left(C^{-1}\right)
$$

By the assumptions we made above, both sides are reduced words. A is an initial segment of the left hand side, so it must be an initial segment of the right hand
side, and hence an initial segment of C. On the other hand, taking inverses of both sides, we get

$$
\varphi_{g+h}(B) \varphi_{g}\left(B^{-1}\right) \varphi_{g}(A) A^{-1}=\varphi_{g+h}(C) C^{-1}
$$

Once again both sides are reduced words, and $\varphi_{g+h}(B)$ is an initial segment of the left hand side, and hence of $\varphi_{g+h}(C)$. But then B is an initial segment of C. So it must be that A is an initial segment of B or vice versa. This contradicts one of our initial assumptions unless A or B (or both) is the trivial word. Suppose it was A (the case of B is similar). Then

$$
\varphi_{g}(B) \varphi_{g+h}\left(B^{-1}\right)=C \varphi_{g+h}\left(C^{-1}\right)
$$

and both sides are reduced words. Then we get that $C=B$ and $C=\varphi_{g}(B)$. So

$$
r=(\varepsilon, g)=(B, 0)(\varepsilon, g)(B, 0)^{-1}
$$

by Remark 15 ,
Above, we noted that the set $\left\{n \alpha_{i}: p_{i} \nmid n\right\}$ is the set of elements of $\mathcal{H} / \mathcal{R}$ which act with order p_{i} on an element of \mathcal{N}. Our next goal is to show that if we close under conjugation, then this set (and a few other similar sets) are definable. The key is the following remark which follows easily from Lemma 12 ,
Remark 16. Fix $r, s_{1}, s_{2} \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. Suppose that $r s_{1} \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ and $r s_{2} \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ but s_{1} and s_{2} do not commute. By Lemma 12 we can write

$$
\begin{aligned}
r & =(A, 0)(\varepsilon, f)\left(A^{-1}, 0\right)=(B, 0)(\varepsilon, f)\left(B^{-1}, 0\right) \\
s_{1} & =(A, 0)(\varepsilon, g)\left(A^{-1}, 0\right) \\
s_{2} & =(B, 0)(\varepsilon, h)\left(B^{-1}, 0\right)
\end{aligned}
$$

Then there is some element of \mathcal{N} which is fixed by φ_{f} but which is not fixed by φ_{g}.
Indeed, since $(A, 0)(\varepsilon, f)\left(A^{-1}, 0\right)=(B, 0)(\varepsilon, f)\left(B^{-1}, 0\right)$, we see that

$$
B^{-1} A=\varphi_{f}\left(B^{-1} A\right)
$$

Suppose for the sake of contradiction that φ_{g} also fixes $B^{-1} A$. Then

$$
s_{1}=(A, 0)\left(A^{-1} B, 0\right)(\varepsilon, g)\left(B^{-1} A, 0\right)\left(A^{-1}, 0\right)=(B, 0)(\varepsilon, g)\left(B^{-1}, 0\right)
$$

So s_{1} and s_{2} would commute. This is a contradiction. So there is some element of \mathcal{N} which is fixed by φ_{f} but which is not fixed by φ_{g}.

Lemma 17. There are \exists-formulas which express each of the following statements about an element a in \mathcal{G} :
(1) $a \in\left\{n \alpha_{i}: p_{i} \nmid n\right\}^{\mathcal{G}}$.
(2) $a \in\left\{n \beta_{i}: q_{i} \nmid n\right\}^{\mathcal{G}}$.
(3) $a \in\left\{n \gamma_{i}: r_{i} \nmid n\right\}^{\mathcal{G}}$.
(4) $a \in\left\{n\left(\alpha_{i}-\gamma_{i}\right): p_{i}, r_{i} \nmid n\right\}^{\mathcal{G}}$.
(5) $a \in\left\{n\left(\beta_{i}-\gamma_{i}\right): q_{i}, r_{i} \nmid n\right\}^{\mathcal{G}}$.

Proof. For (1), we claim that $a \in\left\{n \alpha_{i}: p_{i} \nmid n\right\}^{\mathcal{G}}$ if and only if $a \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ and there is $b \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ such that $a^{p_{i}} b \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ but a and b do not commute. This is expressed by an \exists-formula by Lemma 11 .

Suppose that a satisfies this \exists-formula, as witnessed by b. Let $a=(A, f)$ and $b=(B, g)$. Then by Remark 16 (taking $r=a^{p_{i}}, s_{1}=a$, and $s_{2}=b$), there is an element of \mathcal{N} which is fixed by $\varphi_{p_{i} f}$ but not by φ_{f}. Thus we see that $p_{i} \bar{f}=0$ but $\bar{f} \neq 0$ in $\mathcal{H} / \mathcal{V}_{i}$, and $f=n \alpha_{i}$ for some n with $p_{i} \nmid n$. (It must be in $\mathcal{H} / \mathcal{V}_{i}$, because
this cannot happen in any of $\mathcal{H} / \mathcal{V}_{j}$ for $j \neq i$, or $\mathcal{H} / \mathcal{W}_{j}, \mathcal{H} / \mathcal{X}_{j}, \mathcal{H} / \mathcal{Y}_{j}$, or $\mathcal{H} / \mathcal{Z}_{j}$.) Thus by Remark 14] $a \in\left\{n \alpha_{i}: p_{i} \nmid n\right\}^{\mathcal{G}}$.

On the other hand, suppose that $a \in\left\{n \alpha_{i}: p_{i} \nmid n\right\}^{\mathcal{G}}$. Write

$$
a=(A, 0)\left(\varepsilon, n \alpha_{i}\right)\left(A^{-1}, 0\right)
$$

with p_{i} not dividing n. Then let $b=\left(A v_{i, 0}, 0\right)\left(\varepsilon, n \alpha_{i}\right)\left(\left(A v_{i, 0}\right)^{-1}, 0\right)$. By Remark 15. since $\varphi_{n p_{i} \alpha_{i}}\left(v_{i, 0}\right)=v_{i, 0}$, we have

$$
a^{p_{i}}=(A, 0)\left(\varepsilon, n p_{i} \alpha_{i}\right)\left(A^{-1}, 0\right)=\left(A v_{i, 0}, 0\right)\left(\varepsilon, n p_{i} \alpha_{i}\right)\left(\left(A v_{i, 0}\right)^{-1}, 0\right)
$$

So $a^{p_{i}} b \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. On the other hand,

$$
a b=\left(A \varphi_{n \alpha_{i}}\left(v_{i, 0}\right) \varphi_{2 n \alpha_{i}}\left(v_{i, 0}\right)^{-1} \varphi_{2 n \alpha_{i}}\left(A^{-1}\right), 2 n \alpha_{i}\right)
$$

and

$$
b a=\left(A v_{i, 0} \varphi_{n \alpha_{i}}\left(v_{i, 0}\right)^{-1} \varphi_{2 n \alpha_{i}}\left(A^{-1}\right), 2 n \alpha_{i}\right)
$$

So a does not commute with b since $\varphi_{n \alpha_{i}}\left(v_{i, 0}\right)=v_{i, n \alpha_{i}} \neq v_{i, 0}$. The proofs of (2) and (3) are similar.

For (4), we claim that $a \in\left\{n\left(\alpha_{i}-\gamma_{i}\right): p_{i}, r_{i} \nmid n\right\}^{\mathcal{G}}$ if and only if there are $b_{1} \in\left\{n \alpha_{i}: p_{i} \nmid n\right\}^{\mathcal{G}}, b_{2} \in\left\{n \gamma_{i}: r_{i} \nmid n\right\}^{\mathcal{G}}$, and $c \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ such that $a=b_{1} b_{2}^{-1}$, $a c, a b_{1} \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, and c does not commute with b_{1}.

Suppose that there are such b_{1}, b_{2}, and c. We can write $b_{1}=\left(B_{1}, m \alpha_{i}\right)$ with $p_{i} \nmid$ m and $b_{2}=\left(B_{2}, n \gamma_{i}\right)$ with $r_{i} \nmid \gamma_{i}$. Thus we can write $a=b_{1} b_{2}^{-1}=\left(A, m \alpha_{i}-n \gamma_{i}\right)$. By Remark 16 (with $r=a, s_{1}=b_{1}$, and $s_{2}=c$), $\varphi_{m \alpha_{i}-n \gamma_{i}}$ fixes some element of \mathcal{N} which is not fixed by $\varphi_{m \alpha_{i}}$. Thus, in one of $\mathcal{H} / \mathcal{V}_{j}, \mathcal{H} / \mathcal{W}_{j}, \mathcal{H} / \mathcal{X}_{j}, \mathcal{H} / \mathcal{Y}_{j}$, or $\mathcal{H} / \mathcal{Z}_{j}$ for some j we have $m \bar{\alpha}_{i}-n \bar{\gamma}_{i}=0$ but $m \bar{\alpha}_{i} \neq 0$. Since $p_{i} \nmid m$, it must be in $\mathcal{H} / \mathcal{Y}_{i}$. So $n=m$. Note that p_{i} and r_{i} do not divide n.

On the other hand, suppose that $a \in\left\{n\left(\alpha_{i}-\gamma_{i}\right): p_{i}, r_{i} \nmid n\right\}^{\mathcal{G}}$. Then write

$$
a=(A, 0)\left(\varepsilon, n \alpha_{i}-n \gamma_{i}\right)\left(A^{-1}, 0\right)
$$

with p_{i} and r_{i} not dividing n. Let

$$
b_{1}=(A, 0)\left(\varepsilon, n \alpha_{i}\right)\left(A^{-1}, 0\right) \text { and } b_{2}=(A, 0)\left(\varepsilon, n \gamma_{i}\right)\left(A^{-1}, 0\right)
$$

and let

$$
c=\left(A y_{i, 0}, 0\right)\left(\varepsilon, n \alpha_{i}\right)\left(\left(A y_{i, 0}\right)^{-1}, 0\right) .
$$

Then $a=b_{1} b_{2}^{-1}$. Clearly $a b_{1} \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. Also, since $\varphi_{n \alpha_{i}-n \gamma_{i}}\left(y_{i, 0}\right)=y_{i, 0}$,

$$
a c=c a=\left(A y_{i, 0}, 0\right)\left(\varepsilon, 2 n \alpha_{i}-n \gamma_{i}\right)\left(\left(A y_{i, 0}\right)^{-1}, 0\right)
$$

So $a c \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ and a and c commute. On the other hand, b_{1} does not commute with c since $\varphi_{\ell \alpha_{i}}\left(y_{i, 0}\right)=y_{i, \ell \alpha_{i}} \neq y_{i, 0}$ as p_{i} does not divide ℓ.

We will now define $\operatorname{Same}(i)$ and $\operatorname{Different}(i)$.
Definition 18. Same (i) says that there are a, b, and c such that:
(1) a, b, c, and $a b$ are in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$,
(2) $a>1 \Longleftrightarrow b>1$,
(3) $a \in\left\{n \alpha_{i}: p_{i} \nmid n\right\}^{\mathcal{G}}$,
(4) $b \in\left\{n \beta_{i}: q_{i} \nmid n\right\}^{\mathcal{G}}$,
(5) $c \in\left\{n \gamma_{i}: r_{i} \nmid n\right\}^{\mathcal{G}}$,
(6) $a c^{-1} \in\left\{n\left(\alpha_{i}-\gamma_{i}\right): p_{i}, r_{i} \nmid n\right\}^{\mathcal{G}}$.
(7) $b c^{-1} \in\left\{n\left(\beta_{i}-\gamma_{i}\right): q_{i}, r_{i} \nmid n\right\}^{\mathcal{G}}$.

Different (i) is defined in the same way as $\operatorname{Same}(i)$, except that in (2) we ask that $a>1$ if and only if $b<1$.

Suppose, for simplicity, that a, b, and c are all in $\mathcal{H} / \mathcal{R}$. Then we would have that $a=\left(\varepsilon, \ell \alpha_{i}\right), b=\left(\varepsilon, m \beta_{i}\right)$, and $c=\left(\varepsilon, n \gamma_{i}\right)$. Now $a c^{-1}=\left(\varepsilon, \ell \alpha_{i}-n \gamma_{i}\right)$ is a power of $\left(\varepsilon, \alpha_{i}-\gamma_{i}\right)$, and so $\ell=n$. Similarly, $b c^{-1}=\left(\varepsilon, m \beta_{i}-n \gamma_{i}\right)$ is a power of $\left(\varepsilon, \beta_{i}-\gamma_{i}\right)$, and so $m=n$. Thus $\ell=m$. Since $\left(\varepsilon, \ell \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \ell \beta_{i}\right)>1$, $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$. Checking that this works even if a, b, and c are conjugates of $\mathcal{H} / \mathcal{R}$ is the heart of Lemma 19 .

Lemma 19. Let \leq be a left-ordering on \mathcal{G}. Then:
(1) If $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$, then $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$.
(2) If $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)<1$, then $(\mathcal{G}, \leq) \models \operatorname{Different}(i)$.
(3) If $\psi(i) \downarrow$, then $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$ if and only if $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$.
(4) If $\psi(i) \downarrow$, then $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)<1$ if and only if $(\mathcal{G}, \leq) \models \operatorname{Different}(i)$.

Proof. First, for (1), suppose that $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$. Then $(\mathcal{G}, \leq) \models$ Same (i) as witnessed by $c=\left(\varepsilon, \alpha_{i}\right), c=\left(\varepsilon, \beta_{i}\right)$, and $c=\left(\varepsilon, \gamma_{i}\right)$. (2) is similar.

Now for (3), suppose that $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$ as witnessed by a, b, and c, and that $\psi(i) \downarrow$. Let f, g, and h be the second coordinates of a, b, and c respectively. Write $f=\ell \alpha_{i}$ with $p_{i} \nmid \ell, g=m \beta_{i}$ with $q_{i} \nmid m$, and $h=n \gamma_{i}$ with $r_{i} \nmid h$. Then since $f-h$ is a multiple of $\alpha_{i}-\gamma_{i}, \ell=n$. Similarly, $m=n$, and so $\ell=m$.

Since $a b \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ and a and b commute, by Lemma 12 we can write

$$
a=(B, 0)\left(\varepsilon, \ell \alpha_{i}\right)(B, 0)^{-1}
$$

and

$$
b=(B, 0)\left(\varepsilon, \ell \beta_{i}\right)(B, 0)^{-1} .
$$

Now since $\psi(i) \downarrow$, in $\mathcal{H} / \mathcal{R}$ either $p_{i}^{t} \alpha_{i}=q_{i}^{t} \beta_{i}$ or $p_{i}^{t} \alpha_{i}=-q_{i}^{t} \beta_{i}$ for some t. In the second case, $a^{p_{i}^{t}}=b^{-q_{i}^{t}}$ which contradicts the fact that $a>1 \Longleftrightarrow b>1$. Thus $p_{i}^{t} \alpha_{i}=q_{i}^{t} \beta_{i}$, and so $\left(\varepsilon, \alpha_{i}\right)>1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$.
(4) is proved similarly.

Proof of Lemma 9. We will prove (1): $(\mathcal{G}, \leq) \models \operatorname{Same}(i)$ if and only if $\left(\varepsilon, \alpha_{i}\right)>$ $1 \Longleftrightarrow\left(\varepsilon, \beta_{i}\right)>1$. The proof of (2) is similar. The right to left direction follows immediately from (1) of Lemma 19 For the left to right direction, suppose that $\left(\mathcal{F}_{i}, \leq_{i}\right) \models \operatorname{Same}(i)$. Then $\psi(i) \downarrow$. Then the lemma follows from (3) of Lemma 19.

5. An Existential Definition of $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$

The goal of this section is to prove Lemma 11, which says that $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ is definable within \mathcal{G} by an existential formula. To prove this lemma, we will first have to give a detailed analysis of which elements of \mathcal{G} commute with each other.

The first lemma is the analogue of the following well-known fact about free groups: two elements a and b in a free group commute if and only if there is c such that $a=c^{m}$ and $b=c^{n}$ (see [LS01, Proposition 2.17]).
Lemma 20. Let $r, s \in \mathcal{G}$ commute. Then there are $W, V \in \mathcal{N}, x, y, z \in \mathcal{H} / \mathcal{R}$, and $k, \ell \in \mathbb{Z}$ such that

$$
r=(W, 0)(V, x)^{k}(\varepsilon, y)(W, 0)^{-1}
$$

and

$$
s=(W, 0)(V, x)^{\ell}(\varepsilon, z)(W, 0)^{-1}
$$

If $k \neq 0$ then $\varphi_{z}(V)=V$, and if $\ell \neq 0$ then $\varphi_{y}(V)=V$.
It is easy to check that two such elements commute.
Proof. Suppose that $r s=s r$. Let $r=(A, g)$ and $s=(B, h)$. Then we find that

$$
\begin{aligned}
r s & =(A, g)(B, h) \\
& =\left(A \varphi_{g}(B), g+h\right) \\
s r & =(B, h)(A, g) \\
& =\left(B \varphi_{h}(A), g+h\right) .
\end{aligned}
$$

So $A \varphi_{g}(B)=B \varphi_{h}(A)$ in \mathcal{N}. Write

$$
A=a_{0} \cdots a_{m-1} \text { and } B=b_{0} \cdots b_{n-1}
$$

as reduced words. So

$$
a_{0} \cdots a_{m-1} \varphi_{g}\left(b_{0}\right) \cdots \varphi_{g}\left(b_{n-1}\right)=b_{0} \cdots b_{n-1} \varphi_{h}\left(a_{0}\right) \cdots \varphi_{h}\left(a_{m-1}\right)
$$

We divide into several cases.
Case 1. A is the trivial word.
We must have $B=\varphi_{g}(B)$. Then $r=(\varepsilon, g)$ and $s=(B, h)$. Take $W=\varepsilon, V=B$, $x=h, y=g, z=0, k=0$, and $\ell=1$.

Case 2. B is the trivial word.
We must have $A=\varphi_{h}(A)$. Then $r=(A, g)$ and $s=(\varepsilon, h)$. Take $W=\varepsilon, V=A$, $x=g, y=0, z=h, k=1$, and $\ell=0$.

Case 3. Neither A nor B is the trivial word, and both $A \varphi_{g}(B)$ and $B \varphi_{h}(A)$ are reduced words.

We have $A \varphi_{g}(B)=B \varphi_{h}(A)$ as reduced words. Assume without loss of generality that $|A|=m \geq n=|B|$. Then $n, m>0$ and

$$
a_{0} \cdots a_{m-1} \varphi_{g}\left(b_{0}\right) \cdots \varphi_{g}\left(b_{n-1}\right)=b_{0} \cdots b_{n-1} \varphi_{h}\left(a_{0}\right) \cdots \varphi_{h}\left(a_{m-1}\right)
$$

as reduced words. So

$$
\begin{aligned}
a_{i} & =b_{i} & & \text { for } 0 \leq i<n \\
a_{i} & =\varphi_{h}\left(a_{i-n}\right) & & \text { for } n \leq i<m \\
\varphi_{g}\left(b_{i}\right) & =\varphi_{h}\left(a_{m-n+i}\right) & & \text { for } 0 \leq i<n .
\end{aligned}
$$

Let $d=\operatorname{gcd}(m, n)$. (This is where we use the fact that $m, n>0$.) Let $n^{\prime}=n / d$ and $m^{\prime}=m / d$.

Given $p, q \geq 0$, write $i=q n-p m+r$ with $0 \leq r<d$ and assume that $0 \leq i<m$. Note that every $i, 0 \leq i<m$, can be written in such a way. We claim that

$$
a_{i}=\varphi_{q h-p g}\left(a_{r}\right) .
$$

We argue by induction, ordering pairs (q, p) lexicographically. For the base case $p=q=0$ we note that $a_{r}=\varphi_{0}\left(a_{r}\right)$. Otherwise, if $n \leq i<m$, then we must have $q>0$. By the induction hypothesis, $a_{i-n}=\varphi_{(q-1) h-p g}\left(a_{r}\right)$. So

$$
a_{i}=\varphi_{h}\left(a_{i-n}\right)=\varphi_{q h-p g}\left(a_{r}\right)
$$

If $0 \leq i<n$, and $(q, p) \neq(0,0)$, then $q>0$ and $p>0$. Note that $a_{m-n+i}=$ $\varphi_{(q-1) h-(p-1) g}\left(a_{r}\right)$ by the induction hypothesis and so

$$
a_{i}=b_{i}=\varphi_{h-g}\left(a_{m-n+i}\right)=\varphi_{q h-p g}\left(a_{r}\right)
$$

This completes the induction.
Write $d=q n-p m$ with $p, q \geq 0$. Let $f=q h-p g$. Then each $i, 0 \leq i<m$, can be written as $i=k d+r$ with $0 \leq r<d$, and so $a_{i}=\varphi_{k f}\left(a_{r}\right)$.

Let $C=a_{0} \cdots a_{d-1}$. Then

$$
A=C \varphi_{f}(C) \cdots \varphi_{\left(m^{\prime}-1\right) f}(C)
$$

and so

$$
r=(A, g)=(C, f)^{m^{\prime}}\left(\varepsilon, g-m^{\prime} f\right)
$$

Since for $0 \leq i<n, a_{i}=b_{i}$, we have

$$
s=(B, h)=(C, f)^{n^{\prime}}\left(\varepsilon, h-n^{\prime} f\right)
$$

This is in the desired form: take $W=\varepsilon, V=C, x=f, y=g-m^{\prime} f, z=h-n^{\prime} f$, $k=m^{\prime}$, and $\ell=n^{\prime}$.

We still have to show that $\varphi_{y}(V)=\varphi_{z}(V)=V$. Noting that

$$
\left(n^{\prime} q-1\right) n-\left(n^{\prime} p\right) m=n^{\prime}(q n-p m)-n=n^{\prime} d-n=0
$$

we have, for all $0 \leq r<d$,

$$
a_{r}=\varphi_{\left(n^{\prime} q-1\right) h-n^{\prime} p g}\left(a_{r}\right)=\varphi_{n^{\prime} f-h}\left(a_{r}\right)
$$

Similarly,

$$
a_{r}=\varphi_{m^{\prime} f-g}\left(a_{r}\right) .
$$

Hence $\varphi_{g-m^{\prime} f}(C)=\varphi_{h-n^{\prime} f}(C)=C$.
Case 4. Neither A nor B is the trivial word, and both $B^{-1} A$ and $\varphi_{h}(A) \varphi_{g}(B)^{-1}$ are reduced words.

Note that $B^{-1} A=\varphi_{h}(A) \varphi_{g}(B)^{-1}$. We can make a transformation to reduce this to the previous case. Let

$$
A^{\prime}=B^{-1} \quad B^{\prime}=\varphi_{h}(A) \quad g^{\prime}=-h \quad h^{\prime}=g
$$

Then $A^{\prime} \varphi_{g^{\prime}}\left(B^{\prime}\right)=B^{\prime} \varphi_{h^{\prime}}\left(A^{\prime}\right)$ and these are reduced words. Hence by the previous case there are $C \in \mathcal{N}, f \in \mathcal{H} / \mathcal{R}$, and $m, n \in \mathbb{Z}$ such that

$$
\left(A^{\prime}, g^{\prime}\right)=(C, f)^{m}\left(\varepsilon, g^{\prime}-m f\right)
$$

and

$$
\left(B^{\prime}, h^{\prime}\right)=(C, f)^{n}\left(\varepsilon, h^{\prime}-n f\right)
$$

and such that $\varphi_{g^{\prime}-m f}(C)=C$ and $\varphi_{h^{\prime}-n f}(C)=C$. Now

$$
\begin{aligned}
(A, g) & =(\varepsilon,-h)\left(\varphi_{h}(A), g\right)(\varepsilon, h) \\
& =(\varepsilon,-h)\left(B^{\prime}, h^{\prime}\right)(\varepsilon, h) \\
& =(\varepsilon,-h)(C, f)^{n}\left(\varepsilon, h^{\prime}-n f\right)(\varepsilon, h) \\
& =\left(\varphi_{-h}(C), f\right)^{n}(\varepsilon, g-n f) .
\end{aligned}
$$

Note that $\varphi_{g-n f}(C)=\varphi_{h^{\prime}-n f}(C)=C$, and so $\varphi_{g-n f}\left(\varphi_{-h}(C)\right)=\varphi_{-h}(C)$. Similarly,

$$
\begin{aligned}
(B, h) & =(\varepsilon,-h)\left(B^{-1},-h\right)^{-1}(\varepsilon, h) \\
& =(\varepsilon,-h)\left(A^{\prime}, g^{\prime}\right)^{-1}(\varepsilon, h) \\
& =(\varepsilon,-h)\left(\varepsilon, g^{\prime}-m f\right)^{-1}(C, f)^{-m}(\varepsilon, h) \\
& =(\varepsilon, m f)(C, f)^{-m}(\varepsilon, h) \\
& =\left(\varphi_{m f}(C), f\right)^{-m}(\varepsilon, h+m f)
\end{aligned}
$$

Since $\varphi_{h+m f}(C)=\varphi_{g^{\prime}-m f}(C)=C, \varphi_{m f}(C)=\varphi_{-h}(C)$. So

$$
(B, h)=\left(\varphi_{-h}(C), f\right)^{-m}(\varepsilon, h+m f)
$$

This completes this case, taking $W=\varepsilon, V=\varphi_{-h}(C), x=f, y=g-n f$, $z=h+m f, k=n$, and $\ell=-m$.

Case 5. $|A|=1, B$ is not the trivial word, and neither $A \varphi_{g}(B)=B \varphi_{h}(A)$ nor $B^{-1} A=\varphi_{h}(A) \varphi_{g}\left(B^{-1}\right)$ are reduced words.

Let $A=a$. Then $a^{-1}=\varphi_{g}\left(b_{0}\right)$ and $b_{n-1}=\varphi_{h}\left(a^{-1}\right)$. Recall that $B=b_{0} \cdots b_{n-1}$. From the non-reduced words $A \varphi_{g}(B)=B \varphi_{h}(A)$, we get, as reduced words,

$$
\varphi_{g}\left(b_{1}\right) \varphi_{g}\left(b_{2}\right) \cdots \varphi_{g}\left(b_{n-1}\right)=b_{0} b_{1} \cdots b_{n-2} .
$$

Then, for $0 \leq i<n-1$ we get $\varphi_{g}\left(b_{i+1}\right)=b_{i}$. Thus $a=\varphi_{n g+h}(a)$. Also, letting $C=b_{0}$,

$$
r=\left(\varphi_{g}(C)^{-1}, g\right)=(C,-g)^{-1}
$$

and

$$
s=(C,-g)^{n}(\varepsilon, h+n g)
$$

Note that $\varphi_{h+n g}(C)=\varphi_{h+n g}\left(b_{0}\right)=b_{0}$ since $a=\varphi_{n g+h}(a)$ and $b_{0}=\varphi_{-g}\left(a^{-1}\right)$.
So in this case we take $W=\varepsilon, V=C, x=g, y=0, z=h+n g, k=-1$, and $\ell=n$.

Case 6. $|B|=1, A$ is not the trivial word, and neither $A \varphi_{g}(B)=B \varphi_{h}(A)$ nor $B^{-1} A=\varphi_{h}(A) \varphi_{g}\left(B^{-1}\right)$ are reduced words.

This case is similar to the previous case.
Case 7. $|A|,|B| \geq 2$ and neither $A \varphi_{g}(B)=B \varphi_{h}(A)$ nor $B^{-1} A=\varphi_{h}(A) \varphi_{g}\left(B^{-1}\right)$ are reduced words.

We have $b_{n-1}=\varphi_{h}\left(a_{0}\right)^{-1}$ and $\varphi_{h}\left(a_{m-1}\right)=\varphi_{g}\left(b_{n-1}\right)$ and so

$$
\varphi_{g}\left(a_{0}\right)=\varphi_{g}\left(a_{0}^{-1}\right)^{-1}=\varphi_{g-h}\left(b_{n-1}\right)^{-1}=a_{m-1}^{-1} .
$$

Letting

$$
A^{\prime}=a_{1} \cdots a_{m-2}=a_{0}^{-1} A \varphi_{g}\left(a_{0}\right)
$$

and

$$
B^{\prime}=a_{0}^{-1} b_{0} b_{1} \cdots b_{n-2}=a_{0}^{-1} B \varphi_{h}\left(a_{0}\right)
$$

we have

$$
\begin{aligned}
B^{\prime} \varphi_{h}\left(A^{\prime}\right) \varphi_{g}\left(B^{\prime}\right)^{-1} & =B^{\prime} b_{n-1} \varphi_{h}\left(a_{0}\right) \varphi_{h}\left(A^{\prime}\right) \varphi_{h}\left(a_{m-1}\right) \varphi_{g}\left(b_{n-1}\right)^{-1} \varphi_{g}\left(B^{\prime}\right)^{-1} \\
& =a_{0}^{-1} B \varphi_{h}(A) \varphi_{g}(B)^{-1} a_{m-1}^{-1} \\
& =a_{0}^{-1} A a_{m-1}^{-1} \\
& =A^{\prime}
\end{aligned}
$$

So $\left(A^{\prime}, g\right)$ and $\left(B^{\prime}, h\right)$ still commute.
Note that $\left|A^{\prime}\right|<|A|$ and $\left|B^{\prime}\right| \leq|B|$. So we only have to repeat this finitely many times until we are in one of the other cases. Thus, for some word D we get reduced words

$$
A^{\prime}=D A \varphi_{g}\left(D^{-1}\right)
$$

and

$$
B^{\prime}=D B \varphi_{h}\left(D^{-1}\right)
$$

which fall into one of the other cases. So

$$
\left(A^{\prime}, g\right)=(C, f)^{m}(\varepsilon, g-m f)
$$

and

$$
\left(B^{\prime}, h\right)=(C, f)^{n}(\varepsilon, h-n f)
$$

Thus

$$
r=\left(D A^{\prime} \varphi_{g}\left(D^{-1}\right), g\right)=(D, 0)\left(A^{\prime}, g\right)\left(D^{-1}, 0\right)
$$

and

$$
s=\left(D B^{\prime} \varphi_{h}\left(D^{-1}\right), h\right)=(D, 0)\left(B^{\prime}, h\right)\left(D^{-1}, 0\right)
$$

are in the desired form.
The next lemma gives a criterion for knowing that an element r is in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, but it requires knowing that two particular elements s_{1} and s_{2} are not in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. This does not seem useful yet, but in Lemma 23 we will show that any three elements s_{1}, s_{2}, and s_{3}, such that r commutes with each of them but s_{1}, s_{2}, and s_{3} pairwise do not commute, give rise to two such elements which are not in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$.

Lemma 21. Let $r, s_{1}, s_{2} \in \mathcal{G}$. Suppose that r commutes with s_{1} and s_{2}, but s_{1} and s_{2} do not commute. If $s_{1}, s_{2} \notin(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, then $r \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$.
Proof. Suppose to the contrary that $r \notin(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. Since r and s_{1} commute, and r and s_{2} commute, by Lemma 20 we can write

$$
\begin{aligned}
r & =(A, 0)\left(C, f_{1}\right)^{m_{1}}\left(\varepsilon, g_{1}\right)\left(A^{-1}, 0\right)=(B, 0)\left(D, f_{2}\right)^{m_{2}}\left(\varepsilon, g_{2}\right)\left(B^{-1}, 0\right) \\
s_{1} & =(A, 0)\left(C, f_{1}\right)^{n_{1}}\left(\varepsilon, h_{1}\right)\left(A^{-1}, 0\right) \\
s_{2} & =(B, 0)\left(D, f_{2}\right)^{n_{2}}\left(\varepsilon, h_{2}\right)\left(B^{-1}, 0\right)
\end{aligned}
$$

Since r, s_{1}, and s_{2} are not in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}, C$ and D are non-trivial and $m_{1}, m_{2}, n_{1}, n_{2} \neq$ 0 . So $\varphi_{g_{1}}(C)=\varphi_{h_{1}}(C)=C$ and $\varphi_{g_{2}}(D)=\varphi_{h_{2}}(D)=D$. Moreover, we will argue that we may assume that

$$
C \varphi_{f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C) \text { and } D \varphi_{f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D)
$$

are reduced words. If the former is not a reduced word, then it must have length at least 2 , and we can write $C=a C^{\prime} \varphi_{f_{1}}\left(a^{-1}\right)$. Then

$$
C \varphi_{f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)=a C^{\prime} \varphi_{f_{1}}\left(C^{\prime}\right) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}\left(C^{\prime}\right) \varphi_{m_{1} f_{1}}\left(a^{-1}\right)
$$

and so, since $\varphi_{g_{1}}$ fixes C and hence a,

$$
r=(A a, 0)\left(C^{\prime}, f_{1}\right)^{m_{1}}\left(\varepsilon, g_{1}\right)\left(a^{-1} A^{-1}, 0\right)
$$

Similarly,

$$
s_{1}=(A a, 0)\left(C^{\prime}, f_{1}\right)^{n_{1}}\left(\varepsilon, h_{1}\right)\left(a^{-1} A^{-1}, 0\right) .
$$

So we may replace A by $A a$ and C by C^{\prime}. We can continue to do this until $C \varphi_{f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)$ is a reduced word. The same argument works for $D \varphi_{f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D)$.

Rearranging the two expressions for r, we get

$$
\left(B^{-1} A, 0\right)\left(C, f_{1}\right)^{m_{1}}\left(\varphi_{g_{1}}\left(A^{-1} B\right), g_{1}\right)=\left(D, f_{2}\right)^{m_{2}}\left(\varepsilon, g_{2}\right) .
$$

Looking at the first coordinate,

$$
\begin{aligned}
& B^{-1} A C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C) \varphi_{m_{1} f_{1}+g_{1}}\left(A^{-1} B\right) \\
= & D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D) .
\end{aligned}
$$

We claim that we can write $B^{-1} A=E_{2}^{-1} E_{1}$ where $\varphi_{g_{1}}\left(E_{1}\right)=\varphi_{h_{1}}\left(E_{1}\right)=E_{1}$ and $\varphi_{g_{2}}\left(E_{2}\right)=\varphi_{h_{2}}\left(E_{2}\right)=E_{2}$. Recall that

$$
C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)
$$

is a non-trivial reduced word. Taking a high enough power ℓ, the length of

$$
\left(C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)\right)^{\ell}
$$

as a reduced word is more than twice the length of $B^{-1} A$. Then

$$
\begin{aligned}
& B^{-1} A\left(C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)\right)^{\ell} \varphi_{m_{1} f_{1}+g_{1}}\left(A^{-1} B\right) \\
= & \left(D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D)\right)^{\ell} .
\end{aligned}
$$

We can write $B^{-1} A=E_{2}^{-1} E_{1}$ as a reduced word where E_{2}^{-1} appears at the start of the right hand side when it is written as a reduced word, and E_{1} cancels with the beginning of $\left(C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)\right)^{\ell}$. Thus E_{1} is fixed by $\varphi_{g_{1}}$ and $\varphi_{h_{1}}$ since they fix each letter appearing in the word $\left(C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)\right)^{\ell}$, and E_{2} is fixed by $\varphi_{g_{2}}$ and $\varphi_{h_{2}}$ since they fix each letter appearing in the right hand side.

Since $E_{2} B^{-1}=E_{1} A^{-1}$,

$$
\begin{aligned}
E_{2} B^{-1} r B E_{2}^{-1} & =\left(E_{1}, 0\right)\left(C, f_{1}\right)^{m_{1}}\left(\varepsilon, g_{1}\right)\left(E_{1}^{-1}, 0\right) \\
& =\left(E_{2}, 0\right)\left(D, f_{2}\right)^{m_{2}}\left(\varepsilon, g_{2}\right)\left(E_{2}^{-1}, 0\right) \\
E_{2} B^{-1} s_{1} B E_{2}^{-1} & =\left(E_{1}, 0\right)\left(C, f_{1}\right)^{n_{1}}\left(\varepsilon, h_{1}\right)\left(E_{1}^{-1}, 0\right) \\
E_{2} B^{-1} s_{2} B E_{2}^{-1} & =\left(E_{2}, 0\right)\left(D, f_{2}\right)^{n_{2}}\left(\varepsilon, h_{2}\right)\left(E_{2}^{-1}, 0\right)
\end{aligned}
$$

So, applying the automorphism of \mathcal{G} given by conjugating by $E_{2} B^{-1}$ (and noting that this automorphism fixes $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$) we may assume from the beginning that $\varphi_{g_{1}}(A)=\varphi_{h_{1}}(A)=A$ and $\varphi_{g_{2}}(B)=\varphi_{h_{2}}(B)=B$. Thus

$$
\begin{aligned}
r & =(A, 0)\left(C, f_{1}\right)^{m_{1}}\left(A^{-1}, 0\right)\left(\varepsilon, g_{1}\right)=(B, 0)\left(D, f_{2}\right)^{m_{2}}\left(B^{-1}, 0\right)\left(\varepsilon, g_{2}\right) \\
s_{1} & =(A, 0)\left(C, f_{1}\right)^{n_{1}}\left(A^{-1}, 0\right)\left(\varepsilon, h_{1}\right) \\
s_{2} & =(B, 0)\left(D, f_{2}\right)^{n_{2}}\left(B^{-1}, 0\right)\left(\varepsilon, h_{2}\right)
\end{aligned}
$$

Now looking at the first coordinate, we have

$$
\begin{aligned}
& A C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C) \varphi_{m_{1} f_{1}}(A)^{-1} \\
= & B D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D) \varphi_{m_{2} f_{2}}(B)^{-1}
\end{aligned}
$$

Our next step is to argue that we may assume that these are reduced words. Suppose that there was some cancellation, say $A=A^{\prime} a$ and $C=a^{-1} C^{\prime}$. Let $C^{*}=C^{\prime} \varphi_{f_{1}}\left(a^{-1}\right)$. Then

$$
\begin{aligned}
& A C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C) \varphi_{m_{1} f_{1}}(A)^{-1} \\
= & A^{\prime} C^{*} \varphi_{f_{1}}\left(C^{*}\right) \varphi_{2 f_{1}}\left(C^{*}\right) \cdots \varphi_{\left(m_{2}-1\right) f_{1}}\left(C^{*}\right) \varphi_{m_{1} f_{1}}\left(A^{\prime}\right)^{-1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
r & =\left(A^{\prime}, 0\right)\left(C^{*}, f_{1}\right)^{m_{1}}\left(\varepsilon, g_{1}\right)\left(A^{\prime}, 0\right)^{-1} \\
s_{1} & =\left(A^{\prime}, 0\right)\left(C^{*}, f_{1}\right)^{n_{1}}\left(\varepsilon, h_{1}\right)\left(A^{\prime}, 0\right)^{-1}
\end{aligned}
$$

Note that

$$
\left(C^{*}, f_{1}\right)^{m_{1}}=C^{*} \varphi_{f_{1}}\left(C^{*}\right) \varphi_{2 f_{1}}\left(C^{*}\right) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}\left(C^{*}\right)
$$

is still a reduced word. If it was not a reduced word, then we would have $m_{1}>0$, $\left|C^{*}\right|>1$, and $\varphi_{f_{1}}\left(a^{-1}\right)=\varphi_{f_{1}}\left(a^{\prime}\right)^{-1}$, where a^{\prime} is the first letter of C^{*}. Thus $a^{\prime}=a$ is the second letter of C, which together with the fact that the first letter of C is a^{-1} contradicts our assumption that C is a reduced word. We have reduced the size of A, so after finitely many reductions of this form, we get

$$
\begin{aligned}
& A C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C) \varphi_{m_{1} f_{1}}(A)^{-1} \\
= & B D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D) \varphi_{m_{2} f_{2}}(B)^{-1}
\end{aligned}
$$

and that both sides are reduced words.
Now either $|A| \leq|B|$ or $|B| \leq|A|$. Without loss of generality, assume that we are in the first case. Then A is an initial segment of B (i.e., $B=A B^{\prime}$ as a reduced word). Then by replacing r, s_{1}, and s_{2} with $A^{-1} r A, A^{-1} s_{1} A$, and $A^{-1} s_{2} A$, we may assume that A is trivial. To summarize the reductions we have made so far, we have

$$
\begin{aligned}
r & =\left(C, f_{1}\right)^{m_{1}}\left(\varepsilon, g_{1}\right)=(B, 0)\left(D, f_{2}\right)^{m_{2}}\left(\varepsilon, g_{2}\right)\left(B^{-1}, 0\right) \\
s_{1} & =\left(C, f_{1}\right)^{n_{1}}\left(\varepsilon, h_{1}\right) \\
s_{2} & =(B, 0)\left(D, f_{2}\right)^{n_{2}}\left(\varepsilon, h_{2}\right)\left(B^{-1}, 0\right)
\end{aligned}
$$

The automorphisms $\varphi_{g_{1}}$ and $\varphi_{h_{1}}$ fix C, and the automorphisms $\varphi_{g_{2}}$ and $\varphi_{h_{2}}$ fix D and B. Both sides of

$$
\begin{aligned}
& C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C) \\
= & B D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D) \varphi_{m_{2} f_{2}}(B)^{-1}
\end{aligned}
$$

are reduced words.
Now we will show that either $m_{1}=1$ or B is trivial. Suppose that B was non-trivial, say $B=b B^{\prime}$. First note that the length of C is greater than one, as otherwise $C=b$ and $\varphi_{\left(m_{1}-1\right) f_{1}}(C)=\varphi_{m_{2} f_{2}}\left(b^{-1}\right)$; but there is no $e \in \mathcal{H} / \mathcal{R}$ such that $\varphi_{e}(b)=b^{-1}$. Then we must have $C=b C^{\prime} \varphi_{m_{2} f_{2}-\left(m_{1}-1\right) f_{1}}\left(b^{-1}\right)$ for some C^{\prime}. We have $m_{1} f_{1}+g_{1}=m_{2} f_{2}+g_{2}$. Since b appears both in C and in B, it is fixed by both $\varphi_{g_{1}}$ and $\varphi_{g_{2}}$. Thus $C=b C^{\prime} \varphi_{f_{1}}\left(b^{-1}\right)$. But then if $m_{1}>1$,

$$
C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)
$$

is not a reduced word. So we conclude that either $m_{1}=1$ or B is trivial.
Case 1. Suppose that $m_{1}=1$.
We have

$$
r=\left(C, f_{1}\right)\left(\varepsilon, g_{1}\right)=(B, 0)\left(D, f_{2}\right)^{m_{2}}\left(\varepsilon, g_{2}\right)\left(B^{-1}, 0\right)
$$

Also, as reduced words,

$$
C=B D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D) \varphi_{m_{2} f_{2}}(B)^{-1}
$$

Since the right hand side is a reduced word, $\varphi_{g_{1}}$ and $\varphi_{h_{1}}$ fix B and D since each letter in B and D appears in C. Thus

$$
s_{1}=\left(C, f_{1}\right)^{n_{1}}\left(\varepsilon, h_{1}\right)=\left[(B, 0)\left(D, f_{2}\right)^{m_{2}}\left(B^{-1}, 0\right)\left(\varepsilon, f_{1}-m_{2} f_{2}\right)\right]^{n_{1}}\left(\varepsilon, h_{1}\right)
$$

Now $f_{1}+g_{1}=m_{2} f_{2}+g_{2}$. Since $\varphi_{g_{1}}$ and $\varphi_{g_{2}}$ fix B and $D, \varphi_{f_{1}-m_{2} f_{2}}$ also fixes B and D. Thus

$$
s_{1}=(B, 0)\left(D, f_{2}\right)^{m_{2} n_{1}}\left(\varepsilon, h_{1}+n_{1}\left(f_{1}-m_{2} f_{2}\right)\right)\left(B^{-1}, 0\right)
$$

and $h_{1}+n_{1}\left(f_{1}-m_{2} f_{2}\right)$ fixes D. Thus s_{1} and s_{2} commute. This is a contradiction.
Case 2. B is trivial.
Let $|C|=k$ and $|D|=\ell$. Suppose without loss of generality that $k \geq \ell$. Let $d_{0}, d_{1}, d_{2}, \ldots$ be the reduced word

$$
C \varphi_{f_{1}}(C) \varphi_{2 f_{1}}(C) \cdots \varphi_{\left(m_{1}-1\right) f_{1}}(C)=D \varphi_{f_{2}}(D) \varphi_{2 f_{2}}(D) \cdots \varphi_{\left(m_{2}-1\right) f_{2}}(D)
$$

Then we have

$$
\begin{aligned}
d_{i} & =\varphi_{f_{2}}\left(d_{i-\ell}\right) & & \text { for } i \geq \ell \\
\varphi_{\left(m_{1}-1\right) f_{1}}\left(d_{k-\ell+i}\right) & =\varphi_{\left(m_{2}-1\right) f_{2}}\left(d_{i}\right) & & \text { for } 0 \leq i<\ell
\end{aligned}
$$

Let $e=\operatorname{gcd}(k, \ell)$.
Given $p, q \geq 0$, write $i=q \ell-p k+r$ with $0 \leq r<e$ and assume that $0 \leq i<$ $m_{1} k=m_{2} \ell$. Note that every $i, 0 \leq i<m_{1} k=m_{2} \ell$, can be written in such a way. We claim that

$$
d_{i}=\varphi_{q f_{2}+p\left[\left(m_{1}-1\right) f_{1}-m_{1} f_{2}\right]}\left(d_{r}\right)
$$

We argue by induction, ordering pairs (q, p) lexicographically. For the base case $p=q=0$ we note that $d_{r}=\varphi_{0}\left(d_{r}\right)$. If $\ell \leq i$, then we must have $q>0$. By the induction hypothesis, $d_{i-\ell}=\varphi_{(q-1) f_{2}+p\left[\left(m_{1}-1\right) f_{1}-m_{2} f_{2}\right]}\left(d_{r}\right)$. So

$$
d_{i}=\varphi_{f_{2}}\left(d_{i-\ell}\right)=\varphi_{q f_{2}+p\left[\left(m_{1}-1\right) f_{1}-m_{2} f_{2}\right]}\left(d_{r}\right)
$$

If $0 \leq i<\ell$, and $(q, p) \neq(\varepsilon, 0)$, then $q>0$ and $p>0$. Note that
$d_{k-\ell+i}=\varphi_{(q-1) f_{2}+(p-1)\left[\left(m_{1}-1\right) f_{1}-m_{2} f_{2}\right]}\left(d_{r}\right)=\varphi_{\left(q f_{2}+p\left[\left(m_{1}-1\right) f_{1}-m_{2} f_{2}\right]-\left[\left(m_{1}-1\right) f_{1}-\left(m_{2}-1\right) f_{2}\right]\right.}\left(d_{r}\right)$
by the induction hypothesis and so

$$
d_{i}=\varphi_{\left(m_{1}-1\right) f_{1}-\left(m_{2}-1\right) f_{2}}\left(d_{i+k-\ell}\right)=\varphi_{q f_{2}+p\left[\left(m_{1}-1\right) f_{1}-m_{2} f_{2}\right]}\left(c_{r}\right)
$$

This completes the induction.
Write $e=q \ell-p k$ with $p, q \geq 0$. Let $f=q f_{2}+p\left[\left(m_{1}-1\right) f_{1}-m_{2} f_{2}\right]$. Then each $i, 0 \leq i<k m_{1}$, can be written as $i=s e+r$ with $0 \leq r<d$, and so

$$
d_{i}=\varphi_{s f}\left(d_{r}\right)
$$

Let $E=d_{1} \cdots d_{e}$. Then

$$
C=E \varphi_{f}(E) \cdots \varphi_{\left(\frac{k}{e}-1\right) f}(E)
$$

Similarly,

$$
D=E \varphi_{f}(E) \cdots \varphi_{\left(\frac{\ell}{e}-1\right) f}(E)
$$

Also,

$$
\varphi_{f_{1}}(E)=d_{k} \cdots d_{k+e-1}=\varphi_{\frac{k}{e} f}\left(d_{0}, \ldots, d_{e-1}\right)=\varphi_{\frac{k}{e} f}(E)
$$

and

$$
\varphi_{f_{2}}(E)=d_{\ell} \cdots d_{\ell+e-1}=\varphi_{\frac{\ell}{e} f}\left(d_{0}, \ldots, d_{e-1}\right)=\varphi_{\frac{\ell}{e} f}(E)
$$

So $\varphi_{f_{1}}(C)=\varphi_{\frac{k}{e} f}(C)$ and $\varphi_{f_{2}}(D)=\varphi_{\frac{\ell}{e} f}(D)$. Hence

$$
s_{1}=\left(C, f_{1}\right)^{m_{1}}\left(\varepsilon, h_{1}\right)=(E, f)^{\frac{m_{1} k}{e}}\left(\varepsilon, h_{1}+m_{1} f_{1}-\frac{m_{1} k}{e} f\right)
$$

and

$$
s_{2}=\left(D, f_{2}\right)^{m_{1}}\left(\varepsilon, h_{2}\right)=(E, f)^{\frac{m_{2} \ell}{e}}\left(\varepsilon, h_{2}+m_{2} f_{2}-\frac{m_{2} \ell}{e} f\right)
$$

Note that $\varphi_{h_{1}}$ and $\varphi_{h_{2}}$ both fix E, since they fix C and D respectively. Also, since $\varphi_{f_{1}}(E)=\varphi \frac{k}{e} f(E), \varphi_{m_{1} f_{1}-\frac{m_{1} k}{e} f}$ fixes E. Similarly, $\varphi_{m_{2} f_{2}-\frac{m_{2} \ell}{e} f}$ fixes E. So s_{1} and s_{2} commute. This is a contradiction.
Lemma 22. Fix $r \in \mathcal{G}$. If $r^{2} \in \mathcal{H} / \mathcal{R}$, then $r \in \mathcal{H} / \mathcal{R}$.
Proof. Write $r=(A, f)$. We will show that if $r \notin \mathcal{H} / \mathcal{R}$, i.e. if $A \neq \varepsilon$, then $r^{2} \notin \mathcal{H} / \mathcal{R}$. Since

$$
r^{2}=\left(A \varphi_{f}(A), 2 f\right)
$$

we must show that $A \varphi_{f}(A)$ is non-trivial. Suppose that it was trivial; then the length of A as a reduced word must be even. (If the length of A was odd, say $A=A_{1} a A_{2}$ with A_{1} and A_{2} of equal lengths, then

$$
A \varphi_{f}(A)=A_{1} a A_{2} \varphi_{f}\left(A_{1}\right) \varphi_{f}(a) \varphi_{f}\left(A_{2}\right)=\varepsilon
$$

So it must be that $\varphi_{f}(a)=a^{-1}$, which cannot happen for any letter a.) Write $A=B C$, where B and C are each half the length of A. Then since $A \varphi_{f}(A)$ is the trivial word, $C \varphi_{f}(B)$ is the trivial word; thus $C=\varphi_{f}\left(B^{-1}\right)$. So $A=B \varphi_{f}\left(B^{-1}\right)$, and

$$
A \varphi_{f}(A)=B \varphi_{f}\left(B^{-1}\right) \varphi_{f}(B) \varphi_{2 f}\left(B^{-1}\right)=B \varphi_{2 f}\left(B^{-1}\right)
$$

Since $A \varphi_{f}(A)$ is the trivial word, $\varphi_{2 f}(B)=B$. Since A is not the trivial word, $B \neq \varphi_{f}(B)$. But this is impossible, as p_{i}, q_{i}, and r_{i} were all chosen to be odd primes.

The next lemma is the heart of the existential definition of $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. The proof is to show that under the hypotheses of the lemma, elements not in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ such as in Lemma 21 must exist.

Lemma 23. Let $r, s_{1}, s_{2}, s_{3} \in \mathcal{G}$. Suppose that r commutes with s_{1}, s_{2}, and s_{3}, but that no two of s_{1}, s_{2}, and s_{3} commute. Then $r \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$.

Proof. If at least two of s_{1}, s_{2}, and s_{3} are not in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, then this follows immediately by Lemma 21. Otherwise, without loss of generality suppose that s_{1} and s_{2} are in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. By Lemma 12, $s_{1} s_{2} \notin(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$.

Note that r commutes with $s_{1} s_{2}$ and with $s_{1}\left(s_{2}\right)^{2}$. Also, $s_{1} s_{2}$ does not commute with $s_{1}\left(s_{2}\right)^{2}$, since if it did, then

$$
s_{1} s_{2} s_{1} s_{2} s_{2}=s_{1} s_{2} s_{2} s_{1} s_{2} \Rightarrow s_{1} s_{2}=s_{2} s_{1}
$$

We claim that $s_{1}\left(s_{2}\right)^{2} \notin(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$. If $s_{1}\left(s_{2}\right)^{2}$ was in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, then by Lemma 12 we could write

$$
s_{1}=(A, 0)(\varepsilon, g)\left(A^{-1}, 0\right) \text { and }\left(s_{2}\right)^{2}=(A, 0)(\varepsilon, h)\left(A^{-1}, 0\right)
$$

Then let $s_{2}^{\prime}=\left(A^{-1}, 0\right) s_{2}(A, 0)=(C, f)$. Then $\left(s_{2}^{\prime}\right)^{2}=(\varepsilon, h)$, and so by Lemma 22 , $s_{2}^{\prime}=(\varepsilon, f)$. Thus $s_{2}=(A, 0)(\varepsilon, f)\left(A^{-1}, 0\right)$. So s_{1} and s_{2} would commute; since we know that s_{1} and s_{2} do not commute, $s_{1}\left(s_{2}\right)^{2} \notin(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$.

By Lemma 21, with $r, s_{1} s_{2}$, and $s_{1} s_{2}^{2}$, we see that r is in $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$.
The existential definition of $(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$ comes from the previous lemma. It remains only to show that if $r \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, then the hypothesis of the previous lemma is satisfied.

Proof of Lemma 11. By the previous lemma, it suffices to show that if $r \in(\mathcal{H} / \mathcal{R})^{\mathcal{G}}$, then there are s_{1}, s_{2}, and s_{3} such that r commutes with s_{1}, s_{2}, and s_{3}, but no two of these commute with each other. If $r=(A, 0)(\varepsilon, g)\left(A^{-1}, 0\right)$, let $s_{1}=$ $(A, 0)\left(u_{0}, 0\right)\left(A^{-1}, 0\right), s_{2}=(A, 0)\left(u_{1}, 0\right)\left(A^{-1}, 0\right)$, and $s_{3}=(A, 0)\left(u_{2}, 0\right)\left(A^{-1}, 0\right)$. Then r commutes with s_{1}, s_{2}, and s_{3} since g fixes u_{0}, u_{1}, and u_{2}, but no two of s_{1}, s_{2}, and s_{3} commute with each other as u_{0}, u_{1}, and u_{2} do not commute with each other.

References

[Ber90] G. M. Bergman. Ordering coproducts of groups and semigroups. J. Algebra, 133(2):313339, 1990.
[DK86] R. G. Downey and S. A. Kurtz. Recursion theory and ordered groups. Ann. Pure Appl. Logic, 32(2):137-151, 1986.
[Dob83] V. P. Dobritsa. Some constructivizations of abelian groups. Sibirsk. Mat. Zh., 24(2):1825, 1983.
[DR00] R. G. Downey and J. B. Remmel. Questions in computable algebra and combinatorics. In Computability theory and its applications (Boulder, CO, 1999), volume 257 of Contemp. Math., pages 95-125. Amer. Math. Soc., Providence, RI, 2000.
[KM96] V. M. Kopytov and N. Ya. Medvedev. Right-ordered groups. Siberian School of Algebra and Logic. Consultants Bureau, New York, 1996.
[LS01] R. C. Lyndon and P. E. Schupp. Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.
[Shi47] H. Shimbireva. On the theory of partially ordered groups. Rec. Math. [Mat. Sbornik] N.S., 20(62):145-178, 1947.
[Sol02] R. Solomon. Π_{1}^{0} classes and orderable groups. Ann. Pure Appl. Logic, 115(1-3):279-302, 2002.
[Vin49] A. A. Vinogradov. On the free product of ordered groups. Mat. Sbornik N.S., 25(67):163168, 1949.

[^2]
[^0]: The author was partially supported by the Berkeley Fellowship and NSERC grant PGSD3-454386-2014. The author would like to thank Antonio Montalbán for reading and commenting on a draft of this article.

[^1]: ${ }^{1}$ We use the fact that 2 does not appear in these lists in Lemma 22

[^2]: Group in Logic and the Methodology of Science, University of California, Berkeley, USA

 E-mail address: matthew.h-t@berkeley.edu
 $U R L$: www.math.berkeley.edu/~mattht

