
ar
X

iv
:1

60
7.

07
83

3v
1 

 [
m

at
h.

L
O

] 
 2

6 
Ju

l 2
01

6

The Number of Atomic Models of Uncountable Theories

Douglas Ulrich ∗

Department of Mathematics

University of Maryland, College Park

September 19, 2018

Abstract

We show there exists a complete theory in a language of size continuum possess-
ing a unique atomic model which is not constructible. We also show it is consistent
with ZFC + ℵ1 < 2ℵ0 that there is a complete theory in a language of size ℵ1

possessing a unique atomic model which is not constructible. Finally we show it is
consistent with ZFC + ℵ1 < 2ℵ0 that for every complete theory T in a language of
size ℵ1, if T has uncountable atomic models but no constructible models, then T
has 2ℵ1 atomic models of size ℵ1.

1 Introduction

There are several model-theoretic notions of “smallness,” namely: a model M is atomic

if every tuple a ∈ M has its type isolated by a single formula; a model M is prime if
for every N ≡ M , there is an elementary embedding of M into N ; and a model M is
constructible if there is a sequenceM = (aα : α < α∗) such that each tp(aα/{aβ : β < α})
is isolated by a single formula.

If we are just interested in the complete theories in countable languages, then then
these notions all coincide, by an old theorem of Vaught [14] (essentially):

Theorem 1.1. For models of T a countable complete theory, the notions “countable
atomic,” “prime” and “constructible” coincide. Such a model exists if and only if the
isolated types are dense in the Stone spaces Sn(∅) for all n; when they exist they are
unique up to isomorphism.

When we ask about theories in uncountable languages, things get harder. We have
the following examples:

• Laskowski and Shelah [5]: there is a complete theory T in a language of size ℵ2,
such that the isolated types are dense in Sn(∅) for all n, but T has no atomic
models.

∗
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• Knight [3]: there is a complete theory in a language of size ℵ1, with atomic models
but no prime models.

• Folklore: there is a complete theory in a language of size continuum, with prime
models but no atomic models. Namely Th(2ω, f , Un)f∈2ω ,n∈ω, where f(g) = f ⊕ g
mod 2, and Un(g) holds iff g(n) = 1.

• Shelah [12]: there is a complete theory in a language of size ℵ1, with models that
are atomic but not prime, and with models that are prime but not constructible,
and with a constructible model. Namely Th(ωω1 , Eα : α < ω1), where ηEατ iff
η ↾α= τ ↾α.

The following, one of the few positive results, was proved by Ressayre, see for example
[6]:

Theorem 1.2. Let T be a complete theory in an arbitrary language. If T has a con-
structible model M , then M is unique up to isomorphism; it is furthermore prime and
atomic. Also, the construction sequence for M can be chosen of order type |T |.

And the following was proved independently by Knight [3], Kueker [4] and Shelah
[9]:

Theorem 1.3. Let T be a complete theory in a language of size ℵ1. Then T has an
atomic model if and only if the isolated types are dense in Sn(∅) for all n.

In this paper we are specifically interested in looking at the atomic models of T ; we
wonder when, for example, there exists a constructible model. Knight’s example above
shows that the answer is “not always” but we would like to say more. In fact Knight’s
example has 2ℵ1 models of size ℵ1. We wonder if this is a necessary feature: that is,
suppose T is a complete theory in a language of size κ, with a unique atomic model M
of size ≤ κ. Must M be constructible?

By Vaught’s Theorem 1.1, for κ = ℵ0 we know this to be true. We introduce the
following examples to show it is false for κ = 2ℵ0 .

First Example: Theorem 3.1. There is a complete theory in a langauge of size
continuum, with a unique atomic model, which is not prime. (Hence there are no prime
models.)

Second Example: Remark 4.6. There is a complete theory in a language of size
continuum, with a unique atomic model, which is furthermore prime, but which is not
constructible.

Do we need continuum? This is only interesting if ℵ1 < 2ℵ0 ; and with that as-
sumption it turns out to be independent of ZFC. In particular we have the following
theorems:

Third Example: Theorem 4.1. IT is consistent with ZFC + ℵ1 < 2ℵ0 that there
is a complete theory in a language of size ℵ1, with a unique atomic model, which is
furthermore prime, but which is not constructible.
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Theorem 1.4. It is consistent with ZFC + ℵ1 < 2ℵ0 that whenever T is a complete
theory in a language of size ℵ1, if T has atomic models but no constructible models,
then T has 2ℵ1 atomic models of size ℵ1.

The paper is organized as follows:
In Section 2 we explain the various set-theoretic tools we use in the paper, and give

sharper statements of the Third Example and of Theorem 1.4. The First Example is
given in Section 3, the Second and Third Examples are given in Section 4 and in Section 5
we prove Theorem 1.4.

The author thanks Chris Laskowski for suggesting these problems, for many helpful
discussions and for many helpful comments on the writing of this paper.

2 Background, and Statement of Results

We first review the set-theoretic notions required for the consistency proofs. [7] serves
as a general reference.

2.1 Ladder Systems

Let Λ ⊆ ω1 be the limit ordinals. Suppose S ⊂ Λ is stationary. A ladder system

(Lα : α ∈ S) is a sequence of subsets of ω1 such that for each α ∈ S, Lα ⊂ α is cofinal
and of order type ω. (Lα : α ∈ S) has the uniformization property if for every sequence
(fα : α ∈ S) of functions fα : Lα → 2, there is some f : ω1 → 2 such that for all α ∈ S,
{b ∈ Lα : fα(β) 6= f(β)} is finite.

We have the following, proven by Devlin-Shelah [2]:

Theorem 2.1. Martin’s Axiom, together with ℵ1 < 2ℵ0 , implies that every ladder
system on Λ has the uniformization property (and hence that every ladder system on
any stationary S has the uniformization property.)

In particular ZFC + ℵ1 < 2ℵ0+ “every ladder system on Λ has the uniformiation
property” is equiconsistent with ZFC.

The uniformization property was originally introduced to analyze Whitehead groups.
Namely, Shelah showed in [13] that there is a non-free Whitehead group of size ℵ1 if
and only if for some stationary S ⊂ Λ, some ladder system on S has the uniformization
property.

We sharpen the Third Example as follows:

Third Example, Sharp Version. Suppose there is some stationary S ⊆ ω1 that
admits a ladder system. Then there is a theory T in a language of size ℵ1 such that T
has a unique atomic model, which is furthermore prime, but which is not constructible.
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2.2 The Weak Diamond Principle

If S ⊆ ω1 is stationary, then Φ(S) (“weak diamond on S”) is the combinatorial guessing-
principle which states that for every F : 2<ω1 → 2, there is some g : S → 2 such that for
every f : ω1 → 2, the set {α ∈ S : F (f ↾α) = g(α)} is stationary. So the smaller S is,
the stronger Φ(S) is; Φ(ω1) is equivalent to 2ℵ0 < 2ℵ1 .

Definition 2.2. Let Φ∗ abbreviate: for all stationary S ⊂ ω1, Φ(S) holds.

It is easy to show that, for example, Φ(S) holds if and only if for every F : (2× 2×
ω1)

<ω1 → 2, there is some g : S → 2 such that for every f0, f1 : ω1 → 2 and for every
h : ω1 → ω1, the set {α ∈ S : F (f0 ↾α, f1 ↾α, h ↾α) = g(α)} is stationary.

These principles were introduced by Devlin and Shelah [2], where they proved the
following theorems:

Theorem 2.3. 1. Φ(ω1) is equivalent to 2ℵ0 < 2ℵ1 .

2. Suppose Φ(S) holds. Then we can write S as the disjoint union of stationary sets
(Sα : α < ω1) such that Φ(Sα) holds for each α.

3. Suppose S ⊆ Λ is stationary. If Φ(S) holds then no ladder system on S has the
uniformization property.

In view of the first item, Φ∗ is a strengthening of 2ℵ0 < 2ℵ1 .

2.3 The Covering Number

Let Cov(K) be the covering number of the σ-ideal of meager sets: i.e. the least κ such
that 2ω is the union of κ-many closed nowhere dense sets. This is a well-understood
cardinal invariant of the continuum. In particular ω < Cov(K) ≤ 2ℵ0 , and if Martin’s
Axiom holds then Cov(K) = 2ℵ0 .

So Φ∗ ∧ Cov(K) ≥ ℵ2 says that ℵ1 < 2ℵ0 < 2ℵ1 in a strong way. This assertion
is consistent: let P be the forcing notion P0 × P1 where P0 = Fn(ω2, 2, ω) and P1 =
Fn(ω3, 2, ω1). (Here Fn(X,Y, κ) is the set of all partial functions f with domain ⊆ X
and range ⊆ Y , and with |f | < κ.) P is the standard forcing notion for arranging
2ℵ0 = ℵ2, 2

ℵ1 = ℵ3, starting from GCH. Then we have:

Theorem 2.4. Suppose V |= GCH and G is P-generic over V. Then V[G] |= Φ∗ ∧
Cov(K) ≥ ℵ2.

Proof. It is shown in [11] (Theorem 2.11 from the appendix) that V[G] |= Φ∗.
Note that these forcing notions all preserve cardinals, so we can refer to ω1, etc.,

without ambiguity.
Let G1 be P1-generic over V. Working in V[G1], we show that if G0 is P0-generic

over V[G1] then V[G1][G0] |= Cov(K) ≥ ℵ2.
Indeed, suppose (Cα : α < ω1) is a sequence in V[G1][G0] of closed nowhere dense

subsets of (ωω)V[G1][G0]. Let xα ∈ (ωω)V[G1][G0] encode Cα.
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In V[G1], write ω2 = I ∪ J where I, J are disjoint, |I| ≤ ℵ1, and such that setting
H0 = G0 ↾I , H1 = G0 ↾J , we have that (xα : α < ω1) ⊂ V[G1][H0]. Choose a real
x ∈ V[G1][G0] = V[G1][H0][H1] such that x is Cohen over V[G1][H0]; then x 6∈ Cα for

all α < ω1, showing that
⋃

α<ω1

Cα 6= (ωω)V[G0][G1].

2.4 The Main Theorem

For T a complete theory in a countable language, the question of the number of atomic
models of T of size ℵ1 has been closely investigated. First of all, such models exist if
and only if T has a (unique) countable atomic model, which furthermore has a proper
atomic extension. Assuming this, let KT be the class of atomic models of T .

Now say that KT is ω-stable if Sn
at(M) is countable for all n, where M is some

countable atomic model of T , and Sn
at(M) is the set of all n-types p(x) ∈ Sn(M) such

that Ma is atomic whenever a realizes p(x).
Then we have the following theorems of Shelah [8] [10] (or see [1] for an exposition):

Theorem 2.5. Suppose 2ℵ0 < 2ℵ1 , and KT is not ω-stable. Then T has 2ℵ1 nonisomor-
phic models of size ℵ1.

It is not known if the assumption 2ℵ0 < 2ℵ1 is necessary here. On the other hand, if
KT is ω-stable, then we have a strong enough structure theory to determine e.g. when
KT is ℵ1-categorical.

Now, our main theorem (Theorem 2.8 below) will be essentially a generalization of
Theorem 2.5, and will follow the same general proof outline, which we now describe.

Namely, the proof of Theorem 2.5 splits into cases depending on whether KT has
the amalgation property at ℵ0. Here, an amalgamation problem at ℵ0 (for KT ) is a
triple (M0,M1,M2) where each Mi is a countable atomic model of T , and M0 �Mi for
i = 1, 2. A solution to the amalgamation problem is a triple (M3, f1, f2) where M3 is
a countable atomic model of T , and fi : Mi � M3, and f1 ↾M0

= f2 ↾M0
. KT has the

amalgamation property at ℵ0 if every amalgamation problem at ℵ0 has a solution.
So to prove Theorem 2.5, we first consider the case where KT fails the amalgamation

property at ℵ0, and then the case where KT has the amalgamation property at ℵ0 but
is not ω-stable.

But it is worth noting that we have the following Corollary 19.14 from [1]:

Theorem 2.6. If KT is ω-stable then KT has the amalgamation property at ℵ0.

We will also want the following strengthening (an easy consequence of Corollary 24.4
from [1]). To state it conveniently we work in a monster model C of T . Say that a set
A ⊂ C is atomic if every finite tuple from A realizes an isolated type.

Theorem 2.7. Suppose KT is ω-stable, and (A0, A1, A2) is a triple of countable atomic
sets with A0 ⊆ Ai for i = 1, 2. Suppose Sat(A0) is countable. Then (A0, A1, A2) can be
amalgamated by some countable atomic set A3.
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Let T be a complete theory in a language of size ℵ1, and let KT be its class of atomic
models. In Section 5 we define the notion “KT is club totally transcendental,” general-
izing the definition of ω-stability for L countable. We then prove our main theorem, a
sharpening of Theorem 1.4:

Theorem 2.8. Suppose Φ∗ holds, and Cov(K) ≥ ℵ2. Suppose T is a complete theory
in a language of size ℵ1 with atomic models, and KT is not club totally transcendental.
Then T has 2ℵ1 atomic models of size ℵ1.

The hypotheses can be understood as follows: the First and Second Examples require
CH (to matter at ℵ1), which Cov(K) ≥ ℵ2 prevents; and the Third Example requires the
existence of ladder systems with the uniformization property, which Φ∗ prevents.

The proof of Theorem 2.8 follows the same outline as that of Theorem 2.5. Namely,
we will say what it means for KT to have the club amalgamation property, then split
into two cases, depending on whether KT fails the club amalgamation property, or else
KT has the club amalgamation property but it not club totally transcendental.

As in the countable case we can actually show that club totally transcendental implies
the club amalgamation property; this is discussed in Section 5.3. However this is not
technically needed for the proof.

Finally, one obtains Theorem 1.4 quickly, since if T has no constructible models then
KT is not club totally transcendental; see Section 5.2.

3 Unique Atomic Model that is not Prime

In this section I construct the First Example: namely an atomic model A |= T , in a
language of size continuum, which has a unique atomic model that is not prime.

Given η ∈ 2<ω1 , let ℓg(η) be its length, i.e. its domain.
Let L = (Uα, παβ,η : β ≤ α < ω1, η ∈ 2<ω1) where each Uα is a unary relation

symbol, each η : Uℓg(η) → Uℓg(η) is a unary function symbol, and each παβ : Uα → Uβ is
a unary function symbol. (Formally, since we are using single-sorted logic, each of these
function symbols will be total, but we let their values be trivial outside their domain.)

We turn 2<ω1 into an L-structure A = (2<ω1 , Uα, παβ ,η : β ≤ α < ω1, η ∈ 2<ω1) as
follows:

• Interpret Uα as 2α, i.e. all η ∈ 2<ω1 with ℓg(η) = α;

• Given τ ∈ 2α and β ≤ α, interpret παβ(τ) as τ ↾β;

• Given η ∈ 2α and τ ∈ Uα interpret η(τ) as η ⊕ τ , where the addition is pointwise
mod 2.

Let T be the complete theory of A.

Theorem 3.1. A is the unique atomic model of T , and it is not prime.

6



The proof goes as follows. First we establish that A is the unique atomic model of
T . Then we give an axiomatization of T , and use it to exhibit a model B of T into
which A does not embed; in fact B will omit tpA(0α : α < ω1), where 0α ∈ 2α is the zero
sequence.

Lemma 3.2. We write down some straightforward observations:

• Given η, τ ∈ 2α, ητ = τη;

• Given η ∈ 2α and β ≤ α, παβη =η ↾β παβ ;

• Given γ ≤ β ≤ α, πβγπαβ = παγ , and παα is the identity on 2α;

• Given ν ∈ 2ω1 , the map fν : A → A defined by fν(η) =ν ↾ℓg(η) (η) is an automor-
phism of A;

• For all η ∈ 2α, τ ∈ 2β , if α ≥ β then τ is in the definable closure η, namely
τ = τπαβη(η).

• In particular, for all η, τ , either η is in the definable closure of τ or vice versa.

Lemma 3.3. Suppose η = η0 . . . ηn−1 is a finite sequence from 2<ω1 . Write αi = ℓg(ηi);
we can suppose α0 ≥ αi for all i < n. Then the formula

φη(x0 . . . xn−1) := Uα0
(x0) ∧

∧

i<n

xi = ηiπα0αi
η0(x0)

isolates tpA(η). In particular A is an atomic model of T .

Proof. It is clear that A |= φη(η). Conversely, suppose A |= φη(τ0, . . . , τn−1). Let
ν := (τ0 ⊕ η0)

⌢0 ∈ 2ω1 . Then fν : A ∼= A (defined above) is an automorphism of A
taking η to τ , so they have the same type.

Lemma 3.4. A is the unique atomic model of T .

Proof. Suppose B |= T is atomic; say B = (B,U∗
α, π

∗
αβ ,η

∗ : η ∈ 2<ω1 , β ≤ α < ω1).
Note that Lemma 3.3 characterizes all the complete isolated types of T . In particular

B =
⋃

α<ω1

U∗
α.

We define by induction on α < ω1 an element bα ∈ U∗
α such that for all β ≤ α < ω1,

bβ = π∗αβ(bα).
There is a unique element of U∗

0 , so we let that element be b0.
Suppose we have defined bα. Then let bα+1 be either of the two elements in U∗

α+1

that restrict to bα.
Finally, suppose α < ω1 is a limit, and we have defined bβ for all β < ω1. Let b ∈ U∗

α

be arbitrary. For each β < α, let ηβ ∈ 2β be the unique function with bβ = ηβπαβ(b).

Then ηβ ⊆ ηγ for β ≤ γ < α. Define η =
⋃

β<α

ηβ , and define bα = η(b). This works,

clearly.
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So we have (bα : α < ω1) as desired. For each α < ω1, let 0α ∈ A be the zero sequence
of length α. Then f : 0α 7→ bα is a partial elementary map from A into B. So f extends
to a partial elementary map g from the definable closure of {0α : α < ω1} in A to the
definable closure of {bα : α < ω1}.

But note that the definable closure of each 0α contains all of Uα, and the definable
closure of each bα contains all of U∗

α. Hence g : A
∼= B.

Now we provide an axiomatization of T .

Definition 3.5. Let T0 consist of the consequences of the following axioms.

(I) Suppose φ(x) is a quantifier-free formula of L with only the variable x free. Sup-
pose A |= ∀xφ(x). Then “∀xφ(x)” is an axiom.

(II) “∃!x : U0(x)”.

(III) For all α, “∀x : Uα(x) → ∃=2y : (Uα+1(y) ∧ πα+1α(y) = x)”.

(IV) For all α < β, “∀x : Uα(x) → ∃y : (Uβ(y) ∧ πβα(y) = x)”.

Obviously A |= T0.

Lemma 3.6. T0 = T , i.e. T0 is complete.

Proof. (Sketch.) It suffices to show that for sufficiently rich finite fragments L′ ⊆ L,
T0 ↾L′ is ℵ0-categorical.

Temporarily define a template to be a sequence G = (Gα : α ∈ X) where:

• X ⊆ ω1 is finite and closed under immediate predecessors, and 0 ∈ X;

• Each Gα is a finite subgroup of (2α,⊕), containing the set of all η ∈ 2α which are
zero outside of X;

• For β ≤ α both in X, Gα ↾β= Gβ .

Given a template G = (Gα : α ∈ X), let LG ⊆ L be defined as follows: Uα ∈ LG

iff α ∈ X; παβ ∈ LG iff α, β ∈ X; and η ∈ LG iff ℓg(η) ∈ X and η ∈ Gℓg(η). Let
TG = T0 ↾L

G
.

Then it is easy to see that each TG is ℵ0-categorical; note for example that TG
proves there are infinitely many unsorted elements (i.e. elements that are not in any
Uα for α ∈ X) and that these elements are absolutely indiscernible over the rest of the
model.

The following lemma concludes the proof of Theorem 3.1.

Lemma 3.7. A is not a prime model of T .

Proof. We define a model B = (B,U∗
α, π

∗
αβ ,η

∗ : η ∈ 2<ω1 , β ≤ α < ω1) |= T into which
A does not embed.

8



• Let B be the set of all pairs (τ, s) where:

– τ ∈ 2<ω1 ;

– s ∈ ω<ω
1 is a finite, strictly increasing sequence of ordinals, with |s| ≥ 2;

– s(0) = 0, s(1) = ω, and for all n ≥ 1, s(n) is a limit ordinal;

– s(|s| − 2) ≤ ℓg(τ) < s(|s| − 1).

• Suppose (τ, s) ∈ B. Then let U∗
α(τ, s) hold iff τ ∈ 2α.

• Suppose (τ, s) ∈ U∗
α and η ∈ 2α. Then let η∗(τ, s) = (η ⊕ τ, s).

• Suppose (τ, s) ∈ U∗
α and β ≤ α. Let n be such that s(n− 2) ≤ β < s(n − 1). Let

π∗αβ(τ, s) = (τ ↾β, s ↾n).

It is routine to check that B is a model of Axiom Schemas II-IV. To check Axiom
Schema I: suppose B |= ∃xφ(x), where φ(x) is a quantifier-free L-formula. Say B |=
φ(η, s). Let A0 be the definable closure of η in A (i.e., all τ ∈ A with ℓg(τ) ≤ ℓg(η)) and
let B0 be the definable closure of (η, s) in B (i.e., all (τ, t) ∈ B with ℓg(τ) ≤ ℓg(η) and
t ⊆ s). Then the map Φ : B0 → A0 taking (τ, t) to τ is a partial isomorphism from B0

onto A0. Hence A |= φ(η), so A |= ∃xφ(x).
So B |= T . Suppose towards a contradiction that f : A → B were an elementary

embedding. Let 0α be the zero sequence of length α in A, for each α < ω1; and let
(ηα, sα) = f(0α). Then we have for all α < β, π∗βα(ηβ , sβ) = (ηα, sα). In particular, for
all α < β, sα ⊆ sβ.

Hence (sα : α < ω1) eventually stabilizes; say sα = sβ = s for all α, β ≥ α0. Let
α1 = max(s(|s| − 1), α0). Then ℓg(ηα1

) ≥ sα(|sα| − 1), contradicting the definition of
B.

4 Unique Atomic Models that are Prime but not Constructible

In this section, I show the following:

Theorem 4.1. Third Example: Suppose for some stationary S ⊂ Λ, some ladder system
(Lα : α ∈ S) has the uniformization property. Then from this ladder system we can
define a theory T in a language L of size ℵ1, such that T has a unique atomic model,
which is additionally prime, yet which is not constructible.

A small tweak (see Remark 4.6 below) gives the Second Example.
The idea is to make an example similar to the first example, except we replace the

tree (2<ω1 , <) with a much smaller tree, in fact a tree of height ω+1. (In neither example
is < itself part of the language.)

Fix a stationary S ⊂ Λ and a ladder system (Lα : α ∈ S) with the uniformization
property. Let να : ω → Lα be the strictly increasing enumeration.

9



Let J0 be the set of all strictly increasing functions η0 : α → ω1, where α ≤ ω, and
if α = ω then η0 = νβ for some β ∈ S. So J0 is a tree of height ω + 1 under ⊂.

Let J1 = {η1 ∈ 2≤ω : η1 has finite support}. J1 is also tree of height ω + 1, under
initial segment ⊂.

Let J = J0 ⊗ J1 be the product tree of pairs η = (η0, η1), where η0 ∈ S0 and η1 ∈ S1
and |η0| = |η1|; we say η ≤ τ if ηi ≤ τi for each i < 2.

Given η ∈ J , we view η as a sequence with domain α ≤ ω, and write ℓg(η), η ↾n, etc.
accordingly. If η, τ, . . . ∈ J then always η = (η0, η1), τ = (τ0, τ1), . . ..

Let L be the language {Uη0 , πα,η : η0 ∈ J0, η ∈ J, α ≤ ω}, where each Uη0 is a unary
predicate, and each πα,η are unary function symbols. η will be a map Uη0 → Uη0 .

We turn J into a L-structure A as follows. Let Uη0 = {τ ∈ J : τ0 = η0}. Given η ∈ J
and α ≤ ω, let πα(η) = η ↾α (so πω is the identity map). Finally, given η, τ ∈ J with
η0 = τ0, define ητ = (η0, η1 ⊕ τ1 mod 2).

Let T be the complete theory of A. The claim is that this works.
Given η0, η1 ∈ J0, then let d(η0, η1) be the greatest α ≤ ω such that α ≤ ℓg(η0) and

α ≤ ℓg(η1) and η0 ↾α= η1 ↾α.

Lemma 4.2. Let η = (η0, η1, . . . , ηn−1) be a tuple from J . For each i, j let αij =

d(ηi0, η
j
0). Let φη(x0, . . . , xn−1) be the following formula:

∧

i<n

Uηi
0
(xi) ∧

∧

i 6=j<n

παij
(ηixi) = παij

(ηjxj).

Then A |= φη(η) and moreover φη(x) is complete.

Proof. It is clear that A |= φη(η). We show that the formula is complete by defining, for
each pair η, τ with A |= φη(τ), an automorphism ση,τ : A ∼= A taking η to τ . We do this
inductively on n = |η|.

For n = 0 define σ∅,∅ = idA.
Suppose we have defined ση,τ for all |η|, |τ | ≤ n. Let η = (η0, . . . , ηn) be given,

and suppose A |= φη(τ). We can suppose, by applying σ−1
(η0,...,ηn−1),(τ0,...,τn−1)

to τ , that

ηi = τi for each i < n. So we want to find some σ : A ∼= A such that σ(ηi) = ηi for each
i < n, and σ(ηn) = τn.

Let αij be as in the definition of φη(x): αij = d(ηi0, η
j
0).

We know that ηn0 = τn0 . If η
n
1 = τn1 then we are done, so suppose ηn1 6= τn1 . Let m < ω

be the least value at which they differ (so m is greatest such that ηn1 ↾m= τn1 ↾m).
Then for each i < n, αi n ≤ m, since by the (i, n) clause of φη we have that

(ηn1 ⊕ ηn1 ) ↾αi n
= (ηi1 ⊕ ηi1) ↾αi n

= (ηn1 ⊕ τn1 ) ↾αi n
.

Define σ as follows: suppose η ∈ A. Then σ(η) = τ where τ0 = η0, where τ1(k) =
η1(k)+η

n
1 (k)+ τ

n
1 (k) mod 2 for k < d(η0, η

n
0 ), and τ1(k) = η1(k) for k ≥ d(η0, η

n
0 ). Then

it is simple to check that σ has the desired properties.

From this it is clear that the algebraic closure of the emptyset acl(∅)A is just {η ∈
J : ℓg(η) < ω}. Denote this set as X.
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We define an auxilary L-structure M = (J, Uη0 , πα,η : η ∈ J, α ≤ ω) similarly to A:
namely J = J0 ⊗ 2≤ω, with the natural operations. So A is a substructure of M.

In fact A � M but we won’t need this.
Given a sequence F = (fα : α ∈ S), where each fα ∈ 2ω, define JF to be be X,

together with all pairs (η0, η1) ∈ J where η0 = να is the canonical enumeration of Lα

(defined at the beginning of the section) and where η1 differs only finitely often from fα.
Define AF to be the substructure of M with domain JF .

Note that A = A(0:α∈S).

Lemma 4.3. Each AF
∼= A.

Proof. Fix F = (fα : α ∈ S). Define sα : Lα → 2 by sα(να(n)) = fα(n). By the
uniformization property we can choose some s : ω1 → 2 such that s differs from each sα
only finitely often. Define σ : M ∼= M by σ(η0, η1) = (τ0, τ1), where τ0 = η0 and where
τ1(n) = η1(n) + s(η0(n)) mod 2, for each n < ℓg(η).

Then σ is clearly an automorphism of M, and moreover restricts to an isomorphism
from A to AF .

Lemma 4.4. A is the unique atomic model of T , and is furthermore prime.

Proof. Fix N = (N,U∗
η0
, π∗α,η

∗ : η ∈ J, α ≤ ω) |= T . We can suppose acl(∅)N = X. I
find some F such that AF embeds N, which suffices to show that A is prime.

Indeed, for each α ∈ S, choose aα ∈ U∗
να
. Let fα ∈ 2ω be defined by fα(n) =

π∗m(aα)(n) for some (any) m > n.
Let F = (fα : α ∈ S). Then by Lemma 4.2, the map σ0 : (να, fα) 7→ aα is a

partial elementary map from AF to N. So it extends to a partial elementary map
σ : dcl((να, fα) : α ∈ S)AF → dcl(aα : α ∈ S)N. But then clearly σ has domain all of
AF . Hence σ : AF � N.

To see that A is the unique atomic model of T , note that if N is atomic, then σ is
also surjective, again by Lemma 4.2.

We conclude the proof of Theorem 4.1 with the following

Lemma 4.5. A is not constructible.

Proof. Suppose (ηα : α < ω1) were a construction of A (it suffices to consider this order
type by Theorem 1.2). Let Jα = {ηβ : β < α}. Let C ⊂ ω1 be the club set of all α < ω1

such that Jα = {η ∈ J : sup(η0) < α}. Choose α ∈ S ∩ C. Let β ≥ α be least with

ηβ0 = να, i.e. with η
β ∈ Uνα .

By Lemma 4.2, it is clear that for any set B such that B ⊃ {η ∈ J : η0 ⊂ να, ℓg(η) <
ω} and B∩Uνα = ∅, that tp(ηβ/B) is nonisolated. In particular tp(ηβ/Jβ) is nonisolated.

Remark 4.6. Second Example: rewind back to the beginning of the section, and define
instead J1 to be the entire space 2≤ω. Then we have without any special combinatorics
that A is the unique atomic model of T , and is prime, but is not constructible (although
the language L now has size continuum).
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5 Producing Many Atomic Models of Size ℵ1

5.1 Setup

Fix throughout this section a complete theory T in a language L of cardinality ℵ1, such

that T has atomic models. Write L =
⋃

α<ω1

Lα as the union of a continuous increasing

chain of countable languages, and let Tα = T ↾Lα .
Recall that an L-formula φ(x) is T -complete if it is consistent with T and for every

formula ψ(x), T + φ(x) decides ψ(x); equivalently, φ(x) isolates a single point in the
Stone space Sn(∅). Since T has atomic models, for every L-formula φ(x) consistent with
T , there is a T -complete formula ψ(x) that implies φ(x). So we can choose a club set
C0 ⊆ ω1 such that for every α ∈ C0 and for every Lα-formula φ(x), if φ(x) is consistent
with T then φ(x) has a T -complete extension ψ(x), which is itself an Lα formula.

It follows that for each α ∈ C0, Tα has atomic models (though possibly not un-
countable atomic models); and an Lα-formula φ(x) is T -complete if and only if it is Tα
complete.

Let C be a monster model of T . We use standard model-theoretic notation: A,B,C, ...
will range over parameter sets, and M,N, ... will range over elementary submodels of C.
If a ∈ C and φ(x) is an L-formula we write |= φ(a) for C |= φ(a). If A ⊂ C is a set then

Sn(A) denotes the space of n-types over A, and S(A) denotes
⋃

n

Sn(A). If we write

f : A→ B it is implied that f is partial L-elementary.
Define an atomic set to be a countable set A ⊂ C such that every tuple a ∈ A has

tp(a) isolated by a single L-formula. Say that A is an α-atomic set if moreover this
formula can be chosen in Lα.

If A is α-atomic, for some α ∈ C0, then say that A is an α-base if A ↾Lα� C ↾Lα .
A is a base if it is an α-base for some α ∈ C0. (Here we are using the term base as in
“amalgamation base.”)

Note that for each α ∈ C0, α-bases exist and are unique up to isomorphism. Also,

if f : ω → C0 is increasing, and An is an increasing chain of f(n)-bases, then
⋃

n

An is a

⋃

n

f(n)-base. Similarly, if f : ω1 → C0 is increasing and cofinal, and Aα is an increasing

chain of f(α)-bases, then
⋃

n

An is an atomic model of T .

For each atomic set A and for each n, let Sn
at(A) be the set of all atomic types over

A (i.e. all types p(x) ∈ Sn(A) such that whenever a realizes p(x), Aa is atomic). This

is a dense subset of Sn(A); give it the subspace topology. Let Sat(A) =
⋃

n

Sn
at(A) with

the disjoint union topology.
For each atomic set A and for each β ∈ C0, define S

n,β
at (A) to be the set of all types

p(x) ∈ Sn
at(A), such that whenever a realizes p(x), Aa is β-atomic. Give Sn,β

at (A) the
subspace topology.

12



Lemma 5.1. • For each β ∈ C0, the topology on Sn,β
at (A) is generated by the Lβ(A)

formulas.

Proof. Let O be a basic open subset of Sn
at(A); say O = {p(x) ∈ Sn

at(A) : p(x) |=

φ(x, a)} where φ(x, a) is an L-formula. Suppose p(x) ∈ Sn,β
at (A) ∩ O. We can

choose a complete Lβ(a)-formula ψ(x, a) such that p(x) |= ψ(x, a). Let U =
{q(x) ∈ Sn

at(A) : q(x) |= ψ(x, a)}. Then p ∈ U ⊆ O as desired.

• For each β, Sn,β
at (A) is a Polish space (or empty), and is closed in Sn

at(A).

Proof. Closure is clear. To see that it is a Polish space, let C
′ = C ↾ Lβ and let

X = Sn(A) computed in C
′. Then X is a Polish space and Sn,β

at (A) is naturally
embedded as a Gδ subset of X.

Let KT be the class of atomic models of T . We now define what it means for KT to
be club totally transcendental:

For α ∈ C0, say that KT is totally transcendental at α if, letting A be any α-base,
we have that Sat(A) is scattered, i.e. has no perfect subset. Equivalently KT is totally

transcendental at α if for each n and for each β ∈ C0, S
n,β
at (A) is countable. Let the

transcendence spectrum of KT , SpecKT
(t.t.), denote the set of all α ∈ C0 at which KT

is totally transcendental.

Definition 5.2. KT is club totally transcendental if SpecKT
(t.t.) contains a club.

We aim to prove:

Theorem 2.8. Suppose Φ∗ holds and Cov(K) ≥ ℵ2. Suppose further that KT is not
club totally transcendental. Then T has 2ℵ1 atomic models of size ℵ1.

5.2 Club Totally Transcendental Property and the Existence of Constructible Models

Given α ∈ C0, note that if KT is totally transcendental at α, then the isolated types
are dense in Sat(A), where A is any α-base. The converse of course can fail drastically:
say T has ℵ1-many sorts, each a model of DLO.

We can relate all this to constructible models as follows. Let the constructible spec-
trum of KT , SpecKT

(CS), be the set of all α ∈ C0 such that the isolated types are dense
in Sat(A), where A is any α-base. So by the preceding, SpecKT

(t.t.) ⊆ SpecKT
(CS).

Moreover:

Theorem 5.3. T has a constructible model if and only if SpecKT
(CS) contains a club.

In particular, if KT is club totally transcendental, then T has a constructible model.

Proof. First suppose T has a constructible model M ; say M = (aα : α < ω1) is a
construction (with repetitions if M is countable). Let Aα := {aβ : β < α}. Then the
set C = {α ∈ C0 : Aα is an α-base} is club. Let α ∈ C. Then M is atomic over Aα by
Theorem 1.2 (applied to the theory T (ca : a ∈ Aα) in the language L(ca : a ∈ Aα) where
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we add constants for elements of Aα), which shows that the isolated types are dense in
Sat(A). Hence α ∈ SpecKT

(CS), so SpecKT
(CS) contains a club.

Conversely, suppose SpecKT
(CS) ⊇ C, C a club; we can suppose C ⊆ C0. We

define an increasing, continuous chain of atomic sets (Aγ : γ ∈ C ′) where C ′ = {γα :
α < ω1} ⊆ C is club and each Aα is an α-base. We will further have that for all
α < ω1, Aγα+1

is atomic over Aγα . Finally, for each α < ω1, we will have a construction
Aγα = (aβ : β < γα). As implied by the notation, for α < α′, the construction of Aγα is
an initial segment of the construction of Aγα′

.

Note that this will suffice, since setting M :=
⋃

α

Aγα , we have M is a constructible

model of T , as witnessed by (aβ : β < ω1).
Let γ0 be the least infinite element of C and let Aγ0 = (aβ : β < γ0) be any γ0-base.

Take unions at limit stages.
Suppose we have defined γα and Aγα = (aβ : β < γα). Write A = Aγα . Since

the isolated types are dense in Sat(A) we can choose an Mα |= T , Mα ⊇ A and Mα

atomic over A by Theorem 1.3 (applied to the theory T (ca : a ∈ Aα) in the language
L(ca : a ∈ Aα)). It is possible that Mα is countable or even Mα = A, but in any case
we can enumerate Mα = (aαβ : β < ω1) so that for all β < γα, a

α
β = aβ. For each δ < ω1,

let Bδ = {aαβ : β < δ}. Then the set of all δ such that Bδ is a δ-base is club, so we can
choose some such δ with δ ∈ C and δ > γα. Let γα+1 = δ and let Aγα+1 = Bδ and define
aβ = aαβ for all γα ≤ β < γα+1.

Hence, as a corollary of Theorem 2.8, we will get

Theorem 1.4. Suppose Φ∗ holds and Cov(K) ≥ ℵ2. Suppose further that T has no
constructible models. Then T has 2ℵ1 atomic models of size ℵ1.

5.3 Club Totally Transcendental Property and Amalgamation

The proof of the main theorem will split into two cases: first, where KT fails the club
amalgamation property (to be defined below), and second, where KT has the club amal-
gamation property but is not club totally transcendental. As in the countable language
case we will actually have that if KT is club totally transcendental then KT has the club
amalgamation property.

Let α ∈ C0. An amalgamation problem at α is a triple (A0, A1, A2) of (countable)
atomic sets, such that A0 is an α-base, and A0 ⊆ Ai for i = 1, 2. A solution is a triple
(A3, f1, f2) such that A3 is an atomic set, fi : Ai → A3 are elementary, and the fi’s
agree on A0. We say that KT has the amalgamation property at α if every amalgation
problem at α has a solution. We let the amalgamation spectrum of KT , SpecKT

(AP ),
denote the set of all α ∈ C0 at which KT has the amalgamation property.

Definition 5.4. KT has the club amalgamation property if SpecKT
(AP ) contains a

club.

Theorem 5.5. Suppose KT is club totally transcendental. Then KT has the club
amalgamation property.
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Proof. We show that SpecKT
(t.t.) ⊆ SpecKT

(AP ), which suffices.
Indeed, let α ∈ SpecKT

(t.t.) and let (A0, A1, A2) be an amalgamation property at

α. Choose β > α so that β ∈ SpecKT
(t.t.) and each Ai is β-atomic. Now Sβ

at(A0) is

countable, hence the isolated types are dense in Sβ
at(A0). So by applying Theorem 2.7

to the theory T ↾Lβ
we get a solution.

5.4 Promises

Our idea for constructing many models is the following: we will produce a tree (As : s ∈

2<ω1) of bases, such that if we set Mη :=
⋃

α

Aη↾α for η ∈ 2ω1 , then each Mη is an atomic

model of T .
We will also be producing, for each s ∈ 2<ω1 , a set Φs ⊆ Sat(As), such that every

η ⊇ s has Mη omits Φs. I.e. we are “promising” to omit these types. Typically Φs will
be a union of ℵ1-many closed nowhere dense sets, so in order to omit it we will need
Cov(K) ≥ ℵ2.

By an appropriate failure of amalgamation, we will have that for each s ∈ 2<ω1 , there
is no M,f0, f1 such that: fi : As⌢(i) →M , f0 ↾As

= f1 ↾As
, andM omits each fi(Φs⌢(i)).

Then we will apply a diagonalization argument using Φ∗ to get that {Mη : η ∈ 2ω1}
contains 2ℵ1 distinct isomorphism types.

In this subsection we develop some general machinery for building the tree (As,Φs :
s ∈ 2<ω1) and extracting 2ℵ1 models of size ℵ1. For the following, the reader should note
that the special case P = ∅ is actually an important example.

Definition 5.6. A system of promises is a set P such that:

• Every Γ ∈ P is a nonempty subset of Sat(A) for a (unique) base A. Write A =
dom(Γ).

If A is an atomic set and Γ ∈ P , then say that A omits Γ if A ⊇ dom(Γ) and for
all a ∈ A, tp(a/dom(Γ)) 6∈ Γ. If Φ ⊆ P is countable and A is an atomic set then
say that A omits Φ if A omits Γ for all Γ ∈ Φ.

• (Invariance) P is closed under Aut(C).

• (Extendibility) Suppose A is an atomic set, and Φ ⊆ P is countable such that A
omits Φ. Then for arbitrarily large α ∈ C0 there is an α-base B ⊇ A such that B
omits Φ.

Suppose P is a system of promises. Then a P-atomic set (P-base, (α,P)-atomic set,
(α,P)-base) is a pair (A,Φ) where A is an atomic set (base, α-atomic set, α-base) and
Φ ⊂ P is countable and A omits Φ.

If (A0,Φ0) and (A1,Φ1) are P-atomic sets, say that (A1,Φ1) extends (A0,Φ0), and
write that (A0,Φ0) ⊆ (A1,Φ1), if A0 ⊆ A1 and Φ0 ⊆ Φ1.
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A P-amalgamation problem is a triple of P-atomic sets (A0,Φ0), (A1,Φ1), (A2,Φ2))
where (A0,Φ0) is a P-base and each (Ai,Φi) extends (A0,Φ0). We call (A0,Φ0) is called
the base of the problem.

A solution to the above problem is a sequence ((B,Ψ), f1, f2) where (B,Ψ) is a
P-atomic set, and f1 : A1 → B and f2 : A2 → B are both the identity on A, and
f1(Φ1) ∪ f2(Φ2) ⊆ Ψ.

Note that by the invariance property of promise systems, if two amalgamation prob-
lems are isomorphic then one has a solution if and only if the other does.

For α ∈ C0, we say that P has the amalgamation property at α if there is some
(α,P)-base (A,Φ), such that every P-amalgamation problem with base (A,Φ) has a
solution.

Let the amalgamation spectrum of P, SpecKT
(P), be the set of α ∈ C0 such that P

has the amalgamation property at α. We say that P has the club amalgamation property

if SpecKT
(P) contains a club.

In particular, if P = ∅ then SpecKT
(P) = SpecKT

(AP ), and so P has the club
amalgamation property iff KT has the club amalgamation property.

The proof of the following (in a different context) is due originally to Shelah [8], see
[1] Theorem 17.11 for a nice exposition.

Lemma 5.7. Suppose Φ∗ holds, and T admits a system of promises P which fails the
club amalgamation property. Then T has 2ℵ1 atomic models of size ℵ1. (In fact we just
need Φ(ω1\SpecKT

(P)) to hold.)

The rest of this subsection is a proof of the lemma. Note that T has at most one
countable atomic model, so it suffices to show that T has 2ℵ1 atomic models of size ≤ ℵ1.

Let S = C0\SpecKT
(P). We are assuming that S is stationary; thus Φ(S) holds (and

in particular 2ℵ0 < 2ℵ1).
The proof splits into two cases.

Case A. There exist P-bases (A0,Φ0) ⊆ (A,Φ), such that for every P-base (B,Ψ) ⊇
(A,Φ), there exist P-bases (B0,Ψ0) and (B1,Ψ1) extending (B,Ψ), such that the P-
amalgamation problem ((A0,Φ0), (B0,Ψ0), (B1,Ψ1)) has no solution.

In this case we build inductively a system (As,Φs, αs : s ∈ 2<ω1) such that:

• For each s ∈ 2<ω1 , αs ∈ C0 and (As,Φs) is an (αs,P)-base.

• For s ⊆ t, αs < αt, and (As,Φs) ⊆ (At,Φt).

• For each s ∈ 2<ω1 of limit length, αs =
⋃

t⊂s

αt and As =
⋃

t⊂s

At and Φs =
⋃

t⊂s

Φt.

• For each s ∈ 2<ω1 , the P-amalgamation problem ((A0,Φ0), (As⌢(0),Φs⌢(0)), (As⌢(1),Φs⌢(1)))
has no solution.

For each η ∈ 2ω1 , let Mη =
⋃

α<ω1

Aη↾α , an atomic model of T of size ≤ ℵ1. Then

for each η 6= τ , (Mη, a : a ∈ A0) 6∼= (Mτ , a : a ∈ A0). Hence {Mη : η ∈ 2ℵ1} represents
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2ℵ1 different isomorphism types if we add countably many constants. Since 2ℵ0 < 2ℵ1 it
follows that {Mη : η ∈ 2ℵ1} represents 2ℵ1 different isomorphism types.

Case B. (The negation of Case A.) For all P-bases (A0,Φ0) ⊆ (A,Φ) there is (B,Ψ) ⊇
(A,Φ) such that for all (B0,Ψ0) and (B1,Ψ1) extending (B,Ψ), the P-amalgamation
problem ((A0,Φ0), (B0,Ψ0), (B1,Ψ1)) has a solution.

In this case we inductively build a system (As,Φs, αs : s ∈ 2<ω1) such that:

• For each s ∈ 2<ω1 , αs ∈ C0 and (As,Φs) is an (αs,P)-base.

• For s ⊆ t, αs < αt, and (As,Φs) ⊂ (At,Φt).

• For each s ∈ 2<ω1 of limit length, αs =
⋃

t⊂s

αt and As =
⋃

t⊂s

At and Φs =
⋃

t⊂s

Φt.

• For each s ∈ 2<ω1 with αs ∈ S, the P-amalgamation problem ((As,Φs), (As⌢(0),Φs⌢(0)),
(As⌢(1),Φs⌢(1))) has no solution.

• For each s ∈ 2<ω1 , for each i ∈ 2 and for each pair of P-bases (B0,Ψ0) and (B1,Ψ1)
extending (As⌢(i),Φs⌢(i)), the P-amalgamation problem ((As,Φs), (B0,Ψ0), (B1,Ψ1))
has a solution.

For each η ∈ 2ω1 letMη :=
⋃

α<ω1

As↾α , an atomic model of T of size ≤ ℵ1. I claim that

in fact each Mη has size exactly ℵ1. Indeed, fix η ∈ 2ω1 . Then there are uncountably
many α < ω1 such that α = αη↾α ∈ S, so it suffices to show that for each such α,
Aη↾α is strictly contained in Aη↾α+1

. Suppose not; set A = Aη↾α = Aη↾α+1
and set

Φ = Φη↾α+1
⊇ Φη↾α . Then (A,Φ) is an (α,P) base, but every P-amalgamation problem

with base (A,Φ) must have a solution by the final requirement above, contradicting
α ∈ S.

Choose bijections ση :Mη → ω1, such that for all η, τ ∈ 2ω1 with η ↾α= τ ↾α= s say,
we have that ση ↾As

= στ ↾As
:= σs.

We view (2×2×ω1)
<ω1 as a subset of 2<ω1×2<ω1×ω<ω1

1 . Define F : (2×2×ω1)
<ω1 →

2 by F (s, t, h) = 1 if:

• σs(As) = σt(At) = αs = αt = ℓg(s) = ℓg(t) =: α say.

• h : α→ α is a bijection.

• σ−1
t ◦ h ◦ σs : As

∼= At.

• For some or any extension g of σ−1
t ◦ h ◦ σs to As⌢(0), the P-amalgamation prob-

lem ((At, g(Φs) ∪ Φt), (g(As⌢(0)), g(Φs⌢(0)) ∪ Φt), (At⌢(0), g(Φs) ∪ Φt⌢(0))) has a
solution.

F (s, t, h) = 0 else.
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Now choose disjoint stationary subsets (Sα : α < ω1) of S ; then Φ(Sα) holds for each
α < ω1. For each α < ω1 choose gα : Sα → 2 such that for every (η, τ, f) ∈ (2×2×ω1)

ω1 ,
the set of all β ∈ Sα with gα(β) = F (η ↾β, τ ↾β, f ↾β) is stationary.

For X ⊂ ω1 define ηX : ω1 → 2 by: ηX(β) = gα(β) if β ∈ Sα and α ∈ X, and
ηX(β) = 0 else.

I claim that for all X 6= Y , MX 6∼=MY , which suffices.
Indeed, suppose X 6= Y and yet f : ω1 → ω1 is a bijection with φ := σ−1

τ ◦ f ◦ ση :
Mη

∼= Mτ . We can suppose α ∈ X\Y . Let η = ηX and let τ = τY . Let C be the club
set of all β < ω1 such that ση↾β (Aη↾β ) = στ↾β(Aτ↾β ) = αη↾β = ατ↾β = f [β] = β.

Choose β ∈ Sα ∩ C such that F (η ↾β, τ ↾β, f ↾β) = gα(β). Write s = η ↾β, t = τ ↾β,
h = f ↾β.

Note that the first two items of the definition of F are met, so F (s, t, h) = 1 iff the
third item holds. Also note that τ(β) = 0. There are two cases:

Case B0. F (s, t, h) = 0. Then η(β) = 0. But then clearly the isomorphism φ : Mη
∼=

Mτ witnessses that the P-amalgamation problem in the third item of the definition of F
has a solution, contradicting the case.

Case B1. F (s, t, h) = 1. Then η(β) = 1. Let g be any extension of φ to As⌢(0); then
we can choose a solution (i0, i1, (B,Ψ0)) to the P-amalgamation problem ((At, g(Φs) ∪
Φt), (g(As⌢(0)), g(Φs⌢(0))∪Φt), (At⌢(0), g(Φs)∪Φt⌢(0))), where moreover i1 : At⌢(0) →
B is the inclusion. We can use the isomorphism φ to get a solution (j0, j1, (C,Ψ1)) to the
P-amalgamation problem ((At, φ(Φs)∪Φt), (φ(As⌢(1)), φ(Φs⌢(1))∪Φt), (At⌢(0), φ(Φs)∪
Φt⌢(0))) where again j1 : At⌢(0) → C is the inclusion. Then by the construction of the
system (As,Φs, αs), the P-amalgamation problem ((At,Φt), (B,Ψ0), (C,Ψ1)) has a solu-
tion. But this yields a solution to the P-amalgamation problem ((As,Φs), (As⌢(0),Φs⌢(0)),
(As⌢(1),Φs⌢(1))), contradiction.

5.5 Proof of Theorem 2.8

Throughout this section, we suppose Φ∗ holds and Cov(K) ≥ ℵ2, and KT is not club
totally transcendental. We aim to construct 2ℵ1 atomic models of T of size ℵ1.

Recall that if we let P = ∅ be the empty system of promises, then SpecKT
(P) =

SpecKT
(AP ); so if KT fails the club amalgamation property then by Lemma 5.7 we are

done. Hence we can suppose that KT has the club amalgamation property.

Lemma 5.8. If α ∈ SpecKT
(AP ), A is an α-base, B ⊇ A is atomic, and p(x) ∈ Sat(A),

then p(x) extends to a type in Sat(B).

Proof. Let a be a realization of p(x). Then the amalgamation problem (A,Aa,B) has a
solution, which is equivalent to the claim.

Lemma 5.9. There is a club C1 ⊆ SpecKT
(AP ) and a number n0 such that for every

α < β both in C1, if A is the α-base then Sn0,β
at (A) has size continuum. In particular,

SpecKT
(t.t.) ∩C1 = ∅.
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Proof. We can choose some club C ⊆ SpecKT
(AP ) by assumption.

Let α ∈ C\SpecKT
(t.t.). Let A be an α-base. Let n0 be such that Sn0

at (A) has size
continuum. Let β > α with β ∈ C and let B ⊇ A be a β-base. Then by Lemma 5.8,
Sn0

at (B) has size continuum. It follows that Sn0

at (B) has a perfect subset, since otherwise

we would have |Sn0

at (B)| ≤ ℵ1 < 2ℵ0 . Hence there is some f(β) such that Sn0,β
at (B) has

size continuum; we can choose f(β) ∈ C\β.
Let C1 be the club (α, f(α), f2(α), . . . , fγ(α), . . .) (take unions at limit stages).

For the rest of the proof, fix C1, n0 as above. For each ordinal α < ω1 let α+ denote

the least ordinal β > α with β ∈ C1. So for any α ∈ C1 and for any α-base A, Sn0,α
+

at (A)

has size continuum. Let K(A) denote the perfect kernel of Sn0,α
+

at (A).
The following definition gives a nice description of K(A).

Definition 5.10. Let α ∈ C1, and let φ(x; y) be a partitioned Lα+ formula with |x| =
n0. Then say that φ(x; y) is α-unbounded if for some (any) α-base A, there is some
p(x) ∈ K(A) and some a ∈ A with φ(x; a) ∈ p(x). Note that, since K(A) is fixed under
A-automorphisms, we have that p(x) ∈ K(A) if and only if for all φ(x; a) ∈ p(x), φ(x; y)
is α-unbounded.

Now fix for the time being α ∈ C1 and an α-base A. We identify closed subsets of
Sn
at(A) with the corresponding partial n-types over A. So for instance if C ⊆ Sn

at(A) is
closed then we write C(x) |= φ(x) to indicate that for every p(x) ∈ C, φ(x) ∈ p(x). Let

Φat(A) denote the subsets of Sat(A) which are in fact closed subsets of Sn,β
at (A) for some

n ∈ ω and some β ∈ C1. For example, each Sn,β
at (A) ∈ Φat(A).

We define a (pre)-partial ordering ≤ on Φat(A), with the idea that C ≤ D means
that if we realize D over A, then it is hard to realize C over A.

First we define the immediate successors of ≤:

Definition 5.11. Let C,F ∈ Φat(A) be given. Then C ≺ F if and only if one of the
following holds:

1. For some β ≥ α in C1, C(y, z) is a closed subset of S1+n,β
at (A), F (z, w) is a closed

subset of Sn+m,β
at (A), and there is some Lβ-formula φ(y, z, w) such that F (z, w) is

defined by the intersection of the following closed sets:

• Sn+m,β
at (A);

• “∃yφ(y, z, w);”

• “∀y(φ(y, z, w) → ψ(y, z, d))” for each formula ψ(y, z, d) with C(y, z) |= ψ(y, z, d).

So, whenever B ⊇ A is β-atomic and whenever ab ∈ Bn+m, then tp(ab/A) ∈ F

iff the following holds: there is some q(y) ∈ S1,β
at (B) with q(y) |= φ(y, a, b), and

moreover, for any such q(y), if we let r(y, z) be the set of all L(A)-formulas ψ(y, z)
such that q(y) |= ψ(y, a), then r(y, z) ∈ C.
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2. For some β ≥ α in C1, C(y, z) ⊆ Sn0+n,β+

at (A) is closed, F (z, w) is a closed subset

of Sn+m,β
at (A), and there is some β-unbounded, complete formula φ(y; z, w) such

that F (z, w) is defined by the intersection of the following closed sets:

• Sn+m,β
at (A);

• “∃yφ(y, z, w);”

• “∀y(τ(y, z, w, d) ∧ φ(y, z, w) → ψ(y, z, d)), ” for all β-unbounded, complete
formulas τ(y; z, w, u), and all L(A)-formulas ψ(y, z, d) such that |d| = |u| and
such that C(y, z) |= ψ(y, z, d).

So, whenever B ⊇ A is a β-base and whenever ab ∈ Bn+m, we have tp(ab/A) ∈ F
iff the following holds: there is some q(y) ∈ K(B) with q(y) |= φ(y, a, b), and
moreover, for any such q(y), if we let r(y, z) be the set of all L(A)-formulas ψ(y, z)
such that q(y) |= ψ(y, a), then r(y, z) ∈ C.

Now let ≤ be the the least partial order containing ≺, i.e. C ≤ F iff there is a
sequence C = C0 ≺ C1 ≺ . . . ≺ Cn−1 = F .

Note that for each C, there are at most ℵ1-many F with C ≺ F , and so there are at
most ℵ1-many F with C ≤ F .

Given p(x) ∈ Sat(A), let Γ(p(x)) =
⋃

C≥{p(x)}

C, so this is the union of ℵ1-many closed

subsets of Sat(A).
Let K∗(A) := {p(x) ∈ K(A) : A omits Γ(p(x))}. Finally let P = {Γ(p(x)) : p(x) ∈

K∗(A) where A is an α-base for some α ∈ C1}.
Then it suffices to establish that P is a system of promises, with SpecKT

(P)∩C1 = ∅.
Towards this we prove the following three lemmas.

Lemma 5.12. For every α ∈ C1 and every α-base A, |K(A)\K∗(A)| ≤ ℵ1, in particular
K∗(A) is ℵ1-comeager in K(A).

Proof. Suppose p(x) 6∈ K∗(A). Then there are closed sets {p(x)} = C0 ≺ C1 ≺ . . . ≺ Cn,
and some a ∈ A realizing Cn. Then from examining the definition of ≺, we see that
we can recover p(x) from tp(a/A) and from the formulas and ordinals witnessing that
Ci ≺ Ci+1 for i < n. There are only ℵ1-many possibilities for the latter, and so there
are only ℵ1-many p(x) not in K∗(A).

Lemma 5.13. Suppose α ≤ β are both in C1, A is an α-base, p(x) ∈ K∗(A), and B ⊇ A
is a β-atomic set which omits Γ(p(x)). Let

X = {q(y) ∈ S1,β
at (B) : Ba omits Γ(p(x)) for some (any) realization a of q(y)}.

Then X is ℵ1-comeager in S1,β
at (B).
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Proof. For each q(y) ∈ S1,β
at (B) and each a ∈ B, let [q, a](y, z) ∈ S

1+|a|,β
at (A) be the set

of all Lβ(A)-formulas φ(y, z) such that φ(y, a) ∈ q(y).

Fix a ∈ B, say |a| = n, and fix C ≥ {p(x)} with C a closed subset of S1+n,β
at (A). It

suffices to show that D := {q(y) ∈ S1,β
at (B) : [q, a](y, z) ∈ C} is closed nowhere dense. It

is clearly closed, since C is.
Suppose it weren’t nowhere dense, say O = {q(y) ∈ S1,β

at (B) : φ(y; a, b) ∈ q(y)} is
such that ∅ 6= O ⊆ D.

Let m = |b| and let w be a tuple of variables of length m. Let F (z, w) ⊆ Sn+m,β
at (A)

be the closed set defined as in the first clause of Definition 5.11.
Then F ≻ C so F ⊂ Γ(p(x)), but ab realizes F , contradiction.

Lemma 5.14. Suppose α ≤ β are both in C1, A is an α-base, p(x) ∈ K∗(A), B ⊇ A is
a β-base, and B omits Γ(p(x)). Let

X = {q(y) ∈ K(B) : Bd omits Γ(p(x)) for some (any) d realizing q(y)}.

Then X is ℵ1-comeager in K(B).

Proof. For each q(y) ∈ K(B) and each a ∈ B, let [q, a](y, z) ∈ S
n0+|a|,β+

at (A) be the set
of all Lβ+(A)-formulas φ(y, z) such that φ(y, a) ∈ q(y).

Fix a ∈ B, say |a| = n, and fix C ⊆ Sn0+n,β+

at (A) closed, with C ≥ {p(x)}. It suffices
to show that D := {q(y) ∈ K(B) : [q, a](y, z) ∈ C} is closed nowhere dense in K(B). It
is clearly closed, since C is.

Suppose it weren’t nowhere dense, say O = {q(y) ∈ K(B) : φ(y; a, b) ∈ q(y)} is such
that ∅ 6= O ⊆ D. We can suppose φ(y, z, w) is complete.

Let m = |b| and let w be a tuple of variables of length m. Let F (z, w) ⊆ Sn+m,β
at (A)

be the closed set defined as in the second clause of Definition 5.11.
Then F ≻ C so F ⊂ Γ(p(x)), but ab realizes F , contradiction.

We conclude the proof of Theorem 2.8 with:

Lemma 5.15. P is a system of promises, and SpecKT
(P) ∩C1 = ∅.

Proof. Invariance for P is clear.
Extendibility follows from an iterated application of Lemma 5.13.
Finally, suppose α ∈ C1 and (A,Φ) is an (α,P)-base. Write Φ = {Γ(pn(xn)) :

n < ω}, where pn(xn) ∈ K∗(An) for some An ⊆ A. Let X = {q(x) ∈ K(A) :
Aa omits Φ for some (any) realization a of q(x)}. By applying Lemma 5.14 to each
pn(xn) we get that X is ℵ1-comeager in K(A). Hence by Lemma 5.12 we can find q(x) ∈
X∩K∗(A). Let a realize q(x); then the P-amalgamation problem ((A,Φ), (Aa,Φ), (A,Φ∪
{q(x)})) has no solution.
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