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Abstract

We consider the version of Pure Inductive Logic which obtains for the
language with equality and a single unary function symbol giving a com-
plete characterization of the probability functions on this language which
satisfy Constant Exchangeability.

Key words: Constant Exchangeability, Inductive Logic, Logical Probability, Rational-
ity, Uncertain Reasoning.
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Introduction

Conventional Inductive Logic as developed by Rudolf Carnap, see [1],[2],[3],[4], largely
worked within the framework of a unary first order language and countably many con-
stants, without equality or function symbols. With some few notable exceptions, in
particular the paper [8] of Gaifman and Snir which this present paper may be seen as
developing, most contributions to the area continued to use this rather impoverished
context and it is only relatively recently that we have seen a concerted effort to under-
stand the subject for more general languages with polyadic relations and equality, see
for example [12], [14]. Adding function symbols to the language still remains some-
what neglected however, and it is to this topic that the present paper aims to make a
contribution by giving a characterization along the lines of de Finetti’s Theorem1 of

∗Supported by a UK Engineering and Physical Sciences Research Council (EPSRC) Stu-
dentship.
†Supported by a UK Engineering and Physical Sciences Research Council Research Grant.
1In the notation of this paper see [14, Page 55]
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those probability functions, for a language with just equality and a single unary func-
tion symbol, which satisfy the fundamental principle in Inductive Logic of Constant
Exchangeability.2

There is, in our view, a good reason why adding function symbols to the language
of Pure Inductive Logic is not entirely natural and from some standpoints this could
explain why this field has largely lain fallow. To explain this reason we need to first
explain what we see as the basic problem that Pure Inductive Logic is attempting to
answer: Imagine an agent inhabiting a structure M for a predicate language L with
all the elements of M named by the constant symbols a1, a2, a3, . . . of L, and with the
agent otherwise knowing nothing about M . We now ask the agent what probability
she would give to some sentence θ of L being true in M .

Of course except in the situation when θ is a tautology or contradiction the agent
would, on the face of it, have a completely free choice here. However we now add that
the agent’s answer should be rational, by which, for want of any better explanation,
we mean that the agent should try to give the same answer as a second like-minded
agent in a similar situation but with whom there can be no communication. One such
immediate constraint that this imposes (we would claim) on our agent’s answers as we
vary θ is that they should be coherent as probabilities, that is that she is effectively
picking a probability function3 w on the set of sentences SL of L.

To date ‘rationality’ has been imposed or conferred on w by requiring that it satisfies
certain, at least arguably rational, principles. For example, that it should respect
symmetries, which may be justified in the way that we might argue it is rational in
the absence of any further information to give a coin probability 1/2 of landing heads.
However a word of warning is needed here. In Pure Inductive Logic we assume that
the agent in the unknown structure M genuinely has no knowledge about the ambient
structure M ; in particular the relation and constant symbols of L are, as far as she is
concerned, devoid of any interpretation. It may well be that what one judges to be a
‘rational principle’ is based on some considerations of actual, interpreted, real world
examples. Nevertheless, in Pure Inductive Logic it is the common idea behind these
examples which is proposed as, to a greater or lesser extent, a rational principle.

Rather a wide assortment of such principles have been proposed in the usual situation
where the language L has just relation and constant symbols, see for example [14], and
surely there are many more still to come. However when it comes to adding equality,
and even more so when adding functions, our intuitions4 about what seems to be
rational are currently far less well developed. One reason for this, we would suggest, is
that the real world seems to provide but few examples of functions, and those it does
provide are so context specific as to deny, or at least hide, any underlying rational
principle.

Nevertheless in this paper we shall describe how Pure Inductive Logic may be extended
to include the language with a single unary function symbol, the usual constants
a1, a2, . . ., and equality, but for the sake of simplicity no other relation symbols. The
key aim of this paper will then be to prove a representation theorem for probability
functions on this language which satisfy the sine qua non rational principle of Constant
Exchangeability.

2Johnson’s Permutation Principle (see [10]), Carnap’s Axiom of Symmetry (see [15, page
974]), Kuiper’s Strong Principle of Order Indifference (see [11]).

3To be defined shortly.
4At least these authors’.
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Context

Apart from the concluding section we shall henceforth limit our attention to the first
order language L with just equality, a single unary function symbol F and countably
many constants an for n ∈ N+ = {1, 2, 3, . . .}, the implicit intention being that these
name every element of the universe. Let SL/QFSL be the set of sentences/quantifier
free sentences of L.

We define a probability function on SL to be a function w : SL → [0, 1] such that for
all θ, φ,∃xψ(x) ∈ SL:

(P1) If ` θ then w(θ) = 1.

(P2) If θ ` ¬φ then w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limn→∞ w(
∨n
i=1 ψ(ai)).

These (P1-3) are just as for the usual definition of a probability function in Pure In-
ductive Logic, see for example [14], when we do not have equality or function symbols,
although now that we do the notion of logical implication in (P1-2) is enhanced ac-
cordingly to include the equality axioms5 for L in addition to the usual axioms/rules
of the Predicate Calculus. Notice that the so-called Gaifman’s Axiom (P3) reflects the
above mentioned intention that the an name all the elements in the universe.

For b1, b2, . . . , bm distinct constants of L, Θ(b1, b2, . . . , bm) ∈ SL is a state description
for b1, b2, . . . , bm if it is consistent (with the axioms of equality) and of the form (up
to logical equivalence)

m∧
i,j=1

(bi = bj)
εi,j ∧

m∧
i,j=1

(F (bi) = bj)
δi,j

where the ε, δ ∈ {0, 1} and for φ ∈ SL, φ1 = φ, φ0 = ¬φ. The upper case Greek letters
Θ,Υ,∆,Φ,Ψ will always denote state descriptions.

In the study of Pure Inductive Logic when we do not have function symbols, state
descriptions play an important role since by a result of Gaifman, [7], every probability
function is determined simply by its values on state descriptions. Indeed if a probability
function is defined on the quantifier free sentences to satisfy (P1-2) for these sentences
then it extends uniquely to a probability function on all sentences. Once function
symbols are added however that need no longer hold; we require also that already on
the quantifier free sentences the probability function is forced to be total. In other
words, for the case where we have a single function symbol F , for a unique extension
to SL to exist we require (as originally observed by Gaifman & Snir [8, Basic Fact
1.2]) that already on QFSL,

(P4) For all i ∈ N+,

lim
m→∞

w
( m∨
j=1

F (ai) = aj
)

= 1,

equivalently,

lim
n→∞

lim
m→∞

w
( n∧
i=1

m∨
j=1

F (ai) = aj
)

= 1.

5As given for example in [13].
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Notice that conversely if w is a probability function on SL, that is satisfies (P1-3),
then it will satisfy (P4) since by (P3) this amounts to

w(∀x ∃y F (x) = y) = 1

which, now that we have the equality axioms to hand, holds by (P1). 6

Our representation theorem will assume the rationality assumption, almost universally
accepted in this subject, that our probability functions are invariant under permuta-
tions of constants. More precisely, that they satisfy:

The Principle of Constant Exchangeability, Ex
If θ(a1, a2, . . . , an) ∈ SL and i1, i2, . . . , in ∈ N+ are distinct then

w(θ(a1, a2, . . . , an)) = w(θ(ai1 , ai2 , . . . , ain)).

It is straightforward to check that it suffices here to restrict θ to be a state description,
exchangeability will then already be forced to hold for all of SL.

Throughout we shall assume, usually without explicit mention, that all the probability
functions we are considering satisfy Ex. One useful consequence of this is that in
general we do not need to be too fussy about the subscripts we are using for the ai,
just as long as they are different.

The Representation Theorem

In this section we will set up and explain our representation theorem of probability
functions satisfying Ex on this language L with just equality and a single unary relation
symbol F . The next section will then give a proof of this representation.

Before embarking on the technicalities it may be helpful to give an informal picture
of what is going on. The main results of this paper, Theorems 1 and 2, say that any
probability function on L satisfying Ex is actually a, possibly continuous, mixture of
some very simple probability functions vg,h, and conversely. So the basic pattern here
resembles that of de Finetti’s Theorem (in the notation of this paper see [14, page 55])
and several other representation theorems in the subject, see for example [12]. The
functions vg,h also bear a similarity to some of the basic building block functions used
in that latter paper, in particular the up̄, in that we can think of them as randomly
assigning colours to the constants according to some probabilities.

In more detail, we can think of vg,h as assigning colours from . . . ,−2,−1, 0, 1, 2, . . .
(i.e. Z) to the constants a1, a2, a3, . . . , the probability that ai is assigned colour m
being g(m). The assignment of colours will uniquely determine the state descriptions
that the constants satisfy. The equality relations which hold between the constants is
determined by their given colours as follows: For i 6= j if ai, aj both get assigned the
same colour m > 0 then it is taken that ai = aj . In all other cases it is taken that
ai 6= aj . In particular then, even if ai, aj both get assigned the same colour k ≤ 0
they are nevertheless still taken to be different, not equal.

6We do not need to also introduce additional constraints on w to ensure that the equality
axioms get probability 1 in the extension since, their being Π1, this follows from (P1) with
θ ∈ QFSL.
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The function h specifies how the function F acts according to the colour of its argu-
ment. So suppose that i, j are distinct, ai has been given colour m 6= 0 and aj has
been given colour k. If h(m) = k then it is taken that F (ai) = aj , otherwise it is
taken that F (ai) 6= aj . In the case however when ai is assigned the colour 0 (usually
thought of as uncompromisingly ‘black’) it is taken that F (ai) = ai but F (ai) 6= aj
for j 6= i.

Overall, the probability the function vg,h gives to a state description Θ(a1, . . . , am) is
the total probability of all ways of assigning colours to a1, . . . , am consistent with h
and such that Θ is the state description determined by that colouring.

It is convenient, and obviously nothing is lost, by having h defined only on colours
with non-zero probability. Beyond that there are certain other properties which we
need to impose on h. The first is that h only maps into those colours m with m ≥ 0
and g(m) > 0, and h(m) = 0 just if m = 0 (and 0 is in the domain of h). Secondly we
require that h(−m) = m for m ≥ 0 whenever −m is in the domain of h. In turn this
means that we have to require of g not only that the sum of the probabilities g(i) for
i ∈ Z is 1 but that if g(−m) > 0 and m ≥ 0 then g(m) > 0.

We now restate this more formally.

Let g : Z→ {r ∈ R : r ≥ 0} and h : S → S, where S = {m ∈ Z : g(m) > 0}, be such
that

(i)
∑
m∈Z

g(m) = 1 and g(n) ≥ g(n+ 1) for n ∈ N+.

(ii) If m ∈ N and −m ∈ S then m ∈ S and h(−m) = m.

(iii) If 0 < m ∈ S then h(m) > 0. (1)

Notice then that if 0 ∈ S then h(0) = 0.

Let Θ(a1, a2, . . . , am) be the state description

m∧
i,j=1

(ai = aj)
εi,j ∧

m∧
i,j=1

(F (ai) = aj)
δi,j .

We say that a colouring τ : {1, . . . ,m} → S is compatible with Θ, h if for 1 ≤ i, j ≤ m

τ(i) < 0 implies ((εi,j = 1 ⇐⇒ i = j) and (δi,j = 1 ⇐⇒ h(τ(i)) = τ(j))) , (2)

τ(i) = 0 implies (εi,j = 1 ⇐⇒ i = j ⇐⇒ δi,j = 1), (3)

τ(i), τ(j) > 0 implies ((εi,j = 1 ⇐⇒ τ(i) = τ(j)) and (δi,j = 1 ⇐⇒ h(τ(i)) = τ(j))) .
(4)

Notice that in (2) h(τ(i)) = −τ(i). Now set

vg,h(Θ) =
∑
τ

m∏
i=1

g(τ(i)) (5)

where the sum is over those τ compatible with Θ, h.

Theorem 1. vg,h extends to a probability function satisfying Ex.
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Proof. To show that vg,h extends to a probability function it is enough to check, see
[14, page 42], that on state descriptions Θ(a1, a2, . . . , am), m ∈ N:

(i) vg,h(Θ(a1, a2, . . . , am)) ≥ 0,

(ii) vg,h(>) = 1,

(iii) vg,h(Θ(a1, a2, . . . , am)) =
∑

Φ(a1,...,am+1)|=Θ(a1,...,am)

vg,h(Φ(a1, a2, . . . , am+1)), (6)

and that the axioms of equality get probability 1. Of these (i) and (ii) are immediate.
As for (iii) suppose that the state description Θ(a1, a2, . . . , am) is

m∧
i,j=1

(ai = aj)
εi,j ∧

m∧
i,j=1

(F (ai) = aj)
δi,j

and τ is compatible with Θ(~a), h, so τ makes a contribution
∏m
i=1 g(τ(i)) to vg,h(Θ(~a)).

Let ν : {1, 2, . . . ,m + 1} → S extend τ . Then to continue to satisfy (4) the choice of
the additional εs,t, δs,t for s = m+ 1 or t = m+ 1 is forced and there is a unique state
description Φ(a1, a2, . . . , am+1), necessarily extending Θ(~a), such that ν is compatible
with Φ(a1, a2, . . . , am+1) and h. Since

∑
j∈Z g(j) = 1,

m∏
i=1

g(τ(i)) =

m∏
i=1

g(τ(i)) ·

∑
j∈Z

g(j)

 =
∑
ν

m+1∏
i=1

g(ν(i))

where the ν range over all extensions of τ to {1, 2, . . . ,m+1}, which gives, as required
for (iii) of (6), that

vg,h(Θ(a1, a2, . . . , am)) =
∑

Φ(~a,am+1)|=Θ(~a)

vg,h(Φ(~a, am+1)).

To see that vg,h satisfies Ex notice that if σ is a permutation of {1, 2, . . . ,m} and

Ψ(a1, a2, . . . , am) ≡ Θ(aσ(1), aσ(2), . . . , aσ(m))

then τ is compatible with Ψ, h just if τσ is compatible with Θ(a1, a2, . . . , am), h. Thus
taking the sums over those τ, ν compatible with Ψ(a1, a2, . . . , am),Θ(a1, a2, . . . , am)
and h respectively,

∑
τ

m∏
i=1

g(τ(i)) =
∑
τ

m∏
i=1

g(τ(σ(i))) =
∑
ν

m∏
i=1

g(ν(i))

and
vg,h(Θ(a1, a2, . . . , am)) = vg,h(Θ(aσ(1), aσ(2), . . . , aσ(m)))

follows.

From this (or directly) it is easy to see that vg,h continues to satisfy its above definition
given in terms of a1, a2, . . . , am if we replace these by any (distinct) constants for
b1, b2, . . . , bm. Again we shall say that τ is compatible with Θ(b1, b2, . . . , bm), h if the
above condition on compatibility holds with bi in place of ai.
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Turning finally to (P4), it is enough by Ex to show that

lim
m→∞

vg,h

(
m∨
i=1

F (a1) = ai

)
= 1. (7)

Consider a state description Φ(a1, a2, . . . , am) such that

vg,h

(
Φ(~a) ∧ ¬

m∨
i=1

F (a1) = ai

)
> 0,

so since Φ is a state description Φ |= ¬
∨m
i=1 F (a1) = ai. For τ : {1, 2, . . . ,m} → S to

be compatible with Φ, h it must be the case that h(τ(1)) 6= τ(i) for i = 1, 2, . . . ,m.
Thus summing over all state descriptions Φ for a1, a2, . . . , am we must have that

vg,h

(
¬

m∨
i=1

F (a1) = ai

)
≤

∑
h(τ(1))/∈Rg(τ)

m∏
i=1

g(τ(i)).

But this sum is at most ∑
j∈S

g(j)(1− g(h(j)))m−1

which, since g(h(j)) > 0 for j ∈ S and
∑
j g(j) = 1, tends to zero as m→∞.

Notice that if |{i : g(i) > 0}| is finite then for some m, vg,h will satisfy

vg,h(∃x1, . . . , xm ∀y
m∨
i=1

y = xi) = 1,

so giving probability 1 to the universe being finite. Conversely if |{i : g(i) > 0}| is
infinite then vg,h will give probability 0 to the universe being finite.

Having now shown that the vg,h are (after extension) probability functions on SL
satisfying Ex we can state the main result of this paper:

The Representation Theorem 2. Every probability function on SL satisfying Ex
is a convex mixture of such vg,h, and conversely.

The proof of the converse here is straightforward (using for (P3) Lebesgue’s Dominated
Convergence Theorem) so we shall concentrate on the first part. This will be the
content of the next section of this paper.

The Proof of the Representation Theorem

In this section Theorem 2 will be proved via several lemmas and a diversion into a
nonstandard universe. Throughout, w will be a probability function on SL which
satisfies Ex.
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Lemma 3. For any ε > 0,

lim
n→∞

w

 ∨
Θ∈Aε(n)

Θ(a1, . . . , an)

 = 0,

where Aε(n) is the set of state descriptions Θ(a1, . . . , an) for which

|{i ≤ n : Θ(a1, . . . , an) |=
n∧
j=1

F (ai) 6= aj}| ≥ εn.

Proof. Suppose on the contrary that this sequence was bounded below by γ > 0 for
infinitely many n, for simplicity say all n. Notice that if Θ(a1, . . . , an) ∈ Aε(n) and σ is
a permutation of {1, 2, . . . , n} then Θ(aσ(1), . . . , aσ(n)) ∈ Aε(n). Looking at the set of
such Θ(aσ(1), . . . , aσ(n)) as we vary σ we see that the proportion of Θ(aσ(1), . . . , aσ(n))
from this set for which

Θ(aσ(1), . . . , aσ(n)) |=
n∧
j=1

F (a1) 6= aj

is at least ε. Hence, using Ex,

w
(∨
{Θ(~a) ∈ Aε(n) : Θ(~a) |=

n∧
j=1

F (a1) 6= aj}
)
≥ εγ.

So

lim
n→∞

w

(
n∧
i=1

F (a1) 6= ai

)
6= 0

which contradicts that w satisfies (P4).

Lemma 4. Suppose that w is a probability function on SL, r,m ∈ N+ and ψi for
1 ≤ i ≤ rmβ−1 are sentences of L with w(ψi) ≥ β > 0. Then

w

 ∨
~ε :

∑
i εi≥m

∧
i

ψεii

 ≥ β(r − 1)/r

where the εi ∈ {0, 1} for 1 ≤ i ≤ rmβ−1.

Proof. Let

Ω~ε =
∧
i

ψεii , N(~ε) =
∑
i

εi.

Notice that ∑
~ε

N(~ε)w(Ω~ε) =
∑
i

w(ψi) ≥ rm.

Let
B =

∑
N(~ε)<m

N(~ε)w(Ω~ε), C =
∑

N(~ε)≥m

N(~ε)w(Ω~ε).

Then
B < m

∑
~ε

w(Ω~ε) = m,

8



so since N(~ε) ≤ rmβ−1,

w
( ∨
~ε :

∑
i εi≥m

∧
i

ψεii
)
≥ β(rm)−1C = β(rm)−1

(∑
~ε

N(~ε)w(Ω~ε)−B

)
≥ β(rm)−1(rm−m) = β(r − 1)/r,

as required.

Notice that we cannot do much better than this because the ψi could all be the same
sentence.

Lemma 5. Suppose that φ(a1, a2) ∈ SL and

w
( n+1∨
i=2

φ(a1, ai)
)
> β > 0.

Then there is λ > 0 such that for all k eventually,7

w
(
|{1 < i ≤ k : φ(a1, ai)}| ≥ λk

)
> β. (8)

Proof. Let

w
( n+1∨
i=2

φ(a1, ai)
)
> δ > β > 0.

Take ψj in Lemma 4 to be
n(j+1)+1∨
i=nj+2

φ(a1, ai),

and notice that by Ex w(ψj) > δ. Furthermore in this case we actually have infinitely
many of these ψj . By Lemma 4 we can now conclude that for any natural number m
the probability w gives to the sentence

|{1 ≤ j ≤ rmβ−1 :

n(j+1)+1∨
i=nj+2

φ(a1, ai)}| ≥ m

is at least δ(r − 1)r−1 (since δ−1 < β−1). Now pick r so large that δ(r − 1)r−1 > β.
Then for rβ−1 ≤ k ∈ N+,

w(|{1 ≤ j ≤ k :

n(j+1)+1∨
i=nj+2

φ(a1, ai)}| ≥ [kr−1β]) > β,

where as usual [..] indicates integer part of. Taking λ = (2r)−1β gives the result since
k(2r)−1β < [kr−1β] for all k eventually.

Corollary 6. Let β > 0. Then for some n,

w
( n∨
i=2

φ(a1, ai)
)
> β > 0 (9)

7Notice that |{1 < i ≤ k : φ(a1, ai)}| ≥ λk can be expressed as a sentence of L, and even
a quantifier free sentence if φ is quantifier free.
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just if there is λ > 0 such that for all k eventually,

w
(
|{1 < i ≤ k : φ(a1, ai)}| ≥ λk

)
> β. (10)

Proof. The forward direction is just Lemma 5 (with n in place of n+ 1). In the other
direction if (10) then for large k, k > λ−1,

w
(
|{1 < i ≤ k : φ(a1, ai)}| ≥ 1

)
> β,

which gives (9).

Let

ς = lim
n→∞

w(

n∧
i=2

F (a1) 6= ai).

Corollary 7. For 0 < β < 1− ς, there is a λ > 0 such that for all k eventually

w
(
|{1 < i ≤ k : F (a1) = ai}| ≥ λk

)
> β.

Proof. For large n,

w(

n+1∧
i=2

F (a1) 6= ai) < 1− β

so

w(

n+1∨
i=2

F (a1) = ai) > β.

The result now follows from Lemma 5

The next result is not needed in the proof of Theorem 2 but maybe aids insight into
what is going on.

Proposition 8.

lim
n→∞

w
(
F (a1) = a1 ∧

n∧
i=2

F (a1) 6= ai
)

= ς.

Proof. From (P4) we must have that

lim
n→∞

w
( n∨
i=1

F (a1) = ai ∧
n∧
i=2

F (a1) 6= ai
)

= ς

and the result follows.

Note that the probability of the sentence

|{1 < i ≤ k : F (a1) = ai}| ≥ λk

is the same as the sum of the probabilities of state descriptions Θ(a1, . . . , ak) which
logically imply that sentence. As we shall see in future it will sometimes be useful to
think of the probabilities of quantifier free sentences in terms of such sums.

By a directly similar proof to that of Lemma 5 but using

φ(a1, a1) ∨
n(j+1)+1∨
i=nj+2

φ(a1, ai)

10



throughout in place of
n(j+1)+1∨
i=nj+2

φ(a1, ai)

for j = 0, 1, 2, . . . we obtain:

Lemma 9. Suppose that φ(a1, a2) ∈ SL and

w
(
φ(a1, a1) ∨

n+1∨
i=2

φ(a1, ai)
)
> β > 0.

Then there is λ > 0 such that for all k eventually,

w
(
φ(a1, a1) ∨ |{1 < i ≤ k : φ(a1, ai)}| ≥ λk

)
> β.

Using this lemma, (P4) and F (a1) = a2 for φ(a1, a2) we now obtain:

Corollary 10. For β < 1, there is a λ > 0 such that for all k eventually

w
(
F (a1) = a1 ∨ |{1 < i ≤ k : F (a1) = ai}| ≥ λk

)
> β.

We now use the conventional trick in this area of moving to a nonstandard universe.
Let U be a sufficiently large, transitive, set fragment of the ‘standard’ Set Theoretic
Universe V in which all the objects required herein exist and have their usual prop-
erties. Let U∗ ∈ V be a countably saturated elementary extension of U (so with
nonstandard natural numbers). In the proof that follows the reasoning will go back-
wards and forwards between V and U∗. Although whenever we feel there is danger
of confusion we shall include a parenthetic clarification, still it seems expedient to say
more about the relationship between V and U∗ at this point.

Given b ∈ U∗ − U (the so called ‘non-standard’ elements) we will identify b with the
set, in V ,

{c ∈ U∗ : U∗ |= c ∈ b}. (11)

Unfortunately we cannot in general continue to make this identification for b ∈ U
because, as in the case of N, the set in (11) may acquire new non-standard elements
not in b as such. For that reason for b ∈ U we will denote the set in (11) by b∗ when
this differs from b. Note then that there will be no difference when b ∈ Vω0 (so in
particular for the individual natural numbers, codes for standard sentences etc.) so
these will have the same denotation, b, throughout.

Let N < ν ∈ N∗ and let S be the set (in U∗) of state descriptions Υ(a1, . . . , aν).8

Define (in the standard world V ) a measure on the algebra of subsets of S (according
to the above mentioned identification) which are in U∗ by

X 7→ ◦(w∗(∨X
))
,

where as usual ◦ denotes the standard part, and by using Carathéodory’s Theorem let
µ be the σ-additive measure extending this measure on the σ-algebra (in the standard
world V ) generated by S. (Notice that we can apply this theorem since if Ai for i ∈ N

8Henceforth we will customarily shorten Υ(a1, . . . , aν) to Υ.
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are subsets of S in U∗ and
⋃
i∈NAi = A ∈ U∗ then for some n ∈ N,

⋃
i≤nAi = A,

otherwise N would be definable in U∗.) Let

S0 = {Υ ∈ S : w∗(Υ) > 0}.

Notice that S0 has µ-measure 1.

Lemma 11. The set of Υ ∈ S0 for which

ν−1|{i ≤ ν : Υ |=
ν∧
j=1

F (ai) 6= aj}| is infinitesimal (or 0) (12)

has µ-measure 1.9

Proof. From Lemma 3 for each n ∈ N+ w∗ of the disjunction of the set of state
descriptions Υ(a1, . . . , aν) ∈ S0 for which

|{i ≤ ν : Υ(a1, . . . , aν) |=
ν∧
j=1

F (ai) 6= aj}| ≥ ν/n

is infinitesimal. Hence this set has µ-measure 0. Taking the union over n ∈ N+ of
these sets gives the result.

Let S1 be the measure 1 set of Υ ∈ S0 satisfying (12) and let Γ(Υ) be the set of
Υ(aσ(1), . . . , aσ(ν)) for σ a permutation of {1, . . . , ν} (in U∗). Notice that if Υ ∈ S1

then Γ(Υ) ⊂ S1.

The objects which will be defined in what follows will generally be functions of Υ
(or Γ(Υ)). Sometimes these definitions, and the results that follow will only hold, or
make sense, for a µ-measure 1 set of Υ. Although it will not always be convenient
to make it explicit there will be an underlying assumption in these cases that the Υ
concerned comes from this µ-measure 1 set. In view of the result we intend to prove,
what happens outside of this µ-measure 1 set will be irrelevant.

For Υ ∈ S1 set
i ∼Υ j ⇐⇒ Υ(a1, . . . , aν) |= ai = aj

for 1 ≤ i, j ≤ ν. Let H1, . . . , Hξ
10 be the equivalence classes of ∼Υ and define a partial

function % on {1, . . . , ξ} to itself by setting %(i) = j if for each k ∈ Hi there is r ∈ Hj
such that

Υ |= F (ak) = ar.

Since Υ ∈ S1

ν−1|
⋃
{Hi : %(i) not defined }| is infinitesimal. (13)

We may assume that the ordering here is chosen so that H1, . . . , Hκ are the equiva-
lences classes of ∼Υ for which % is defined and that

|H1| ≥ |H2| ≥ |H3| ≥ . . . ≥ |Hκ|.
9Henceforth we will take as read ‘or 0’ after ‘infinitesimal’.

10These Hζ , ξ etc. are functions of Υ but to simplify the notation we shall suppress explicitly
indicating this dependence.
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Notice that from (13) % is defined on all the m ∈ N for which ν−1|Hm| is not infinites-
imal.

For Υ ∈ S1 let

K0 = {i : ν−1|{j : F (ai) = aj}| is infinitesimal and non-zero},

where (as usual) we have abbreviated Υ |= F (ai) = aj to just F (ai) = aj . So K0 is
in the σ-algebra generated by the subsets of {1, 2, . . . , ν} in U∗. Similarly the set of
Υ for which 1 ∈ K0 is in the domain of µ and has measure ς. This follows since11

µ(1 ∈ K0) = lim
n→∞

µ
(
0 < ν−1|{j : F (a1) = aj}| ≤ n−1)

= lim
n→∞

µ
(
ν−1|{j : F (a1) = aj}| ≤ n−1)

= 1− lim
n→∞

µ
(
ν−1|{j : F (a1) = aj}| > n−1)

= 1− lim
n→∞

µ
( n∨
i=2

F (a1) = ai
)
,

= lim
n→∞

µ
( n∧
i=2

F (a1) 6= ai
)

= ς.

Here the second equality follows from Lemma 11 (and arguing as in Lemma 3 to get the
property for a1) and the fourth by Corollary 6 and overspill (since U∗ is an elementary
extension of U).

Notice that for all Υ ∈ S1 for which 1 ∈ K0 then there is no (standard) λ > 0 such
that

|{j : F (a1) = aj}| > λν.

So for each n ∈ N,

µ
(
1 ∈ K0 ∧

n∨
i=2

F (a1) = ai
)

= 0.

Hence by (P4) we must have that

µ(1 ∈ K0 ∧ F (a1) = a1) = µ(1 ∈ K0) (14)

Notice that (for µ-measure 1 state descriptions Υ, as usual) if i ∈ K0 and i ∈ Hζ
then F (ai) = ai, %(ζ) = ζ and ν−1|{j : F (ai) = aj}| is infinitesimal so ν−1|Hζ | is
infinitesimal.

Lemma 12. For a µ-measure 1 set of Υ ∈ S1 either F (a1) = a1 or

◦(ν−1|{i ≤ ν : F (a1) = ai}|) > 0.

Proof. From Corollary 10 for each n ∈ N+ there is a 0 < λ ∈ R such that for all k
eventually (in V )

µ
(
F (a1) = a1 ∨ k−1|{1 < i ≤ k : F (a1) = ai}| ≥ λ}

)
≥ 1− n−1.

11By µ(1 ∈ K0) we mean µ of the set of Υ for which 1 ∈ K0.
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Hence the set of Υ ∈ S1 such that either Υ |= F (a1) = a1 or

◦(ν−1|{i : Υ |= F (a1) = ai}|) > 0

has µ-measure at least 1− n−1 for each n ∈ N+. The result follows.

Lemma 13. Let 0 < ε ≤ 1. Then for all n ∈ N eventually

µ{Υ : |{j : F (aj) = aj ∨ |{i : F (aj) = ai}| > ν/n}| > (1− ε)ν} > 1− ε.

Proof. By Lemma 12, for large n

µ{Υ : F (a1) = a1 ∨ |{i : F (a1) = ai}| > ν/n} > 1− ε2. (15)

By Ex (15) holds too for any aj in place of a1. Let Υ(j) = 1 if

Υ |= F (aj) = aj ∨ |{i : F (aj) = ai}| > ν/n

and 0 otherwise. Then from (15),∑
Υ

w∗(Υ) ·Υ(j) > 1− ε2.

Summing over j and reversing the order of summation gives∑
Υ

w∗(Υ)
∑
j

Υ(j) > ν(1− ε2). (16)

Now let
M =

∑
{w∗(Υ) :

∑
j

Υ(j) ≤ ν(1− ε)},

so ∑
{w∗(Υ) : |{j : F (aj) = aj ∨ |{i : F (aj) = ai}| > ν/n}|

=
∑
{w∗(Υ) :

∑
j

Υ(j) > ν(1− ε)} ≥ 1−M. (17)

Over estimating the sum
∑
j Υ(j) if it is less or equal ν(1 − ε) by ν(1 − ε) and by ν

otherwise gives with (16),

ν(1− ε2) < Mν(1− ε) + (1−M)ν

which simplifies to M < ε. Hence, with (17), as required,∑
{w∗(Υ) : |{j : F (aj) = aj ∨ |{i : F (aj) = ai}| > ν/n}| > ν(1− ε)} > 1− ε.

Corollary 14. For k ∈ N+ and a µ-measure 1 set of Υ ∈ S1 either ◦(ν−1|Hk|) = 0
or ◦(ν−1|H%(k)|) > 0.
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Proof. Suppose on the contrary that this fails, so for some k there is a µ-measure
β > 0 set of Υ,

◦(ν−1|Hk|) > 0 and ◦(ν−1|H%(k)|) = 0. (18)

Let m ∈ N be such that for a set of Υ of µ-measure at least β/2,

ν−1|Hk| > m−1 and ◦(ν−1|H%(k)|) = 0. (19)

Let ε = min{◦(ν−1|Hk|)/2, β/4}. By Lemma 13 there is an n > m such that for a set

of Υ of µ-measure at least 1− ε,

|{j : F (aj) = aj ∨ ν−1|{i : F (aj) = ai}| > 1/n}| > (1− ε)ν. (20)

Since β/2 > ε there is a set X of Υ of µ-measure at least β/2 − ε > 0 for which (19)
and (20) both hold. Since ν−1|Hk| > ε for Υ ∈ X there must be r ∈ Hk such that

r ∈ {j : F (aj) = aj ∨ ν−1|{i : F (aj) = ai}| > 1/n}.

Since for such Υ we have that ◦(ν−1|H%(k)|) = 0 the disjunct

ν−1|{i : F (aj) = ai}| > 1/n

must fail for j = r, so that F (ar) = ar. But then %(k) = k and

◦(ν−1|H%(k)|) = ◦(ν−1|Hk|) > 0,

contradiction.

For Υ ∈ S1, n ∈ N+, ζ ≤ κ set12:

Y =
⋃
{Hβ : %(β) not defined},

K0,n =
⋃
{Hβ : ν−1|Hβ | < n−1, %(β) defined and ν−1|H%(β)| < n−1},

Kζ,n =
⋃
{Hβ : ν−1|Hβ | < n−1, %(β) = ζ defined and ν−1|H%(β)| ≥ n−1},

Bζ,n =

{
Hζ if ν−1|Hζ | ≥ n−1,

∅ otherwise.

Note that for fixed n these sets K0,n,Kζ,n, Bζ,n, Y are all in U∗ and that together
they form a partition of {1, 2, . . . , ν} since for Υ ∈ S1 (so ν−1|Y | is infinitesimal) and
◦(ν−1|Hζ |) > 0, F (ar) must be defined on r ∈ Hζ and so %(ζ) will be defined. Hence
for n ∈ N+ (and a µ-measure 1 set of Υ), in U∗,

|K0,n|+
∑
ζ

|Kζ,n|+
∑
ζ

|Bζ,n|+ |Y | = ν. (21)

Furthermore, using Corollary 14,

K0 =
⋂
n∈N+

K0,n.

12Again these Y,K0,n etc. are functions of Υ but to simplify the notation we shall suppress
explicitly indicating this dependence.
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Let
Kζ =

⋃
k∈N+

⋂
k≤n∈N+

Kζ,n

Bζ =
⋃
n∈N+

Bζ,n,

so Bζ is Hζ if ν−1|Hζ | is not infinitesimal, otherwise it is ∅. Clearly then Bζ = ∅ for
N < ζ.

Also Kζ = ∅ for N < ζ. For suppose on the contrary that ∅ 6= Hβ ⊂ Kζ . Then
ν−1|Hβ | is infinitesimal whilst %(β) = ζ and ν−1|H%(β)| ≥ n−1 for some n ∈ N+. But
since the sizes of the Hγ are decreasing this means ζ ≤ n (contradiction) since if n < ζ
then H1, H2, . . . , Hn+1 would be disjoint subsets of {1, 2, . . . , ν} each of size at least
ν/n, which is impossible.

By the same argument, Bζ,n = Kζ,n = ∅ for ζ > n.

To sum up then we now have that (for a µ-measure 1 set) all except an infinitesimal
fraction of i ∈ {1, 2, . . . , ν} are in (exactly) one of

B1, B2, . . . , Bn, . . . , K0,K1,K2, . . . ,Kn, . . . for n ∈ N.

Now for Υ ∈ S, Γ = Γ(Υ), set, as far as possible,13

g(0) = lim
n→∞

◦(ν−1|K0,n|) and h(0) = 0 when g(0) > 0,

and for m ∈ N+

g(m) = ◦(ν−1|Bm|) and h(m) = k when %(m) = k and g(m) > 0,

and
g(−m) = lim

n→∞
◦(ν−1|Km,n|) and h(−m) = m if g(−m) > 0.

Since they are monotone the sequences for g(m) with m ≥ 0 do converge. As for the
case of g(−m) when m > 0 notice that for r ≥ n,∣∣|Km,n| − |Km,r|

∣∣ ≤ |K0,n| − |K0,r|+
∑
{|Hβ | : r−1 ≤ ν−1|Hβ | < n−1}

since the only Hβ which are subsets of just one of Km,n,Km,r must either have been a
subset of K0,n but not K0,r or must have become one of the Bβ,j for some n ≤ j ≤ r.
Hence the sequence for g(−m) also converges.

Notice that these definitions do indeed only depend on Γ = Γ(Υ).

The plan is now to show that on standard state descriptions, vg,h is infinitesimally
close to w∗ conditioned on

∨
Γ. First however we need to show that g, h satisfy the

conditions specified in the definition of vg,h. These are the contents of the next three
lemmas.

Lemma 15. ∑
i∈Z

g(i) = 1 and g(n) ≥ g(n+ 1) for n ∈ N+

for a µ-measure 1 set of Γ.

13Again g, h are functions of Γ but we suppress explicit mention of this argument.
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Proof. The second part is immediate since the |Hβ | are decreasing in β.

Turning to the first part, from (21) and the fact that Bζ,n = Kζ,n = ∅ for ζ > n we
obtain that

|K0,n|+
∑
ζ≤n

|Kζ,n|+
∑
ζ≤n

|Bζ,n|+ |Y | = ν.

Hence taking standard parts

◦(ν−1|K0,n|) +
∑
ζ≤n

◦(ν−1|Kζ,n|) +
∑
ζ≤n

◦(ν−1|Bζ,n|) = 1, (22)

since ν−1|Y | is infinitesimal. Now given ε > 0 let ε−1 ≤ m1 ∈ N be such that
◦(ν−1|K0,n|) is within ε of g(0) for n ≥ m1 and let m1 ≤ m2 ∈ N be such that for
0 < ζ < m1 and n ≥ m2 each of the ◦(ν−1|Kζ,n|) are within m−1

1 ε of g(−ζ). Then by
considering how the Hβ move between the K0,n,Kζ,n, Bζ,n we see that

◦(ν−1|K0,n|) +
∑
ζ≤m2

◦(ν−1|Kζ,n|) +
∑
ζ≤m2

◦(ν−1|Bζ,n|)

must be at least 1− 2ε for all n ≥ m2. Hence

m2∑
i=−m2

g(i) ≥ 1− 2ε

and the required result follows.

Lemma 16. Let m ∈ N+. Then for a µ-measure 1 set of state descriptions Υ ∈ S1, if
g(−m) > 0 then g(m) > 0.

Proof. Suppose that g(−m) > 0. Then certainly for some n we must have that
|Km,n| > 0. But that means that for some β, Hβ ⊆ Km,n, %(β) = m and ν−1|H%(β)| ≥
n−1. Hence

g(m) = ◦(ν−1|Bm|) = ◦(ν−1|Hm|) ≥ n−1 > 0.

Lemma 17. Let m ∈ N+. Then for a µ-measure 1 set of state descriptions Υ ∈ S1,
if g(m) > 0 then h(m) is defined, h(m) > 0 and g(h(m)) > 0.

Proof. For g(m) > 0 with m ∈ N+ we must have that ◦(ν−1|Hm|) > 0. The result
now follows from Corollary 14.

To summarize at this point, we have a µ-measure 1 set S1 of state descriptions, al-
ternately sets Γ(Υ) since if Υ ∈ S1 and ∆ ∈ Γ(Υ) then ∆ ∈ S1. For each such
Γ we have defined functions g : Z → {r ∈ R : r ≥ 0} and h : S → S, where
S = {m ∈ Z : g(m) > 0}, such that

(i)
∑
m∈Z

g(m) = 1 and g(m) ≥ g(m+ 1) for m ∈ N+.

(ii) If m ∈ N and −m ∈ S then m ∈ S and h(−m) = m.

(iii) If 0 < m ∈ S then h(m) > 0.

So these g, h, S satisfy the requirements given in (1) and vg,h is defined.
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Lemma 18. Let Θ(a1, . . . , am) be a standard (i.e. in V ) state description. Then for
a µ-measure 1 set of Υ ∈ S1 (or Γ = Γ(Υ)),14

| vg,h(Θ)− w∗(Θ |
∨

Γ) | (23)

is infinitesimal.

Proof. We first derive arbitrarily close approximations to the terms in (23). Starting
with the right hand term notice that

w∗(Θ ∧
∨

Γ) =
∑
∆∈Γ

w∗(Θ ∧∆)

=
∑
{w∗(∆) : ∆ ∈ Γ and ∆ |= Θ}

= w∗(Υ) · |{∆ ∈ Γ : ∆ |= Θ}|, since w∗ satisfies Ex.

Now |{∆ ∈ Γ : ∆ |= Θ}| is just the number of permutations σ of ν (in U∗) divided
by the number of these permutations which fix Υ (that is, the number of elements in
Γ) all multiplied by the proportion of these for which

Υ(aσ(1), aσ(2), . . . , aσ(ν)) |= Θ(a1, a2, . . . , am), (24)

equivalently multiplied by the probability (in U∗) of picking without replacement σ(1),
σ(2), . . . , σ(m) from {1, 2, . . . , ν} such that

Υ(a1, a2, . . . , aν) |= Θ(aσ(1), aσ(2), . . . , aσ(m)). (25)

Since ν > N this probability will differ by at most an infinitesimal if we drop the
requirement of not replacing previous choices. So if we take standard ε ∈ (0, 1/2] we
can from now on assume, with a difference in overall probability of at most ε, that
the choice is made with replacement. This probability of picking σ(1), . . . , σ(m) from
{1, 2, . . . , ν} with replacement such that (25) holds will be our starting approximation
AR to the right hand side of (23).

Turning now to the left hand term in (23) let mε ∈ N+ be large enough that mε ≥ ε−1,
the statement of Lemma 13 holds with n = mε, and∑

|i|>mε

g(i) < ε/m.15 (26)

We now use mε to approximate the expression (5) which gives the left hand side of (23).
Let j ∈ Z and 1 ≤ k ≤ m. Then if we change the sum in (5) to all τ : {1, 2, . . . ,m} → S
such that τ(k) = j we obtain

∑
τ

m∏
i=1

g(τ(i)) = g(j)
∑
τ

∏
i 6=k

g(τ(i)) = g(j)
∏
i6=k

(∑
r∈Z

g(r)

)
= g(j).

14We use the standard notation here that
∨

Γ stands for
∨

∆∈Γ ∆(a1, . . . , aν)
15Note that only by this latter requirement does mε become dependent on Υ (for Υ ∈ S1)

and in fact that too can also be avoided by restricting to, say, a µ-measure 1 − ε subset of
these Υ.
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It follows that the sum of the contributions
∑
τ

∏m
i=1 g(τ(i)) to vg,h(Θ) where τ is

compatible with Θ, h and some τ(i) is outside [−mε,mε] is at most ε. The reduced sum
for (5), with the range of τ restricted to [−mε,mε], will be our starting approximation
AL to the left hand side of (23).

Now let mε ≤ rε ∈ N be large16 and such that

| g(0)− ν−1|K0,rε | | +
mε∑
j=1

| g(−j)− ν−1|Kj,rε | | +
mε∑
j=1

| g(j)− ν−1|Bj,rε | |<
ε

m
. (27)

Let τ : {1, 2, . . . ,m} → [−mε,mε] (so if τ is compatible with Θ, h it gives one of the
summands in AL) and let

Xi =


Bj,rε if τ(i) = j ∈ [1,mε],

K0,rε if τ(i) = 0,

Kj,rε if τ(i) = −j ∈ [−mε,−1].

(28)

(Notice that for j ∈ Xi, F (aj) is defined.) Then the probability of picking σ(1), σ(2), . . . , σ(m)
so that for i = 1, 2, . . . ,m, σ(i) ∈ Xi is

∏m
i=1 κi, where κi = ν−1|Xi|, and

|
m∏
i=1

κi −
m∏
i=1

g(τ(i)) | = |
m∑
j=1

(∏
i<j

κi
)
(κj − g(τ(j)))

( ∏
j<i≤m

g(τ(i))
)
|

≤ |
m∑
j=1

(∏
i<j

κi
)
(|κj − g(τ(j))|)

( ∏
j<i≤m

g(τ(i))
)
|

≤ ε

m

m∑
j=1

(∏
i<j

κi
)( ∏

j<i≤m

g(τ(i))
)
. (29)

by (27).

Since
mε∑

j=−mε

g(j),

mε∑
j=1

ν−1|Bj,rε |+
0∑

j=−mε

ν−1|Kj,rε |

are both at most 1,

AC =
∑
τ

m∏
i=1

κi,

where the sum is over τ : {1, 2, . . . ,m} → [−mε,mε] compatible with Θ, h, is within ε
of AL and in turn within 2ε of vg,h(Θ).

We now show that AC is close to AR for a large set of Υ, more precisely a set of
µ-measure at least 1− 2mε. For this we need to show:

(i) For a set of Υ of at least µ-measure 1 − ε the probability of picking all of
the σ(i) ∈ Xi for Xi derived from τ : {1, . . . ,m} → [−mε,mε] compatible with Θ, h
with Υ 2 Θ(aσ(1), . . . , aσ(m)) is O(ε).

16We shall shortly use this to impose further properties on rε.
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(ii) For a set of Υ of at least µ-measure 1− ε the probability of picking all of
the σ(i) ∈ Xi for Xi derived from τ : {1, . . . ,m} → [−mε,mε] not compatible with
Θ, h with Υ |= Θ(aσ(1), . . . , aσ(m)) is O(ε).

We first tackle (i). By (28), the definitions of K0,rε , Kj,rε and Bj,rε (pages 15-15), Hj
and % (page 12), g and h (pages 16-16) and the definition (2), (3), (4) of compatibility
of a colouring τ with Θ, h, for (i) to happen for a particular such τ , it must be the
case that one of the following holds:

(a) τ(i) = τ(j) = k ≤ 0, i 6= j, Θ |= ai 6= aj , Xi = Xj = Kk,rε , Υ |= aσ(i) = aσ(j).

(b) τ(i) = 0, Θ |= F (ai) = ai, Xi = K0,rε Υ |= F (aσ(i)) 6= aσ(i).

Concerning (a), if this were to happen we would have σ(i), σ(j) ∈ Hζ for some ζ with

r−1
ε > ◦(ν−1|Hζ |) > 0.

Since rε has been chosen greater than ε−1 the probability of making any choice of
σ(1), σ(2), . . . , σ(m) such that σ(i), σ(j) ∈ Hζ for such a Hζ is less than ε. Hence the
probability of a type (a) error is less than the number of possible i, j times ε.

Concerning (b), this would happen if for some ζ, σ(i) ∈ Hζ , σ(i) /∈ H%(ζ),

r−1
ε > ◦(ν−1|Hζ |), r−1

ε > ◦(ν−1|H%(ζ)|).

From Lemma 13, since rε is large,

µ{Υ : |{j : F (aj) = aj ∨ |{k : F (aj) = ak}| ≥ r−1
ε ν}| > ν(1− ε)} > 1− ε.

Hence for µ-measure at least 1− ε the probability of picking such a σ(i) is at most ε.
It follows that for this set of Υ (or Γ) the probability of an error of type (b) is again
O(ε) for a set of Υ of measure at least 1−mε.

Now turning to (ii), by the same definitions as for (i), the only ways these errors can
occur are if one of the following holds:

(c) τ(i) = −k ≤ 0, i 6= j, Θ |= ai = aj , Xi = Kk,rε , Υ |= aσ(i) = aσ(j).

(d) τ(i) = 0, Θ |= F (ai) 6= ai, Xi = K0,rε Υ |= F (aσ(i)) 6= aσ(i).

By just the same argument as for (i)(a) we can see that the probability of an error of
the type (ii)(c) is O(ε). Similarly by the same argument as for (i)(b) for a µ-measure
of at most 1−mε the probability of an error of type (ii)(d) is again O(ε).

Putting all these parts together now we have shown that for 0 < ε ∈ [0, 1] and a set of
Υ of µ-measure at least 1− 2mε the terms in (23) are within a fixed constant times ε
of each other. The lemma follows.
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To complete the proof of the Representation Theorem 2 notice that

w(Θ(a1, . . . , am)) = ◦w∗(Θ(a1, . . . , am))

= ◦(∑
Γ

w∗(Θ ∧
∨

Γ)
)

= ◦(∑
Γ

w∗(Θ |
∨

Γ) · w∗(
∨

Γ)
)

=

∫
Γ

◦(w∗(Θ | ∨Γ)) dµ(Γ), by Loeb measure theory,

see for example [5, pages 17 -20] or [6, Chapter 1]

=

∫
S1
vg,h(Θ) dµ(Γ) by Lemma 18.

Conclusions

In our view, including equality and function symbols rather conflicts with the under-
lying motivation for Pure Inductive Logic. Nevertheless taking the first step in this
direction with equality and just one unary function does yield a comprehensible and
arguably attractive representation theorem for the probability functions on this lan-
guage satisfying Ex. A similar result can, we would claim without actually writing
out all the details, be shown if we additionally allow finitely many relation and unary
function symbols in the language. One can also picture, and conjecture, a similar
result even with polyadic function symbols added. However, even if correct, finding a
proof in the direction of Theorem 2 currently looks no less than daunting.

We would finally remark that the Representation Theorem 2 we have found has a
noticeable similarity to the Representation Theorems given, for example, in [12] for
probability functions on polyadic (relational) languages satisfying Spectrum Exchange-
ability.
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