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Geometric representation in the theory of pseudo-finite

fields

Özlem Beyarslan∗‡ Zoé Chatzidakis†‡

Abstract

We study the automorphism group of the algebraic closure of a substructure A of a
pseudo-finite field F , or more generally, of a bounded PAC field F . This paper answers
some of the questions of [1], and in particular that any finite group which is geometrically
represented in a pseudo-finite field must be abelian.

Introduction

This paper investigates the relationship between model-theoretic definable closure and model-
theoretic algebraic closure in certain fields. In other words: if F is a field, and A ⊆ F satisfies
A = dcl(A), what can one say of the group Aut(acl(A)/A) of restrictions to acl(A) of elements
of Aut(F/A)? When is it non-trivial? A natural assumption to add is to look at a slightly
smaller group, and to impose on A that it contains an elementary substructure of F . Indeed,
we certainly want to impose that our automorphisms fix acleq(∅).
This paper extends some of the results of [1], with completely new proofs, and answers some of
the questions there. Here are the main results we obtain:

Theorem 1.7. Let F be a bounded field, A = dcl(A) a subfield of F containing an elemen-
tary substructure of F , and let p be a prime dividing #(Aut(acl(A)/A) and #G(F ). Then
p 6= char(F ), and µp∞ ⊂ F (ζp).

Theorem 1.8. Let F be a pseudo-finite field, [or more generally a bounded PAC field]. Assume
that for some subfield A = dcl(A) of F containing an elementary substructure of F , the group
G := Aut(acl(A)/A) is non-trivial. [Assume in addition that all primes dividing #G divide
#G(F )].
Then G is abelian, for any prime p dividing #G, we have p 6= char(F ), and µp∞ ⊂ F .
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We give an example (2.5) which shows that the hypotheses on F0 cannot be weakened to assume
that A contains a substucture F0 with acleq(∅) ⊂ dcleq(F0). We also give a partial answer to a
question of [1] on centralisers.

1 The results

Notation 1.1. Let F be a field. Throughout the paper, dcl and acl will denote the model-
theoretic definable and algebraic closures, taken within the structure F or possibly some ele-
mentary extension of F .
F alg denotes an algebraic closure of F (i.e., an algebraically closed field containing F and min-
imal such), F s its separable closure and G(F ) its absolute Galois group, i.e., Gal(F s/F ).
If A ⊂ B are subfields of F , we denote by Aut(B/A) the set of automorphisms of B which
preserve all L(A)-formulas true in F , and by Autfield(B/A) the set of (field) automorphisms of
B which fix the elements of A.
We let µp∞ denote the group of all pn-th roots of unity if p 6= char(F ), and ζp a primitive p-th
root of unity.
Let G1, G2 be profinite groups, p a prime. We say that p divides #G1 if G1 has a finite quotient
with order divisible by p. We write (#G1,#G2) = 1 if there is no prime number which divides
both #G1 and #G2.

Definitions 1.2. Let L be a language, T a complete theory.

(1) We say that the group G is geometrically represented in the theory T if there exists
M0 ≺ M |= T and M0 ⊆ A ⊆ B ⊆ M , M such that Aut(B/A) ≃ G, where Aut(B/A) is
the set of permutations of B which fix A and preserve the truth value of all L(A)-formulas.
We say that a prime number p is geometrically represented in T if p divides the order of
some finite group G represented in T .

(2) A field F is bounded if for every integer n, F has only finitely many separable extensions
of degree n. In this case we also say that G(F ) is bounded.

(3) A field F is pseudo-algebraicallly closed, henceforth abbreviated by PAC, if every abso-
lutely irreducible variety defined over F has an F -rational point.

(4) A field is pseudo-finite if it is PAC, perfect, and has exactly one extension of degree n for
each integer n > 1.

Remarks 1.3. (Folklore) Let F be any field, A a subfield of F , and assume that A = dcl(A).
Then As ∩ F is a Galois extension of A, equals acl(A), and Aut(acl(A)/A) = Gal(As ∩ F/A).
Hence the finite groups Aut(B/A) as above correspond to the finite quotients of Gal(As∩F/A).

Indeed, if α ∈ acl(A), let α = α1, α2, . . . , αn be the conjugates of α over A. Then the symmetric
functions in {α1, . . . , αn} are in dcl(A) = A, i.e.: α satisfies a monic separable polynomial with
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its coefficients in A and F contains all the roots of this polynomial. This shows the first assertion
and the second assertion is immediate.

1.4. Properties of pseudo-finite fields and bounded PAC fields.

We list some of the properties of these fields that we will use all the time, often without
reference. The language is the ordinary langage of rings L = {+,−, ·, 0, 1}, often expanded
with parameters. Pseudo-finite fields are the infinite models of the theory of finite fields. They
were studied by Ax in the 60’s.

An algebraic extension of a PAC field is PAC (Corollary 11.2.5 of [3]). Theorem 20.3.3 of [3]
(applied to K = A, L = M = As ∩ F , E = F = F ) gives the following:

Fact 1. Let F be a PAC field, A a subfield of F over which F is separable, and assume that A
has a Galois extension C such that the restriction map G(F ) → Gal(C/A) is an isomorphism,
and C ∩ F = A. Let B = As ∩ F ; then Autfield(B/A) = Aut(B/A).
It suffices to notice that CF = F s, and therefore also CB = Bs. So, if ϕ0 ∈ Autfield(B/A),
extend ϕ0 to Φ0 ∈ Autfield(B

s/CA) by imposing Φ0 to be the identity on C. Then Φ0 induces
the identity on Gal(C/A) ≃ G(B). The result now follows immediately from 20.3.3 in [3]. It
also has the following consequence:

Fact 2. If F0 ⊂ F are PAC fields of the same degree of imperfection, F is separable over F0,
and the restriction map G(F ) → G(F0) is an isomorphism, then F0 ≺ F .

The following remark is totally folklore, but for want of a good reference we will discuss it.

Fact 3. Let F0 ≺ F and assume that G(F ) is bounded. Then the restriction map G(F ) → G(F0)
is an isomorphism.
From F0 ≺ F , it follows immediately that F is a regular extension of F0, so that the restriction
map G(F ) → G(F0) is onto. Hence G(F0) is bounded. Fix an integer n > 1, and let m(n) be
the number of distinct separably algebraic extensions of F0 of degree n. Then there is an L(F0)-
sentence which expresses this fact: that there are m(n) distinct separably algebraic extensions
of F0 of degree n, and that each separably algebraic extension of degree n is contained in one
of these. As F0 ≺ F , F satisfies the same sentence, and this implies that F s = F s

0F , and that
the restriction map G(F ) → G(F0) is an isomorphism.

Lemma 1.5. Let F be a bounded field, and A = dcl(A) a subfield of F containing an elementary
substructure F0 of F , and let B = As ∩ F . Then G(A) ≃ G(F0)×Gal(B/A).

Proof. Because G(F0) is bounded and F0 ≺ F , we know that F s = F s
0
F and the fields F s

0
and

F are linearly disjoint over F0. Hence B
s = F s

0B, the fields B and AF s
0 are linearly disjoint over

A, both are Galois extensions of A, and therefore G(A) = Gal(Bs/A) ≃ G(F0)×Gal(B/A).

Theorem 1.6. (Koenigsmann, Thm 3.3 in [5]). Let K be a field with G(K) ≃ G1 × G2. If a
prime p divides (#G1,#G2), then there is a non-trivial Henselian valuation v on K, char(K) 6=
p, and µp∞ ⊂ K(ζp). Furthermore, if Kv denotes the residue field of v and π : G(K) → G(Kv)
the canonical epimorphism, then G(K) is torsion-free and (#π(G1),#π(G2)) = 1.
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Theorem 1.7. Let F be a field with bounded Galois group. Assume that p is a prime number
represented in Th(F ) and that p divides #G(F ). Then char(F ) 6= p, and F (ζp) contains µp∞.

Proof. Let F0 ≺ F , and A a subfield of F containing F0, with A = dcl(A). Let B = As ∩ F ,
and assume that p divides #Gal(B/A), as well as #G(F0). By Lemma 1.5, we know that
G(A) ≃ G(F0)×Gal(B/A). The result follows immediately from Theorem 1.6.

Theorem 1.8. Let F be a pseudo-finite field, [or more generally a bounded PAC field]. Assume
that for some subfield A = dcl(A) of F containing an elementary substructure of F , the group
G := Aut(acl(A)/A) is non-trivial. [Assume in addition that all primes dividing #G divide
#G(F )].
Then G is abelian, and for any prime p dividing #G we have p 6= char(F ) and µp∞ ⊂ F .

Proof. Let F0 ≺ F , and A = dcl(A) a subfield of F containing F0, let B = As ∩ F , and
assume that p divides #Gal(B/A). By assumption, p divides #G(F0), and by Lemma 1.5,
G(A) ≃ Gal(B/A)× G(F0), with p dividing the order of both factors. Let v be the Henselian
valuation on A given by Theorem 1.6, and π : G(A) → G(Av) the corresponding epimorphism
of Galois groups. As F0 is relatively algebraically closed in A, the valuation v restricts to a
Henselian valuation on F0; but because F0 is PAC, the only Henselian valuation on F0 is the
trivial valuation ([3], Cor 11.5.6). Hence F0 ⊆ Av, and by Henselianity of v, F s

0
∩ Av = F0.

Hence the map π is an isomorphism between G(A) and G(F0). It follows that Gal(BF s
0 /AF

s
0 )

is contained in Ker(π), the inertia subgroup of v, and its order is prime to the characteristic.
Hence As is the composite of the purely residual extension AF s

0
of A, and the totally ramified

extension B of A. The characteristic of F does not divide #Gal(B/A), and this implies that
Gal(B/A) is abelian: indeed, by Theorem 5.3.3 and § 5.3 in [2], we have

Gal(B/A) ≃ Gal(BF s
0
/AF s

0
) ≃ Hom(Γ(As)/Γ(AF s

0
)), (Aw)s×),

where w denotes the unique extension of v to As, and Γ(As), Γ(AF s
0
) the value groups w(As)

and w(AF s
0
) = v(A).

We also know that µp∞ ⊂ F (ζp). Assume first that G(F ) is abelian. Then so is G(A), and
therefore any field between A and As is a Galois extension of A. In particular, because p divide
#G, some element γ ∈ v(A) is not divisible by p in v(A). Thus, if v(a) = γ, then a1/p ∈ As, and
generates a Galois extension of A: this implies that ζp ∈ A, and by the above that µp∞ ⊂ F0.
Assume now that G(F ) is arbitrary, and that ζp /∈ F0. Then there is some σ ∈ G(F ) such
that σ(ζp) 6= ζp, and the subgroup generated by σ has order divisible by p (here we use that p
divides #G(F )). Then the restriction of σ to As commutes with all elements of Gal(As/F s

0
A),

and so we may apply the previous result to the PAC field K, subfield of F s fixed by σ, and its
elementary substructureK0, subfield of F s

0 fixed by σ, to deduce that ζp ∈ K0, which contradicts
our choice of σ.

Corollary 1.9. Let F be a pseudo-finite field, or a bounded PAC field with #G(F ) divisible by
every prime number. Then every group represented in Th(F ) is abelian. Furthermore, if p is a
prime represented in Th(F ), then µp∞ ⊂ F and p 6= char(F ).
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Corollary 1.10. Let F be a pseudo-finite field such that if p is a prime number 6= char(F ),
then µp∞ 6⊂ F . Then definable closure and algebraic closure agree on subsets of F containing
an elementary substructure of F .

2 Other comments and remarks

2.1. As was shown in Theorem 7 of [1], if F is a pseudofinite field not of characteristic p and
containing µp∞, then every abelian p-group is represented in Th(F ). Moreover, as the class
of groups represented in Th(F ) is stable by direct product (Remark 12 in [1]), it follows that
which abelian groups are represented in Th(F ) is entirely determined by char(F ) and by which
µp∞ are contained in F .
The proof given in [1] easily generalises to any perfect PAC field F , as they do have a notion of
amalgamation over models, and the construction did not use the pseudo-finiteness of F , only
the fact that it is PAC. We give here again the construction of a field with absolute Galois
group containing a cartesian product, it will be used in the construction of example 2.5.

2.2. The construction. Let F be a perfect field containing all primitive roots of unity, and
consider the field K of generalized power series F s((tQ)) over F s. Its members are formal
sums

∑
γ aγt

γ , with γ ∈ Q, aγ ∈ F s, satisfying that {γ | aγ 6= 0} is well-ordered. Then K is
algebraically closed. We define an action of G(F ) on K by setting

σ(
∑

γ

aγt
γ) =

∑

γ

σ(aγ)t
γ .

So, the subfield of K fixed by G(F ) coincides with F ((tQ)). For each n ∈ N not divisible by the
characteristic of F , choose a primitive n-th root of unity ζn, and choose them in a compatible
way, i.e., such that ζmnm = ζn. Let σ ∈ Aut(K) be defined by defining σ(t1/n) = ζnt

1/n for n
prime to the characteristic, and if q is a power of the characteristic, then σ(t1/q) = t1/q; extend
σ to the multiplicative group t1/n, n ∈ Z, and then to K by setting

σ(
∑

γ

aγt
γ) =

∑

γ

aγσ(t
γ).

Let A be the subfield of K fixed by G(F ) and by σ. Then G(A) ≃ G(F )× 〈σ〉 = G(F )× Ẑ.

2.3. Remark. Let F be a perfect PAC field, and let A be the field constructed above. So
A contains a copy of F and is contained in F ((tQ)); as F ((tQ)) is a regular extension of F ,
it follows that F has an elementary extension F ∗ which contains B = As ∩ F ((tQ)). Then
Aut(B/A) = Gal(B/A) ≃ Ẑ. This proof already appeared in [1] (Thm 7).

2.4. Comment 1. The proof of Lemma 1.5 works exactly in the same fashion as soon as the
field A contains enough information about G(F ), more precisely: Assume A contains acl(∅),
and that for each finite extension L of F , there is α such that L = F (α) and the minimal
polynomial of α over F has its coefficients in A = dcl(A); then A has a Galois extension C
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which is linearly disjoint from F over A, and is such that CF = F s. Then again one has
G(A) ≃ G(F )×Gal(As ∩ F/A). The proof of Theorems 1.7 goes through verbatim.
We were trying to weaken the hypotheses on A, and a natural weaker assumption is to assume
that A contains a subfield F0 such that acleq(∅) ⊆ dcleq(F0) and acl(F0) = F0. However the
proof of Theorem 1.8 used in an essential way the fact that F0 was PAC. The example below
shows that this condition is not sufficient.

2.5. An example showing that the hypothesis of containing an elementary substruc-

ture is necessary.
Let A0 be a field containing Qalg, and consider Aalg

0 ((tQ)); define actions of G(A0) and of σ
on Aalg

0 ((tQ)) as above. Then G(A0((t))) ≃ G(A0) × 〈σ〉. Let F0 = Qalg((t)), the subfield of
Qalg((tQ)) fixed by σ, and A = A0((t)). Then G(F0) ≃ Ẑ, and A contains F0. Furthermore,
because G(F0) is isomorphic to Ẑ, there is a pseudo-finite field F which is a regular extension
of F0 (this follows easily from Thm 23.1.1 in [3]), so that the restriction map G(F ) → G(F0)
is an isomorphism. By Corollary 3.1 in [4], the theory of F eliminates imaginaries in the lan-
guage augmented by constants for elements of F0. As F0 also contains acl(∅) = Qalg, it follows
that acleq(∅) ⊂ dcleq(F0). Furthermore, by standard results on pseudo-finite fields, F has an
elementary extension F ∗ which contains A and is a regular extension of B = Aalg ∩ Aalg

0 ((t)).
Then Gal(B/A) = Aut(B/A) ≃ G(A0).
This shows that the hypothesis of A containing an elementary substructure of F ∗ cannot be
weakened to A containing a substructure F0 with acleq(∅) ⊂ dcleq(∅) and F0 = acl(F0).

2.6. Comment 2. One can wonder what happens for a bounded PAC field F with G(F ) not
divisible by all primes. If S is the set of prime numbers 6= char(F ) and which do not divide
#G(F ), and if H is a projective S-group (i.e., the order of the finite quotients of S are products
of members of S), thenG(F )×H is a projective profinite group. Hence F has a regular extension
K which is PAC and with G(K) ≃ G(F )×H (Thm 23.1.1 in [3]). We may also impose, if the
characteristic is positive, that K and F have the same degree of imperfection. As K is a regular
extension of F , the restriction map G(K) → G(F ) restricts to an isomorphism on G(F )× (1),
and sends (1)×H to 1. Let K1 be the subfield of Ks fixed by G(F )× (1). Then K1 is PAC,
and because the restriction map G(K1) → G(F ) is an isomorphism, we have F ≺ K1. If A is
the subfield of Ks fixed by G(F )×H , then A ⊂ F1, and Gal(F1/A) = Aut(F1/A) ≃ H .

2.7. Comment 3. Let K be a field, G = Aut(K(t)alg/K(t)), and σ ∈ G. Consider G(σ) the
centralizer of σ in G. Let B be the subfield of K(t)alg fixed by σ, F0 = Kalg ∩ B, and assume
that F0 is pseudo-finite. Because G(B) = 〈σ〉 projects onto G(F0) ≃ Ẑ, we have G(B) ≃ Ẑ,
and F0 has an elementary extension F which is a regular extension of B. We are interested in
Autfield(B/F0(t)); as B ∩F alg

0 = F0, B is linearly disjoint from F alg
0 (t) over F0(t), and therefore

Autfield(B/F0(t)) = Aut(B/F0(t)), and its elements commute with σ.
Let H be a closed subgroup of G(σ) such that H∩〈σ〉 = 1. Then Theorem 1.8 tells us that H is
abelian, and that the subfield A of B fixed by H has a non-trivial Henselian valuation v, which
is trivial on F0. Furthermore, if p divides #H , then p 6= char(F0), and µp∞ ⊂ F0. We take the
unique extension of v to As (and also call it v); then the residue fields Av and Bv equal F0,
and (Av)s = F s

0
. Furthermore H is procyclic, because Γ(A) ≃ Z, and H ≃ Hom(Q/Z, F s

0

×).
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The restriction of v to F0(t) corresponds to a point of P1(F0) (because Av = F0), i.e., either
v(t − a) = 1 for some a ∈ F0, or v(t) = −1. On the other hand, the field B can carry at
most one Henselian valuation (see Thm 4.4.1 of [2]). It follows that Autfield(B/F0(t)) is abelian,
procyclic. Hence G(σ) splits as 〈σ〉 × 〈τ〉. The result generalises to any bounded PAC subfield
F0 of K, with exactly the same reasoning.
This gives a partial answer to Questions 15 and 16 of [1].

Consider K = Q, and endow G(Q(t)) with the Haar measure. Then the set {τ ∈ G(Q) |
Qalg(τ) is pseudofinite} has measure 1, see Thm 18.6.1 in [3]. Here Qalg(τ) denotes the subfield
of (Qalg) fixed by σ. Moreover, it is easy to see that with probability 1, Qalg(σ) does not contain
µp∞ for any prime p. Hence, if σ is any extension of τ to Q(t)alg, and B = Q(t)alg(σ), then
Aut(B/F0(t)) = 1.
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