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Abstract

In ZFC, the class Ord of ordinals is easily seen to satisfy the definable
version of strong inaccessibility. Here we explore deeper ZFC-verifiable
combinatorial properties of Ord, as indicated in Theorems A & B below.
Note that Theorem A shows the unexpected result that Ord is never
definably weakly compact in any model of ZFC.

Theorem A. Let M be any model of ZFC.

(1) The definable tree property fails in M: There is an M-definable
Ord-tree with no M-definable cofinal branch.

(2) The definable partition property fails in M: There is an M-definable
2-coloring f : [X]? — 2 for some M-definable proper class X such that
no M-definable proper classs is monochromatic for f.

(3) The definable compactness property for Lo, fails in M: There is
a definable theory T in the logic Lo (in the sense of M) of size Ord
such that every set-sized subtheory of T is satisfiable in M, but there is
no M-definable model of T.

Theorem B. The definable $orq principle holds in a model M of ZFC
iff M carries an M-definable global well-ordering.

Theorems A and B above can be recast as theorem schemes in ZFC,
or as asserting that a single statement in the language of class theory
holds in all ‘spartan’ models of GB (Godel-Bernays class theory); where
a spartan model of GB is any structure of the form (M, Dx ), where
M = ZF and Dy is the family of M-definable classes. Theorem C
gauges the complexity of the collection GBgp, of (GOdel-numbers of)
sentences that hold in all spartan models of GB.

Theorem C. GBgp, is I} -complete.
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1. Introduction & Preliminaries

In ZFC, the class Ord of ordinals satisfies the definable version of strong
inaccessibility since the power set axiom and the axiom of choice together make
it evident that Ord is closed under cardinal exponentiation; and the scheme
of replacement ensures the definable regularity of Ord in the sense that for
each cardinal k < Ord, the range of every definable ordinal-valued map f with
domain x is bounded in Ord. In this paper we investigate more subtle definable
combinatorial properties of Ord in the context of ZFC to obtain results, each
of which takes the form of a theorem scheme within ZFC. In Section 2 we
establish a number of results that culminate in Theorem 2.6, which states
that the tree property fails for definable classes across all models of ZFC; this
result is then used in Section 3 to show the failure of the partition property
for definable classes, and the failure of weak compactness of Ord for definable
classes in all models of ZFC. Thus, the results in Sections 2 and 8 together
demonstrate the unexpected ZFC-provable failure of the definable version of a
large cardinal property for Ord. In Section 4 we establish the equivalence of
the combinatorial principle {orq and the existence of a definable global choice
function across all models of ZFC.

The results in Sections 2 through 4 can be viewed as stating that certain
sentences in the language of class theory hold in all ‘spartan’ models of GB
(Godel-Bernays class theory), i.e., in all models of GB of the form (M, D),
where M is a model of ZF and Dy, is the collection of M-definable subsets
of M. For example Theorem 2.6 is equivalent to the veracity of the statement
“if the axiom of choice for sets holds, then there is an Ord-Aronszajn tree”
in every spartan model of GB. In Section 5 we show that the theory of all
spartan models of GB, when viewed as a subset of w via Gédel-numbering, is
II}-complete; and a fortiori, it is not computably axiomatizable.

We now turn to reviewing pertinent preliminaries concerning models of set
theory. Our meta-theory is ZFC.

1.1. Definition. Suppose M = (M, e™) and N = (N, €") are models of set
theory. Note that we are not assuming that either M or N is well-founded.

(a) For m € M, let mpy :={x € M :z eMm}. f M C N (ie, Misa
submodel of N') and m € M, then N fizes m if mypg = mpr. N end extends
M, written M C, N, iff N fixes every m € M. Equivalently: M C, N iff M
is a transitive submodel of A in the sense that if 2 €V y for some z € N and
some y € M, then z €M .

(b) Given n € w, N is a proper ¥, -e.e.e. of M (“e.e.e.” stands for “elemen-
tary end extension”), iff M C N, and M <y N (i.e., ¥, -statements with



parameters from M are absolute in the passage between N and M). It is
well-known that if M <y, AN/ and M |= ZF, then N is a rank extension of
M, i.e., whenever a € M and b € N\M, then N |= p(a) € p(b), where p is
the usual ordinal-valued rank function on sets.

(c) Given o € Ord™, M,, denotes the structure (V,, €)M, and M, = VM.

(d) For X € M"™ (where n € w), we say that X is M-definable iff X is
parametrically definable in M.

(e) N is a conservative extension of M, written M Cons N, iff the intersec-
tion of any N -definable subset of N with M is M-definable.

For models of ZF, the set-theoretical sentence Jp (V = HOD(p)) expresses:
“there is some p such that every set is first order definable in some structure
of the form (V,, €,p) with p € V,”. The following theorem is well-known;
the equivalence of (a) and (b) will be revisited in Theorem 4.2.

1.2. Theorem. The following statements are equivalent for M = ZF:

(a) M = 3p(V =HOD(p)).

(b) For some p € M and some set-theoretic formula ¢(z,y,p) (where P is a
name for p) M satisfies “© well-orders the universe”.

(c) For some p € M and some Xo-formula ¢(x,y,p) M satisfies “@ well-
orders the universe”.

(d) M EVa(x # 2 — f(x) € x) for some M-definable f: M — M.
Next we use definable classes to lift certain combinatorial properties of cardi-
nals to the class of ordinals.

1.3. Definitions. Suppose M | ZFC.

(a) Suppose 7 = (T, <r) is a tree ordering, where both T" and <p are M-
definable. 7 is an Ord-tree in M iff M satisfies “7 is a well-founded tree of
height Ord and for all & € Ord, the collection T, of elements of T" at level «
of 7 form a set”. Such a tree 7 is said to be a definably Ord-Aronszajn tree
in M iff no cofinal branch of 7 is M-definable.

(b) The definable tree property for Ord fails in M iff there exists a definably
Ord-Aronszajn tree in M

IThis notion should not be confused with the definable tree property of a cardinal r, first
introduced and studied by Leshem [L], which stipulates that every k-tree that is first order
definable (parameters allowed) in the structure (H(k),€) has a cofinal branch B (where
H (k) is the collection of sets that are hereditarily of cardinality less than x). Note that in
this definition B is not required to be first order definable in (H(k),€); so every weakly
compact cardinal has the definable tree property.



(c) The definable proper class partition property fails in M iff there is an M-
definable proper class X of M with an M-definable 2-coloring f : [X]? — 2
such that there is no M-definable monochromatic proper class for f. We
also say that Ord — (Ord)g fails in M iff there is an M-definable 2-coloring
f : [Ord]? — 2 such that there is no M-definable monochromatic proper class
for f.

(d) The definable compactness property for Lo, fails in M iff there is an
M-definable theory I' formulated in the logic L ., (in the sense of M) such
that every set-sized subtheory of I' is satisfiable in M, but there is no M-
definable model of T'. Here L, is the extension of first order logic that allows
conjunctions and disjunctions applied to sets of formulae (of any cardinality)
with only a finite number of free variables, as in [B|, Ch.III].

(e) An M-definable subset E of Ord™ is said to be definably M-stationary
ifft ENC # @ for every M-definable subset C' of M such that C' is closed and
unbounded in Ord™.

(£) The definable Oorq holds in M iff there is some M-definable A= <Aa € OrdM>
such that M satisfies “A4, C « for all a € Ord”, and for all M-definable

A C OrdM there is E C Ord™ such that FE is definably M-stationary and

A, = Ana for all @« € E. Here A is said to be M-definable if there is an
M-definable A such that A, = {m : (m,a) € A} for each a € Ord™.

2. The failure of the definable tree property for the class of
ordinals

The proof of the main result of this section (Theorem 2.6) is based on a
number of preliminary model-theoretic results which are of interest in their
own right. We should point out that a proof of a special case of Theorem 2.6
was sketched in [En-2, Remark 3.5] for models of set theory with built-in global
choice functions, using a more technical argument than the one presented here.

We begin with the following theorem which refines a result of Kaufmann
[Kal, Theorem 4.6]. The proof uses an adaptation of Kaufmann’s proof based
on a strategy introduced in [En-1, Theorem 1.5(a)].

2.1. Theorem. No model of ZFC has a proper conservative Y3-e.e.e.

Proof. Suppose to the contrary that M = ZF and M <5, cons N for
some N. Let ¢ be the statement that expresses the following instance of the
reflection theorem:



VA e Ord 36 € Ord(A € BA (Vg,€) <5, (V,€)).

Using the fact that the satisfaction predicate for ¥;-formulae is ¥{-definable
it is easy to see that ¢ is a II3-statement, and thus ¢ also holds in A since ¢
holds in M by the reflection theorem A So we can fix some A € OrdV \Ord™M
and some N-ordinal S > X of N such that:

./\/5 <y, N.

Note that this implies that Mg can meaningfully define the satisfaction pred-
icate for every set-structure ‘living in’ Nz since that N is a model of a sub-
stantial fragment of ZF, including KP (Kripke-Platek set theory), and already
KP is sufficient for this purpose [B} II1.2]. Also, since the statement “every
set can be well-ordered” is a Ily-statement which holds in M by assumption,
it also holds in A, and therefore we can fix a binary relation w in N such
that, as viewed in N, w is a well-ordering of V3. Hence for any o € Ord™
with a < 8, within N one can define the submodel Ky, of N whose universe
K, is defined via:

K, :={a € Vg : ais first order definable in (N3, w, X\, m)mev, }
Clearly M, U{\} C Ko < N3, and of course K, is a member of V. Next let:

K= U K.

aeOrdM

Note that we have:
MC K = ./\/g <1 N.

We now make a crucial case distinction: either (a) Ord®\Ord™ has minimum
element, or (b) it does not. The proof will be complete once we verify that
both cases lead to a contradiction.

Case (a). Let = min(Ord“\Ord™). We claim that M < N,. To
see this, we use Tarski’s test for elementarity: suppose N, = Jzp(z,m) for
some m € M and some formula ¢(z,y), and let 6y be defined in N3 as the
least ordinal # such that x € Vg and V,, = 3z ¢(z,m). Then 6y € K and
clearly 6y < 1, which shows that 6y € Ord™. Hence N, = ¢(7ig, ) for some
mo € M, thus completing the proof of M < N,. But if M < N, then we can
choose S in N such that:

*Recall that, provably in ZF, the ordinals 8 such that (Vg,€) <=, (V,€) are precisely
the fixed points of the 3-function.



NES={Tpm) eV,: N[ “V,,€) = pm)}.

Based on the assumption that A is a conservative extension of M, S N M
should be an M-definable satisfaction predicate for M, which contradicts (a
version of) Tarski’s undefinability of truth theorem.

Case (b). This is the more difficult case, where Ord®\Ord™ has no least

element. Let ®:= |J ®,, where
a€0rdM

O = {"p(e,m) € M : N = “(Vg, €,w, A\, m)mev, = @(c,m)"}.

In the above definition of @, the constant ¢ is interpreted as A and ¢(c,m)
ranges over first order formulae in the sense of M (or equivalently: in the
sense of \V) in the language

Lo={€,<,ctu{m:meV,},

where c is a new constant symbol and < is a binary relation symbol interpreted
by w. Thus ® can be thought of as the type of X in Nz over M. Since N
is assumed to be a conservative extension of M, ® is M-definable via some
unary formula ¢. Hence I' below is also M-definable via some unary formula

v
r
{Tt(c,m)T € M : ¢ ("t(c,m) € Ord") and VO € Ord(¢ ("t(c,m) > 67},

where t is a definable term in the language L, i.e., t(c,m) is an L-definition
(¢, T, z) of some element x. So, officially speaking, I" consists of "¢ (¢, m, x)7 €
M that satisfy the following three conditions:

(1) ¢ ("Fap(c,m,z7).
(2) ¢ ("Va (p(e,m,x) » 2 €0rd) ).
(3) V6 € Ord ¢ ("Va (p(c,m,z) — x> 6) 7).

Since Ord’C\OrdM has no minimum element (recall: we are analysing case

(b)), M =, where:
b= Ve (1) = ) A S € ).

Choose k such that ¢ is a X-statement, and use the reflection theorem in M
to pick pu € Ord™ such that M, <sx, M. Then 7 holds in M, so by DC
(dependent choice, which holds in M since AC holds in M), there is some
function f. in M such that:



MEVRew ¢ ("fon+1) € fe(n)7).

Let @ € Ord™ be large enough so that M, contains all constants 7 that
occur in any of the terms in the range of f; let f\(n) be defined in N as the
result of replacing all occurrences of the constant ¢ with X in f.(n); and let
g(n) be defined in A as the interpretation of fy(n) in (Vg, €, w, A\, m)mev,.
Then N satisfies:

Vnew (g(n) € gln+1)),
which contradicts the foundation axiom in N. The proof is now complete. [J

2.2. Definition.
(a) Given ordinals o < 3, Vg o denotes the structure (Vg, €,a)qcv,, and for
a model M = ZF,

Mg o= (V)M

(b) Given a meta-theoretic natural number n, 7, denotes the definable tree
whose nodes at level « consist of first order theories of the form Th(V3 4, s),
where s € Vg\V,, and f is n-correctd. The language of Th(V3. 4, s) consists of
{€} plus constants T for each m € V,, and a new constant ¢ whose denotation
is s. The ordering of the tree is by set-inclusion.

2.3. Lemma. For each meta-theoretic natural number n, ZFC proves “r, is
an Ord-tree”.

Proof. Thanks to the Montague-Vaught reflection theorem, there are plenty
of nodes at any ordinal level . On the other hand, since each Th(Vg 4, s) can
be canonically coded as a subset of V,, and |V,44| = 3q, there are at most
J,-many nodes at level o O

2.4. Remark. One may ‘prune’ every Ord-tree 7 to obtain a definable subtree
7" which has nodes of arbitrarily high level in Ord by simply throwing away
the nodes whose set of successors have bounded height and then using the
replacement scheme to verify that the subtree 7% thus obtained has height
Ord. See [Kl, Lemma 3.11] for a similar construction for s-trees (where « is a
regular cardinal).

2.5. Lemma. Suppose M is a model of ZFC that carries an M-definable
global well-ordering. Furthermore, suppose that n > 3 and the tree 7',{\/‘ has a
branch B. Then:

3An ordinal 8 is n-correct when (Vg, €) <=, (V,€).




(a) There is a model N and a proper embedding j : M — N such that
JM) <en N.

(b) Both N and j are M-definable if B is M-definable.

(c) N is a conservative extension of j(M) if B is M-definable.

Proof. We will only prove (a) since the proof of (b) will be clear by an
inspection of the proof of (a), and (c) is an immediate consequence of (b).
Let B be a branch of 7. Each node in B is a first order theory in the sense
of M and is of the form (Th(V@a,s))M. Note that (Th(Vg,a,s))M is not
the necessarily the same as Th(Mg,,s), since the latter is the collection of
standard sentences in (Th(V@a,s))M . In particular, if M not w-standard,
then:

Th(Mﬂ,av 3) - (Th(Vg,a, 3))M

For each a € Ord™, let b, be the node of B at level . We may choose some
Ba € Ord™ and some s, € (Vg, \V)™ such that:

bo = (Th(Vs, as 5a))™.

The above choices of 8, and s, are performed at the meta-theoretic level
(where ZFC is assumed); however if B is M-definable, then so is the map
a + by, which in turn shows that the maps o — B, and a — s, can also
be arranged to be M-definable since M is assumed to carry an M-definable
global well-ordering (the definability of these two maps plays a key role in
verifying that an inspection of the proof of (a) yields a proof of (b)).

We now explain how to use B to construct the desired structure N. In
order to do so, we need some definitions:

(i) Let £ be the language consisting of the usual language {€} of set theory,
augmented with a binary relation symbol <1, constants 7 for each m € M,
and a new constant c.

(i7) For each a € Ord™ let N, be the submodel of Mg, whose universe
N, consists of elements of Mg, that are first order definable in the structure
(V8o ,as 8a), as viewed from M (so the available parameters for the definitions
come from M, U {s,} and consequently M, U {sq} C N,). By Theorem 1.2
we may assume that for some formula W (z,y,m) the sentence “W is a global
well-ordering” is equivalent to a Ils-statement in M. Therefore, since n > 3,
the statement “there is a well-ordering of Vg  that is definable in (Vg,, €)”
holds in M, which immediately shows (by Tarski’s elementarity test) that the



statement expressing N, < Va, holds in MH It is important to have in mind
that, as viewed from M, each member of N, can be written as the denotation
oNe of a definable term § = &(7mg,¢) for some m € M in the language £
described above (where c¢ is interpreted by s,) so 6 might be of nonstandard
length if M is not w-standard (here we are taking advantage of the definability
of a sequence-coding function in Mg, to reduce the number of parameters of
a definable term that come from M, to one).

(iii) Given ordinals o, ay € Ord™ with a1 < ag, in M consider:
Jonsn i Nay = Ny, Where jia, o, (6V01) 1= §Naz,

It is not hard to see that ju, «, is an elementary embedding as viewed from
M. This follows from the following key facts:

M M M
o (Th(Vﬁal,ap Sal)) = (Th(VBa2 ans SQQ)) , whenever ay, as € Ord
with a1 < as; and

o M =N, < Vg, for each a € OrdM.

(iv) Hence <ja1,a2 tap < ag € OrdM> is a directed system of elementary em-
beddings. The desired N is the direct limit of this system. Thus, the elements
of N are equivalence classes [f] of “strings” f of the form:

fi{acOord™:a>ap} — U N,

ae0rdM

where ag € Ord™ and there is some L-term § such that ms € M, and
f(a) = &Ne € N, (two strings are identified iff they agree on a tail of Ord™).
In particular, for each o € Ord™ there is an embedding:

Jooo : Now = N, where jg oo (V=) := [h], and
h(a) := e for all a such that ms € M,.
A routine variant of Tarski’s elementary chains theorem guarantees that j, oo

is an elementary embedding for all a € Ord™.

(v) For m € M, let f,(a) :=m = " for all & € Ord™ such that m € M,,
and consider the embedding

4This is the only part of the proof that takes advantage of the assumption that M carries
a definable global well-ordering.



Jj: M —= N, where j(m) = [fm(a)].

By identifying m with [f,,] we can, without loss of generality, construe M as
a submodel of N.

A distinguished element of N is [g], where g(a) = s, for a € Ord™.
lg] # [fm] for all m € M since s, ¢ V, for all « and therefore g and f,,
differ on a tail of & € Ord™. This shows that M is a proper submodel of N.
To see that N end extends M, suppose m € M and for some L-definable
term 4, 6V € mm holds in N, for sufficiently large o, i.e., for any « such that
{m,ms} C M,. Therefore there is some mg € V(/XM such that &V = myg holds
in NV, for sufficiently large «, and therefore also in A/, hence N end extends

M.

Finally, let’s verify that M <y, N. Suppose M |= ¢(m), where ¢ is ¥,
and m € M. Then ¢(m) holds for all sufficiently large N, since by design we
have:

Na < Mga <3, M.

This shows that N |= ¢(m) since, as observed earlier, each N, is elementarily
embeddable in N via jg cc- O

We are now ready to verify that the tree property for Ord fails in the sense
of M for all M = ZFC.

2.6. Theorem. Every model M of ZFC carries an M-definable Ord™-tree
no cofinal branch of which is M-definable.

Proof. The proof splits into two cases, depending on whether M satisfies
dp (V =HOD(p)) or not [

Case 1. Suppose that Jp(V = HOD(p)) fails in M. Within ZFC we can
define the tree Tcnoice Whose nodes at level « are choice functions f for Vg,
ie, f: Vq = Vg, where f(x) € x for all nonempty x € V,, and the tree
ordering is set inclusion. Clearly ZFC can verify that 7 is an Ord-tree. It is
also clear that every M-definable branch of 7™ (if any) is an M-definable
global choice function. By Theorem 1.2 this shows that no branch of Tcpeice
is M-definable.

"Easton proved (in his unpublished dissertation [Ea]) that assuming Con(ZF) there is a
model M of ZFC which carries no M-definable global choice function for the class of pairs
in M; and in particular Ip (V = HOD(p)) fails in M. Easton’s theorem was exposited by
Felgner [F], p.231]; for a more recent and streamlined account, see Hamkins’ MathOverflow
answer [HJ.

10



Case 2. Now suppose Jp(V = HOD(p)) holds in M. Then by Theorem
1.2 there is some Yo-formula W(z,y) that defines a global well-ordering of
M. Note that “W is a global well-ordering” is Ilz-expressible in M. We
claim that for any fixed n > 3, no branch of 7! is M-definable. If not,
then by Lemma 2.4 there is an M-definable structure N, and an M-definable
embedding j : M — N such that A is a proper is a X,-e.e.e. of j(M), which
contradicts Theorem 2.1. O

3. Consequences of the failure of the definable tree property for
the class of ordinals

In this section we use Theorem 2.6 to establish further results about defin-
able combinatorial properties of proper classes within ZFC. Our first result
improves Theorem 2.6 by combining its proof with appropriate combinatorial
and coding techniques so as to obtain the description of a single subtree of
<Ordg that is Ord-Aronszajn across all models of ZFC; here

<Ord2 — U a9
)
aeOrd

where “2 is the set of binary sequences of length a. The ordering on 2<°7 ig
‘end extension’, denoted C. Given a tree 7 we say 7 is a subtree of (<Ord2, E)
if each node of 7 is an element of <©*42, and the nodes of 7 are ordered by T

3.1. Theorem. There is a definable class o that satisfies the following three
properties:

(a) ZFC + o is a subtree of (<972, C).
(b) ZFC F o is an Ord-tree.

(c) For all formulae B(x,y) of set theory, ZFC + “{x : B(x,y)} is not a branch
of o for any parameter y”.

Proof. The proof has two stages. In the first stage we construct an Ord-tree
that satisfies properties (b) and (c); and then in the second stage we construct
an appropriate variant of the tree constructed in the first stage which satisfies
properties (a), (b) and (c).

Stage 1. Given Ord-trees 01 = (S1,<1) and o9 = (S2, <2), let 01 ® 09 be
the tree whose set of nodes is:

S1® .85 = {(p, q) €51 x5y hl(p) = hg(q)},

11



where h;(z) is the height (level) of z, i.e., the ordinal that measures the order-
type of the set of predecessors of x in 7;. The ordering on o1 ® o9 is given
by:

(p,a) < (') iff p<ip and ¢ <2 ¢
Routine considerations show that the following two assertions are verifiable in
ZFC:
(i) 01 ® o is an Ord-tree.

(77) Every branch B of 01 ® o9 is of the form:
{(p,q) € S1® Sy :p € By and ¢ € By},

where B; is the branch of 7; obtained by projecting B on its i-th coordinate.
In particular, for any model M = ZFC we have:

(iii) If (01 ® 02)™ has an M-definable branch, so do o and o3.

Let 0¢ := TChoice ® T3; Where Tcpeice and 73 are as in the proof of Theorem
2.6. It is easy to see that op is an Ord-tree (provably in ZFC). The proof
of Theorem 2.6, coupled with (iii) above shows that no branch of ! is M-
definable for any M = ZFC.

Stage 2. The tools of this stage of the construction are Lemmas 3.1.1 and
3.1.2. Recall that the ordering on both trees Tcpoice and 73 is set-inclusion C .

Lemma 3.1.1. Given M = ZFC and Ord-trees o1 and o2 in M whose
ordering (as viewed in M) are set-inclusion, there is an M-definable Ord-
tree 0109 whose ordering is also set-inclusion such that o1 ®o9 is isomorphic
to o1 @ o9 via an M-definable isomorphism.

Proof. Let S; be the collection of nodes of o;, and consider the tree o1 ® o9
whose sets of nodes, S7 ® Ss, is defined as:

{(px {0} U (g x{1}):(p,q) € S1® Sa},

and whose ordering is set inclusion. It is easy to see the desired isomorphism
between o1 ® 09 and o1 ® o9 is described by:

(p,q) = (p x{0}) U (g x {1}).
O (Lemma 3.1.1)

12



Lemma 3.1.2. Given M = ZFC and any Ord-tree 7 in M whose ordering
(as viewed in M) is set-inclusion, there is an Ord-tree T of M satisfying the
following properties:

(a) 7 = (T,C), for some T C <Ordg
(b) If T has an M-definable branch, then T has an M-definable branch.

Proof. We will first describe a ZFC-construction that should be understood
to be carried out within M. Given a set s, let s be the transitive closure of
{s}, and let ks := [5|. It is well-known that given a bijection g : § — [3],
s can be canonically coded by some binary sequence vg4(s) € 512, More
specifically, the € relation on § can be readily copied over ks with the help
of g so as to obtain a binary relation R,(s) such that (5,€) = (ks, Ry(5)).
Since, Ry(s) is an extensional well-founded relation, s can thus be recovered
from Ry(s) as “the top element of the transitive collapse of R,(s)”. On the
other hand, Ry(s) can be coded-up as X,(s) C ks with the help of a canonical
pairing function p : Ord> — Ord. Thus, if vg(s) : ks = {0,1} is defined as
the characteristic function of X4(s), then s = F(v4(s)), where F(z) is the
parameter-free definable class function given by:

2°

If 2 € <92 and {p~1(t) : z(t) = 1} is well-founded, extensional, and has a
top element, then F'(z) is the top element of the transitive collapse of x°;
otherwise F'(z) = 0.

Given an Ord-tree 7 = (T, C), let T, be the set of elements of T" of height
a € Ord, and for s € Tj,, and 8 < «, let sg be the unique element in T3 that
is a subset of s. Let

he(s) = @ vg(sp),

BLa

where g : 3 — |3] is a bijection and the operation @ is defined as fol-

lows: given a transfinite sequence (mg: 8 < o) of binary sequences, @ mg
B<a
is the ternary sequence obtained by concatenating the sequence of sequences

(mg * (2) : B < ), where mgx(2) is the concatenation of the sequence mg and

the sequence (2). Thus the ‘maximal binary blocks’ of @ mg are precisely
BLa
sequences of the form mg for some 8 < a. This makes it clear that s can

be readily ‘read off” h,(s) as the result of applying F to last binary block of
hg(s).
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Let Tp := {hg(s) : s € T, and g is a bijection between 5 and |5|}. We are
now ready to define the desired T'. Fix a canonical embedding G of <©™3 into
<Ordg and let:

T :={G(v) : v € Tp}.

It is easy to see, using the assumption that (7', C) is an Ord-tree, that 7 :=
(T,C) is an Ord-tree. Since T C <92 it remains to show that if 7 has
an M-definable branch, then 7 also has an M-definable branch. Suppose
B = {bs : @ € Ord™} is a branch of 7. Let

By :={G71(by) : @ € Ord™}

Note that By is a cofinal branch of the tree To; and the maximal binary blocks
of By form a proper class, and are linearly ordered by set-inclusion (in the
sense of M) by design. Let B be the collection of elements b € T' that are

of the form F(m), where m is the last binary block of G™!(by). Then B is a
cofinal branch of 7 and is definable from B. O (Lemma 3.1.2)

Let 0 := (TChoice ® 73), and 7 := 5. Theorem 2.6 together with Lemmas
3.1.1 and 3.1.2 make it clear that in every model M of ZFC, 7™ is a definably
Ord-Aronszajn subtree of (<Ord2)M; so by the completeness theorem of first
order logic, the proof is complete. O (Theorem 3.1)

Theorem 3.1 has the following immediate consequence for spartan models
of GB + AC, where AC is the axiom of choice for sets:

3.2. Corollary. There is a definable class o in the language of class theory
satisfying the following properties:

(a) GB+ ACF o is a subtree of <9 and o is a proper class.

(b) The statement “o is an Ord-Aronszajn tree” holds in every spartan model

of GB + AC.

3.3. Remark. It is known [En-3, Corollary 2.2.1] that the set-theoretical
consequences of GB + AC + “Ord has the tree property” is precisely ZFC+ @,
where ® is the scheme whose instances are of the form “there is an n-Mahlo
cardinal x such that s is n-correct”, and n ranges over meta-theoretic natural
numbers. Also note that one can derive global choice from local choice in
GB + AC + “Ord is weakly compact” (using 7cheice 0f the proof of Theorem
2.6). Moreover, by an unpublished result of the first-named-author, there are
(non w-) models (M, S) of GB + AC + “Ord has the tree property” in which

the partition property Ord — (Ord)g fails for some nonstandard k € w™,

14



which implies that for models of GB 4+ AC, the condition “Vk € w Ord —
(Ord)g” is strictly stronger than “Ord has the tree property”ﬁ But of course
in the Kelley-Morse theory of classes these two statements are equivalent.

3.4. Theorem. The definable proper class partition property fails in every
model of ZFC. That is, there is a definable 2-coloring of pairs of sets having
no definable monochromatic proper class.

Proof. Let 7 = (T,C) be as in Theorem 3.1 and M = ZFC. We argue in
M. For p,q in T, we will say that p is to the right of ¢, written p > ¢, if
p >7 ¢, or at the point of first difference, the bit of p is larger than ¢ at that
coordinate. Also, as in the proof of Theorem 3.1, we use h(p) for the height
of p in 7. Define a coloring f : [T']? — {0,1} by:

0, if h(p) > h(q), and p > g;

1, otherwise.

fdp.q}) = {

Suppose that H is a definable proper subclass of T that is f-monochromatic.
Next, color pairs from H with color blue if they are of the same height, and
red otherwise. Since the collection of elements of 7 of a given height are sets,
there cannot be a proper subclass colored blue, and so we can find a subclass
of H with all elements on different levels. So without loss of generality, all
elements on H are on different levels. If the monochromatic value of pairs
from H is 0, then as one goes up the tree, the nodes in H are always to the
right. Let B consist of the nodes in 7 that are eventually below the nodes of
H, that is, p € B just in case there is some ordinal « such that all nodes in
H above a are above p. It is clear that B is downward closed. We claim that
B is a branch through 7. B is linearly ordered, since there can be no first
point of nonlinearity: if eventually the nodes of H are above p *x 1, then they
cannot be eventually above p * 0 (where x is the concatenation operation on
sequences). Finally, B is closed under limits, since if p has length § and p|a
is in B for all @ < é, then take the supremum of the levels witnessing that,
so you find a single level such that all nodes in H above that level are above
every p|a, and so they are above p. Thus, B is a branch through 7. But 7 has

A similar phenomena occurs in the arithmetic setting in relation to Ramsey’s Theorem:
even though the predicative extension ACA( of PA can prove every instance of Ramsey’s
Theorem of the form w — (w);, where n is any meta-theoretic natural number (by a routine
arithmetization of any of the usual proofs of Ramsey’s theorem), ACAo cannot prove the
stronger statement Vk € w w — (w);‘ This natural incompleteness phenomena follows from
a subtle recursion-theoretic theorem of Jockusch [Jo], which states that for each natural
number n > 2 there is a recursive partition P, of [w]" into two parts such that P, has no
infinite ©2-homogeneous subset. For more detail, see Wang’s exposition [W, p.25]; note that
Wang refers to ACAg as PPA.
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no definable branches, and so there cannot be such a monochromatic set H.
Finally, if the monochromatic value of H is 1, then as one goes up, the nodes
go to the left, and a similar argument works. [

3.5. Corollary. Ord — (Ord)g fails for definable classes in every model of
ZFC + 3p (V = HOD(p)) . Indeed, Ord — (Ord)g fails for definable classes in

every model of ZFC in which there is a definable well-ordering of <Ord2E|

3.6. Remark. We do not know whether Ord — (Ord)g fails for definable
classes in every model of ZFC. Some of the usual proofs of the infinite Ramsey
theorem use Konig’s lemma, which is exactly what is going wrong with our
definably Ord-Aronszajn tree; this suggest that perhaps there is a definable
coloring of pairs of ordinals for which there is no definable monochromatic
proper class of ordinals.

3.7. Theorem. The definable compactness property fails for Lo ., in every
model M of ZFC.

Proof. Fix a definable Ord-Aronszajn tree 7 = (T, <7) of M, and let £ be
the language having a constant p for every element p € T and a binary relation
< for the order of 7, together with a new constant c. Let I be the theory in
M consisting of the atomic diagram of 7, together with the assertion that <
is a tree order and the assertions of the form:

Pa = \/ (ﬁ < C)’
p€Ta

That is, ¢, asserts that the new constant b lies above one of the elements on
the a-th level T}, of 7. In ZFC, having ‘size Ord’ is a stronger property than
‘proper class’, if global choice fails. Nevertheless, we can organize I' into an
equivalent theory of size Ord as follows. Instead of taking the whole atomic
diagram as separate statements, which may not be well-orderable, since we
can’t seem to well-order the nodes of 7, we instead for each ordinal « let o,
be the conjunction of the set of atomic assertions that hold in the tree up to
level a. Recall that the logic Loyq, o, allows the formation of conjunctions of
any set of assertions, without needing to put them into any order. Hence I is
defined in M as {04 A ¢q : @ € Ord} plus the sentence that expresses that <
is a tree order.

"The existence of a global definable well-ordering of <9 s equivalent over ZF to the
so-called Leibniz-Mycielski principle (LM), explored in [En-4], which includes a result of
Solovay that shows that if ZF is consistent, then there is a model of ZF 4+ LM in which AC
fails (such a model, a fortiori, does not carry a parametrically definable global well-ordering).
The conjecture that there is a model of ZFC + LM which does not carry a parametrically
definable global well-ordering remains open.
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Every set-sized subtheory of I' mentions only bounded many sentences of
the form o4 Apg, so we can find a model in M of the subtheory by interpreting
c as any element of the tree 7 on a sufficiently high level. But if there is an M-
definable model of I', then from that model we can extract the predecessors of
the interpretation of the element ¢, and this will give an M-definable branch
through 7, contradicting that 7 is definably Ord-Aronszajn in M. O

We close this section with a conjecture. In what follows Dy, is the col-
lection of M-definable subsets of M, and “7 is a definably Ord-Suslin tree
in M” means that (M, Dp) satisfies “7 is an Ord-Aronszajn tree and every
anti-chain of 7 has cardinality less than Ord”.

3.8. Conjecture. Suppose M is a model of ZFC +V = L. Then there is
some Ts € Dpy such that g is a definably Ord-Suslin tree in M.

Let us motivate the above conjecture. By a theorem of Jensen [D Theorem
VII.1.3] , if V = L holds, then every cardinal £ that is not weakly compact
carries a k-Suslin tree. The relevant case for us of Jensen’s proof is when &
is a strongly inaccessible cardinal. Jensen’s proof takes advantage of (1) the
existence of a k-Aronszajn tree, and (2) the combinatorial principle “for some
stationary subset set E of k, O, (E) holds”. We know, by Theorem 2.6, that
the definable version of (1) can be arranged for Ord. On the other hand, by
adapting Jensen’s proof to the definable context, the analogue of (2) might
also be true (using the V. = L assumption) in (M, Dpq). The result in the
next section suggests that perhaps the definable version of (2) holds with the
assumption V = L weakened to Ip (V = HOD(p)) . This motivates a stronger
form of Conjecture 3.8 in which the assumption that V = L holds in M is
weakened to the M-definability of a global well-ordering of the universe.

4. The definable version of {p.q and global definable well-orderings

In this section we show that the definable version of {o.q holds in a model
M of ZFC iff M carries a definable well-ordering of the universe. In light
of Theorem 1.2 it follows as a consequence that the definable $¢,q, although
seeming to be fundamentally scheme-theoretic, is actually expressible in the
first-order language of set theory as Jp (V = HOD(p)).

In set theory, the diamond principle asserts the existence of a sequence
of objects, of growing size, such that any large object at the end is very
often anticipated by these approximations. In the case of diamond on the
ordinals, what we will have is a definable sequence of A, C «, such that for
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any definable class of ordinals A and any definable class club set C, there
are ordinals 8 € C with AN # = Ay. This kind of principle typically allows
one to undertake long constructions that will diagonalize against all the large
objects, by considering and reacting to their approximations A,. Since every
large object A is often correctly approximated that way, this enables many
such constructions to succeed.

4.1. Theorem. For any model M of ZFC, if there is an M-definable well-
ordering of the universe, then the definable Oorq holds in M.

Proof. We argue in M to establish the theorem as a theorem scheme;
namely, we shall provide a specific definition within M for the sequence
A= (Ay : 0 < Ord), using the same parameter p as the definition of the
global well-order and with a definition of closely related syntactic complexity,
and then prove as a scheme, a separate statement for each M-definable class
A C Ord and class club C' C Ord, that there is some 8 € C with AN6# = A,.
The definitions of the classes A and C may involve parameters and have ar-
bitrary complexity.

Let < be the definable well-ordering of the universe, definable by a spe-
cific formula using some parameter p. We define the {grq-sequence A=
(Aq 1 0 < Ord) by transfinite recursion. Suppose that A [ 6 has been defined.
We shall let Ag = & unless 6 is a J-fixed point above the rank of p and there
is a set A C 0 and a closed unbounded set C C #, with both A and C defin-
able in the structure (Vy, €) (allowing parameters), such that ANé # A, for
every a € C. In this case, we choose the least such pair (A4, C'), minimizing
first on the maximum of the logical complexities of the definitions of A and
of C, and then minimizing on the total length of the defining formulas of A
and C, and then minimizing on the Godel codes of those formulas, and finally
on the parameters used in the definitions, using the well-order <1 [ Vy. For
this minimal pair, let Ay = A. This completes the definition of the sequence
A= (A, :0<Ord).

Let us remark on a subtle point, since the meta-mathematical issues loom
large here. The definition of A is internal to the model M, and at stage 0 we
ask about subsets of 6 definable in (Vy, €), using the truth predicate for this
structure. If we were to run this definition inside an w-nonstandard model M,
it could happen that the minimal formula we get is nonstandard, and in this
case, the set A would not actually be definable by a standard formula. Also,
even when A is definable by a standard formula, it might be paired (with some
constants), with a club set C' that is defined only by a nonstandard formula
(and this is why we minimize on the maximum of the complexities of the
definitions of A and C' together). So one must give care in the main argument
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keeping straight the distinction between the meta-theoretic natural numbers
and the internal natural numbers of the object theory ZFC.

Let us now prove that the sequence A is indeed a Qora-sequence for M-
definable classes. The argument follows in spirit the classical proof of ¢ in
the constructible universe L, subject to the metamathematical issues we men-
tioned. If the sequence A does not witness the veracity of the definable Qo.q in
M, then there is some M-definable class A C Ord, defined in M by a specific
formula ¢ and parameter z, and definable club C' C Ord, defined by some
and parameter y, with ANa # A, for every a € C. We may assume without
loss of generality that these formulas are chosen so as to be minimal in the
sense of the construction, so that the maximum of the complexities of ¢ and ¥
are as small as possible, and the lengths of the formulas, and the Godel codes
and finally the parameters z,y are <-minimal, respectively, successively. Let
m be a sufficiently large natural number, larger than the complexity of the
definitions of <, A, C, and large enough so that the minimality condition we
just discussed is expressible by a Y, formula. Let 6 be any ¥,,-correct ordinal
above the ranks of the parameters used in the definitions. It follows that the
restrictions <1 [ Vg and also AN 6@ and C' N6 are definable in (Vg, €) by the
same definitions and parameters as their counterparts in V, that C'N @ is club
in #, and AN# and C NI form a form a minimal pair using those definitions
ANa # «a for any o € C' N 6H. Thus, by the definition of A, it follows that
Ay = AN6. Since C N O is unbounded in 6 and C' is closed, it follows that
0 € C,and so A9 = AN 0O contradicts our assumption about A and C. So
there are no such counterexample classes, and thus Ais a Qord-sequence with
respect to M-definable classes, as claimed. O

4.2. Theorem. The following are equivalent for M |= ZFC.
(a) M carries an M-definable global well-ordering.

(b) 3p (V =HOD(p)) holds in M.

(c) The definable $orq holds in M.

Proof. We will first give the argument, and then in Remark 4.3 discuss some
issues about the formalization, which involves some subtle issues.

(a) = (b). Suppose that < is a global well-ordering that is definable in M from
a parameter p. In particular in M every set has a <-minimal element. Let
us refine this order by defining x <’ y, just in case p(x) < p(y) or p(x) = p(y)
and z < y (where p is the usual ordinal-valued rank function). The new
order is also a well-order, which now respects rank. In particular, the order
<’ is set-like, and so every object x is the f-th element with respect to the
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<-order, for some ordinal #. Thus, every object is definable in M from p and
an ordinal, and so V.= HOD(p) holds in M, as desired.

(b) = (a). If M satisfies 3p V = HOD(p), then we have the canonical well-
order of HOD using parameter p, similar to how one shows that the axiom of
choice holds in HOD. Namely, define x <1 y if and only if p(x) < p(y), or the
ranks are the same, but z is definable from p and ordinal parameters in some
Vg with a smaller 6 than y is, or the ranks are the same and the 6 is the same,
but x is definable in that Vy by a formula with a smaller Godel code, or with
the same formula but smaller ordinal parameters. It is easy to see that this
is an M-definable well-ordering of the universe.

(a) = (c). This is the content of the Theorem 4.1.

(c) = (a). If A is an M-definable {¢pq-sequence for M-definable classes, then
it is easy to see that if A is a set of ordinals in the sense of M, then A must
arise as Ay for unboundedly many # € Ord™. As recalled in the proof of
Lemma 3.1.2, in ZFC every set is coded by a set of ordinals. So let us define
that x <1y, just in case x is coded by a set of ordinals that appears earlier on
A than any set of ordinals coding y. This is clearly a well-ordering, since the
map sending x to the ordinal 8 for which codes z is an Ord-ranking of <. So
there is an M-definable well-ordering of the universe. O

4.3. Remark. An observant reader will notice some meta-mathematical issues
concerning Theorem 4.2. The issue is that statements (a) and (b) are known to
be expressible by statements in the first-order language of set theory, as single
statements, but for statement (c) we have previously expressed it only as a
scheme of first-order statements. So how can they be equivalent? The answer
is that the full scheme-theoretic content of statement (3) follows already from
instances in which the complexity of the definitions of A and C' are bounded.
Basically, once one gets the global well-order, then one can construct a $opq-
sequence that works for all definable classes. In this sense, we may regard
the diamond principle ¢o.q for definable classes as not really a scheme of
statements, but rather equivalent to a single first-order assertion.

Lastly, let us consider the content of Theorem 4.2 in Godel-Bernays set
theory or Kelley-Morse set theory. Of course, we know that there can be
models of these theories that do not have {p.q in the full second-order sense.
For example, it is relatively consistent with ZFC that an inaccessible cardinal
does not have {, and in this case, the structure (V11, Vi, €) will satisfy GBC
and even KMC, but it will not satisfy Qorq with respect to all classes, even
though it has a well-ordering of the universe (since there is such a well-ordering
in Vii1). But meanwhile, there will be a (o.q-sequence that works with
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respect to classes that are definable from that well-ordering and parameters,
simply by following the construction given in Theorem 4.2.

4.4. A minor adaptation of the proof of Theorem 4.1 shows that if M is
a model of ZFC that carries an M-definable global well-ordering, then the
definable version of {o,q(E) holds in M for any definably M-stationary E C
Ord™: use the same argument, but only define A, for a € E; and in the
reflection step of the argument use § € E N C. Theorem 4.2 can be also
accordingly strengthened.

5. The theory of spartan models of GB

Recall from Section 1 that GBgp, is the collection of all sentences that
hold in all spartan models of GB. As mentioned earlier, each theorem scheme
of Sections 2 through 4 can be readily reformulated as demonstrating that
a certain sentence belongs to GBgpa. Note that the purely set-theoretical
consequences of GBgp, coincides with the deductive closure of ZF; this is an
immediate consequence of coupling the completeness theorem for first order
logic with the fact that (M, Dx,) is a model of GB whenever M is a model of
ZF. A natural question is whether GBgp, is computably axiomatizable. The
following result provides a strong negative answer to this question.

5.1. Theorem. GByp, is H%—complete.

Proof. We need to use both the meta-theoretic natural numbers, which we
will denote by w, and the object-theoretic natural numbers, which we denote
by N. It is not hard to see that GBgp, has a Hi—description. To see this,
consider the following predicates, where r,s C w :

(1) Satzp(r) expresses “the structure canonically coded by r is a model of
ZF”.

(2) s = Def(r) expresses “Satzp(r) and s codes the collection of r-definable
subsets of the domain of discourse of the structure (coded by) 7.

(3) Sat((s,r),p) expresses “s = Def(r), ¢ is a sentence of Lgp, and the GB-
model coded by (r, s) satisfies ¢”.

Usual arguments show that each of the above three predicates is Al in the
Baire space. In light of the fact that Al-predicates are closed under Boolean
operations, this makes it clear that GBgp, is H%, since by the Lowenheim-
Skolem theorem, we have:

@ € GBgpy iff Vir Cw Vs Cw ((Satzr(r) A s = Def(r)) — Sat((s,r),¢))
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We next show that GBgp, is H%—complete. The revelatory idea here is
that within GB one can define — via an existential quantification over classes
— a nonempty ‘cut’ I of ambient natural numbers N (i.e., a nonempty initial
segment I of N that contains 0 and is closed under successors) such that:

(%) If (M, D) is a spartan model of GB, then IM-Prm) 2 (- j e [(MDrm)
has no nonstandard elements.

The cut I has a simple definition within GB. In the definition below F;,
is the collection of set theoretical formulae of complexity at most n, where
‘complexity’ can be taken as the number of occurrences of logical symbols
(i.e. the Boolean connectives and the quantiﬁers)lg

I:={n € N: there is a proper class C such that C is the
satisfaction-predicate for F,},

The relevant insight is that in spartan models of GB, the only members of 1
are the standard natural numbers w, thanks to Tarski’s undefinability of truth
theorem, which explains the veracity of (x).

Using (%), and the fact that every real can be included in the standard
system of a model of ZF, we will show that every IT-subset of w is many-one
reducible to GBgpa. Suppose P is a I1}-subset of w, and let w* be the Baire
space. Then by Kleene normal form for H%—Sets [R], there is some recursive
predicate R(z,y) such that:

Vn(n € P+ VF €w” Im €w R(F [ m,n)),

where F' | m is the canonical code for the finite set of ordered pairs of the
form (i, F'(i)) with ¢ < m. Let R be the formula that numeralwise represents
R in GB, and given n € w, consider the sentence ¢, in the language of GB
that expresses:

Vs (s € N\I = 3m € I RI(F; | m,n)),

where R! is the result of restricting all of the quantifiers of the R to I, and F
is the function defined in GB with domain N such that:

GB F “F4(z) is the a-th digit of the binary expansion of s”.

8The idea of defining the cut I goes back to Mostowski [Mos], who used it to show that
the scheme of induction over N is not provable in GB.
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It is evident that n — "¢, ' is a computable function. We claim:
(xx) Vn(n € P < ¢, € GBgpa).

The left-to-right direction of (**) should be clear. The right-to-left direction
is also easy to see, using the fact (proved by a simple compactness argument)
that for every F' € w“ there is a non w-standard model M |= ZF and some
nonstandard s € NM such that the ‘standard part’ of the M-finite function
coded by s agrees with F, i.e, Vmew M E (Fs [m=F [ m). O

5.2. Remark. The above proof strategy can be used to show that the follow-
ing theories are also IT}-complete:

(a) The theory (ACAg)g,, of all spartan’] models of ACA.

(b) The theory of all models of the form (M,w), where M is a model of ZF
or PA, and (M,w) is the expansion of M by a new predicate w consisting of
all standard natural numbers in M.

(c) The theory of all models the form (M, Sat ), where M is a model of ZF
or PA, and Sat is the satisfaction predicate for M.
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