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7 Undecidability of the first order theories of free

non-commutative Lie algebras

Olga Kharlampovich∗and Alexei Myasnikov †‡

Abstract

Let R be a commutative integral unital domain and L a free non-
commutative Lie algebra over R. In this paper we show that the ring R

and its action on L are 0-interpretable in L, viewed as a ring with the
standard ring language +, ·, 0. Furthermore, if R has characteristic zero
then we prove that the elementary theory Th(L) of L in the standard
ring language is undecidable. To do so we show that the arithmetic N =
〈N,+, ·, 0〉 is 0-interpretable in L. This implies that the theory of Th(L)
has the independence property. These results answer some old questions
on model theory of free Lie algebras.
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1 Introduction

In this paper we continue our program on model theory of groups and algebras
outlined at the ICM in Korea in 2014 [7]. Let R be a commutative integral
unital domain and L a free non-commutative Lie algebra over R. We show that
the ring R and its action on L are 0-interpretable in L, viewed as a ring in the
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standard ring language +, ·, 0. Furthermore, if R has characteristic zero then
we prove that the arithmetic N = 〈N,+, ·, 0〉 is 0-interpretable in L. Hence
the elementary theory Th(L) of L in the standard ring language is undecidable
and has the independence property. These answer some old questions on model
theory of free Lie algebras. Along the way we further developed the method
that uses maximal rings of scalars in Lie rings that gives a general approach to
study first order theories of arbitrary non-commutative finitely generated Lie
algebras.

The question about decidability of the first-order theory of non-commutative
free Lie algebras was well-known in Malcev’s school of algebra and logic in
Russia. In 1963 Lavrov showed that if the elementary theory Th(R) of the
integral domain R is undecidable then the elementary theory Th(L) of L is also
undecidable. To this end he interpreted the ring R in L [4].

In 1986 Baudisch proved in [2] that the theory Th(L) is unstable for every
such ring of coefficients R. To obtain this result he uniformly interpreted every
initial segment of Presburger arithmetic in L. Following Lavrov he also showed
that the ring R and its action on L are interpretable (with the use of parameters)
in L.

In the same paper Baudisch stated the following open problems: Does the
theory Th(L) of a free non-commutative Lie algebra L over a commutative
integral domain have the independence property? Is Th(L) undecidable? Is it
possible to interpret the initial segments of the natural numbers with addition
and multiplication in it? Independently, in the book [3] Bokut’ and Kukin asked
a similar question: for which integral domains R the theory Th(L) is decidable?

As we have mentioned already, our results completely answer the questions
above in the case when the ring R has characteristic zero. It seems plausible
that similar results hold for arbitrary infinite integral domains R. However, our
techniques do not work if the ring R is finite, so the following question seems
to be very interesting. Is the theory Th(L) undecidable when the ring R is a
finite field? More precisely, is the arithmetic N = 〈N,+, ·, 0〉 interpretable in a
free non-commutative Lie algebra L over a finite field?

We would like to mention that our proofs seem general enough to get sim-
ilar results for some other Lie algebras, in particular, for various N-graded Lie
algebras where the maximal rings of scalars are integral domains. Actually, we
prove that for an arbitrary finitely generated Lie R-algebra L over an arbitrary
commutative associative unital ring R the maximal ring of scalars of L and
its action on L/Ann(L) and L2 are 0-interpretable in L. This gives a general
approach to study first order theories of finitely generated Lie algebras. To
interpret arithmetic in such an algebra L one also needs some weak finiteness
divisibility conditions on L, which in the case of a free Lie algebra L come from
the fact that L is N-graded. Note, that the model theory of finite dimensional
Lie algebras over fields was studied in [14].

This paper is a continuation of the research in [9, 10, 11] on model theory of
free associative algebras. For some time we thought that model theory of free
Lie algebras, though very different from the case of free groups (see [6, 16]), will
be somewhat reminiscent of the model theory of free pro-p-groups (see [15, 5]).
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Now, it looks much more like the model theory of free associative algebras,
though the proofs are more technical. The main difference is that in free as-
sociative algebras a centralizer of a non-invertible element is isomorphic to the
ring of polynomials in one-variable, hence the known results from commutative
algebra and number theory can be applied. In free Lie algebras we had to ex-
ploit some interesting module structures and unusual divisibility arguments. It
seems possible that one can develop current techniques a bit further and study
equations in free Lie algebras as well as elementary equivalence of such algebras
in the way it was done for free associative ones. There are two interesting open
questions here: whether one can interpret the weak second order theory of the
ring R in a free non-commutative Lie algebra L with coefficients in R; and if
the Diophantine problem in L is decidable.

2 Maximal rings of scalars

2.1 Maximal rings of scalars of bilinear maps

Let R be a commutative associative ring with unity 1, and M1,M2, N exact
R-modules. Let f : M1×M2 → N be an R-bilinear map. For a subset E1 ⊆M1

we define the right annulator of E1 (relative to f) by Annr(E1) = {y ∈ M2 |
f(E1, y) = 0}. Similarly, for a subset E2 ⊆ M2 we define the left annulator of
E2 by Annl(E2) = {x ∈M1 | f(x,E2) = 0}.

We say that

1) f is non-degenerate if Annl(M2) = 0 and Annr(M1) = 0.

2) f is onto if the submodule (equivalently, the subgroup) 〈f(M1,M2)〉 gen-
erated by f(M1,M2) is equal to N .

Note that the conditions 1) – 2) do not depend on the ring R, i.e., whether
they hold or not in f depends only on the abelian group structure of M and N .

For any non-degenerate onto bilinear map f : M1 × M2 → N there is a
uniquely defined maximal ring of scalars P (f), which is an analogue of the
centroid of a ring. More precisely, a commutative associative unital ring P is
called a ”ring of scalars” of f if M1,M2, and N admit the structure of faithful
P -modules such that f is P -bilinear. A ring of scalars P of f is called maximal
if for every ring of scalars P ′ of f there is a monomorphism µ : P ′ → P such
that for every α ∈ P ′ its actions on M1,M2, and N are the same as the actions
of µ(α). It is easy to see that the maximal ring of scalars of f exits, it is unique
up to isomorphism, as well as its actions on M1,M2, and N . We denote the
unique maximal ring of scalars of f by P (f). In fact, the ring P (f) can be
constructed as follows.

Let End(M1), End(M2), End(N) be the ring of endomorphisms of M1,M2,
and N (here M1,M2, and N are viewed as abelian groups). Below for an
endomorphism β and an element x the image of β on x is denoted by βx.

If P is a ring of scalars of f then the actions of P on M1,M2, and N
give embeddings P → End(Mi), P → End(N), i = 1, 2, which give rise to the
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diagonal embedding Φ : P → End(M1)×End(M2)×End(N). Denote the direct
product of rings End(M1)×End(M2)×End(N) by K(f). Let τi : K(f)→Mi,
σ : K(f) → N be the canonical projections of K(f) onto its direct factors.
Since P is a ring of scalars of f every α ∈ Φ(P ) ≤ K(f) satisfies the following
conditions for any x ∈M1, y ∈M2:

f(τ1(α)x, y) = f(x, τ2(α)y) = σ(α)f(x, y). (1)

It is not hard to see that the set P (f) of all elements α ∈ K(f) which satisfy
the condition (1) is a commutative unital subring of K(f). We showed above
that every ring of scalars of f embeds into P (f) in such a way that its action
on M1,M2, N agrees with the action of P (f). Hence P (f) is the maximal ring
of scalars of f .

To interpret P (f) in f we need another description of P (f). Let M(f) =
End(M1)×End(M2) and τ = τ1 × τ2 be the canonical projection of K(f) onto
M(f). As we mentioned above we may assume that P (f) is a subring of K(f),
the restriction of τ on P (f) gives a homomorphism τ : P (f)→ M(f). Clearly,
τ : P (f)→M(f) is injective and for every α ∈ τ(P (f)) the following conditions
(S) and (Wn) hold for every n ∈ N:

(S) for every x ∈M1, y ∈M2

f(τ1(α)x, y) = f(x, τ2(α)y);

(Wn) for every xk, x
′

k ∈M1, yk, y
′

k ∈M2, k = 1, . . . , n

Σn
k=1f(xk, yk) = Σn

k=1f(x
′

k, y
′

k)→ Σn
k=1f(τ1(α)xk, yk) = Σn

k=1f(τ1(α)x
′

k, y
′

k)

We claim that τ(P (f)) consists precisely of those elements α ∈M(f) for which
the conditions (S) and (Wn) hold for every n ∈ N. Denote by Sym(f) the subset
of all (f -symmetric) elements α ∈M(f) which satisfy (S) and by Wn(Sym(f))
the subset of those α ∈ Sym(f) which satisfy (Wn). Put

PSW (f) =
∞⋂

n=1

Wn(Sym(f)).

Clearly, τ(P (f)) ⊆ PSW (f). To show the equality it suffices to show that
for every α ∈ PSW (f) there is σ ∈ End(N) such that (1) holds, i.e., for any
x ∈M1, y ∈M2

f(τ1(α)x, y) = f(x, τ2(α)y) = σf(x, y).

To this end for a given α ∈ PSW (f) and given x ∈M1, y ∈M2 define σf(x, y) =
f(τ1(α)x, y). Since α satisfies (W1) this definition is correct, i.e., for any x′ ∈
M − 1, y′ ∈ M2 one has σf(x, y) = σf(x′, y′). Similarly, since α satisfies all
the conditions (Wn) one can correctly extend the definition of σ by linearity
on the whole subgroup N0 generated in N by the set f(M1,M2). Since f is
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onto N0 = N , so σ ∈ End(N) and (1) holds, as required. This shows that
τ(P (f)) = PSW (f), as claimed.

To study model theoretic properties of f : M1 × M2 → N one associates
with f a three-sorted structure A(f) = 〈M1,M2, N ; f〉, where M1,M2, and N
are abelian groups equipped with the map f (the language of A(f) consists of
additive group languages for M1,M2, and N , and the predicate symbol for the
graph of f). Our goal is to show that the ring P (f) as well as its actions on
the modules M1,M2 and N , are interpretable in the structure A(f). For this
we need f to satisfy some finiteness conditions.

We say that

3) a finite subset E1 ⊆M1 is called a left complete system for f if Annr(E1) =
Annr(M1). Similarly, a finite subset E2 ⊆ M2 is called a right complete
system for f if Annl(E2) = Annl(M2). In this case we say that a pair
(E1, E2) is a finite complete system for f .

4) f has finite width if there exists some natural number m, such that for
any z ∈ N there are some xi ∈ M1, yi ∈ M2, i = 1, . . . ,m such that
z =

∑m

i=1
f(xi, yi). The least such m is termed the width of f .

Theorem 1. [13] Let f be an R-bilinear map M1×M2 → N that satisfies 1)-4)
above. Then the maximal ring of scalars P (f) for f and its actions on M and
N are 0-interpretable in A(f) uniformly in the size of the finite complete system
and the width of f .

2.2 Maximal rings of scalars of finitely generated Lie al-

gebras

In this section we prove some results on maximal rings of scalars in finitely
generated Lie algebras and also in free Lie algebras of arbitrary rank.

Assume that R is an integral domain (commutative associative and unital).
Let L be a Lie R-algebra. Denote by L2 the R-submodule of L generated by all
products xy where x, y ∈ L. Then the multiplication map fL : L × L → L2 is
R-bilinear and onto. This map induces a non-degenerate R-bilinear onto map
f̄L : L/Ann(L)× L/Ann(L)→ L2, where Ann(L) = {x ∈ L | xL = 0}.

Lemma 1. Let L be a finitely generated Lie R-algebra. Then the bilinear map
f̄L satisfies all the conditions 1)–4). In particular, if Ann(L) = 0 then the
multiplication fL satisfies all the conditions 1)–4).

Proof. Suppose L is generated (as an algebra) by a finite set X . The map f̄L
satisfies conditions 1) and 2) by construction. To prove 3) it suffices to show
that Ann(L) = Ann(X). Let a ∈ Ann(X) and b ∈ L. To show that ab = 0
we may assume by linearity that b is a product of elements from X . If b ∈ X
then ab = 0, otherwise, b = uv, where u, v are products of elements of X of
shorter length. By induction on length au = av = 0. Since L is Lie then
a(uv) = −u(va)− v(au) = u(av)− v(au) = 0, hence the claim. To show 4) we
prove that L2 = Lx1 + . . .+Lxn, where X = {x1, . . . , xn}. Clearly, it suffice to
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show that every product p of elements from X belongs to M = Lx1+ . . .+Lxn.
Note that p = uv for some Lie words u, v in X . We use induction on the length
of v (as a Lie word in X) to show that p ∈ M . If v is an element from X then
there is nothing to prove. Otherwise, v = v1v2 where v1, v2 are Lie words in X
of smaller length. Then u(v1v2) = −v1(v2u)−v2(uv1) = (v2u)v1+(uv1)v2. Now
by induction on the length of the second factors we get that (v2u)v1, (uv1)v2,
and hence (v2u)v1 + (uv1)v2, are in M , as required.

Theorem 2. Let L be a finitely generated Lie R-algebra. Then the maximal
ring of scalars of the bilinear map f̄L and its action on L/Ann(L) and L2 are
0-interpretable in L (viewed in the language of rings) uniformly in the size of a
finite generating set of L.

Proof. Let A be a finite generating set of L. As was shown in Lemma 1 the
set L2 is 0-definable in L uniformly in the size of the set A. Hence the bilinear
map f̄L, i.e., the structure A(f̄L), is 0-interpretable in L uniformly in the size
of A. Now by Theorem 1 the maximal ring of scalars of f̄L and its action on
L/Ann(L) and L2 are 0-interpretable in A(f̄L), hence in L, uniformly in the
size of a finite complete system of f̄L and the width of f̄L, which by Lemma 1
are uniform in the size of A. This proves the theorem.

2.3 Maximal rings of scalars of free Lie algebras

Let L be a free Lie algebra with finite set of free generators X over an integral
domain R.

An element u ∈ L can be uniquely decomposed as a sum of homogeneous
elements u = u1 + . . . un of pair-wise distinct weights (or degrees) with respect
to system of free generatorsX . Notice that u = 0←→ u1 = 0, . . . , un = 0. By ū
we denote the homogeneous component of u of the highest weight. By wt(u) we
denote the weight of ū. Observe, that wt(ūv̄) = wt(ū)+wt(v̄) provided ūv̄ 6= 0.

Denote by H the set of Hall basis commutators on X (see [12] or [1]), then
H forms an R-basis of L as the R-module. We need the following well-known
result, furthermore, since we need the argument used in its proof we provide a
short proof as well.

Lemma 2. Let L be a free non-commutative Lie algebra with system of free
generators X over an integral domain R. Then:

1) for any non-zero u, v ∈ L if uv = 0 then αu = βv for some non-zero
α, β ∈ R.

2) Let u ∈ H be a basic commutator over X. Then for any v ∈ L if uv = 0
then there is α ∈ R such that v = αu.

Proof. To show 1) let u, v ∈ L and u =
∑
ui, v =

∑
vj be their decompositions

on homogeneous components. Assume that u1 = ū, v1 = v̄. Since uv = 0
it follows that ūv̄ = 0. Then by Theorem 5.10 from [12] αū = βv̄ for some
α, β ∈ R. Consider u′ = αu − βv then u′v = 0 and wt(u′) < wt(u). The
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argument above shows that the components of the highest weight in u′ and
v are linearly dependent, hence either of the same weight, or u′ = 0. Since
wt(u′) < wt(v) we get u′ = αu− βv = 0, as claimed.

To prove 2) take u ∈ H. Suppose uv = 0 for some v ∈ L. Consider the
decomposition v =

∑
i vi of v into homogeneous components with respect to X .

Then uv =
∑

i uvi = 0 hence uvi = 0 for each such i. It follows from Theorem
5.10 in [12] that u and vi are linearly dependent over R. Since H is an R-basis of
R it follows that v is homogeneous of the same weight as u and αv = βu for some
α, β ∈ R. Since v is in the same homogeneous component as u it follows that
v =

∑
i αiui where ui are the basic commutators from H of the same weight

as u, so u is one of them, say u = u1. The equality αv =
∑

i ααiui = βu1
implies that αi = 0 for i ≥ 2 and αα1 = β. Hence αv = αα1u, so v = α1u, as
claimed.

Proposition 1. Let L be a non-commutative free Lie algebra over an integral
domain R. Then the maximal ring of scalars P (fL) of the multiplication bilinear
map fL is isomorphic to the ring R.

Proof. Let L be a free Lie algebra over R with system of free generators X .
Notice first that Annl(L) = Annr(L) = 0 and fL is onto (see Lemma 1), so the
maximal ring of scalars P = P (fL) exists.

Let H be a Hall basis of L. By Lemma 2 for any x ∈ H and a ∈ L if ax = 0
then a ∈ Rx. Let α ∈ P , then the action of α on L gives an R-endomorphism
φα of R-module L such that φα(xy) = φα(x)y = xφα(y). Hence the action
by α is completely determined by its action on H. Take an arbitrary x ∈ H.
One has, φα(xx) = 0 = (φα(x)x), so φα(x) ∈ Rx, say φα(x) = αxx, where
αx ∈ R. Similarly, for y ∈ H φα(y) = αyy for some αy ∈ R. It follows that
φα(xy) = αx(xy) = αy(xy), hence αx = αy for any x, y ∈ H. Therefore, φα acts
on L precisely by multiplication of αx. This shows that P = R.

From Theorem 1 and Proposition 1 we get the following result.

Corollary 1. Let L be a non-commutative free Lie algebra of finite rank over
an integral domain R. Then the ring R and its action on L is 0-interpretable
in L uniformly in the rank of L.

Notice that Theorem 2 gives the result for any finitely generated non-commutative
free Lie algebra. To get an interpretation of R and its action on L for an arbi-
trary non-commutative Lie algebra over R one needs to work a bit more.

Theorem 3. Let L be a non-commutative free Lie algebra over an integral do-
main R. Then the ring R and its action on L are 0-interpretable in L uniformly
on the class of such algebras L.

Proof. Before going into details we outline the scheme of the proof first.
For an element x ∈ L denote by C(x) the centralizer of x in L, i.e., C(x) =

{z ∈ L | xz = 0}. Then for any x, y ∈ L such that xy 6= 0 multiplication
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in L gives an R-bilinear map Fx,y : C(x) × C(y) → C(xy), which is non-
degenerate. Then there is a maximal ring of scalars Px,y = P (fx,y) of fx,y. If
y is a basic commutator in L (with respect to some fixed free set of generators
A of L) then by Lemma 2 C(y) = Ry, so Px,y = R. Obviously, fx,y (i.e., the
structure A(fx,y)) is interpreted in L with parameters x, y. Observe that x, y
form a complete system for fx,y. Hence the group Sym(fx,y) is interpreted in
A(fx,y). Since Px,y = R all elements from Sym(fx,y) satisfy the conditions Wn

above, so Px,y = Sym(fx,y), hence as we mentioned above the ring Px,y = R
is 0-interpreted in A(fx,y), hence in L (with parameters x, y). Furthermore, it
gives an interpretation of the action of R = Px,y on C(x) and C(y). If z is
another non-zero element in L then the map fx,z gives another interpretation of
R in L as Px,z, and also another interpretation of its action on C(x) and C(z).
Comparing the action of Px,y and Px,z on C(x) one can define by formulas of
L an isomorphism Px,y → Px,z uniformly in the parameters x, y, z. Identifying
elements in Px,y and Px,z along the isomorphism Px,y → Px,z one can get 0-
interpretation of R in L and its action on L.

Since L is a free Lie algebra everything is easier then in arbitrary finitely
generated Lie algebras, so one can follow the strategy outlined above and get
down to the precise formulas that 0-interpret R in L and its action on L as
follows.

Let x ∈ L, x 6= 0. The formula

φ(x, z) = (x ∈ C(z)) ∧ ∀e∃e′ ∈ C(e)(xe = ze′)

defines in L the predicate x ∈ Rz (here by x ∈ C(z) we denote the formula
xz = 0). Indeed, if x = αz then xz = 0. Take an arbitrary e ∈ L and put
e′ = αe. Then e′ ∈ C(e) and xe = αze = zαe = ze′, as required. Conversely,
suppose φ(x, z) holds in L on x, z. Then take a basic commutator e ∈ L that does
not appear in the decomposition of x and y into non-trivial linear combinations
of basic commutators in A. Since e′ ∈ C(e) it follows from Lemma Lemma
2 that e′ = αe for some α ∈ R. The equality xe = ze′ = zαe implies that
(x − αz)e = 0, so x − αz ∈ C(e). Because of the choice of e the latter can
happen only if x− αz = 0, i.e., x ∈ C(z), as claimed.

Recall that elements of Sym(fx,y) are interpreted in fx,y by the values on the
complete system x, y, i.e., as elements (rx, ry), r ∈ R. This gives the following
interpretation. For a fixed 0 6= x ∈ L we turn Rx into a ring by interpreting an
addition ⊕ and a multiplication ⊗ as follows. We put xr ⊕ xs as the standard
addition in L, so xr ⊕ xs = xr + xs = x(r + s). To define the multiplication ⊗
we need to interpret first the following predicate on x, x′, y, y′ ∈ L:

∃r ∈ R(x′ = rx ∧ y′ = ry).

It is easy to see that the condition above holds on elements x, x′, y, y′ ∈ L if
these elements satsify the following formula

Φ(x, x′, y, y′) = (x′ ∈ Rx) ∧ (y′ ∈ Ry) ∧ (x′y = xy′).
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Now we define the multiplication ⊗ on Rx: if x1, x2, x3 ∈ Rx then

x1⊗x2 = x3 ⇐⇒ ∀y 6= 0∃y′ ∈ L∃s, t ∈ R(x2 = sx∧y′ = sy∧x3 = tx∧x1y
′ = txy).

The condition on the right can be written by a formula in the ring language using
the formula Φ(x, x′, y, y′) above. Observe that the multiplication ⊗ corresponds
to the multiplication in R. Indeed, since x1, x2, x3 ∈ Rx then x1 = rx, x2 =
sx, x3 = tx for some r, s, t ∈ R. For any 0 6= y ∈ L there is y′ = sy, hence
x1y

′ = rs(xy), and then x3 = rsx, as required.
The argument above shows that we interpreted the ring R as the structure

Rx = 〈Rx : ⊕x,⊗x〉 in L with the parameter x 6= 0 uniformly in x. The formula
Φ(x, x′, y, y′) defines an isomorphism Rx → Ry which maps x′ → y′. Indeed, if
Φ(x, x′, y, y′) holds in L on elements x, x′, y, y′ then x′ = rx, y′ = ry for some
(unique) r ∈ R. Thus, for each non-zero x, y ∈ L we defined an isomorphism
Rx → Ry uniformly in x, y. Now consider a definable subset in L× L:

D = {(x′, x) | x 6= 0, x′ ∈ Rx}.

The formula Φ(x, x′, y, y′) defines an equivalence relation ∼ on D. Moreover,
the formulas that interpret operations ⊕x and ⊗x on Rx uniformly in x 6= 0
allow one to define by formulas operations ⊕ and ⊗ on the set of equivalence
classes D/ ∼. Indeed, for ∗x ∈ {⊕x,⊗x} for (x

′

1, x1), (x
′

2, x2), (x
′

3, x3) ∈ D put

[(x′1, x1)]∗[(x
′

2, x2)] = [(x′3, x3)]⇐⇒ ∃z1, z2, z3, z[z1∗zz2 = z3

3∧

i=1

(zi, z) ∼ (x′i, xi)]

These define operations ⊕ and ⊗ on D/ ∼ such that the resulting structure
RD = 〈D/ ∼: ⊕,⊗〉 is isomorphic to R. Notice that this interpretation does
not use any parameters from L. The formula Φ(x, x′, y, y′) defines an action of
an element [(x′, x)] ∈ RD on an arbitrary non-zero element y ∈ L, where the
result of this action is an element y′ ∈ L such that (x′, x) ∼ (y′, y).

This proves the theorem.

2.4 Definability of the rank

Now we show that the rank of a free Lie algebra is definable by first-order
formulas.

Recall that a Lie ring L has L2 of finite width if there is a number m such
that every element w ∈ L2 is equal to a sum of the type u1v1 + . . .+ umvm for
some ui, vi ∈ L. The minimal such m is called the width of L.

We showed in the proof of Lemma 1 that every finitely generated Lie algebra
has finite width.

Lemma 3. Let L be a Lie algebra. Then:
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1) the sentence

∀u1, v1, . . . , um+1, vm+1∃u
′

1, v
′

1, . . . , u
′

m, v
′

m(

m+1∑

i=1

uivi =

m∑

j=1

u′jv
′

j)

holds in L if and only if the width of L2 is finite and is less or equal to m.

2) Consider a formula

ψm(a1, . . . , am) = ∀u1, v1, . . . , um+1, vm+1∃, v
′

1, . . . , v
′

m(

m+1∑

i=1

uivi =

m∑

j=1

ajv
′

j).

Then if L is generated as an algebra by elements u1, . . . , um then ψm(u1, . . . , um)
holds in L. Furthermore, if ψm(a1, . . . , am) holds in an arbitrary algebra
Lie L on some elements then L2 is of width at most m in L and it is
defined in L by the following formula

Sm(y) = ∃a1, . . . , am∃v1, . . . , vm(ψm(a1, . . . , am) ∧ y =
m∑

i+1

aivi).

Proof. By a straightforward argument.

Corollary 2. Let R be an integral domain and L a free Lie R- algebra of finite
rank. Consider the following formula:

φm(a1, . . . , am) = ∀y∃α1, . . . , αm ∈ R∃z1, . . . , zm ∈ L(y = Σn
i=1αiai+Σn

i=1aizi),

where αi ∈ R and αiai mean the corresponding formulas from the interpretation
of R and its action on L from Theorem 1. Then:

1) the formula
∆m = ∃a1, . . . , am(φm ∧ ψm)

(here ψm is the formula from Lemma 3) holds in L if and only if the rank
of L is at most m.

2) the formula ∆m ∧ ¬∆m−1 holds in L if and only if L has rank m.

Proof. To see 1) suppose that ∆m holds in L, so there are elements u1, . . . , um ∈
L such that φm and ψm both hold on u1, . . . , um. Then L/L2 as an R-module
is generated by m elements. Conversely, suppose the rank of L is at most m.
Then there are elements u1, . . . , um ∈ L that generate L. Hence by Lemma 3
ψm holds in L on u1, . . . , um and L2 = Lu1 + . . . + Lun. Note also that L is
generated modulo L2 by u1, . . . , um as an R-module, so the formula ∆m holds
in L. This proves 1) and 2) now follows from 1).
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3 Interpretability of the arithmetic

Let A = {a, b, a1, . . . , an} be a system of free generators of a free Lie algebra L
with coefficients in an integral domain R.

By (z1, z2, . . . , zn) we denote the left-normed product of elements z1, z2, . . . , zn
in L. For u, v ∈ L and α ∈ R by u(v + α) we denote the element uv + αu ∈ L
and refer to it as a ”product” of u and v + α.

Now we establish some properties of the action above:

a) for any u, v, w ∈ L and any α ∈ R

(u + w)(v + α) = u(v + α) + w(v + α)

This is obvious

b) for any u, v ∈ L, α, β ∈ R one has

(u(v + α))(v + β) = (u(v + β))(v + α)

This comes from straightforward verification. Because of this we will omit
parentheses in such situations and simple write u(v + α)(v + β).

c) For any u, v ∈ L and any α, β ∈ R the following holds:

βu(v + α) = u(βv + βα), u(v + α) = u((v + βu) + α)

d) For any u, v ∈ L and any α ∈ R one has

u(v + α) = 0←→ u = 0

Indeed, if uv + αu = 0 then ūv̄ = 0, hence by Lemma 2 either v̄ = 0, or
ū = 0, or rū = sv̄ for some non-zero r, s ∈ R. If ū = 0 then u = 0, as
claimed. If v̄ = 0 then v = 0 hence 0 = u(v+α) = uv+αu = αu, so u = 0.
Suppose now that rū = sv̄ for some non-zero r, s ∈ R. Put v′ = sv − ru.
Then by c)

u(v′ + sα) = s(u(v + α)) = 0

and ūv̄ 6= 0 unless v′ = 0. The argument above shows that v′ = 0, but
then as was mentioned above u = 0, as claimed.

e) For any u, v ∈ L and any α1, . . . , αn ∈ R if uv 6= 0 and ūv̄ 6= 0 then

wt(u(v + α1) . . . (v + αn)) = wt(u) + nwt(v).

This property follows by induction on n. In general the following holds:

f) For any u, v ∈ L and any α1, . . . , αn ∈ R if uv 6= 0 then

wt(u(v + α1) . . . (v + αn)) = wt(u) + nwt(v′).
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where v′ = v if ūv̄ 6= 0, otherwise v′ = βv − αu, where α, β ∈ Rr {0} are
such that αū = βv̄ (such α, β ∈ R always exist if ūv̄ = 0).

Indeed, suppose uv 6= 0 but ūv̄ = 0. Fix any α, β ∈ R r {0} such that
αū = βv̄. Put v′ = αu − βv. Notice that uv′ 6= 0 and also wt(v′) <
wt(v) = wt(u) so ūv̄′ 6= 0. Denote

w = u(v + α1) . . . (v + αn).

Then by c)

βnw = u(βv + βα1) . . . (βv + βαn) = u(v′ + βα1) . . . (v
′ + βαn).

Notice that wt(w) = wt(βnw). It follows from e) that

wt(βnw) = wt(u) + nwt(v′),

as claimed.

The following result holds in any Lie R-algebra.

Lemma 4. Let L be any Lie R-algebra. If u, v ∈ L and α1, . . . , αn are pair-wise
distinct elements from R such that

u = u1(v + α1), . . . , u = un(v + αn),

for some elements u1, . . . , un ∈ L then

γu = w(v + α1) . . . (v + αn)

for some element w ∈ L and 0 6= γ ∈ R .

Proof. Case n = 2. Let

u = u1(v + α1) = u1v + α1u1,

u = u2(v + α2) = u2v + α2u2.

Then
(u1 − u2)v + α1(u1 − u2) = (α2 − α1)u2.

Notice that α2 − α1 6= 0. It follows that

(α2 − α1)u2 = (u1 − u2)(v + α1).

Hence

(α2 − α1)u = (α2 − α1)u2(v + α2) = (u1 − u2)(v + α1)(v + α2),

as required.
Case n ≥ 3. Let
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u = u1(v + α1), u = u2(v + α2), . . . , u = un(v + αn).

By induction from the first n− 1 equalities one has

γ1u = w1(v + α1) . . . (v + αn−1) = w′

1(v + αn−1),

where 0 6= γ1 ∈ R, w′

1 = w1(v + α1) . . . (v + αn−2). Similarly, considering
the system obtained from the initial one above by removing the equality u =
un−1(v + αn−1) one gets by induction that

γ2u = w2(v + α1) . . . (v + αn−2)(v + αn) = w′

2(v + αn),

where w′

2 = w2(v + α1) . . . (v + αn−2).
Consider a system

γ1u = w′

1(v + αn−1)

γ2u = w′

2(v + αn)

Multiplying the first equation by γ2 and the second - by γ1 one gets

γu = γ2w
′

1(v + αn−1),

γu = γ1w
′

2(v + αn),

where γ = γ1γ2 6= 0. From the case n = 2 one gets

(αn − αn−1)γu = (γ2w
′

1 − γ1w
′

2)(v + αn−1)(v + αn).

Observe, that

γ2w
′

1 − γ1w
′

2 = γ2w1(v + α1) . . . (v + αn−2)− γ1w2(v + α1) . . . (v + αn−2) =

(γ2w1 − γ1w2)(v + α1) . . . (v + αn−2).

Hence

γu = ((αn − αn−1)
−1(γ2w1 − γ1w2))(v + α1) . . . (v + αn−2)(v + αn−1)(v + αn),

as claimed.

Theorem 4. Let R be an integral domain of characteristic 0 and L a free
non-commutative Lie algebra over R. Then

1) For any b ∈ L, b 6= 0, the formula

φ(x, b) = (x ∈ R)∧∃v 6= 0∃u∀k ∈ R∀u1∃u2(v = ub∧(v = u1(b+k) =⇒ (v = u2(b+k+1)∨k = x)))

interprets N ⊆ R in L (in the formula above notation x ∈ R, as well
as the action of an α ∈ R on u ∈ L, means here that x belongs to the
interpretation of R in L from Theorem 1 and the action by α is also from
this interpretation).
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2) The formula ∃b[(b 6= 0) ∧ φ(x, b)] 0-interprets N ⊆ R in L.

Proof. We prove 1) first. Letm ∈ N. We need to show that L |= φ(m). Take any
a ∈ L, a 6= 0 and put v = ab(b+ 1) . . . (b+m). Then, in the notation above, for
any k ∈ N for any i ≤ k there is ui ∈ L such that ab(b+1) . . . (b+k) = ui(b+ i).
Indeed, by the property b) above for any w ∈ L, and for any i, j ∈ R

w(b + i)(b + j) = w(b + j)(b+ i).

This allows one to push (b+ i) to the right in the ”product” ab(b+1) . . . (b+k).
Observe that for any α ∈ R r {0, 1, . . . ,m} v 6= u(b + α) for any u ∈ L.

Indeed, if v = u(b+ α) for such an α, then by Lemma 4

γv = u(b+ 0)(b+ 1) . . . (b +m)(b+ α).

In this case by the properties above wt(v) ≥ m+ 2, while by the choice of v we
have wt(v) = wt(a(b + 0)(b + 1) . . . (b+m)) = m+ 1 - contradiction.

This shows that φ(m) holds in L.
Let now x ∈ RrN. We need to show that L 6|= φ(x). Suppose to the contrary

that L |= φ(x) for x ∈ RrN.
Then there exists v ∈ L, v 6= 0 such that

v = u0b = u1(b + 1) = u2(b+ 2) = . . . = un+1(b + n+ 1) = . . .

for some ui ∈ L, i ∈ N.
Then by Lemma 4 for any n ∈ N one has

γnv = wn(b+ 0)(b + 1) . . . (b+ n)

for some 0 6= γn ∈ R and wn ∈ L. Hence, since wnb 6= 0 (otherwise v = 0, but
it is not), one has wt(v) > n for every n ∈ N, but this is impossible since v 6= 0.
Hence L 6|= φ(x), as required.

2) follows immediately from 1). This proves the theorem.

This result answers the question posed by Baudisch in [2] in the case of
characteristic zero.

4 Results

The following theorem answers questions by Baudisch in [2] and by Bokut’ and
Kukin [3] in the case of characteristic zero.

Theorem 5. The first order theory in the ring language of a free non-commutative
Lie algebra over an integral domain of characteristic zero is undecidable.

Proof. By Theorem 4 the arithmetic N is interpretable in L in the ring language.
Hence the theory Th(L) is undecidable.
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Let T be a complete theory in a language L. An L-formula φ(x, y) is said
to have the independence property (with respect to x, y) if in every model M
of T there is, for each n = {0, 1, . . . , n− 1} < ω, a family of tuples b0, . . . , bn−1

such that for each of the 2n subsets X of n there is a tuple a ∈M for which

M |= ϕ(a, bi) ⇔ i ∈ X.

The theory T has independence property if some formula does.
Note that the elementary theory of the arithmetic N = 〈N,+, ·, 0〉 is inde-

pendent. Indeed, the formula ”y divides x”, i.e., the formula ∃k(x = ky) has the
independence property. Clearly the independence property is inherited under
interpretations. The following theorem answers the question posed by Baudisch
in [2] in the case of characteristic zero.

Theorem 6. The first order theory of a free non-commutative Lie algebra over
an integral domain of characteristic zero has the independence property.
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