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ON CUTS IN ULTRAPRODUCTS OF LINEAR ORDERS II

MOHAMMAD GOLSHANI AND SAHARON SHELAH

Abstract. We continue our study of the class C (D), where D is a uniform ultrafilter

on a cardinal κ and C (D) is the class of all pairs (θ1, θ2), where (θ1, θ2) is the cofinality

of a cut in Jκ/D and J is some (θ1 + θ2)+-saturated dense linear order. We give a

combinatorial characterization of the class C (D). We also show that if (θ1, θ2) ∈ C (D)

and D is ℵ1-complete or θ1 + θ2 > 2κ, then θ1 = θ2.

1. Introduction

Assume κ is an infinite cardinal and D is an ultrafilter on κ. Recall that C (D) is defined

to be the class of all pairs (θ1, θ2), where (θ1, θ2) is the cofinality of a cut in Jκ/D and J is

some (equivalently any) (θ1 + θ2)
+-saturated dense linear order. Also C>λ(D) is defined to

be the class of all pairs (θ1, θ2) ∈ C (D), such that θ1+ θ2 > λ. The classes C≥λ(D),C<λ(D)

and C≤λ(D) are defined similarly.

The works [2], [3] and [4] of Malliaris and Shelah have started the study of this class for

the case θ1 + θ2 ≤ 2κ and [1] started the study of the case θ1 + θ2 > 2κ. As it was observed

in [1], the study of the class C>2κ(D) is very different from the case C≤2κ(D), and to prove

results about it, usually some extra set theoretic assumptions are needed. In this paper we

continue [1] and prove more results related to the class C (D).

In the first part of the paper (Sections 2 and 3) we give a combinatorial characterization

of C (D). Using notions defined in section 2, we can state our first main theorem as follows.

Theorem 1.1. Assume D is an ultrafilter on κ and λ1, λ2 > κ are regular cardinals. The

following are equivalent:

(a) There is ā ∈ Sc which is not c-solvable, where c = 〈κ,D, λ1, λ2〉.
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(b) (λ1, λ2) ∈ C (D).

In the second part of the paper (Sections 4 and 5) we study the existence of non-symmetric

pairs (i.e., pairs (λ1, λ2) with λ1 6= λ2) in C (D). By [5], we can find a regular ultrafilter D

on κ such that

C (D) ⊇ {(λ1, λ2) : ℵ0 < λ1 < λ2 ≤ 2κ, λ1, λ2 regular}.

In particular, C (D) contains non-symmetric pairs. On the other hand, results of [1] show

that if (λ1, λ2) ∈ C>2κ(D), then we must have λκ
1 = λκ

2 , in particular if SCH, the singular

cardinals hypothesis, holds, then λ1 = λ2, and so C>2κ(D) just contains symmetric pairs.

We then prove the following theorem (in ZFC):

Theorem 1.2. (a) Assume D is a uniform ℵ1-complete ultrafilter on κ and (λ1, λ2) ∈ C (D).

Then λ1 = λ2.

(b) Assume D is a uniform ultrafilter on κ and (λ1, λ2) ∈ C>2κ(D). Then λ1 = λ2.

The theorem shows some restrictions on the pairs (λ1, λ2) that C (D) can have, in par-

ticular, it shows that in the result of [5] stated above, we can never take the ultrafilter D to

be ℵ1-complete and that C>2κ(D) can not have non-symmetric pairs.

The paper is organized as follows. In section 2 we give the required definitions, which

lead us to the notion of c-solvability and in section 3 we complete the proof of Theorem 1.1.

In section 4 we prove part (a) of Theorem 1.2 and in section 5 we complete the proof of part

(b) of Theorem 1.2. We may note that parts one (Sections 2 and 3) and two (Sections 4 and

5) can be read independently of each other.

2. On the notion of c-solvability

In this section we give the required definitions which are used in Theorem 1.1.

Definition 2.1. (a) Let C be the class of tuples c = 〈κc, Dc, λc,1, λc,2〉 where

(a-1) λc,1, λc,2 are regular cardinals > κc,

(a-2) Dc is a uniform ultrafilter on κc.

Also let λc = 2<λc,1 + 2<λc,2 and λc,0 = min{λc,1, λc,2}.
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(b) For c ∈ C let Nc = Nc,1+Nc,2 be a linear order of size ≤ λc in such a way that Nc,1

has cofinality λc,1, Nc,2 has co-initiality λc,2 and both Nc,1, Nc,2 are λc,0-saturated

dense linear orders 1.

(c) For c ∈ C let Sc be the set of all sequences ā = 〈as,t : s, t ∈ Nc〉 such that

(c-1) Each as,t is a subset of κc,

(c-2) as,s = ∅,

(c-3) For s 6= t, as,t = κ \ at,s,

(c-4) s <Nc
t ⇒ as,t ∈ Dc,

(c-5) If s1 <Nc
s2 <Nc

s3, then

(as1,s3 ⊇ as1,s2 ∩ as2,s3) & (as3,s1 ⊇ as3,s2 ∩ as2,s1).

(d) For c ∈ C let N+
c = Nc,1 +N0 +Nc,2, where N0 is a singleton, say N0 = {s∗}.

We now define the notion of c-solvability.

Definition 2.2. Let c ∈ C. We say ā ∈ Sc is c-solvable, if there exists a sequence b̄ =

〈bs : s ∈ Nc〉, such that the sequence ā1 = ā ∗ b̄ satisfies clauses (c-1)-(c-5) above, where the

sequence ā1 = 〈a1s,t : s, t ∈ N+
c 〉 is defined as follows:

(1) If s, t ∈ Nc, then a1s,t = as,t,

(2) For s ∈ Nc,1, a
1
s,s∗

= bs and a1s∗,s = κc \ bs,

(3) For s ∈ Nc,2, a
1
s∗,s

= bs and a1s,s∗ = κc \ bs,

(4) a1s∗,s∗ = ∅.

Then b̄ is called a c-solution for ā.

3. A combinatorial characterization of C (D)

In this section we give a proof of Theorem 1.1.

Lemma 3.1. Assume c ∈ C and ā ∈ Sc. Then

(a) There are M, f̄ such that

(a-1) M is a (λc,1 + λc,2)
+-saturated dense linear order,

1Nc is some fixed linear order which we choose in advance. We may assume global choice and let Nc be

the least such order.
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(a-2) f̄ = 〈fs : s ∈ Nc〉,

(a-3) Each fs ∈ κcM ,

(a-4) If s <Nc
t, then as,t = {i < κc : fs(i) <M ft(i)},

(a-4) 〈range(fs) : s ∈ Nc〉 is a sequence of pairwise disjoint sets.

(b) If M, f̄ are as in (a), then

(b-1) 〈fs/Dc : s ∈ Nc〉 is an increasing sequence in κcM/Dc,

(b-2) ā is c-solvable iff κcM/Dc realizes the type

q(x) = {fs/Dc < x < ft/Dc : s ∈ Nc,1 and t ∈ Nc,2}.

Proof. (a) Let A = {(i, s) : i < κc, s ∈ Nc}, and define the order <A on A by

(i1, s1) <A (i2, s2) ⇐⇒ (i1 < i2) or (i1 = i2 ∈ as1,s2).

Also let ≤A be defined on A in the natural way from <A, so

(i1, s1) ≤A (i2, s2) ⇐⇒ (i1, s1) = (i2, s2) or (i1, s1) <A (i2, s2).

It is easily seen that ≤A is a linear order on A. Now let M be a (λc,1 + λc,2)
+-saturated

dense linear order which contains (A,<A) as a sub-order. Also let f̄ = 〈fs : s ∈ Nc〉, where

for s ∈ Nc fs ∈ κcM is defined by fs(i) = (i, s). It is clear that M, and f̄ satisfy clauses

(a-1)-(a-3). For (a-4), assume s <Nc
t are given. Then

as,t = {i < κc : i ∈ as,t} = {i < κc : (i, s) <A (i, t)} = {i < κc : fs(i) <M ft(i)}.

Finally note that for s 6= t in Nc,

range(fs) ∩ range(ft) = {(i, s) : i < κc} ∩ {(i, t) : i < κc} = ∅.

So M and f̄ are as required.

(b) (b-1) follows from (a-4) and the fact that for s <Nc
t, as,t ∈ Dc. Let’s prove (b-2).

First assume that ā is c-solvable and let b̄ be a solution for ā. For each i < κc let pi(x) be

the following type over M :

pi(x) = {fs(i) <M x : s ∈ Nc,1 and i ∈ bs} ∪ {x <M ft(i) : t ∈ Nc,2 and i ∈ κc \ bt}.

Claim 3.2. For each i < κc, the type pi(x) is finitely satisfiable in M .
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Proof. Let s0 <Nc,1
· · · <Nc,1

sn−1 be in Nc,1 and tm−1 <Nc,2
< · · · <Nc,2

t0 be in Nc,2. Also

suppose that i ∈
⋂

k<n bsk ∩
⋂

l<m(κc \ btl). Then for k < n and l < m we have

ask,tl ⊇ a1sk,s∗ ∩ a1s∗,tl = bsk ∩ (κc \ btl),

and so i ∈ ask,tl , which implies fsk(i) < ftl(i). Take x ∈ M so that

∀k < n, ∀l < m, fsk(i) < x < ftl(i),

which exists as M is dense. It follows that pi(x) is finitely satisfiable in M . �

It follows that there exists f ∈ κcM such that for each i < κc, f(i) realizes the type pi(x)

over M . Then f/Dc realizes q(x) over κcM/Dc.

Conversely assume that f ∈ κcM is such that f/Dc realizes the type q(x) over κcM/Dc.

Claim 3.3. We can assume that range(f) is disjoint from A.

Proof. As 〈range(fs) : s ∈ Nc〉 is a sequence of pairwise disjoint sets and λc,1, λc,2 >

κc are regular, there are s1 ∈ Nc,1 and s2 ∈ Nc,2 such that s1 <Nc
s <Nc

s2 implies

range(fs) ∩ range(f) = ∅. As M is a (λc,1 + λc,2)
+-saturated dense linear order, there is f ′

such that

• f ′ ∈ κcM ,

• range(f ′) ∩ A = ∅,

• If s1 <Nc
s <Nc

s2 and i < κc, then fs(i) <Nc
f ′(i) ⇒ fs(i) <Nc

f(i) and f ′(i) <Nc

fs(i) ⇒ f(i) <Nc
fs(i).

So we can replace f by f ′ and f ′ satisfies the requirements on f ; i.e., f ′/Dc realizes q(x)

over κcM/Dc and further range(f ′) ∩ A = ∅. �

Now define b̄ = 〈bs : s ∈ Nc〉 by

bs =











{i < κc : fs(i) <Nc
f(i)} if s ∈ Nc,1,

{i < κc : f(i) <Nc
fs(i)} if s ∈ Nc,2.

Claim 3.4. b̄ is a c-solution for ā.
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Proof. We show that conditions (c-1)-(c-5) of Definition 2.1 are satisfied by ā1 = ā ∗ b̄ (see

Definition 2.2). (c-1) and (c-2) are trivial and (c-3) follows from the fact that ∀i < κc, fs(i) 6=

f(i) (as range(f) ∩ A = ∅).

For (c-4), suppose that s <N
+
c

t. If both s, t are in Nc, then we are done. So suppose

otherwise. There are two cases to consider.

• If s = s∗, then t ∈ Nc,2 and as f/Dc realizes q(x), we have f/Dc < ft/Dc, which

implies a1s∗,t = bt = {i < κc : f(i) <Nc
ft(i)} ∈ Dc.

• If t = s∗, then s ∈ Nc,1 and as f/Dc realizes q(x), we have fs <Dc
f, which implies

a1s,s∗ = bs = {i < κc : fs(i) <Nc
f(i)} ∈ Dc.

For (c-5), assume s1 <N
+
c

s2 <N
+
c

s3 are in N+
c . If all s1, s2 and s3 are in Nc, then we

are done. So assume otherwise. There are three cases to be considered:

• If s1 = s∗, then s2, s3 ∈ Nc,2, and we have

a1s∗,s2 ∩ a1s2,s3 = bs2 ∩ as2,s3

= {i < κc : ( f(i) <Nc
fs2(i) ) ∧ ( fs2(i) <Nc

fs3(i) )}

⊆ {i < κc : f(i) <Nc
fs3(i)}

= bs3

= a1s∗,s3 .

Similarly,

a1s3,s2 ∩ a1s2,s∗ = as3,s2 ∩ (κc \ bs2)

= {i < κc : ( fs2(i) ≥Nc
fs3(i) ) ∧ ( f(i) >Nc

fs2(i) )}

⊆ {i < κc : f(i) >Nc
fs3(i)}

= κc \ bs3

= a1s3,s∗ .

• If s2 = s∗, then s1 ∈ Nc,1, s3 ∈ Nc,2 and we have

a1s1,s∗ ∩ a1s∗,s3 = bs1 ∩ bs3

= {i < κc : ( fs1(i) <Nc
f(i) ) ∧ ( f(i) <Nc

fs3(i) )}

⊆ {i < κc : fs1(i) <Nc
fs3(i)}

= as1,s3 .

= a1s1,s3 .

Also,
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a1s3,s∗ ∩ a1s∗,s1 = (κc \ bs3) ∩ (κc \ bs1)

= {i < κc : ( fs3(i) <Nc
f(i) ) ∧ ( f(i) <Nc

fs1(i) )}

⊆ {i < κc : fs3(i) ≤Nc
fs1(i)}

= as3,s1

= a1s3,s1 .

• If s3 = s∗, then s1, s2 ∈ Nc,1 and we have

a1s1,s2 ∩ a1s2,s∗ = as1,s2 ∩ bs2

= {i < κc : ( fs1(i) <Nc
fs2(i) ) ∧ ( fs2(i) <Nc

f(i) )}

⊆ {i < κc : fs1(i) <Nc
f(i)}

= bs1 .

= a1s1,s∗ .

Similarly, we have

a1s∗,s2 ∩ a1s2,s1 = (κc \ bs2) ∩ as2,s1

= {i < κc : ( fs2(i) >Nc
f(i) ) ∧ ( fs1(i) ≥Nc

fs2(i) )}

⊆ {i < κc : fs1(i) >Nc
f(i)}

= κc \ bs1

= a1s∗,s1 .

Hence, b̄ is a c-solution for ā, as required. �

The lemma follows. �

Given c ∈ C, the next lemma gives a characterization, in terms of c-solvability, of when

(λc,1, λc,2) is in C (Dc), which also completes the proof of Theorem 1.1.

Lemma 3.5. Assume c ∈ C and M is a λ+
c -saturated dense linear order. The following are

equivalent:

(a) There is ā ∈ Sc which is not c-solvable.

(b) (λc,1, λc,2) ∈ C (Dc).

Proof. First assume there exists ā ∈ Sc which is not c-solvable. By Lemma 3.1, there are

M, f̄ which satisfy clauses (1-a)-(1-e) of that lemma. But then as ā is not c-solvable, by
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Lemma 2.3(b-2), the type

q(x) = {fs/Dc < x < ft/Dc : s ∈ Nc,1 and t ∈ Nc,2}.

is not realized. It follows that (λc,1, λc,2) ∈ C (Dc).

Conversely assume that M and f̄ = 〈fs : s ∈ Nc〉 witness (λc,1, λc,2) ∈ C (Dc). Let

A =
⋃

{range(fs) : s ∈ Nc}, and let 〈Id : d ∈ A〉 be a sequence of pairwise disjoint intervals

of M such that d ∈ Id
2. For s ∈ Nc, let f ′

s ∈ κcM be such that f ′
s(i) ∈ Ifs(i) and

〈f ′
s(i) : s ∈ Nc, i < κ〉 is with no repetitions. Define the sequence ā = 〈as,t : s, t ∈ Nc〉, such

that for s <Nc
t, as,t = {i < κ : fs(i) < ft(i)} and at,s = κc \ as,t. Also set as,s = ∅. It is

evident that ā ∈ Sc.

Claim 3.6. ā is not c-solvable.

Proof. Assume not. Then by Lemma 3.1(b-2), the type

q(x) = {fs/Dc < x < ft/Dc : s ∈ Nc,1 and t ∈ Nc,2}

is realized in κcM/Dc, which contradicts the choice of M, f̄ . �

The Lemma follows. �

4. For ℵ1-complete ultrafilter, C (D) contains no non-symmetric pairs

In this section we prove part (a) of Theorem 1.2. In fact we will prove something stronger,

that is of interest in its own sake.

Definition 4.1. Assume D is an ultrafilter on κ, 〈Ii : i < κ〉 is a sequence of linear orders

and I =
∏

i<κ Ii/D.

(a) a subset K of I is called internal if there are subsets Ki ⊆ Ii such that K =

∏

i<κ Ki/D.

(b) The cut (J1, J2) of I is called internal, if there are cuts (J1
i , J

2
i ) of Ii, i < κ, such

that J l =
∏

i<κ J
l
i/D (l = 1, 2).

2The existence of the sequence 〈Id : d ∈ A〉 follows from the fact that |A| ≤ κc · |Nc| ≤ λc and M is

λ+
c -saturated.
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Remark 4.2. Assume J is an initial segment of I which is internal and suppose that

(J, I \ J) is a cut of I. Then (J, I \ J) is in fact an internal cut of I. Similarly, if J is an

end segment of I which is internal and if (I \J, J) is a cut of I, then (I \J, J) is an internal

cut of I.

Theorem 4.3. Assume D is a uniform ℵ1-complete ultrafilter on κ, 〈Ii : i < κ〉 is a

sequence of non-empty linear orders and I =
∏

i<κ Ii/D. Also assume (J1, J2) is a cut of I

of cofinality (θ1, θ2), where θ1 6= θ2. Then the cut (J1, J2) is internal.

Before giving the proof of Theorem 4.3, let us show that it implies Theorem 1.2(a).

Proof of Theorem 1.2(a) from Theorem 4.3. Suppose D is an ℵ1-complete ultrafilter

on κ, J is a (λ1+λ2)
+-saturated dense linear order and (J1, J2) is a cut of Jκ/D of cofinality

(λ1, λ2). Towards contradiction assume that λ1 6= λ2. It follows from Theorem 4.3 that the

cut (J1, J2) is internal, and so that there are cuts (J1
i , J

2
i ) of J , i < κ, such that J l =

∏

i<κ J
l
i/D (for l = 1, 2). Let (λ1

i , λ
2
i ) = cf(J1

i , J
2
i ). It follows that λl =

∏

i<κ λ
l
i/D, l = 1, 2.

By the choice of J , for every i < κ, either λ1
i ≥ (λ1 + λ2)

+ or λ2
i ≥ (λ1 + λ2)

+, hence for

some l ∈ {1, 2}, we have

A = {i < κ : λl
i ≥ (λ1 + λ2)

+} ∈ D.

It follows that λl =
∏

i<κ λ
l
i/D ≥ (λ1 + λ2)

+, which is a contradiction. �

We are now ready to complete the proof of Theorem 4.3.

Proof. We can assume that θ1, θ2 are infinite. Let <1
i=<Ii (i < κ) and <1=<I . Let <2

i be

a well-ordering of Ii with a last element and let <2 be such that (I,<2) =
∏

i<κ(Ii, <
2
i )/D.

Then <2 is a linear ordering of I with a last element and since D is ℵ1-complete, it is

well-founded, so <2 is in fact a well-ordering of I with a last element.

As (J1, <1) has cofinality θ1, we can find fα ∈
∏

i<κ Ii, for α < θ1, such that

(1) ∀α < θ1, fα/D ∈ J1,

(2) 〈fα/D : α < θ1〉 is <1-increasing,

(3) 〈fα/D : α < θ1〉 is a <1-cofinal subset of J
1.
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Let B = {t ∈ I : {s ∈ J1 : s <2 t} is <1-unbounded in J1}. As θ1 is infinite, the <2-last

element of I belongs to B, which implies B 6= ∅ and hence B has a <2-minimal element;

call it t∗. Let g∗ ∈
∏

i<κ Ii be such that t∗ = g∗/D.

Note that for each α < θ1 there are s ∈ J1 and β > α such that s <2 g∗/D and

fα/D <1 s <1 fβ/D, so we can assume that for all α < θ1, fα/D <2 g∗/D. This implies

∧

α<θ1

[{i < κ : fα(i) <
2
i g∗(i)} ∈ D].

Also note that

{i < κ : g∗(i) is <1
i -minimal or <1

i -maximal} /∈ D,

so, without loss of generality, it is empty. Hence, without loss of generality

∧

α<θ1

∧

i<κ

[fα(i) <
2
i g∗(i) and fα(i) is not <1

i -minimal].

Let fθ1 = g∗ and for α ≤ θ1 set Kα = {s ∈ I : s <2 fα/D}. Thus Kα is a <2-initial segment

of I.

Claim 4.4. Kα ∩ J1 is <1-bounded in J1.

Proof. As fα/D <2 t∗, it follows from our choice of t∗ that Kα is <1 bounded in J1. �

Claim 4.5. If α < θ1, then Kα is an internal subset of I.

Proof. For each i < κ set

Kα,i = {s ∈ Ii : s <
2
i fα(i)}.

Then Kα =
∏

Kα,i/D and the result follows. �

Now consider the following statement:

(∗) There is α < θ1 such that J2 ∩Kα is <1-unbounded from below in J2.

We split the proof into two cases.

Case 1. (∗) holds: Fix α witnessing (∗). It follows that (J1 ∩Kα, J
2 ∩Kα) is internal

in Kα, so there are end segments Li of Ii ↾ {s ∈ Ii : s <2
i fα(i)}, for i < κ, such that

J2 ∩ Kα =
∏

i<κ Li/D, hence by the assumption, J2 =
∏

i<κ L
′
i/D, where L′

i = {t ∈ Ii :

∃s ∈ Li, s ≤1
i t}, so J2 is internal. It follows from Remark 4.2 that (J1, J2) is an internal

cut of I and we are done.
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Case 2. (∗) fails: So for any α < θ1, there is sα ∈ J2 such that

{s ∈ J2 : s <1 sα} ∩Kα = ∅.

As θ1 6= θ2 are regular cardinals, there is s∗ ∈ J2 such that

sup{α < θ1 : s∗ ≤1 sα} = θ1,

hence

{s ∈ J2 : s <1 s∗} ∩ (
⋃

α<θ1

Kα) = ∅.

Claim 4.6.
⋃

α<θ1
Kα = Kθ1.

Proof. It is clear that
⋃

α<θ1
Kα ⊆ Kθ1 . Now suppose s ∈ Kθ1, so s <2 g∗/D. If s /∈

⋃

α<θ1
Kα, then for any α < θ1, fα/D <2 s. So by the minimal choice of t∗ and the fact

that 〈fα/D : α < θ1〉 is <1-cofinal in J1, we have g∗/D ≤2 s which is a contradiction. �

So we have {s ∈ J2 : s <1 s∗} ∩Kθ1 = ∅. Let h∗ ∈
∏

i<κ Ii be such that s∗ = h∗/D.

Claim 4.7. (a) Kθ1 is internal.

(b) J1 ∩Kθ1 is <1-unbounded in J1.

(c) J1 ∩Kθ1 is internal.

Proof. (a) can be proved as in Claim 4.5 using fθ1 instead of fα. (b) is also clear as J
1∩Kθ1 ⊇

{fα/D : α < θ1} and 〈fα/D : α < θ1〉 is <1-unbounded in J1. Let’s prove (c). As

{s ∈ J2 : s <1 s∗} ∩Kθ1 = ∅ and I = J1 ∪ J2, we can easily see that

J1 ∩Kθ1 = {s ∈ Kθ1 : s <1 s∗}.

For each i < κ set

Li = {s ∈ Ii : s <
2
i fθ1(i) and s <1

i h∗(i)}.

It follows that J1 ∩Kθ1 =
∏

i<κ Li/D, and so J1 ∩Kθ1 is internal. �

It follows from the above claim that J1 =
∏

i<κ L
′
i/D, where for i < κ, L′

i = {t ∈ Ii :

∃s ∈ Li, t ≤1
i s}. Hence J1 is internal and so by Remark 4.2, (J1, J2) is an internal cut of

I which completes the proof of Case 2. The theorem follows. �
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5. C>2κ(D) contains no non-symmetric pairs

In this section we show that if D is a uniform ultrafilter on κ, then C>2κ(D) does not

contain any non-symmetric pairs. Again, we prove a stronger result from which the above

claim, and hence Theorem 1.2(b) follows.

Theorem 5.1. Assume D is a uniform ultrafilter on κ, 〈Ii : i < κ〉 is a sequence of linear

orders and I =
∏

i<κ Ii/D. Also assume (J1, J2) is a cut of I of cofinality (θ1, θ2), where

θ1 6= θ2 are bigger than 2κ. Then the cut (J1, J2) is internal.

Proof. Let <1
i=<Ii (i < κ) and <1=<I . Let <2

i , for i < κ, be a well-ordering of Ii with a

last element and let <2 be such that (I,<2) =
∏

i<κ(Ii, <
2
i )/D; so <2 is a linear ordering

of I with a last element.

We say a sequence K̄ = 〈Ki : i < κ〉 catches (J1, J2) if each Ki ⊆ Ii is non-empty and

for every s1 ∈ J1 and s2 ∈ J2 there is t ∈
∏

i<κ Ki/D such that s1 ≤1 t ≤1 s2. Set

S = {K̄ : K̄ catches (J1, J2)},

and

C = {µ̄ = 〈µi : i < κ〉 : There exists K̄ ∈ S such that
∧

i<κ

|Ki| = µi}.

We can define an order on C by

µ̄1 = 〈µ1
i : i < κ〉 <D µ̄2 = 〈µ2

i : i < κ〉 ⇐⇒ {i < κ : µ1
i < µ2

i } ∈ D.

Now consider the following statement:

(∗) There is µ̄ ∈ C which is <D-minimal.

We consider two cases.

Case 1. (∗) holds: Fix µ̄ = 〈µi : i < κ〉 witnessing (∗), and let K̄ ∈ S be such that for all

i < κ, |Ki| = µi. Let <
3
i be a well-ordering of Ki of order type µi and let <3 be such that

(K,<3) =
∏

i<κ(Ki, <
3
i )/D, where K =

∏

i<κ Ki/D ⊆ I. Let θ3 = cf(
∏

i<κ µi/D) and let

gα ∈
∏

i<κ Ki, α < θ3, be such that 〈gα/D : α < θ3〉 is <3-increasing and cofinal in (K,<3).

As θ1 6= θ2, for some l ∈ {1, 2}, θ3 6= θl. Assume without loss of generality that θ3 6= θ1.

For α < θ3 and i < κ set

Kα,i = {s ∈ Ki : s <
3
i gα(i)}.
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and

Kα = K ↾ {s : s <3 gα/D} =
∏

i<κ

Kα,i/D.

Then the sequence 〈Kα : α < θ3〉 is ⊆-increasing and K =
⋃

α<θ3
Kα. The next claim is

evident from our construction.

Claim 5.2. K is internal.

By our choice of µ̄, the sequence 〈Kα,i : i < κ〉 does not catch (J1, J2), and hence we can

find sα ∈ J1 and tα ∈ J2 such that

Kα ∩ {s ∈ I : sα <1 s <1 tα} = ∅.

As θ3 6= θ1, there is s∗ ∈ J1 such that

sup{α < θ3 : sα ≤1 s∗} = θ3.

It follows that K ∩ {s ∈ J1 : s∗ ≤1 s} = ∅. As K catches (J1, J2), it follows that J2 ∩K is

<1-cofinal in J2 from below, and since K is internal, the arguments of section 2 show that

J2 is also internal, and hence by Remark 4.2, (J1, J2) is an internal cut of I, as required.

Case 2. (∗) fails: Clearly <D is a linear order on C, so it has a co-initiality, call it θ3. As

(∗) fails, <D is not well-founded and so θ3 ≥ ℵ0.

Claim 5.3. θ3 ≤ 2κ.

Proof. Suppose not. Let 〈µ̄ξ : ξ < (2κ)+〉 be a <D-decreasing chain of elements of C. Define

a partition F : [(2κ)+]2 → κ by

F (ξ, ζ) = min{i < κ : µζ
i < µξ

i },

which is well-defined as {i < κ : µζ
i < µξ

i } ∈ D, in particular it is non-empty. By the

Erdös-Rado partition theorem, there are X ⊆ (2κ)+ of size κ+ and some fixed i∗ < κ such

that for all ξ < ζ in X , F (ξ, ζ) = i∗. Thus

ξ < ζ ∈ X =⇒ µζ
i∗

< µξ
i∗
,

which is impossible. �
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Let 〈µ̄ξ = 〈µξ,i : i < κ〉 : ξ < θ3〉 be <D-decreasing which is unbounded from below in

(C,<D). For ξ < θ3 choose K̄ξ = 〈Kξ,i : i < κ〉 ∈ S such that for all i < κ, |Kξ,i| = µξ,i.

Let Kξ =
∏

i<κ Kξ,i/D ⊆ I. We consider two subcases.

Subcase 2.1. For some ξ < θ3, Kξ ∩ J1 is bounded in (J1, <1): Fix such a ξ < θ3 and

let s∗ ∈ J1 be a bound. Then as K̄ξ catches (J1, J2), it follows that Kξ ∩ J2 is unbounded

in J2 from below. Since Kξ is internal and Kξ ∩ J2 is unbounded in J2 from below, so J2

is internal. In follows that the cut (J1, J2) is internal and we are done.

Subcase 2.2. For all ξ < θ3, Kξ ∩ J1 is unbounded in (J1, <1): Since cf(J
1, <1) = θ1,

there are functions fα ∈
∏

i<κ Ii, for α < θ1, such that

(1) ∀α < θ1, fα/D ∈ J1,

(2) 〈fα/D : α < θ1〉 is <1-increasing,

(3) 〈fα/D : α < θ1〉 is a <1-cofinal subset of J
1.

For every α < θ1 and ξ < θ3 there are β and g such that

(4) α < β < θ1,

(5) g ∈
∏

i<κ Kξ,i,

(6) fα/D <1 g/D <1 fβ/D.

For α < β < θ1 set

Λα,β = {(ξ, i) : fα(i) ≤
1
i fβ(i) and there is s ∈ Kξ,i such that fα(i) ≤

1
i s ≤1

i fβ(i)}.

For i < κ set Λα,β,i = {ξ < θ3 : (ξ, i) ∈ Λα,β} and Ξα,β = {i < κ : Λα,β,i 6= ∅}. Also let

F 1
α,β , F

2
α,β be functions with domain κ such that

• If i ∈ Ξα,β , then

F 1
α,β(i) = min{µξ,i : (ξ, i) ∈ Λα,β},

and

F 2
α,β(i) = min{ξ : µξ,i = F 1

α,β(i)}.

• If i ∈ κ \ Ξα,β , then F 1
α,β(i) = F 2

α,β(i) = 0.

Claim 5.4. For each α < θ1 there exist Aα ⊆ (α, θ1), functions F 1
α, F

2
α and a set Ξα such

that
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(1) Aα = {β ∈ (α, θ1) : F
1
α,β = F 1

α, F
2
α,β = F 2

α and Ξα,β = Ξα}.

(2) sup(Aα) = θ1.

Proof. As θ3 ≤ 2κ, we have

|{(F 1
α,β, F

2
α,β ,Ξα,β) : α < β < θ1}| ≤ θκ3 = 2κ < θ1.

So there is an unbounded subset Aα of θ1 such that all tuples (F 1
α,β , F

2
α,β ,Ξα,β), β ∈ Aα, are

the same. The result follows immediately. �

The next claim can be proved in a similar way.

Claim 5.5. There are A ⊆ θ1, functions F1, F2 and a set Ξ such that

(1) A = {α < θ1 : F 1
α = F1, F

2
α = F2 and Ξα = Ξ}.

(2) sup(A) = θ1.

Let K̄∗ = 〈K∗
i : i < κ〉 where K∗

i = KF2(i),i and let µ̄∗ = 〈µ∗
i : i < κ〉 be defined by

µ∗
i = |K∗

i |. Note that

µ∗
i = |K∗

i | = |KF2(i),i| = µF2(i),i = F1(i).

Claim 5.6. For every ξ < θ3, µ̄∗ ≤D µ̄ξ.

Proof. Choose α ∈ A and β ∈ Aα. So we have F1 = F 1
α,β , F2 = F 2

α,β and Ξ = Ξα,β . By

the construction, there is t ∈ Kξ such that fα/D <1 t <1 fβ/D. Let t = g/D, where

g ∈
∏

i<κ Kξ,i. Then

fα(i) <
1
i g(i) <1

i fβ(i) ⇒ (ξ, i) ∈ Λα,β ⇒ µ∗
i = F1(i) = F 1

α,β(i) ≤ µξ,i.

So

{i < κ : µ∗
i ≤ µξ,i} ⊇ {i < κ : fα(i) <

1
i g(i) <1

i fβ(i)} ∈ D,

and the result follows. �

Claim 5.7. µ̄∗ ∈ C.
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Proof. We show that K̄∗ catches (J1, J2), so that K̄∗ ∈ S witnesses µ̄∗ ∈ C. So let s1 ∈ J1

and s2 ∈ J2. Pick α ∈ A such that s1 <1 fα/D. Let β ∈ Aα. By our construction there is

g ∈
∏

i<κ K
∗
i such that fα/D <1 g/D <1 fβ/D and hence

s1 <1 fα/D <1 g/D <1 fβ/D <1 s2.

The claim follows. �

But Claims 5.6 and 5.7 give us a contradiction to the choice of the sequence 〈µ̄ξ : ξ < θ3〉.

This contradiction finishes the proof. �
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