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ON CUTS IN ULTRAPRODUCTS OF LINEAR ORDERS II

MOHAMMAD GOLSHANI AND SAHARON SHELAH

ABSTRACT. We continue our study of the class € (D), where D is a uniform ultrafilter
on a cardinal k and %(D) is the class of all pairs (61,02), where (61, 62) is the cofinality
of a cut in J*/D and J is some (61 + 02)t-saturated dense linear order. We give a
combinatorial characterization of the class (D). We also show that if (61,602) € (D)

and D is Nj-complete or 01 + 62 > 2% then 01 = 6s.

1. INTRODUCTION

Assume £ is an infinite cardinal and D is an ultrafilter on k. Recall that € (D) is defined
to be the class of all pairs (01, 02), where (61, 65) is the cofinality of a cut in J*/D and J is
some (equivalently any) (67 + 02)-saturated dense linear order. Also ¢~ (D) is defined to
be the class of all pairs (01, 62) € € (D), such that 6, + 02 > . The classes €>A(D), €<x(D)
and <x(D) are defined similarly.

The works [2], [3] and [4] of Malliaris and Shelah have started the study of this class for
the case 01 + 02 < 2% and [1] started the study of the case 6; 4+ 62 > 2%. As it was observed
in [1], the study of the class ¢~2~ (D) is very different from the case €<2~ (D), and to prove
results about it, usually some extra set theoretic assumptions are needed. In this paper we
continue [1] and prove more results related to the class €(D).

In the first part of the paper (Sections 2 and 3) we give a combinatorial characterization

of €(D). Using notions defined in section 2, we can state our first main theorem as follows.

Theorem 1.1. Assume D is an ultrafilter on k and A, Ao > K are reqular cardinals. The
following are equivalent:
(a) There is a € S, which is not c-solvable, where ¢ = (k, D, A1, A2).
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(b) (M1, M) € €(D).

In the second part of the paper (Sections 4 and 5) we study the existence of non-symmetric
pairs (i.e., pairs (A1, A2) with Ay # A2) in € (D). By [5], we can find a regular ultrafilter D

on £ such that
CK(D) D) {()\1, )\2) Ny <A < A < 2’%, A1, Ao regular}.

In particular, € (D) contains non-symmetric pairs. On the other hand, results of [1] show
that if (A1, A2) € €~ax(D), then we must have A\¥ = A5, in particular if SCH, the singular
cardinals hypothesis, holds, then A; = A2, and so €~2+(D) just contains symmetric pairs.

We then prove the following theorem (in ZFC):

Theorem 1.2. (a) Assume D is a uniform Ry -complete ultrafilter on k and (A, A2) € € (D).
Then A1 = Xg.

(b) Assume D is a uniform ultrafilter on k and (A1, A2) € C~ax (D). Then A1 = Xo.

The theorem shows some restrictions on the pairs (A1, A2) that €(D) can have, in par-
ticular, it shows that in the result of [5] stated above, we can never take the ultrafilter D to
be Ni-complete and that %2+ (D) can not have non-symmetric pairs.

The paper is organized as follows. In section 2 we give the required definitions, which
lead us to the notion of c-solvability and in section 3 we complete the proof of Theorem 1.1.
In section 4 we prove part (a) of Theorem 1.2 and in section 5 we complete the proof of part
(b) of Theorem 1.2. We may note that parts one (Sections 2 and 3) and two (Sections 4 and

5) can be read independently of each other.
2. ON THE NOTION OF ¢-SOLVABILITY
In this section we give the required definitions which are used in Theorem 1.1.
Definition 2.1. (a) Let C be the class of tuples ¢ = (K¢, De,y Ac,1, Ae2) where
(a-1) e, Ac2 are regular cardinals > ke,

(a-2) D, is a uniform ultrafilter on k..

Also let A, = 2<Ae1 4 2<Xe2 gpd Ac,o = min{Ac 1, Acat-
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(b) ForceC let N = Ngj+ Neo be alinear order of size < A. in such a way that N¢ 1

has cofinality Ac,1, Neo has co-initiality Ac2 and both N1, Nco are . o-saturated

dense linear orders !
(c) ForceC let S, be the set of all sequences @ = {asy : s,t € N¢) such that
c-1) Each asy is a subset of ke,

c-2

a’SS

P

c-4) s<ny,t=as; € De,

(c-1)
(c-2)
(c-3) For s #t,as; =K\ ass,
(c-4)
(c-5)

c-5) If s1 <n. s2 <. S3, then

(a81 s3 2 Qsy 55 N Asy 55) & (Asg,5, 2 sy, N a52751)'

(d) ForceC let Nf = N.1+ No+ Nca, where Ny is a singleton, say No = {s.}.

We now define the notion of c-solvability.

Definition 2.2. Let ¢ € C. We say a € S, is c-solvable, if there exists a sequence b =

(bs : s € N.), such that the sequence a' x b satisfies clauses (c-1)-(c-5) above, where the

sequence a* = (a}, : s,t € NF) is defined as follows:

(1) If s,t € Ne, then al;, = asy,

(2) Fors € Nei,al, =bs and al = ke \ by,
(3) For s € N.2,al s =bs and ai)s* = ke \ s,
@ al., =0.

Then b is called a c-solution for a.

3. A COMBINATORIAL CHARACTERIZATION OF %(D)
In this section we give a proof of Theorem 1.1.

Lemma 3.1. Assumec € C and a € S.. Then

(a) There are M, f such that

(a-1) M is a (A1 + Ac2) T -saturated dense linear order,

1NC is some fixed linear order which we choose in advance. We may assume global choice and let N, be

the least such order.
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(a-2) f=(fs:5€Ne),
(a-3) Each fs € "M,
(a-4) If s <n, t, then asy = {i < ke fs(i) <mr f1(3)},
(a-4) (range(fs): s € N¢) is a sequence of pairwise disjoint sets.
(b) If M, f are as in (a), then
(b-1) (fs/D¢:s € N¢) is an increasing sequence in "< M/D.,

(b-2) a is c-solvable iff "< M /D, realizes the type
q(z) ={fs/Dc<x < ft/Dc:$€ Ncy and t € Neo}.
Proof. (a) Let A= {(i,$) : ¢ < k¢, s € N}, and define the order <4 on A by
(i1,81) <a (i2,82) < (i1 <) or (i1 =iz € as,.5,)-
Also let <4 be defined on A in the natural way from <4, so
(i1,81) <4 (i2,82) < (i1,81) = (i2,82) or (i1,$1) <a (i2, $2).

It is easily seen that <4 is a linear order on A. Now let M be a (A1 + Ac2)t-saturated
dense linear order which contains (A4, <) as a sub-order. Also let f = (f; : s € N..), where
for s € N, fs € "M is defined by fs(i) = (i,s). It is clear that M, and f satisfy clauses

(a-1)-(a-3). For (a-4), assume s <y, ¢ are given. Then
st ={i <ke:i€as 1} ={i <he:(i,8) <a (4,t)} ={i < ke: fs(i) <m fi(i)}.
Finally note that for s # ¢ in N,
range(fs) Nrange(f;) = {(4,8) : 4 < K} N{(4,1) 11 < ke} = 0.

So M and f are as required.
(b) (b-1) follows from (a-4) and the fact that for s <y, ¢,as: € D.. Let’s prove (b-2).
First assume that @ is c-solvable and let b be a solution for a. For each i < k. let p;(z) be

the following type over M:

pi(z) ={fs(i) <mx:s€ Neqandi€bstU{x <p f1(i) :t € Neo and i € K \ by}

Claim 3.2. For each i < K., the type p;(x) is finitely satisfiable in M.
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Proof. Let so <n,, **+ <N., Sn—1 bein N.1 and t,, 1 <n.,< - - <n., to bein N¢2. Also

suppose that i € (), _,, bs,, N[N (ke \ bg,). Then for k <n and [ < m we have

1 1 _
sty 2 Qs 5. N A, t, = bSk N (KC \ btz)v

and S0 i € as, ¢,, which implies fs, (i) < fi,(¢). Take x € M so that
VEk <n,Vl<m, fs (i) <z < f,(),

which exists as M is dense. It follows that p;(z) is finitely satisfiable in M. O

It follows that there exists f € “<M such that for each i < k¢, f(i) realizes the type p;(x)
over M. Then f/D. realizes q(z) over "< M/D,.

Conversely assume that f € “<M is such that f/D, realizes the type ¢(z) over “<M/D..
Claim 3.3. We can assume that range(f) is disjoint from A.

Proof. As (range(fs) : s € N¢) is a sequence of pairwise disjoint sets and Ac1,Ac2 >
K. are regular, there are s; € N, and sy € N.o such that s; <y, s <y, s2 implies
range(fs) Nrange(f) = 0. As M is a (Ac,1 + A¢,2) " -saturated dense linear order, there is f’
such that

o fle HelM,

e range(f')NA =0,

o If 51 <n, s <n, s2 and i < K¢, then fs(?) <. f'(i) = fs(i) <n. f(2) and f'(i) <.

fo(@) = f(@) <n. fs(0).

So we can replace f by f’ and f’ satisfies the requirements on f; i.e., f'/D, realizes g(x)

over "¢ M /D, and further range(f’) N A = 0. O
Now define b = (bs : s € N,.) by

{i<’€c:fs(i) <N, f(l)} ifSE‘ch,lu
{i <ke: f(0) <n. fs(9)} if s € Neo.

bs =

Claim 3.4. b is a c-solution for a.
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Proof. We show that conditions (c-1)-(c-5) of Definition 2.1 are satisfied by a' = a * b (see
Definition 2.2). (c-1) and (c-2) are trivial and (c-3) follows from the fact that Vi < k., fs(i) #
(@) (as range(f) N A =0).

For (c-4), suppose that s <yz t If both s,t are in N., then we are done. So suppose

otherwise. There are two cases to consider.

o If s = s, then t € N, and as f/D, realizes q(z), we have f/D. < f;/D., which
implies al , = b = {i < ke : f(i) <n, fe(i)} € De.
o If t = s,, then s € N.; and as f/D, realizes q(x), we have fs <p_ f, which implies
ay,, = bs = {i < ke fo(i) <n. f(i)} € De.
For (c-5), assume $1 <y+ 82 <y+ S3 are in NI.If all s1,s2 and s3 are in N, then we

are done. So assume otherwise. There are three cases to be considered:

o If 51 = s,, then s9,53 € N, 2, and we have

al Nal =bs, Nasy, 54

={i <he: (f0) <w. fs2 (1) ) A ( for (1) <nv. fs5(i) )}
Cc {7’ < Ke¢: f(l) <N, f53(z)}

= ng
— 1
=ayg, -
Similarly,
1 1 —
a83752 N a5275* = Usy,s0 n (HC \ b52)

={i <kt ( fou (@) 2N [ (D) )ACF(E) >N, fsa(0) )}
Cc {7’ < Ke¢: f(l) >N, f53(z)}
= Ke \ bsg

1
83,8

=a
o If s = s,, then s; € N1, s3 € N2 and we have
gy, M, 5y = oy Ny
={i <he: (fo (i) <w. F@) ) NS <n. fos(0) )}

C{i < ket [, (i) <n. fos (i)}

= Qsy,s3-

_ 41
= Oy 53

Also,
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aig,s* N a’;*,ﬁ = (Ke \ bsy) N (ke \ bsy)
={i <he: ( fou () <n. f() )N F(E) <w. [s:(2) )}
C {Z < Ke¢: fss(i) SNC fsl(l)}

= Qs3,s1

1
53,81°

=a
o If s3 = s,, then 51,52 € N ; and we have

1 1
a n as,

81,82 = a51752 N b52

={i < e ([ (D) <N, fsu(@) )N ( fsp () <n. f(3) )}
c {Z < K¢t f&(i) <N, f(l)}
= b, .

,5x

_ 41
- aSlys*'

Similarly, we have
g, 5y Mg, o = (Ke \ bsy) Nasy s,
={i <he: (fou (i) >n. f() )N (far (i) 2w, fou(i) )}
C{i<he: fo, (1) >N, (i)}

= ke \ bs,
=al , .-
Hence, b is a c-solution for @, as required. O
The lemma follows. g

Given ¢ € C, the next lemma gives a characterization, in terms of c-solvability, of when

(Ae,15 Ac2) is in €(D.), which also completes the proof of Theorem 1.1.

Lemma 3.5. Assume c € C and M is a AT -saturated dense linear order. The following are
equivalent:

(a) There is a € S which is not c-solvable.

(b) (Aey1, Aci2) € €(De).

Proof. First assume there exists a € S, which is not c-solvable. By Lemma 3.1, there are

M, f which satisfy clauses (1-a)-(1-e) of that lemma. But then as @ is not c-solvable, by
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Lemma 2.3(b-2), the type
q(x) ={fs/D. <z < fi/D.:s€ N1 and t € N.o}.

is not realized. It follows that (Ac1,Ac2) € € (D,).

Conversely assume that M and f = (fs : s € N.) witness (A1, \e2) € €(D.). Let
A = J{range(fs) : s € N.}, and let (I4: d € A) be a sequence of pairwise disjoint intervals
of M such that d € I; 2. For s € N, let f, € "M be such that f(i) € Iy ) and
(fl(i) : s € N¢,i < k) is with no repetitions. Define the sequence @ = (as; : s,t € N.), such
that for s <n, ¢, asy = {i < k: fs(i) < fr())} and ar s = K \ asy. Also set as s = 0. It is

evident that a € S..
Claim 3.6. a is not c-solvable.
Proof. Assume not. Then by Lemma 3.1(b-2), the type
q(x) ={fs/D. <z < fi/D.:s€ N,y and t € N2}

is realized in "¢ M/D.., which contradicts the choice of M, f. g

The Lemma follows. O

4. FOR N;-COMPLETE ULTRAFILTER, % (D) CONTAINS NO NON-SYMMETRIC PAIRS

In this section we prove part (a) of Theorem 1.2. In fact we will prove something stronger,

that is of interest in its own sake.

Definition 4.1. Assume D is an ultrafilter on &, (I; : i < k) is a sequence of linear orders

and I =1],_,. I;/D.

<K

(a) a subset K of I is called internal if there are subsets K; C I; such that K =
Hi<l€ Kl/D

(b) The cut (J',J?) of I is called internal, if there are cuts (J}, J?) of I;, i < K, such

that J' =T, J}/D (1=1,2).

2The existence of the sequence (I : d € A) follows from the fact that |A| < ke - [Ne| < Ae and M is

)\j—saturatcd.
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Remark 4.2. Assume J is an initial segment of I which is internal and suppose that
(J,I\J) is a cut of I. Then (J,I\ J) is in fact an internal cut of I. Similarly, if J is an
end segment of I which is internal and if (I'\J,J) is a cut of I, then (I'\ J,J) is an internal

cut of I.

Theorem 4.3. Assume D is a uniform Ri-complete ultrafilter on k, (I; : i < K) is a

sequence of non-empty linear orders and I =[],_,. I;/D. Also assume (J*,J?) is a cut of I

<K

of cofinality (61,02), where 61 # 03. Then the cut (J',J?) is internal.

Before giving the proof of Theorem 4.3, let us show that it implies Theorem 1.2(a).
Proof of Theorem 1.2(a) from Theorem 4.3. Suppose D is an Y;-complete ultrafilter
on r, J is a (A1 +A2)-saturated dense linear order and (J*, J?) is a cut of J*/D of cofinality
(A1, A2). Towards contradiction assume that A; # Ag. It follows from Theorem 4.3 that the
cut (J,J?) is internal, and so that there are cuts (J}!,J?) of J, i < k, such that J' =

[Tic. JI/D (for 1 =1,2). Let (A}, A2) = cf(J}, J2). It follows that A, = [, AL/D,l =1,2.

By the choice of J, for every i < k, either A} > (A + A2)™ or A? > (A1 + A2) ™, hence for

some ! € {1,2}, we have

A={i<r: N>\ +X)T}eD.

It follows that A\; = ], .. AL/D > (A + A2)*, which is a contradiction. a

We are now ready to complete the proof of Theorem 4.3.

Proof. We can assume that 61, 65 are infinite. Let <11:<1i (1 < k) and <1=<; . Let <f be

a well-ordering of I; with a last element and let <3 be such that (I, <) =[], ., (Li,<?)/D.

Then <5 is a linear ordering of I with a last element and since D is Nj-complete, it is
well-founded, so <3 is in fact a well-ordering of I with a last element.

As (J', <1) has cofinality 6;, we can find f, € [[,_. Ii, for a < 0y, such that

<K
(1) Ya < b1, fo)D € J1,
(2) (fo/D :«a < 6y) is <j-increasing,

(3) {fa/D : e < 01) is a <j-cofinal subset of J*!.
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Let B={tel:{seJ':s<yt}is <;-unbounded in J'}. As 6, is infinite, the <5-last
element of I belongs to B, which implies B # () and hence B has a <s-minimal element;

call it ¢.. Let g« € ][, I; be such that ¢, = g./D.

1<K
Note that for each a@ < 6; there are s € J' and 8 > « such that s <3 g./D and

fa/D <1 s <1 f3/D, so we can assume that for all & < 01, fo/D <2 g+/D. This implies

N Wi < s fali) <F ()} € DI.

a<6,

Also note that
{i < k:g«(i) is <} -minimal or <} -maximal} ¢ D,

so, without loss of generality, it is empty. Hence, without loss of generality

/\ /\ [fu(i) <? g.(i) and f, (i) is not <; -minimal].

a<f i<k
Let fo, = g« and for a < 01 set K, = {s € [ : s <o fo/D}. Thus K, is a <o-initial segment

of I.

Claim 4.4. K, N J' is <;-bounded in J*.

Proof. As fo/D <3 t., it follows from our choice of t, that K, is <; bounded in J!. ]
Claim 4.5. If a < 01, then K, is an internal subset of I.

Proof. For each i < k set
Ka,i = {S el;:s <12 fa(l)}

Then K, =[] Ka,i/D and the result follows. O

Now consider the following statement:

(%) There is a < 6; such that J? N K, is <;-unbounded from below in J2.

We split the proof into two cases.

Case 1. (x) holds: Fix a witnessing (). It follows that (J' N K,, J? N K,) is internal

in K,, so there are end segments L; of I; | {s € I; : s <? f,(i)}, for i < k, such that

J* N Ko = [1;.,. Li/D, hence by the assumption, J? = [],_. L;/D, where L; = {t € I, :

Js € L;, s <!t}, so J? is internal. It follows from Remark 4.2 that (J!, J?) is an internal

cut of I and we are done.
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Case 2. (x) fails: So for any a < 6, there is s, € J? such that

{s€J?:5<1 84} NKy=0.
As ) # 0, are regular cardinals, there is s, € J? such that
sup{a < 01 : 8. <1 8o} = 01,

hence

{SEJ2:3<1S*}Q(U K,) = 0.

a<6,

Claim 4.6. U(K@1 K, = Ky,.

Proof. Tt is clear that |J K, C Kpy,. Now suppose s € Kp,, so s <2 g«/D. If s ¢

a<by
UO[<01 K, then for any a < 61, f,/D <2 s. So by the minimal choice of ¢, and the fact

that (f,/D :« < 61) is <j-cofinal in J!, we have g./D <5 s which is a contradiction. [

So we have {s € J?: s <1 8.} N Ky, = 0. Let hy € [[,,. Ii be such that s, = h,/D.

1<K

Claim 4.7. (a) K, is internal.
(b) J'N Ky, is <1-unbounded in J'.

(c) J'N Ky, is internal.

Proof. (a) can be proved as in Claim 4.5 using fs, instead of f,. (b) is also clear as J'N Ky, D
{fa/D : a < 61} and (fo/D : a < 6;) is <j-unbounded in J'. Let’s prove (c). As

{s€J?:5<1 8. N Kp =0and I =J' UJ? we can easily see that
J* N Ky, = {S € Ky, :5<4 S*}

For each 7 < k set
Li={s€I:s<? fo,(i) and s <} h.(i)}.

It follows that J' N Ky, =[], Li/D, and so J' N Ky, is internal. O

It follows from the above claim that J' = [],_,. L}/D, where for i < s, L; = {t € I, :

1<K
Js € L;, t <! s}. Hence J! is internal and so by Remark 4.2, (J!, J?) is an internal cut of

I which completes the proof of Case 2. The theorem follows. g
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5. %~2+(D) CONTAINS NO NON-SYMMETRIC PAIRS

In this section we show that if D is a uniform ultrafilter on &, then €%2+(D) does not
contain any non-symmetric pairs. Again, we prove a stronger result from which the above

claim, and hence Theorem 1.2(b) follows.

Theorem 5.1. Assume D is a uniform ultrafilter on k, (I; : 1 < K) is a sequence of linear

orders and I = [[,_,. I;/D. Also assume (J*,J?) is a cut of I of cofinality (61,602), where

<K

01 # 0y are bigger than 2%. Then the cut (J*, J?) is internal.

Proof. Let <!=<;, (i < k) and <;=<; . Let <3, for i < k, be a well-ordering of I; with a
last element and let <o be such that (I, <s) = [],.,.(fi,<7)/D; so <z is a linear ordering
of I with a last element.

We say a sequence K = (K; : i < k) catches (J1, J?) if each K; C I; is non-empty and

for every s; € J! and sy € J? there is t € [[._,. K;/D such that s; <; t < sa. Set

<K
S ={K : K catches (J',J%)},

and
C ={ji=(u;:i < k) : There exists K € S such that /\ | K| = i}
i<K
We can define an order on C' by

= (uli<r)<pp®={(u?:i<r) == {i<w:p <pl}eD.

Now consider the following statement:

(%) There is i € C which is <p-minimal.

We consider two cases.

Case 1. (x) holds: Fix i = (u; : i < k) witnessing (%), and let K € S be such that for all

i <k, |Ki| = u;. Let <} be a well-ordering of K; of order type y; and let <3 be such that

(K,<3) = [I,<.(Ki,<3)/D, where K = [[,_, Ki/D C I. Let 05 = cf([],., ni/D) and let

<K
Ja € [lic. Ki, o < 83, be such that (g, /D : o < 63) is <s-increasing and cofinal in (K, <3).
As 01 # 04, for some [ € {1,2}, 03 # 0;. Assume without loss of generality that 65 # 6;.

For a < 03 and i < K set

Ka,i = {S eK;:s <§ ga(l)}
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and

Ko =K [{s:s<39a/D} =[] Ka.i/D.
<K

Then the sequence (K, : a < f3) is C-increasing and K = | K,. The next claim is

a<bs

evident from our construction.
Claim 5.2. K is internal.

By our choice of i, the sequence (K, ; : i < ) does not catch (J*, J?), and hence we can

find s, € J' and t, € J? such that
KoN{s€Tl:s,<158<ita}=0.
As 63 # 61, there is s, € J! such that
sup{a < 03 : 8o <1 8.} = 0s.

It follows that K N {s € J' : 5. <1 s} = 0. As K catches (J*, J?), it follows that J? N K is
<;-cofinal in J? from below, and since K is internal, the arguments of section 2 show that
J? is also internal, and hence by Remark 4.2, (J!, J?) is an internal cut of I, as required.

Case 2. (x) fails: Clearly <p is a linear order on C, so it has a co-initiality, call it 03. As

(x) fails, <p is not well-founded and so 65 > Ny.
Claim 5.3. 03 < 2~

Proof. Suppose not. Let (fig : £ < (27)") be a <p-decreasing chain of elements of C'. Define

a partition F : [(2%)%]? — &k by

F(&,¢) =min{i < K : uf < Mf},

which is well-defined as {i < k : ug < uf} € D, in particular it is non-empty. By the
Erdos-Rado partition theorem, there are X C (2")"r of size kT and some fixed i, < k such

that for all £ < ¢ in X, F(&, () = i.. Thus
E<CeX = puf, <,

which is impossible. O
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Let (fie = (pe,i 11 < k) : £ < 63) be <p-decreasing which is unbounded from below in
(C,<p). For £ < 05 choose K¢ = (K¢, : i < k) € S such that for all i < r, |K¢;| = pie-

Let K¢ =[], Ke,i/D C I. We consider two subcases.

1<K

Subcase 2.1. For some ¢ < 03, K¢NJ! is bounded in (J!, <;): Fix such a ¢ < 63 and

let s, € J! be a bound. Then as K¢ catches (J!, J?), it follows that K¢ N J? is unbounded
in J?2 from below. Since K¢ is internal and K¢ N J? is unbounded in J? from below, so J?
is internal. In follows that the cut (J!, J?) is internal and we are done.

Subcase 2.2. For all £ <03, K¢NJ' is unbounded in (J', <;): Since cf(J!, <1) = 61,

there are functions f, € [[,_ . Ii, for a < 61, such that

i<k
(1) Ya < b1, fo)D € J1,
(2) (fo/D :a < 6y) is <j-increasing,
(3) {fa/D : a < 0y) is a <j-cofinal subset of J*!.

For every a < 07 and & < 03 there are 5 and ¢ such that
4) a< p <6,
(5) g € lick Kes
(6) fo/D <19/D <1 fs/D.

For a < 8 < 67 set
Ao g ={(&10): fuli) S% f3(i) and there is s € K¢ ; such that f,(7) S% s §11 fa(@)}.

For i < kset Aqp; ={§ <0s5: (1) € Aap} and Eqp = {i < Kk : Ag g, # 0}. Also let

F, 4, F72 5 be functions with domain & such that

o If i € 5, 3, then
Fy (i) = min{pe i : (€,9) € Aap},
and
F 5(i) = min{€ : pei = F 5()}.

o If i € K\ Eq g, then F;ﬁ(z) = F25(z’) =0.

a7

Claim 5.4. For each a < 01 there exist A, C (o, 01), functions Folt,FO% and a set =, such

that
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. 1 _ 1 2 _ 2 = _=
(1) Ay ={B € (a,0y) : F,g=F,,Fjz=F; andEq 5 = Zalt-

(2) sup(Ay) = 61.
Proof. As 63 < 2%, we have
{(Fa 5 F2 3 Bap) < B <01} <05 =27 <0,

So there is an unbounded subset A, of #; such that all tuples (Foltﬁ7 Fo%ﬁ’ Ea.8),0 € Aq, are

the same. The result follows immediately. O

The next claim can be proved in a similar way.

Claim 5.5. There are A C 01, functions Fy, F5 and a set = such that

(1) A={a<6‘1:F;=F1,Fa2:F2 andEa:E}.

(2) sup(A) = 6.

Let K* = (K} : i < k) where K} = Kp,;),; and let i* = (u} : i < ) be defined by

ur = |K}|. Note that
pi = K7 = [Kry(),il = try ), = F1(i).
Claim 5.6. For every & < 03, i* <p [i¢.

Proof. Choose o € A and B € A,. So we have Fy = FO{)B,FQ = FO%)B and E = =, 5. By
the construction, there is ¢ € K¢ such that f./D <i t <1 fg/D. Let t = g/D, where

g e Hi<n K{,i- Then

fa(@) <t g(i) <j fs(i) = (&) € Aap = puf = F1(i) = F, (i) < peie
So
{i <ropf <peiy2{i<r:fali)<igi)<i fs(i)} € D,

and the result follows. O

Claim 5.7. p* € C.
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Proof. We show that K* catches (J!,.J?), so that K* € S witnesses i* € C. So let s; € J!
and sy € J2. Pick a € A such that s; <; fo/D. Let 8 € A,. By our construction there is

g € [Lic,. K such that f,/D <1 g/D <1 fz/D and hence
S1 <1 fa/D <1 g/D <1 fﬁ/D <1 So.
The claim follows. O

But Claims 5.6 and 5.7 give us a contradiction to the choice of the sequence (fie : £ < 63).

This contradiction finishes the proof. g
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