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COMPACT CARDINALS AND EIGHT VALUES IN CICHOŃ’S DIAGRAM

JAKOB KELLNER, ANDA RAMONA TĂNASIE, AND FABIO ELIO TONTI

ABSTRACT. Assuming three strongly compact cardinals, it is consistent that

ℵ1 < add( ) < cov( ) < b < d < non( ) < cof( ) < 2ℵ0 .

Under the same assumption, it is consistent that

ℵ1 < add( ) < cov( ) < non() < cov() < non( ) < cof( ) < 2ℵ0 .

INTRODUCTION

We assume the reader is familiar with the definitions and some basic properties (which
can all be found, e.g., in [BJ95]) of the cardinal characteristics in Cichoń’s diagram:

cov( ) // non() // cof() // cof( ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add( ) //

OO

add() //

OO

cov() //

OO

non( )

OO

An arrow between x and y indicates that ZFC proves x ≤ y. Moreover, max(d, non()) =

cof() and min(b, cov()) = add(). These are the only “simple” restrictions in the
following sense: every assignment of ℵ1 and ℵ2 to the entries of Cichoń’s diagram that
honors these restrictions can be shown to be consistent. It is more challenging to get
more than two simultaneously different values, for recent progress in this direction see,
e.g., [Mej13, GMS16, FGKS17].

This paper consists of two parts: In the first one, we present a finite support ccc iteration
P 4 forcing that ℵ1 < add( ) < cov( ) < b < d = 2ℵ0 (and actually something stronger,
cf. Lemmas 1.18 and 1.20). This is nothing new: The forcing and all required properties
were presented in [Mej13]. We recall all the facts that are required for our result, in a form
convenient for our purposes.

In the second part, we investigate the (iterated) Boolean ultrapowerP 7 of P 4. Assuming
three strongly compact cardinals, this ultrapower (again a finite support ccc iteration) forces

ℵ1 < add( ) < cov( ) < b < d < non( ) < cof( ) < 2ℵ0 ,

i.e., we get the following values in the diagram (for some increasing cardinals �i):

�2 // // // �6 // �7

�3 //

OO

�4

OO

ℵ1
// �1 //

OO

//

OO

//

OO

�5

OO
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It seems unlikely that the large cardinals assumption is actually needed, but we would expect
a proof without it to be considerably more complicated.

The kind of Boolean ultrapower that we use was investigated in [Man71], and recently
applied, e.g., in [MS16] and [RS] (where a Boolean ultrapower of a forcing notion is ap-
plied to cardinal characteristics of the reals). Recently Shelah developed a method of using
Boolean ultrapowers to control characteristics in Cichoń’s diagram. The current paper is a
relatively simple application of these methods. A more complicated one, in an upcoming
paper [GKSnt] by Goldstern, Shelah and the first author, shows that all entries in Cichońs
diagram can be pairwise different.

Acknowledgments. We are grateful to Martin Goldstern and Saharon Shelah for valuable
discussions.

We would like to thank an anonymous referee for their quick, insightful and kind review,
and for pointing out a few embarrassing typos and mistakes.
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1. THE INITIAL FORCING

1.1. Good iterations. The forcing P 4 we are about to define has many pleasant properties
because it is “good”, a notion first explored in [JS90] and [Bre91]. We now recall the basic
facts of good iterations, and specify the instances of the relations we use.

Assumption 1.1. We will consider binary relations R on X = !! (or on X = 2!) that

satisfy the following: There are relations Rn such that R =
⋃
n∈! R

n, each Rn is a closed

subset (and in fact absolutely defined) of X × X, and for g ∈ X and n ∈ !, the set

{f ∈ X ∶ f Rn g} is nowhere dense. Also, for all g ∈ X there is some f ∈ X with f R g.

We will actually use another space as well, the space  of strictly positive rational se-
quences (qn)n∈! such that

∑
n∈! qn ≤ 1. It is easy to see that  is homeomorphic to !!,

when we equip the rationals with the discrete topology and use the product topology.
We use the following instances of relations R on X; it is easy to see that they all satisfy

the assumption (in case of X =  we use the homeomorphism mentioned above):

Definition 1.2. 1. X = : f R1 g if (∀∗n ∈ !) f (n) ≤ g(n).
(We use “∀∗n ∈ !” for “(∃n0 ∈ !) (∀n > n0)”.)

2. X = 2!: f R2 g if (∀∗n ∈ !) f ↾ In ≠ g ↾ In,
where (In)n∈! is the increasing interval partition of ! with |In| = 2n+1.

3. X = !!: f R3 g if (∀∗n ∈ !) f (n) ≤ g(n).

We say “f is bounded by g” if f R g; and, for  ⊆ !!, “f is bounded by ” if
(∃y ∈ ) f R y. We say “unbounded” for “not bounded”. (I.e., f is unbounded by  if
(∀y ∈ ) ¬f R y.) We call  an R-unbounded family, if ¬(∃g) (∀x ∈ ) xR g, and an R-
dominating family if (∀f ) (∃x ∈ ) f Rx. Let bi be the minimal size of an Ri-unbounded
family, and di of an Ri-dominating family.

We only need the following connection between Ri and the cardinal characteristics:

Lemma 1.3. 1. add( ) = b1 and cof( ) = d1.

2. cov( ) ≤ b2 and non( ) ≥ d2.

3. b = b3 and d = d3.
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Proof. (3) holds by definition. (1) can be found in [BJ95, 6.5.B]. To prove (2), note that for
fixed g ∈ 2! the set {f ∈ 2! ∶ ¬g R2 f} is a null set, call itNg . Let  be an R2-unbounded
family. Then {Ng ∶ g ∈ } covers 2!: Fix f ∈ 2!. As f does not bound , there is some
g ∈  unbounded by f , i.e., f ∈ Ng . Let X be a non-null set. Then X is R2-dominating:
For any g ∈ 2! there is some x ∈ X ⧵Ng , i.e., g R2 x. �

Definition 1.4. [JS90] Let P be a ccc forcing, � an uncountable regular cardinal, and R as
above. P is (R, �)-good, if for each P -name r ∈ !! there is (in V ) a nonempty set  ⊆ !!

of size <� such that every f (in V ) that is R-unbounded by  is forced to be R-unbounded
by r as well.

Note that �-good trivially implies �-good if � ≥ � are regular.
How do we get good forcings? Let us just quote the following results:

Lemma 1.5. A FS iteration of Cohen forcing is good for any (R, �), and the composition

of two (R, �)-good forcings is (R, �)-good.

Assume that (P� , Q�)�<� is a FS ccc iteration. Then P� is (R, �)-good, if each Q� is forced

to satisfy the following:

1. For R = R1: |Q�| < �, or Q� is �-centered, or Q� is a sub-Boolean-algebra of

the random algebra.

2. For R = R2: |Q�| < �, or Q� is �-centered.

3. For R = R3: |Q�| < �.

Proof. (R, �)-goodness is preserved by FS ccc iterations (in particular compositions), as
proved in [JS90], cf. [BJ95, 6.4.11–12]. Also, ccc forcings of size<� are (R, �)-good [BJ95,
6.4.7], which takes care of the case of Cohens and of |Q�| < �. So it remains to show that
(for i = 1, 2) the “large” iterands in the list are (Ri, �)-good. ForR1 this follows from [JS90]
and [Kam89], cf. [BJ95, 6.5.17–18]. For R2 this is proven in [Bre91]. �

Lemma 1.6. Let � ≤ � ≤ � be uncountable regular cardinals. After forcing with �
many Cohen reals (c�)�∈�, followed by an (R, �)-good forcing, we get: For every real r
in the final extension, the set {� ∈ � ∶ c� is unbounded by r} is cobounded in �. I.e.,

(∃� ∈ �) (∀� ∈ � ⧵ �) ¬c� R r.

(The Cohen real c� can be interpreted both as Cohen generic element of 2! and as Cohen
generic element of !!; we use the interpretation suitable for the relation R.)

Proof. Work in the intermediate extension after � many Cohen reals, let us call it V� . The
remaining forcing (i.e., � ⧵ � many Cohens composed with the good forcing) is good; so
applying Definition 1.4 we get (in V�) a set  of size <�.

As the initial Cohen extension is ccc, and � ≥ � is regular, we get some � ∈ � such
that each element y of  already exists in the extension by the first � many Cohens, call
it V� . The set of reals My bounded by y is meager (and absolute). Any c� for � ∈ � ⧵ �
is Cohen over V� , and therefore not in My, i.e., not bounded by y. As this holds for all y,
c� is unbounded by  , and thus, according to the definition of good, unbounded by r as
well. �

In the light of this result, let us revisit Lemma 1.3 with some new notation:

Definition 1.7. For i = 1, 2, 3, � > ℵ0 regular, and P a ccc forcing notion, let ⊚i(P , �)
stand for: “There is a sequence (x�)�∈� of P -names such that for every P -name y we have
(∃� ∈ �) (∀� ∈ � ⧵ �)P ⊩ ¬x� Ri y.”

Lemma 1.8. ⊚i(P , �) implies bi ≤ � and di ≥ �. In particular:
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1. ⊚1(P , �) implies P ⊩ ( add( ) ≤ �& cof( ) ≥ � ).
2. ⊚2(P , �) implies P ⊩ ( cov( ) ≤ �& non( ) ≥ � ).
3. ⊚3(P , �) implies P ⊩ ( b ≤ �& d ≥ � ).

Proof. The set {x� ∶ � ∈ �} is certainly forced to be Ri-unbounded; and given a set
Y = {yj ∶ j < �} of � < � many P -names, each has a bound �j , so for any � ∈ � above
all �j we get P ⊩ ¬x� Ri yj for all j; i.e., Y cannot be dominating. �

1.2. Ground model Borel functions, partial random forcing. The following lemma
seems to be well known (but we are not aware of a good reference or an established no-
tation):

Definition 1.9. Let Q be a forcing notion, and let � be a Q-name for a real. We say that Q
is “generically Borel determined (by �, via B)”, if

∙ Q consists of reals,
∙ the Q-generic filter is determined by the real �, and moreover:
∙ B ⊆ ℝ

2 is a Borel relation such that for all q ∈ Q, Q ⊩ (B(q, �) ↔ q ∈ G ).

We investigate iterations of such forcings:

Lemma 1.10. Assume that (P� , Q� )�<� is a FS ccc iteration such that each Q� is gener-

ically Borel determined (in an absolute way already fixed in V ). Then for each P�-name

r of a real, there is (in the ground model) a Borel function F ∶ ℝ
! → ℝ and a sequence

(�i)i∈! of ordinals in � such that P� forces r = F ((��i)i∈!).

Proof. We prove by induction on  ≤ �:

∙ For all p ∈ P there is a Borel relationBp ⊆ ℝ
! and a sequence (�pi )i∈! of elements

of  such that P ⊩ Bp((��pi
)i∈!) ↔ p ∈ G .

∙ For each P -name r of a real, there is a Borel function F r and a sequence (�ri )i∈!
of elements of  such that P ⊩ r = F r((��pi

)i∈!).

The second item follows from the first, as we can use the countable maximal antichains that
decide r(n) = m.

If  is a limit ordinal, then P has no new elements, so there is nothing to do.
So assume  = � + 1. By our assumption, Q� is generically Borel determined from

�� via a Borel relation B� . Consider (p, q) ∈ P� ∗ Q� . This is in G iff p ∈ G� (which,
by induction, is Borel) and q ∈ G(�). As q is a real, it is forced that q = Bq((�qi )i∈!).
Moreover, P� forces that Q� forces that q ∈ G(�) iff B� (�� , q) iff B� (�� , B

q((�qi )i∈!)). �

Definition 1.11. Given (P� , Q� )�<� as above, and some w ⊆ �, we define the P�-name
ℝ
w to consist of all reals r such that in the ground model there are a Borel function F and

a sequence (�i)i∈! of elements of w such that r = F ((��i)i∈!).

The following is straightforward:

Facts 1.12. ∙ Set (in V ) � = (|w| + 2)ℵ0 . Then it is forced that ℝw has cardinality

≤�.

∙ If w′ ⊇ w, then (it is forced that) ℝw′
⊇ ℝ

w.

∙ If w is the increasing union of (w�)�∈ with cf() ≥ !1, then (it is forced that)

ℝ
w =

⋃
�∈ ℝ

w� .

∙ For every P�-name r of a real there is a countable w such that (it is forced that)

r ∈ ℝ
w.
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Definition 1.13. Let B be (the definition of) random forcing, i.e., positive pruned trees
T , ordered by inclusion. Given (P� , Q�)�<� as above, w ⊆ �, we define the P�-name
B
w ∶= B ∩ℝ

w and call it “partial random forcing defined from w”.

Clearly B
w is a subforcing (not necessarily a complete one) of B, and if p, q in B

w are
incompatible in B

w then they are incompatible in random forcing. In particular Bw is ccc.
Note that Bw is forced to be generically Borel determined, in way already fixed in V :

The generic real � is defined by {�} =
⋂
{[s] ∈ G ∶ s ∈ 2<!}, and the Borel relation by

“� ∈ [T ]”.

Remark 1.14. In this section, we have provided a very explicit notion of “partial random”,
using Borel functions. The use of Borel functions is not essential, we could use any other
method of calculating reals from generic reals at certain restricted positions, provided this
method satisfies Facts 1.12. One such alternative definition has been used in [GMS16]: We
can define the sub-forcing P� ↾ w of P� in a natural way, and require that it is a complete
subforcing (which is a closure property of w). Then we can take Q� to be random forcing
as evaluated in the P� ↾ w-extension.

While this approach is basically equivalent (and may seem slightly more natural than
the artificial use of Borel functions), it has the disadvantage that we have to take care of the
closure property of w.

Definition 1.15. Analogously to “partial random”, we define the “partial Hechler” and
“partial amoeba” forcings.

These forcings are generically Borel determined as well.

1.3. The inital forcingP 4. Assume that � is regular uncountable and � < � implies�ℵ0 <
�. Then |w| < � implies that the size of a partial forcing defined by w is <�.

Definition 1.16. Assume GCH and let �1 < �2 < �3 < �4 be regular cardinals. Set
�4 = �4+�4. Partition �4 ⧵�4 into unbounded sets S1, S2, and S3. Fix for each � ∈ �4 ⧵�4
some w� ⊆ � such that each {w� ∶ � ∈ S i} is cofinal in [�4]

<�i .1

We now define P 4 = (P� , Q�)�∈�4 to be the FS ccc iteration which first adds �4 many
Cohen reals, and such that for each � ∈ �4 ⧵ �4,

if � is in

⎧
⎪⎨⎪⎩

S1

S2

S3

⎫
⎪⎬⎪⎭

, then Q� is the partial

⎧
⎪⎨⎪⎩

amoeba
random
Hechler

⎫
⎪⎬⎪⎭

forcing defined fromw� .

The forcing results in 2ℵ0 = �4, which follows from the following easy and well-known
fact:

Lemma 1.17. Let (P� , Q�)�<� be a FS ccc iteration of length � such that eachQ� is forced

to consist of real numbers, and set �(�) ≔ (2 + �)ℵ0 . Then P� ⊩ 2ℵ0 ≤ �(�).

Proof. By induction on �, we show that there is a dense subforcing of D� ⊆ P� of size
≤�(�). Then the continuum has size at most �(�) (as each name of a real corresponds to
a countable sequence of antichains, labeled with 0, 1, in P� , without loss of generality in
D�).

For � + 1, D� ⊆ P� is dense and has size ≤�(�), and Q� is forced to have size ≤�(�).
Without loss of generality we can identify Q� with a subset of �(�). Let D�+1 consist of
(p, �̌) ∈ P�+1 such that p ∈ D� forces � ∈ Q�.

1I.e., if � ∈ S i then |w� | < �i, and for all u ⊆ �4, |u| < �i there is some � ∈ S i with w� ⊇ u.
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For � limit, the union of D� is dense in P� =
⋃
�∈� P� . �

According to Lemma 1.5 P 4 is (Ri, �i)-good for i = 1, 2, 3, so Lemmas 1.6 and 1.8 gives
us:

Lemma 1.18. ⊚i(P
4, �) holds for i = 1, 2, 3 and each regular cardinal � in [�i, �4].

So in particular, P 4 forces add( ) ≤ �1, cov( ) ≤ �2, b ≤ �3 and cof( ) =

non( ) = d = 2ℵ0 .

Theorem 1.19. [Mej13, Thm. 2] P 4 forces add( ) = �1, cov( ) = �2, b = �3, and

d = �4 = 2ℵ0 .

Proof. It is easy to see that the partial amoebas take care of add( ) ≥ �1: Let (Ni)i∈�,
ℵ1 ≤ � < �1 be a family of P 4-names of null sets. EachNi is a Borel code, i.e., a real, and
therefore Borel-computed from some countable set wi ⊆ �4. The union of the wi is a set
w∗ of size ≤� that already Borel-decides allNi. There is some � ∈ S1 such thatw� ⊇ w

∗,
so the partial amoeba forcing at � sees all the null sets Ni and therefore covers their union.

Analogously one proves cov( ) ≥ �2 and b ≥ �3. �

We will reformulate the proof for cov( ) in a cumbersome manner that can be conve-
niently used later on:

Lemma 1.20. Let ⊞2(P , �, �) stand for: “P is a ccc forcing notion, and there is a <�-

directed partial order (S, ≺) of size � and a sequence (rs)s∈S of P -names for reals such

that for each P -name N of a null set (∃s ∈ S) (∀t ≻ s)P ⊩ rt ∉ N .”

∙ ⊞2(P , �, �) implies P ⊩ ( cov( ) ≥ �& non( ) ≤ � ).
∙ ⊞2(P

4, �2, �4) holds.

Proof. cov( ) ≥ �: Fix<�many P -namesN� of null sets. Each real has a “lower bound”
s� ∈ S, i.e., P ⊩ rt ∉ N� whenever t ≻ s� . Let t ≻ s� for all � (this is possible as S is
directed). So P ⊩ rt ∉ N� for every �, i.e., the union doesn’t cover the reals.

non( ) ≤ �, as the set of all rs is not null: For every nameN of a null set there is some
s ∈ S such that P ⊩ rs ∉ N .

For P 4, we set S = S2, s ≺ t if ws ⊆ wt, and we let rs be the partial random real added
at s. A P 4 name for a null setN depends (in a Borel way) on a countable index setw∗ ⊆ �4.
Fix some s ∈ S2 such that ws ⊇ w

∗, and pick any t ≻ s. Then wt contains all information
to calculate the null set N , and therefore the partial random rt over wt will avoid N . �

2. THE BOOLEAN ULTRAPOWER OF THE FORCING

2.1. Boolean ultrapowers. Boolean ultrapowers generalize regular ultrapowers by using
arbitrary Boolean algebras instead of the power set algebra.

Assumption 2.1. � is strongly compact, B is a �-distributive, �+-cc, atomless complete

Boolean algebra.

Lemma 2.2. [KT64] Every �-complete filter on B can be extended to a �-complete ultra-

filter U .2

Proof. List the required properties of U as a set of propositional sentences in � (a propo-
sitional language allowing conjunctions and disjunctions of any size <�), using atomic
formulas coding b ∈ U and b ∉ U for b ∈ B. �

2For this, neither �+-cc nor atomless is required, and it is sufficient that B is �-complete.
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Assumption 2.3. U is a �-complete ultrafilter on B.

Lemma 2.4. There is a maximal antichain A0 in B of size � such that A0 ∩ U = ∅. In

other words, U is not �+-complete.

Proof. Let A0 be a maximal antichain in the open dense set B ⧵ U . As B is �+-cc, A0 has
size ≤�. It cannot have size <�, as U is �-complete and therefore meets every antichain of
size <�. �

The Boolean algebra B can be used as forcing notion. As usual, V denotes the universe
we start with, sometimes called the ground model. In the following, we will not actually
force with B (or any other p.o.); we always remain in V , but we still use forcing notation.
In particular, we call the usual B-names “forcing names”.

Definition 2.5. A BUP-name (or: labeled antichain) x is a functionA → V whose domain
is a maximal antichain. We may write A(x) to denote A.

Each BUP-name corresponds to a forcing-name3 for an element of V . We will identify
the BUP-name and the corresponding forcing-name. In turn, every forcing name � for an
element of V has a forcing-equivalent BUP-name.

In particular, we can calculate, for two BUP-names x and y, the Boolean value ⟦x = y⟧.4

Definition 2.6. ∙ Two BUP-names x and y are equivalent, if ⟦x = y⟧ ∈ U .
∙ For v ∈ V , let v̌ be a BUP-name-version of the standard name for v (unique up to

equivalence).
∙ The Boolean ultrapower M− consists of the equivalence classes [x] of BUP-

names x; and we define [x] ∈− [y] by ⟦x ∈ y⟧ ∈ U .
∙ j− ∶ V →M− maps v to [v̌].

We are interested in the ∈-structure (M−,∈−).
Given BUP-names x1,… , xn and an ∈-formula ', the truth value ⟦'V (x1,… , xn)⟧ is

well defined (it is the weakest element of B forcing that in the ground model '(x1,… , xn)

holds, which makes sense as x1,… , xn are guaranteed to be in the ground model).5

Lemma 2.7. ∙ Łoś’s theorem: (M−,∈−) ⊨ '([x1],… , [xn]) iff ⟦'V (x1,… , xn)⟧ ∈

U .

∙ j− ∶ (V ,∈) → (M−,∈−) is an elementary embedding.

∙ In particular, (M−,∈−) is a ZFC model.

Proof. Straightforward by the definition of equivalence and of [x] ∈− [y], and by induction
(using that U is a filter for ' ∧  and for ∃v'(v), and that it is an ultrafilter for ¬').
For elementarity, note that M− ⊨ '([x̌1],… , [x̌n]) iff ⟦'V (x̌1,… , x̌n)⟧ ∈ U iff V ⊨
'(x1,… , xn). �

Lemma 2.8. (M−,∈−) is wellfounded.

3More specifically, to the forcing-name {(x̌(a), a) ∶ a ∈ A(x)}.
4We can calculate ⟦x = y⟧ more explicitly as follows: Pick some common refinement A′ of A(x) and A(y).

This defines in an obvious way BUP-names x′ and y′ both with domain A′: For a ∈ A′ we set x′(a) = x(ã) for ã
the unique element of A(x) above a. Then ⟦x = y⟧ is

⋁
{a ∈ A′ ∶ x′(a) = y′(a)} (which is independent of the

refinement A′).
5Equivalently, we can explicitly calculate ⟦'V (x1,… , xn)⟧ as follows: Chose a common refinement A′ of

A(x1),… , A(xn), and set ⟦'V (x1,… , xn)⟧ to be
⋁
{a ∈ A′ ∶ '(x′

1
(a),… , x′n(a))}; where again the BUP-names

x′i are the canonically defined BUP-names with domain A′ that are equivalent to xi.
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Proof. This is the standard argument, using the fact that U is �-complete:
Assume [xn+1] ∈

− [xn] for n ∈ !. Choose a common refinement A of the antichains
A(xn), Again, let x′n be the BUP-names with domain A equivalent to xn. So, by our as-
sumption, un ≔ ⟦xn+1 ∈ xn⟧ =

⋁
{a ∈ A ∶ x′

n+1
(a) ∈ x′n(a)} is in U for each n. As U is

�-complete, there is some u ∈ U stronger than all un. This implies: If a ∈ A is compatible
with u, then a is compatible with un (for all n), and therefore x′

n+1
(a) ∈ x′n(a) for all n, a

contradiction. �

Definition 2.9. Let M be the transitive collapse of (M−,∈−), and let j ∶ V → M be the
composition of j− with the collapse. We denote the collapse of [x] by xU . So in particular
v̌U = j(v).

Lemma 2.10. ∙ M ⊧ '(xU
1
,… , xUn ) iff ⟦'V (x1,… , xn)⟧ ∈ U . In particular, j ∶

V →M is an elementary embedding.

∙ If |Y | < �, then j(Y ) = j′′Y . In particular, j restricted to � is the identity. M is

closed under <�-sequences.

∙ j(�) ≠ �. I.e., � = cr(j).

Proof. If [x] ∈ j−(Y ), then we can refine the antichain A(x) to some A′ such that each
a ∈ A′ either forces x = y for some y ∈ Y , or x ∉ Y . Without loss of generality (by taking
suprema), we can assume different elements a of A′ giving different values y(a); i.e., A′

has size |Y | + 1 < �. So U selects an element a of A′, and as ⟦x ∈ Y ⟧ ∈ U , this element
a proves that [x] = j−(y(a)).

We have already mentioned that there is a maximal antichain A0 = {ai ∶ i ∈ �} of
size � such that A0 ∩ U = ∅. The BUP-name x with A(x) = A0 and x(ai) = i satisfies
[x] ∈− j−(�), but is not equivalent to any v̌; so � ≤ xU < j(�). �

As we have already mentioned, an arbitrary forcing-name for an element of V has a
forcing-equivalent BUP-name, i.e., a maximal antichain labeled with elements of V . If � is
a forcing-name for an element of Y (Y ∈ V ), then without loss of generality � corresponds
to a maximal antichain labeled with elements of Y . We call such an object y a “BUP-name
for an element of j(Y )” (and not “for an element of Y ”, for the obvious reason: unlike in
the case of a forcing extension, yU is generally not in Y , but, by definition of ∈−, it is in
j(Y )).

2.2. The algebra and the filter. We will now define the concrete Boolean algebra we are
going to use:

Definition 2.11. Assume GCH, let � be strongly compact, and � > � regular.
P�,� is the forcing notion adding � Cohen subsets of �. More concretely: P�,� consists of

partial functions from � to � with domain of size<�, ordered by extension. Let f ∗ ∶ � → �
be the name of the generic function.

�,� is the complete Boolean algebra generated by P�,� .

Clearly �,� is �+-cc and �-distributive, as P�,� is even �-closed.

Lemma 2.12. There is a �-complete ultrafilter U on B = �,� such that:

(a) The Boolean ultrapower gives an elementary embedding j ∶ V →M . M is closed

under <�-sequences.

(b) The elements xU of M are exactly (the collapses of equivalence classes of) B-

names x for elements of V ; more concretely, a function from an antichain (of size

�) to V . We sometimes say “xU is a mixture of � many possibilities”.
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Similarly, for Y ∈ V , the elements xU of j(Y ) correspond to the B-names x of

elements of Y , i.e., antichains labeled with elements of Y .

(c) If |A| < �, then j′′A = j(A). In particular, j restricted to � is the identity.

(d) j has critical point �, cf(j(�)) = �, and � ≤ j(�) ≤ �+.

(e) If � > � is regular, then max(�, �) ≤ j(�) < max(�, �)+.

(f) If S is a <�-directed partial order, and � < �, then j′′S is cofinal in j(S).
(g) If cf(�) ≠ �, then j′′� is cofinal in j(�), so in particular cf(j(�)) = cf(�).

Proof. We have already seen (a)–(c).
(d): For each � ∈ �, f ∗(�) is a forcing-name for an element of �, and thus a BUP-name

for an element of j(�). Let x be some other BUP-name for an element of j(�), i.e., an
antichainA of size � labeled with elements of �. Let � ∈ � be bigger than the supremum of
supp(a) for each a ∈ A. We call such a pair (x, �) “suitable”, and set bx,� ≔ ⟦f ∗(�) > x⟧.
We claim that all these elements form a basis for a �-complete filter. To see this, fix suitable
pairs (xi, �i) for i < � where � < �; we have to show that

⋀
i∈� bxi,�i ≠ 0. Enumerate {�i ∶

i ∈ �} increasing (and without repetitions) as �j for j ∈  ≤ �. Set Aj = {i ∶ �i = �j}.
Given qj , define qj+1 ∈ P�,� as follows: qj+1 ≤ qj ; �

j ∈ supp(qj+1) ⊆ �
j∪{�j}; and qj+1 ↾

�j decides for all i ∈ Aj the values of xi to be some �i; and qj+1(�
j) = supi∈Aj (�i) + 1.

For j ≤  limit, let qj be the union of {qk ∶ k < j}. Then q is stronger than each bxi,�i .
As � is strongly compact, we can extend the �-complete filter generated by all bxi,�i

to a �-complete ultrafilter U . Then the sequence (f ∗(�)U )�∈� is strictly increasing (as
(f ∗(�), �′) is suitable for all � < �′) and cofinal in j(�) (as we have just seen); so cf(j(�)) =
�.

(e): We count all BUP-names for elements of j(�). As we can assume that the antichains
are subsets of P�,� , which has size �, and as � is regular and GCH holds, we get |j(�)| ≤
[�]� × �� = max(�, �).

(f): An element xU of j(S) is a mixture of � many possibilities in S. As � < �, there is
some t ∈ S above all the possibilities. Then j(t) > xU .

(g): Set � = cf(�), and pick an increasing cofinal sequence �̄ = (�i)i∈� in �. j(�̄) is
increasing cofinal in j(�) (as this is absolute betweenM and V ). If � < �, then j′′�̄ = j(�̄),
otherwise use (f). �

2.3. The ultrapower of a forcing notion. We now investigate the relation of a forcing
notion P ∈ V and its image j(P ) ∈ M , which we use as a forcing notion over V . (Think
of P as being one of the forcings of Section 1; it has no relation with the Boolean algebra
B.)

Note that as j(P ) ∈M andM is transitive, every j(P )-generic filterG over V is trivially
generic over M as well, and we will use absoluteness between M[G] and V [G] to prove
various properties of j(P ).

Lemma 2.13. If P is �-cc, then j gives a complete embedding from P into j(P ). I.e., j′′P
is a complete subforcing of j(P ), and j is an isomorphism from P to j′′P .

Proof. It is clear that j is an isomorphism onto j′′P : By definition the order <j(P ) on
j(P ) is j(<P ), and by elementarity p ≤P q iff j(q) <j(P ) j(p). Also, p ⟂ q is preserved:
M ⊨ p ⟂j(P ) q by elementarity, so p ⟂j(P ) q holds in V (as j(P ) ∈M andM is transitive).

It remains to be shown that each maximal antichainA of P is preserved, i.e., j′′A ⊆ j(P )
is predense.

By our assumption, |A| < �, so j′′A = j(A) (by Lemma 2.12(c)), which is maximal in
M (by elementarity) and thus maximal in V (by absoluteness). �
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Accordingly, we can canonically translate P -names into j(P )-names, etc.
For later reference, let us make this a bit more explicit: Let g be a P -name for a real (i.e.,

an element of !!). Each g(n) is decided by a maximal antichainsAn, where a ∈ An forces
g(n) = gn,a ∈ !. Then the j(P )-name j(g) corresponds to the antichains

(2.14) j(An) = j′′An, and j(a) forces j(g)(n) = gn,a for each a ∈ An.

Lemma 2.15. If P = (P� , Q�)�<� is a finite support (FS) ccc iteration of length �, then

j(P ) is a FS ccc iteration of length j(�) (more formally: it is canonically equivalent to one).

Proof. M certainly thinks that j(P ) = (P ∗
� , Q

∗
�)�<j(�) is a FS iteration of length j(�).

By induction on � we define the FS ccc iteration (P̃� , Q̃�)�<j(�) and show that P ∗
� is a

dense subforcing of P̃� : Assume this is already the case for P ∗
� . M thinks that Q∗

� is a
P ∗
� -name, so we can interpret it as a P̃�-name and use it as Q̃� . Assume that (p, q) is an

element (in V ) of P̃� ∗ Q̃� . So p forces that q is a name inM; we can increase p to some p′

that decides q to be the name q′ ∈M . By induction we can further increase p′ to p′′ ∈ P ∗
� ,

then (p′′, q′) ∈ P ∗
�+1

is stronger than (p, q). (At limits there is nothing to do, as we use FS
iterations.)
j(P ) is ccc, as any A ⊆ j(P ) of size ℵ1 is in M (and M thinks that j(P ) is ccc). �

Similarly, we get:

∙ If � = xU is in M a j(P )-name for an element of j(Z), then � is a mixture of �
many P -names for an element of Z (i.e., the BUP-name x consists of an antichain
A ⊆ B labeled, without loss of generality, with P -names for elements of Z).

(This is just the instance of “each xU ∈ j(Y ) is a mixture of elements of Y ”,
where we set Y to be the set6 of P -names for elements of Z.)

∙ A j(P )-name � for an element of M[G] has an equivalent j(P )-name in M .
(There is a maximal antichainA of j(P ) labeled with j(P )-names in M . AsM

is countably closed, this labeled antichain is in M , and gives a j(P )-name in M
equivalent to � .)

∙ In V [G], M[G] is closed under <� sequences.
(We can assume the names to be in M and use <�-closure.)

∙ In particular, every j(P )-name for a real, a Borel-code, a countable sequence of
reals, etc., is in M (more formally: has an equivalent name in M).

∙ If each iterand is forced to consist of reals, then j(P ) forces the continuum to have
size at most |2 + j(�)|ℵ0 .

(This follows from Lemma 1.17 as j(P ) also satisfies that each iterand consists
of reals.)

2.4. Preservation of values of characteristics.

Lemma 2.16. Let � be a regular uncountable cardinal and P a ccc forcing.

(a) Let x be either add( ) or b. If P ⊩ x = � and � ≠ �, then j(P ) ⊩ x = �.

(b) Let y be either cof( ) or d. If P ⊩ y ≥ � and � < �, then j(P ) ⊩ y ≥ �.

(c) Let (x, y) be either (b, d) or (add( ), cof( )). Then we get:

If P ⊩ ( � < x& y ≤ � ) then j(P ) ⊩ y ≤ �.

6Formally: We set Y to be some set that contains representatives of each equivalence class of P -names of
elements of Z.
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Proof. (a) We formulate the proof for add( ); the proof for b is the same.
Let N̄ = (Ni)i<� be P -names for an increasing sequence of null sets such that

⋃
i<�Ni

is not null. So in particular for every P -name N of a null set: (∃i0 ∈ �) (∀i ∈ � ⧵ i0)P ⊩
Ni ⊈ N . (We can choose the i0 in V due to ccc.)

ThereforeM thinks that the same holds for the sequence j(N̄) of j(P )-names of length
j(�). So wheneverN is a j(P )-name of a null set, we can assume without loss of generality
thatN ∈M , soM thinks that from some i0 on it is forced thatNi ⊈ N , which is absolute.

As � ≠ �, we know that j′′� is cofinal in j(�). So (since the sequence j(N̄) is increasing)
we can use (j(Ni))i∈� and get the same property.

This shows that j(P ) ⊩ add( ) ≤ �
For the other inequality, fix some � < �, and (Ni)i<� a family of j(P )-names for null

sets (without loss of generality each name is in M), and p ∈ j(P ).

∙ Case 1: � ≥ �. Then the sequence (Ni)i<� (as well as p) is in M , and M ⊧(
p ⊩

⋃
Ni null

)
; which is absolute.

∙ Case 2: � < �. Every Ni is a “mixture” of � many P -names for null sets, so there
is a single P -name N ′

i such that P forcesN ′
i is superset of all the names involved.

Therefore, j(P ) forces that j(N ′
i ) ⊇ Ni. And P forces that

⋃
i<� N

′
i is null, i.e.,

covered by some null set N∗. Then j(P ) forces that j(N∗) covers
⋃
i<� Ni.

(b) We show that a small set cannot be dominating: Fix a sequence (fi)i<� of j(P )-
names of reals, with � < �. Each fi corresponds to � < � many possible P -names. As
� < �, there is a P -name g unbounded by all � × � < � many possible P -names. So if f
is any of the possibilities, then P forces g ≰∗ f ; and thus j(P ) forces j(g) ≰∗ fi for all i.
So j(P ) forces d ≥ �.

The same proof works for cof( ) (using “the null set g is not a subset of any of the
possible null sets”).

(c) For (x, y) = (b, d): Fix a P -name of a dominating family f̄ = (fi)i∈�.
We claim that j(P ) forces that j′′f̄ = (j(fi))i<� is dominating. Let r be a j(P )-name of

a real, i.e., a mixture of � many possibilities (each possibility corresponding to a P -name
for a real). As P ⊩ � < b, P forces that these reals cannot be unbounded, i.e., there is
a P -name � ∈ � such that f� is forced to dominate all the possibilities. By absoluteness,
j(P ) ⊩ j(f�) >

∗ r.
It remains to be shown that j(P ) ⊩ j(f�) ∈ j′′f̄ . (Note that � is just a P -name.) Fix a

maximal antichainA in P deciding �, i.e., a ∈ A forces � = �(a). As j maps P completely
into j(P ), j′′A is a maximal antichain in j(P ). So j(P ) forces that exactly on j(a) for a ∈ A
is in the generic filter, cf. (2.14). Accordingly j(f�) = j(f�(a)) ∈ j′′f̄ .

The proof for cof( ) is the same. �

For the other direction of the invariants, and the pair (cov( ), non( )), we use the
following two lemmas, which are reformulations of results of Shelah.7

Recall Definition 1.7 (which is useful because of Lemma 1.8 and satisfied for the inital
forcing according to Lemma 1.18).

Lemma 2.17. Assume ⊚i(P , �). Then ⊚i(j(P ), cf(j(�))).
So if � ≠ �, then ⊚i(j(P ), �), and if � = �, then ⊚i(j(P ), �).

Proof. Let ȳ = (y�)�<� be the sequence of P -names witnessing ⊚i(P , �). Note that j(ȳ)
is a sequence of length j(�); we denote the �-th element by (j(ȳ))� . So M thinks: For
every j(P )-name r of a real (∃� ∈ j(�)) (∀� ∈ j(�) ⧵ �) ¬(j(ȳ))� Ri r. This is absolute. In

7S. Shelah, personal communication.



COMPACT CARDINALS AND EIGHT VALUES IN CICHOŃ’S DIAGRAM 12

particular, pick in V a cofinal subset A of j(�) of order type cf(j(�)) =∶ �. Then j(ȳ) ↾ A
witnesses that ⊚i(j(P ), �) holds. �

We have seen in Lemma 1.20 that ⊞2(P
4, �2, �4) holds and implies that P 4 forces

cov( ) ≥ �2 and non( ) ≤ �4 (the latter being trivial in the case of P 4).

Lemma 2.18. Assume ⊞2(P , �, �). If � > �, then ⊞2(j(P ), �, |j(�)|); if � < �, then

⊞2(j(P ), �, �).

Proof. Let (S, ≺) and r̄ witness ⊞2(P , �, �).
M thinks that

(∗) for each j(P )-name N of a null set

(∃s ∈ j(S)) (∀t ∈ j(S)) t ≻ s→ j(P ) ⊩ (j(r̄))t ∉ N,

which is absolute.
If � > �, then j(�) = �, and j(S) is �-directed in M and therefore in V as well, and so

we get ⊞2(j(P ), �, |j(�)|).
So assume � < �. We claim that j′′S and j′′r̄witness⊞2(j(P ), �, �). j

′′S is isomorphic
toS, so directedness is trivial. Given a j(P )-nameN , without loss of generality inM , there
is inM a bound s ∈ j(S) as in (∗). As j′′S is cofinal in j(S) (according to Lemma 2.12(f)),
there is some s′ ∈ S such that j(s′) ≻ s. Then for all t′ ≻ s′, i.e., j(t′) ≻ j(s′), we get
j(P ) ⊩ j(rt) ∉ N . �

2.5. The main theorem. We now have everything required for the main result:

Theorem 2.19. Assume GCH and that ℵ1 < �7 < �1 < �6 < �2 < �5 < �3 < �4 <
�5 < �6 < �7 are regular, �i strongly compact for i = 5, 6, 7. Then there is a ccc order P 7

forcing

add( ) = �1 < cov( ) = �2 < b = �3 <

< d = �4 < non( ) = �5 < cof( ) = �6 < 2ℵ0 = �7.

Proof. Let ji ∶ V → Mi be the Boolean ultrapower embedding with cf(j(�i)) = �i (for
i = 5, 6, 7). Recall that P 4 is an iteration of length �4. We set P 5 ≔ j5(P

4), P 6 ≔ j6(P
5),

and P 7 ≔ j7(P
6); and �5 ≔ j5(�4), �6 ≔ j6(�5) and �7 ≔ j7(�6).

It is enough to show the following:

(a) P i is a FS ccc iteration of length �i and forces 2ℵ0 = �i for i = 4, 5, 6, 7.
(b) P i ⊩ ( add( ) = �1& b = �3& d = �4 ) for i = 4, 5, 6, 7.
(c) P i ⊩ non( ) ≥ �5 for i = 5, 6, 7.

P i ⊩ cof( ) ≥ �6 for i = 6, 7.
P i ⊩ cov( ) ≤ �2 for i = 4, 5, 6, 7.

(d) P i ⊩ cof( ) = �6 for i = 6, 7.
(e) P i ⊨ ( cov( ) ≥ �2& non( ) ≤ �5 ) for i = 4, 5, 6, 7.

(a) was shown in Section 2.3.
(b): For P 4 this is Theorem 1.19. For P 5 use Lemma 2.16 (using for d that �5 < �3).

Using the same lemma again we get the result for P 6 and P 7 (using that �i < �3 for i = 6, 7
as well.)

(c): As �5 > �2, we have ⊚2(P
4, �5) (by Lemma 1.18), and thus ⊚2(P

5, �5) (by
Lemma 2.17, as cf(j5(�5)) = �5), so P 5 ⊩ non( ) ≥ �5 (Lemma 1.8). Repeating the
same argument we get ⊚2(P

i, �5) for i = 6, 7 (as �i ≠ �5 for i = 6, 7).
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Analogously, as �6 > �1, we start with ⊚1(P
4, �6), get ⊚1(P

5, �6) (as �5 ≠ �6) and
then ⊚1(P

6, �6) (as cf(j6(�6)) = �6) and ⊚1(P
7, �6) (again as �7 ≠ �6). So we get thus

P i ⊩ cof( ) ≥ �6 for i = 6, 7.
Similarly,⊚2(P

4, �2) holds, which is preserved by all embeddings, so we get cov( ) ≤

�2.
(d): As P 6 forces the continuum to have size �6, the previous item implies P 6 ⊩

cof( ) = �6. And as in (b), this implies the same for P 7 (as �7 < �1, the value of
add( )).

(e): ⊞2(P
4, �2, �4) holds (cf. Lemma 1.20). So by Lemma 2.18 for the case � > �,

and as |j5(�4)| = �5, according to Lemma 2.12(e), ⊞2(P
5, �2, �5) holds. I.e., P 5 forces

cov( ) ≥ �2 and non( ) ≤ �5 (the latter being trivial as the continuum has size �5).
For i = 6, 7, the same lemma, now for the case � < �, gives ⊞2(P

i, �2, �5), i.e., P i forces
cov( ) ≥ �2 and non( ) ≤ �5. �

2.6. An alternative. In the same way we can prove the consistency of

ℵ1 < add( ) < cov( ) < non() < cov() < non( ) < cof( ) < 2ℵ0 .

(I.e., we can replace b and d by non() and cov(), respectively.)
For this, we use the following relation as R3:

f R3 g, if f, g ∈ !! and (∀∗n ∈ !) f (n) ≠ g(n).

By a result of [Mil82, Bar87] (cf. [BJ95, 2.4.1 and 2.4.7]) we have

non() = b3 and cov() = d3.

As before, we use that an iteration where each iterand has size <�3 is (R3, �3)-good.
To define P 4, we use partial eventually different (instead of partial Hechler) forcings.
Unlike for (b, d), we do not know whether non() = � is generally preserved if � ≠

� and cov() = � is preserved if � is small; but we can use the same argument for
(non(), cov()) that we have used for (cov( ), non( )). So we can get the analog
of Lemma 1.20 that proves that non() is large and cov() small; and ⊚3 implies that
non() is small and cov() large.
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