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ACCEPTABLE COLORINGS OF

INDEXED HYPERSPACES

JAMES H. SCHMERL

Abstract. Previous results about n-grids with acceptable color-
ings are extended here to n-indexed hyperspaces, which are struc-
tures A = (A;E0, E1, . . . , En−1), where each Ei is an equivalence
relation on A.

If 1 ≤ n < ω, then, following [9, Def. 2.1], we say that a structure
A = (A;E0, E1, . . . , En−1) is an n-indexed hyperspace if each Ei is
an equivalence relation on the set A. Given such an n-indexed hyper-
space and a ∈ A, we let [a]i be the equivalence class of Ei to which a
belongs. A coloring of A is a function χ : A −→ n = {0, 1, . . . , n−1}.
The coloring χ is acceptable if whenever a ∈ A and i < n, then the
set {x ∈ [a]i : χ(x) = i} is finite. The Basic Question concerning these
notions is

Which indexed hyperspaces have acceptable colorings?

One of the incentives for considering this question is the still open
instance of it concerning sprays. If 2 ≤ m < ω and c ∈ Rm (where R

is the set of reals), then a spray centered at c is a set S ⊆ Rm such
that whenever 0 < r ∈ R, then {x ∈ S : ‖x − c‖ = r} is finite. The
question

How many sprays can cover Rm?

was asked in [4, Question 2.4]. For m = 2, de la Vega [11], answering
an earlier question from [3], proved that 3 sprays suffice to cover the
plane R2. In general, it follows from [FM3] (or see Theorem 3.8) that
it takes at least m+ 1 sprays to cover Rm. On the other hand, as was
observed in [4], it follows from [9] (or see Theorem 3.2) that if d < ω
and 2ℵ0 ≤ ℵd, then (d+ 1)(m− 1) + 1 sprays do suffice to cover Rm.
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2 JAMES H. SCHMERL

The questions about sprays can be reinterpreted into instances of
the Basic Question. Given c ∈ Rm, let E(c) be the equivalence rela-
tion on Rm such that if x, y ∈ Rm, then 〈x, y〉 ∈ E(c) iff ‖x − c‖ =
‖y − c‖. Then, for c0, c1, . . . , cn−1 ∈ Rm, the n-indexed hyperspace(
Rm;E(c0), E(c1), . . . , E(cn−1)

)
has an acceptable coloring iff there are

sprays S0, S1, . . . , Sn−1 centered at c0, c1, . . . , cn−1, respectively, such
that Rm = S0 ∪ S1 ∪ · · · ∪ Sn−1.

§0. Introduction. An n-indexed hyperspace A is always under-
stood to be so that A = (A;E0, E1, . . . , En−1). Some fundamental
examples of n-indexed hyperspaces are the n-cubes. An n-indexed hy-
perspace A is an n-cube if there are nonempty sets A0, A1, . . . , An−1

such that A = A0 ×A1 × · · · ×An−1 and whenever a, b ∈ A and i < n,
then 〈a, b〉 ∈ Ei iff aj = bj for every j < n such that j 6= i. Thus, one
can think of [a]i as “the line through a parallel to the ith coordinate
axis.” We will call this A the n-cube for A. For any set X , the n-
cube over X is the n-cube for Xn. The following classical theorem of
Kuratowski answers the Basic Question for n-cubes over a set X .

Theorem 0.1: (Kuratowski [FM2]) Suppose that 1 ≤ n < ω and X
is set. Then, the n-cube over X has an acceptable coloring iff |X| <
ℵn−1.

If the n-indexed hyperspace A is such that [a]i∩[a]j is finite whenever
a ∈ A and i < j < n, then (following [4]) we say that A is an n-grid.
Every n-cube is an n-grid.
The right-to-left half of Kuratowski’s Theorem 0.1 is a consequence

of the following more general theorem, which, itself, is a consequence
of the still more general [4, Theorems 5.1 & 5.2].

Theorem 0.2: If 1 ≤ n < ω, A is an n-grid and |A| < ℵn−1, then

A has an acceptable coloring.

If A and B are n-indexed hyperspaces, then an embedding of B
into A is defined, as expected, to be a one-to-one function f : B −→ A
such that whenever x, y ∈ B and i < n, then

[x]i = [y]i ⇐⇒ [f(x)]i = [f(y)]i.

If there is an embedding of B intoA, then we say that B is embeddable

into A or that A embeds B. Obviously, if A embeds B and A has an
acceptable coloring, then B has an acceptable coloring.
A consequence of the left-to-right half of Kuratowski’s Theorem is

that if |X| ≥ ℵn−1 and A is an n-indexed hyperspace that embeds the
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n-cube over X , then A does not have an acceptable coloring. De la
Vega proved a partial converse to this for n-grids.

Theorem 0.3: (de la Vega [12]) If A is an n-grid that does not

embed every finite n-cube, then A has an acceptable coloring.

The converse of de la Vega’s Theorem is not true in general (as Kura-
towski’s Theorem shows). There are even arbitrarily large n-grids that
embed every finite n-cube and have acceptable colorings. However,
Theorem 0.2 is the only obstacle to the converse of de la Vega’s The-
orem when it is restricted to semialgebraic grids (a definition of which
is given in §5). Thus, the Basic Question is answered for semialgebraic
grids by Theorem 0.2 and the following theorem [4, Lemma 3.6 & Coro.
4.3].

Theorem 0.4: Suppose that A is a semialgebraic n-grid and |A| ≥
ℵn−1. The following are equivalent:
(1) A has an acceptable coloring.

(2) A does not embed every finite n-cube.
(3) A does not embed the n-cube over R.

A consequence of Theorem 0.2 and the proof [4] of Theorem 0.4 is
the following theorem concerning decidability. See §5 for more of an
explanation and also for a generalization to indexed hyperspaces.

Theorem 0.5: The set of LOF -formulas that, for some n < ω, de-
fine a semialgebraic n-grid having an acceptable coloring is computable.

The Basic Question for grids was studied in [4]. Our aim in this paper
is to extend results about acceptable colorings of n-grids to n-indexed
hyperspaces. We will do so for all the results of [4].
The outline of the rest of this paper is as follows. The easy answer

to the Basic Question for countable indexed hyperspaces is given in §1.
A characterization of n-grids having acceptable colorings was given by
de la Vega in [11] and [12]. A characterization for indexed hyperspaces
in the spirit of de la Vega’s is in §2. An important step in generalizing
results about n-grids to n-indexed hyperspaces was already undertaken
by Simms [9]. His generalization of Theorems 0.2 is discussed in §3 but
in a way that differs from what is in [9]. That section also contains an
improvement and simplification of his generalization of Theorem 0.1.
Theorem 0.3 will also be extended to indexed hyperspaces in Theo-

rem 4.2. Even when Theorem 4.2 is restricted to grids (Corollary 4.3),
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this yields an improvement of Theorem 0.3. The extension of The-
orem 0.3 to indexed hyperspaces is presented and proved in §4. A
strengthened version of Theorem 0.4 is proved in [4], yielding The-
orem 0.5 as a consequence. These results will be extended to semi-
algebraic indexed hyperspaces in §5, yielding the decidability of the set
of formulas defining semialgebraic indexed hyperspaces having accept-
able colorings. Thus, in principle, the question of how many sprays are
needed to cover Rn should be answerable.

§1. Countable indexed hyperspaces. The main result of this
short section, Corollary 1.3, characterizes those countable n-indexed
hyperspaces that have acceptable colorings. We start with a simple
lemma in which there is no countability condition.

Lemma 1.1: Suppose that A is an n-indexed hyperspace that has an

acceptable coloring. Then, for every a ∈ A, [a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1 is

finite.

Proof. Suppose that a ∈ A and X = [a]0∩[a]1∩· · ·∩[a]n−1 is infinite.
Let χ : A −→ n be a coloring. By the Pigeon Hole Principle, there is
i < n such that X ∩ χ−1(i) is infinite. Then, {x ∈ [a]i : χ(x) = i} is
infinite, so χ is not acceptable. �

Next, we show that the converse of Lemma 1.1 holds when restricted
to countable A.

Lemma 1.2: Suppose that A is a countable n-indexed hyperspace. If

[a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1 is finite for all a ∈ A, then A has an acceptable

coloring.

Proof. Suppose that [a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1 is finite whenever a ∈
A. We can assume that A is infinite, as otherwise every coloring is
acceptable. Hence, let a0, a1, a2, . . . be a nonrepeating enumeration
of A.
To define χ : A −→ n, consider an arbitrary a = ak ∈ A. For each

i < n, let mi be the least m < ω such that a ∈ [am]i. Notice that
each mi is well-defined and that mi ≤ k. Then let χ(a) = j, where
mj = max{mi : i < n}. (Since there may be more than one possible
such j, to be definitive, choose the least one.) This defines χ, which
clearly is a coloring of A.
We claim that χ is acceptable. For a contradiction, suppose that

j < n, a ∈ A, X ⊆ [a]j is infinite and χ is constantly j on X . By the
maximality in the definition of χ, for each i < n and x ∈ X , there is
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r ≤ j such that x ∈ [ar]i. By the Pigeon Hole Principle, we can assume
that there are r0, r1, . . . , rn−1 ≤ j such that X ⊆ [ari]i for each i < n.
But then, taking a ∈ X , we have that X ⊆ [a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1.
Since X is infinite, this contradicts our assumption, thereby proving
that χ is acceptable. �

Corollary 1.3: Suppose that A is a countable n-indexed hyper-

space. Then, A has an acceptable coloring iff [a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1 is

finite for all a ∈ A. �

§2. Twisted indexed hyperspaces. Using elementary substruc-
tures of the set-theoretic universe, de la Vega [11] defined the notion of
a twisted 3-grid and proved that a 3-grid is twisted iff it has an accept-
able coloring. Later [12], he extended the definition to all n-grids and
proved that an n-grid is twisted iff it has an acceptable coloring. We
define here a closely related notion that is applicable to all n-indexed
hyperspaces. This definition uses only elementary substructures of the
indexed hyperspace, but an approach closer to de la Vega’s would work
just as well. Since the consequences, at least for n-grids, are the same,
we have decided to appropriate de la Vega’s term in Definition 2.1. The
main result of this section is Theorem 2.2.
We will need a minor generalization of terminology. If I ⊆ ω is finite,

then A is an I-indexed hyperspace if A = (A;Ei)i∈I , where each Ei

is an equivalence relation on A. If A is such an I-indexed hyperspace
and J ⊆ I, then we let A↾J be the J-indexed hyperspace (A;Ej)j∈J .
Suppose, for the moment, that A = (A; . . .) is any first-order struc-

ture. If B ⊆ A, then we let A|B be the substructure of A with universe
B (if there is such a substructure). If |A| = κ > ℵ0, then we define a
filtration for A to be a sequence 〈Aα : α < κ〉 of subsets of A such that
|Aα| < κ for each α < κ and 〈A|Aα : α < κ〉 is an increasing, continu-
ous chain of elementary substructures of A whose union is A. Every A
(for a countable language) of uncountable cardinality κ has a filtration
〈Aα : α < κ〉 with the additional property that each |Aα| = |α|+ ℵ0.

Definition 2.1: (by recursion) Suppose that A is an n-indexed
hyperspace and |A| = κ. We say that A is twisted if

(0) [a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1 is finite whenever a ∈ A,

and either

(1) A is countable,

or else
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(2) |A| = κ > ℵ0 and there is a filtration 〈Aα : α < κ〉 for A such
that A|A0 is twisted and whenever α < κ, ∅ 6= I ⊆ n and

B = {x ∈ Aα+1\Aα : ∀i < n[i ∈ I ↔ [x]i ∩Aα = ∅]},

then (A|B)↾I is twisted.

If A is an uncountable n-indexed hyperspace, then we will refer to a
filtration for A as in (2) of Definition 2.1 as a twisted filtration.

Theorem 2.2: If A is an n-indexed hyperspace, then A is twisted

iff it has an acceptable coloring.

Proof. The theorem will be proved by induction on the cardinality
of A. Corollary 1.3 proves the theorem in case A is countable. Now
assume that |A| = κ > ℵ0 and that the theorem is true for all smaller
indexed hyperspaces.

(=⇒): Suppose that A is twisted. Let 〈Aα : α < κ〉 be a twisted
flirtation for A, and let Aα = A|Aα for α < κ. We will obtain, by
transfinite recursion, a sequence 〈χα : α < κ〉 such that whenever
α < β < κ, then:

• χα is an acceptable coloring of Aα;
• χα ⊆ χβ;
• if x ∈ Aβ\Aα and χβ(x) = i, then [x]i ∩Aα = ∅.

We then will have that χ =
⋃

α<κ χα is an acceptable coloring of A.
Since |A0| < κ and A0 is twisted, then, by the inductive hypothesis,

A0 has an acceptable coloring χ0.
If α is a limit ordinal, then let χα =

⋃
γ<α χγ .

We now come to the case of successor ordinals. Suppose that we
have χγ for γ ≤ α. For each I ⊆ n, let BI be defined as B is in
Definition 2.1(2).
We will show that B∅ = ∅. To the contrary, suppose that x ∈ B∅.

Then, [x]i ∩ Aα 6= ∅ for each i < n. Let yi ∈ [x]i ∩ Aα for each i < n.
Then x ∈ [y0]0∩ [y1]1∩· · ·∩ [yn−1]n−1 so that [y0]0∩ [y1]1∩· · ·∩ [yn−1]n−1

has a nonempty intersection with Aα+1\Aα. Then, by elementarity,
[y0]0∩ [y1]1∩ · · ·∩ [yn−1]n−1 has an infinite intersection D with Aα. For
any a ∈ D, we have that [a]0∩ [a]1∩· · ·∩ [a]n−1 ⊇ D, contradicting (0).
Therefore, for each x ∈ Aα+1\Aα, there is a unique nonempty I ⊆ n

such that x ∈ BI .
If ∅ 6= I ⊆ n, then BI = (A|BI)↾I is twisted, so, by the inductive

hypothesis, we can let ϕI : BI −→ I be an acceptable coloring of BI .
Then let χα+1 = χα ∪

⋃
∅ 6=I⊆n ϕI .
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(⇐=): Lemma 1.1 shows that (0) holds whenever A has an accept-
able coloring. This takes care of the case of countable indexed hyper-
spaces. For uncountable ones, we will prove the following by induction
on κ:

Suppose that A is an indexed hyperspace, χ is an ac-
ceptable coloring of A and |A| = κ > ℵ0. Then every
filtration for (A, χ) is a twisted filtration for A.

Let 〈Aα : α < κ〉 be a filtration for the expanded structure (A, χ),
and let Aα = A|Aα for α < κ.
First, we show that A0 is twisted. If A0 is countable, then A0 is

twisted since, by Lemma 1.1, A and, consequently, A0 satisfy (0). If
A0 is uncountable, then, since A and, consequently, A0 have acceptable
colorings, then, by the inductive hypothesis, A0 is twisted.
Next, consider α < κ and nonempty I ⊆ n. Define B as in Defini-

tion 2.1(2), and let B = (A|B)↾I. We want to show that B is twisted.
To prove that B is twisted, it suffices to prove that it has an ac-

ceptable coloring. We will do so by showing that, in fact, χ↾B is an
acceptable coloring of B. If χ↾B is a coloring, then clearly it is ac-
ceptable, so we need only show that χ↾B is a coloring. Let x ∈ B
and suppose, for a contradiction, that χ(x) = i 6∈ I. That implies that
[x]i ∩ Aα 6= ∅. Since [x]i ∩ χ−1(i) is finite, it follows by elementarity
that [x]i ∩ χ

−1(i) ⊆ Aα, so x ∈ Aα, which is a contradiction. �

If X is any set, then P(X) is the set of subsets of X , and if n < ω,
then [X ]n is the set of n-element subsets of X .
Suppose that n < ω and I ⊆ P(n). We say that A is an (n, I)-grid

if it is an n-indexed hyperspace such that whenever I ∈ I and a ∈ A,
then

⋂
i∈I [a]i is finite.

We present some examples of (n, I)-grids. Suppose that A is an
n-indexed hyperspace. Vacuously, A is an (n,∅)-grid, and, conven-
tionally, A is finite iff it is an (n, {∅})-grid. By Lemma 1.1, if A has
an acceptable coloring, then A is an (n, {n})-grid. Lastly, A is an
n-grid iff A is an (n, [n]2)-grid.
If I is a finite set of sets, then a set T is a transversal of I if

T ∩ I 6= ∅ for every I ∈ I. If m ≤ n < ω and T ⊆ n, then T is a
transversal of [n]m iff |T | ≥ n−m+ 1.
The next definition refines Definition 2.1.

Definition 2.3: Suppose that A is an n-indexed hyperspace, |A| =
κ and I ⊆ P(n). We will say that A is I-twisted if

(0) A is an (n, {n})-grid
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and either

(1) A is countable,

or else

(2) |A| = κ > ℵ0 and there is a filtration 〈Aα : α < κ〉 for A such
that A|A0 is I-twisted and whenever α < κ, I is a transversal of I and

B = {x ∈ Aα+1\Aα : ∀i < n[i ∈ I ↔ [x]i ∩Aα = ∅]},

then (A|B)↾I is (I ∩ P(I))-twisted.

If A is an uncountable n-indexed hyperspace, then we will refer to a
filtration for A as in (2) of Definition 2.3 as an I-twisted filtration.
The following lemma relates Definitions 2.1 and 2.3.

Theorem 2.4: Suppose that A is an (n, I)-grid. Then, A is I-
twisted iff it is twisted.

Proof. If A is not an (n, {n})-grid, then I = ∅. Then, A is ∅-
twisted iff A is finite iff A has an acceptable coloring. Thus, it is safe
to assume that n ∈ I.
If A is countable, then it is both twisted and I-twisted. So, assume

that |A| = κ > ℵ0 and suppose, as an inductive hypothesis, that the
theorem is valid for all smaller indexed hyperspaces.
(⇐=): Trivial.
(=⇒): Let 〈Aα : α < κ〉 be an I-twisted filtration for A. We will

show that this same filtration is a twisted filtration for A. Thus, we
want to show that whenever α < κ, ∅ 6= I ⊆ n, B is defined as in
Definition 2.1(2) and B = (A|B)↾I, then B is twisted. There are two
cases.

I is not a transversal: We claim that B = ∅. Suppose not, and
let x ∈ B. Since I is not a transversal, we can pick J ∈ I such that
J ∩ I = ∅. Let X =

⋂
{[x]j : j ∈ J}. Clearly, x ∈ X . Also, X

is finite since J ∈ I. For each j ∈ J , let yj ∈ [x]j ∩ Aα. Then,
X =

⋂
{[y]j : j ∈ J}. By elementarity and the finiteness of X , we have

that X ⊆ Aα, so that x ∈ Aα, a contradiction.

I is a transversal: Clearly, B is an (I, I ∩ P(I))-grid. Since B is
(I ∩P(I))-twisted, then, by the inductive hypothesis, it is twisted. �

Corollary 2.5: If A is an (n, I)-grid, then A is I-twisted iff it

has an acceptable coloring. �

Corollary 2.6: If A is an n-grid, then A is [n]2-twisted iff it has

an acceptable coloring. �
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One reason for introducing Definition 2.3 and Theorem 2.4 is to be
able to state the next corollary, whose main appeal is a characterization
of the twisted n-grids more resembling de la Vega’s definition.

Corollary 2.7: If A is an uncountable n-grid, then A is twisted iff

it has a filtration 〈Aα : α < κ〉 such that A|A0 is twisted and whenever

α < κ, k < n and

B = {x ∈ Aα+1\Aα : [x]k ∩Aα 6= ∅]},

then (A|B)↾(n\{k}) is twisted. �

§3. Simms’s Theorems. In [9] Simms considered n-indexed hyper-
spaces, but allowed the possibility that n is infinite. He also consid-
ered some generalizations of acceptable colorings for these types of
n-indexed hyperspaces. When referring in this section to a result from
[9], we will always be concerned just with that part of it that fits into
the context of this paper.
Suppose that I is a finite set of finite sets. We define δ(I), the

depth of I, to be the least d < ω for which there are transversals
T0, T1, . . . , Td−1 of I such that T0∩T1∩· · ·∩Td−1 = ∅.1 If there are no
such transversals or, equivalently, if there is I ∈ I such that |I| ≤ 1,
then let δ(I) = ∞.2 Some examples are: δ(∅) = 1; if ∅ 6= I ⊆ P(n)
and δ(I) < ∞, then 2 ≤ δ(I) ≤ n; δ([n]2) = n; and more generally, if
2 ≤ m ≤ n + 1, then δ([n]m) = ⌈n/(m− 1)⌉.

Our first goal in this section is Theorem 3.2, which extends Theo-
rem 0.2 since δ([n]2) = n and also extends Lemma 1.2 since δ({n}) = 2
(as long as n ≥ 2). We give a quick proof of Theorem 3.2 using Corol-
lary 2.5. But first, we prove a very simple lemma.

Lemma 3.1: Suppose that I ⊆ P(n). If J ⊆ n is a transversal of I,
then δ(I ∩ P(J)) ≥ δ(I)− 1.

Proof. If δ(I ∩ P(J)) = ∞, then the conclusion is trivial, so assume
that δ(I ∩ P(J)) ≤ n.
Suppose that T ⊆ P(J) is a set of transversals of I ∩P(J) such that⋂
T = ∅. Let T ′ = {T ∪ (n\J) : T ∈ T } ∪ {J}. It is easily checked

1The term depth is borrowed from [9, Def. 3.1] to which it is somehow obliquely
related. See Definition 3.12(a).

2 We adopt the usual conventions concerning ∞; for example, ∞− 1 = ∞ and
α < ∞ for every ordinal α.
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that T ′ is a set of transversals of I and that
⋂

T ′ = ∅. To finish the
proof, observe that |T ′| ≤ |T |+ 1. �

Theorem 3.2: Suppose that A is an (n, I)-grid, d = δ(I) and

|A| < ℵd−1. Then A has an acceptable coloring.

Proof. First, suppose that d = ∞, so there is I ∈ I such that |I| ≤ 1.
If I = ∅, then A is finite so any coloring of A is acceptable. If I = {i},
then [a]i is finite for every a ∈ A, so the coloring that is constantly i is
acceptable.
Next, suppose that d <∞. We give a proof by induction on d.
For the basis step, assume that d = 1. Then A is finite so any

coloring is acceptable..
For the inductive step, suppose that d ≥ 2 and that the Theorem

holds for all smaller values of d.
We prove by induction on the cardinal κ that if A is an (n, I)-grid,

δ(I) = d and |A| = κ < ℵd−1, then A has an acceptable coloring.
If κ ≤ ℵ0, then Corollary 1.3 yields thatA has an acceptable coloring.

Thus, assume that κ > ℵ0 and that we know the result for all smaller
cardinals.
By Corollary 2.5, it suffices to show that A is I-twisted. Let 〈Aα :

α < κ〉 be any filtration for A. We will show that it is I-twisted. Let I
be a transversal of I and let B be as in Definition 2.3(2). Then (A|B)↾I
is an (I, I ∩ P(I))-grid, and, according to Lemma 3.1, δ(I ∩ P(I)) ≥
d − 1. Thus, by the inductive hypothesis, (A|B)↾I has an acceptable
coloring and, therefore, by Corollary 2.5, is (I ∩P(I))-twisted. Hence,
A is I-twisted. �

The n-indexed hyperspace
(
Rm;E(c0), E(c1), . . . , E(cn−1)

)
from the

preamble is an (n, [n]m)-grid whenever c0, c1, . . . , cn−1 ∈ Rm are in gen-
eral position. Thus, Theorem 3.2 implies the observation from [4] that
Rm can be covered by (d+ 1)(m− 1) + 1 sprays when 2ℵ0 ≤ ℵd.
Being an (n, I)-grid is a global property of an n-indexed hyperspace.

This can modified into a more local property as follows. Let A be an
n-indexed hyperspace. For each a ∈ A, let I(a) = {I ⊆ n : |

⋂
i∈I [a]i| <

ℵ0}, and then let I(A) =
⋂
{I(a) : a ∈ A}. Thus, I(A) is the set of

all those I ⊆ n such that A is an (n, {I})-grid. By Theorem 3.2, if A
is an n-indexed hyperspace, d = δ(I(A)) and |A| < ℵd−1, then A has
an acceptable coloring. Theorem 3.2 implies Corollary 3.3, which is a
local version of Theorem 3.2. Corollary 3.3 is slightly stronger than
Simms’s theorem [9, Theorem 3.2]. The relation between Corollary 3.3
and Simms’s theorem is clarified at the end of this section.
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Corollary 3.3: Suppose that A is an n-indexed hyperspace, 1 ≤
d ≤ δ(I(a)) for each a ∈ A, and |A| < ℵd−1. Then A has an acceptable

coloring.

Proof. Let I0, I1, . . . , Im be all those I ⊆ P(n) for which δ(I) ≥ d.
For each j ≤ m, let Aj = {a ∈ A : I(a) = Ij}. Then A0, A1, . . . , Am

partitions A (but with the possibility that some Aj = ∅). Clearly,
A|Aj is an (n, Ij)-grid, so, by Theorem 3.2, A|Aj has an acceptable
coloring ϕj . Then, ϕ =

⋃
j ϕj is an acceptable coloring of A. �

The concept of an n-cube will be generalized. Suppose that A =
A0 ×A1 × · · ·×Am−1, where A0, A1, . . . , Am−1 are arbitrary nonempty
sets. If S ⊆ m < ω, then S induces the equivalence relation E on
A, where E is such that if x, y ∈ A, then 〈x, y〉 ∈ E iff xj = yj
whenever j ∈ m\S. If m < ω and ~S = 〈S0, S1, . . . , Sn−1〉 is an n-tuple

of subsets of m, then the ~S-cube for A is the n-indexed hyperspace
A = (A;E0, E1, . . . , En−1), where each Ei is induced by Si. The ~S-

cube over X is the ~S-cube for Xm. Observe that the n-cube Xn is
exactly the ~S-cube over X , where ~S = 〈{0}, {1}, . . . , {n−1}〉. If I and

M are finite sets and ~S = 〈Si : i ∈ I〉 is an I-tuple of subsets of M ,

then the notions of an ~S-cube and an ~S-cube over X have the obvious
definitions. Also, for such an ~S, if J ⊆ I, then ~S↾J = 〈Si : i ∈ J〉.

In these definitions when we have an n-tuple ~S of subsets of m, it
will always be understood what m is, and we leave it implicit.
If I is a finite set of sets, then we define the transversal number of

I, and denote it by τ (I), to be the least cardinality of a transversal of
I. If ∅ ∈ I, then I does not have a transversal, so we conventionally
let τ (I) = ∞. Note that τ(I) = 0 iff I = ∅. If ~S = 〈S0, S1, . . . , Sn−1〉

is an n-tuple of sets, then a transversal of ~S is a transversal of
{S0, S1, . . . , Sn−1} and we let τ(~S) = τ ({S0, S1, . . . , Sn−1}). If ~S is

an n-tuple of nonempty subsets of m, then τ(~S) ≤ min(m,n).

If ~S = 〈S0, S1, . . . , Sn−1〉 is an n-tuple of finite sets, then we let

I(~S) = {I ⊆ n :
⋂

i∈I Si = ∅}. The point of this definition is that

every ~S-cube is an (n, I(~S))-grid and, moreover, whenever A is an
~S-cube over an infinite set, a ∈ A, I ⊆ n, then

⋂
i∈I [a]i is finite iff

I ∈ I(~S). The next lemma describes the relationship between the

transversal number of ~S and the depth of I(~S).

Lemma 3.4: If ~S is an n-tuple of finite sets, then τ(~S) = δ(I(~S)).
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Proof. Let ~S = 〈S0, S1, . . . , Sn−1〉, t = τ(~S) and d = δ(I(~S)).

First, notice that t = ∞ iff some Si = ∅ iff some {i} ∈ I(~S) iff

δ(I(~S)) = ∞. Hence, we assume that d, t <∞.

Let {a0, a1, . . . , at−1} be a transversal of ~S. For each k < t, let

Ik = {i < n : ak 6∈ Si}. Then, each Ik is a transversal of I(~S) and⋂
k<t Ik = ∅, so that d ≤ t.

Conversely, let {T0, T1, . . . , Td−1} be a set of transversals of I(~S) such
that T0 ∩ T1 ∩ · · · ∩ Td−1 = ∅. For each j < d, let sj ∈

⋂
i∈Tj

Si. Then

{sj : j < d} is a transversal of ~S, so that t ≤ d. �

Definition 3.5: Suppose that A and B are, respectively, n-indexed
and d-indexed hyperspaces and that β : n −→ d. We say that a
function f : B −→ A is a β-parbedding of B into A if it is one-to-one
and for x, y ∈ B and i < n,

(∗) [x]β(i) = [y]β(i) =⇒ [f(x)]i = [f(y)]i.

If f is a β-parbedding of B into A for some β, then f is a parbedding

of B into A, in which case we say that B is parbeddable into A or
that A parbeds B.

Note that every embedding is a β-parbedding, where β is the identity
function.
parbeddability is transitive. In fact, if A0,A1,A2 are, respectively,

n0-, n1-, n2-indexed hyperspaces, α : n1 −→ n0, β : n2 −→ n1 and
f : A0 −→ A1 and g : A1 −→ A2 are, respectively, an α-parbedding
of A0 into A1 and a β-parbedding of A1 into A2, then gf is a βα-
parbedding of A0 into A2.
If X is infinite and 2 ≤ n < ω, then the (n + 1)-cube over X is

β-parbeddable into the n-cube over X , where β : n −→ n + 1 is the
identity function.

Lemma 3.6: Suppose that A and B are, respectively, n-indexed and

d-indexed hyperspaces and that A parbeds B. If A has an acceptable

coloring, then so does B.

Proof. Suppose that A and B are, respectively, n-indexed and d-
indexed hyperspaces. Let f : B −→ A be an β-parbedding of B into
A. Let χ : A −→ n be an acceptable coloring for A, and then let
ψ = βχf . Clearly, ψ : B −→ d, so ψ is a coloring for B. We claim that
ψ is acceptable.
For a contradiction, suppose that ψ is not acceptable. Thus, we have

b ∈ B, j < d and an infinite X ⊆ {x ∈ [b]j : ψ(x) = j}. Let a = f(b)
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and Y = f [X ]. By the Pigeon Hole Principle, we can assume that
i < n is such that χ is constantly i on Y . Thus, β(i) = j so that
[x]β(i) = [b]β(i) for all x ∈ X . But then [y]i = [a]i for all y ∈ Y by
(∗) of Definition 3.5. Since Y is infinite and χ is acceptable, this is
impossible. �

The next lemma gives some of the main examples of parbeddability.

Lemma 3.7: Suppose that 1 ≤ m,n < ω, ~S is an n-tuple of nonempty

subsets of m, d = τ (~S) ≥ 1 and X is any set. Then the d-cube over X

is parbeddable into the ~S-cube over X.

Proof. Letm,n, ~S, d andX be as given. Let A be the ~S-cube over X .
Let T = {t0, t1, . . . , td−1} ⊆ m be a transversal of ~S. Let β : n −→ d
be such that tβ(i) ∈ Si for each i < n. There is such a β since T is a
transversal. Fix c ∈ X . Define f : Xd −→ Xm so that if x ∈ Xd, then

f(x)k =

{
xj if k = tj
c otherwise.

We will show that f is a β-parbedding of Xd into A by proving that if
x, y ∈ Xd and i < n, then (∗) of Definition 3.5 holds.

[x]β(i) = [y]β(i) =⇒ ∀j < d
(
j 6= β(i) −→ xj = yj

)

=⇒ ∀k < m
(
k 6= tβ(i) −→ f(x)k = f(y)k

)

=⇒ ∀k < m
(
k 6∈ Si −→ f(x)k = f(y)k

)

=⇒ [f(x)]i = [f(y)]i . �

The next theorem implies Kuratowski’s Theorem 0.1 because τ(〈{0},
{1}, . . . , {n − 1}〉) = n.3 Theorem 3.8 is a consequence of the some-
what arcane Theorem 4.3 of [9]. Erdős, Jackson and Mauldin in [1,
Coro. 7] made a further generalization of Theorem 3.8 that allowed for
structures even more general than n-indexed hyperspaces.4

3There is more to this story. The first three papers published in [FM] contain
a sequence of three successively stronger theorems. In the first one, Sierpiński
[FM1] proves Theorem 0.1 with n = 3; in the second, Kuratowski [FM2] proves
his Theorem 0.1; and in the third one, Sikorski [FM3] proves the special case of

Theorem 3.8 in which 1 ≤ k ≤ m, n =
(
m

k

)
and ~S is an n-tuple of all the k-element

subsets of m. Theorem 0.1 with n = 3 was proved twice more by Sierpiński [8], [7].
The special case of Theorem 0.1 with n = 2 was also proved by Sierpiński [6]. More
about these historical developments can be found in [1], [4] and especially [10].

4The reference in [1] that is identified there by [Sm2] is apparently a preliminary
version of [9].
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Theorem 3.8: (Simms [9]) Suppose that 1 ≤ m,n < ω, ~S is an

n-tuple of nonempty subsets of m, d = τ(~S) ≥ 1, and X is a set. Then

the ~S-cube over X has an acceptable coloring iff |X| < ℵd−1.

Proof. Let m,n, ~S, d be as given, and let A be the ~S-cube over X .

(=⇒): Suppose that |X| ≥ ℵd−1. By Lemma 3.7, the d-cube Xd is
parbeddable into A. Theorem 0.1 implies that the d-cube over X does
not have an acceptable coloring and therefore, by Lemma 3.6, neither
does A.

(⇐=): Suppose that |X| < ℵd−1. As already noted, A is an (n, I(~S))-

grid. By Lemma 3.4, d = τ(~S) = δ(I(~S)), so that A has an acceptable
coloring by Theorem 3.2. �

As an example, consider the n-tuple ~S = 〈S0, S1, . . . , Sn−1〉, where

Si = n\{i}. Then τ(~S) = 2, so that the ~S-cube over R does not

have an acceptable coloring. The ~S-cube over R is embeddable into
(Rn;E(c0), E(c1), . . . , E(cn−1) from the preamble, implying that Rn

cannot be covered by n sprays.
We prove one more result along these lines.

Theorem 3.9: Suppose that 1 ≤ k < m < ω and n =
(
m

k

)
. Let ~S

be an n-tuple of all k-element subsets of m. Let A be an ~S-cube, where
A = X0×X1×· · ·×Xm−1. Then A has an acceptable coloring iff there

is d < m− k + 1 such that |{j < m : |Xj | < ℵd}| ≥ d+ k.

Proof. (⇐=): Let d be as in the Theorem. Let J = {j < m :

|Xj| < ℵd} and I = {i < n : Si ⊆ J}. Let B be the ~S↾I-cube, where

B =
∏

j∈J Xj = {x↾J : x ∈ A}. Then, τ(~S↾I) = |J | − k + 1 ≥ d + 1

and |Xj | < ℵd for each j ∈ J . Theorem 3.8 implies that B has an
acceptable coloring ψ : B −→ I. Let χ : A −→ I be such that for
x ∈ A, χ(x) = ψ(x↾J). Then, χ is an acceptable coloring of A↾I and,
therefore, is also an acceptable coloring of A.

(=⇒): The special case when m = n and k = 1 is known.5 Thus,
the n-cube ℵ0 × ℵ1 × · · · × ℵn−1 does not have an acceptable coloring.
Suppose that whenever d < m − k + 1, then |{j < m : |Xj| <

ℵd}| ≤ d + k − 1. Since τ(~S) = m − k + 1, it has a transversal
T = {t0, t1, . . . , tm−k}. As in the proof of Lemma 3.7, Xt0 ×Xt1 ×· · ·×

5See [10, Prop. 2.151]. As mentioned in [10], there was some confusion about
the attribution. However, the reference given in [10] does not clarify it since it does
not correspond to an entry in the References of [10].
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Xtm−k
is parbeddable into A. Assuming, without loss of generality,

that |Xt0 | ≤ |Xt1 | ≤ · · · ≤ |Xtm−k
|, we then have that |Xtj | ≥ ℵtj

for j ≤ m − k, so that the (m − k + 1)-cube ℵ0 × ℵ1 × · · · × ℵm−k is
parbeddable into A. Thus, by Lemma 3.6 and the result mentioned in
the previous paragraph, we have that A does not have an acceptable
coloring. �

Question 3.10: Is there a generalization of Theorem 3.9 that applies
to all ~S-cubes?

Theorem 3.8 is primarily about infinite ~S-cubes. Nevertheless, finite
~S-cubes will play a significant role in the next section.

As already mentioned, Corollary 3.3 is somewhat stronger than [9,
Theorem 3.2]. The remainder of this section is devoted to discussing
the relation between these results.
Part (a) of the following definition is taken directly from [9, Def. 3.1],

and this definition naturally suggests the one in (b).

Definition 3.12: ([9, Def. 3.1]) Suppose that m < ω, d ≤ n < ω
and A is An n-indexed hyperspace.
(a) A ism-fine to depth d if whenever a ∈ A and π is a permutation

of n, then there are 0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ id < n such that whenever
k < d, then |

⋂
{[a]π(j) : ik ≤ j ≤ ik+1}| ≤ m.

(b) A is fine to depth d if whenever a ∈ A and π is a permutation
of n, then there are 0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ id < n such that whenever
k < d, then

⋂
{[a]π(j) : ik ≤ j ≤ ik+1} is finite.

Observe that if A is m-fine to depth d, m ≤ m′ < ω and d′ ≤ d,
then A is m′-fine to depth d′ and also is fine to depth d. In stating [9,
Theorem 3.2], Simms does not use the notion of depth that was used in
our Theorem 3.2 and Corollary 3.3, but uses instead the notion defined
in Definition 3.12(a). If I ⊆ P(n), then we will say that I is dandy

to depth d if, for every permutation π of n, there are 0 = i0 ≤ i1 ≤
i2 ≤ · · · ≤ id < n such that for every k < d there is I ∈ I such that
I ⊆ {π(j) : ik ≤ j ≤ ik+1}.

Lemma 3.13: Suppose that I ⊆ P(n) and d < ω. Then d < δ(I) iff
I is dandy to depth d.

Proof. First, suppose that δ(I) = ∞. Thus, there is I ∈ I such that
|I| ≤ 1. Let d < ω and π be a permutation of n. If ∅ ∈ I, then let
0 = i0 = i1 = · · · = id. Otherwise, let j < n be such that {π(j)} ∈ I
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and let 0 = i0 ≤ i1 = i2 = · · · = id = j. Either way, we see that I is
dandy to depth d.
Next, if δ(I) = 1, then I = ∅, so that we easily see that I is dandy

to depth 0 and not dandy to depth 1. So, assume that 2 ≤ δ(I) ≤ n.

(=⇒): Suppose that d = δ(I) − 1. Let π be a permutation of n.
Without loss of generality, assume that π is the identity permutation.
Define the sequence 0 = i0 < i1 < i2 < · · · < ie < n such that e is as
large as possible and whenever k < e, then ik+1 is the least for which
there is I ∈ I such that I ⊆ {j < n : ik ≤ j ≤ ik+1}. Thus, I is
dandy to depth e. For k < e, let Ik be the interval [ik, ik+1) and let
Ie = [ie, n). Then let Tk = n\Ik for k ≤ e. Each Tk is a transversal of
I and T0 ∩ T1 ∩ · · · ∩ Te = ∅. Thus, e ≥ d, proving that I is dandy to
depth d.

(⇐=): We wish to show that if d = δ(I), then I is not dandy to
depth d. The proof is by induction on d.
d = 2: For a contradiction, assume that I is dandy to depth 2. Let

T0, T1 be transversals of I such that T0 ∩ T1 = ∅. We can assume that
T0 ∪ T1 = n. Let π be a permutation of n such that if i ∈ T0 and
j ∈ T1, then π(i) < π(j). Without loss of generality, assume that π is
the identity permutation. Let 0 = i0 < i1 < i2 < n demonstrate that
I is dandy to depth 2; that is, there are I0, I1 ∈ I such that I0 ⊆ [0, i1]
and I1 ⊆ [i1, i2]. Then i1 ∈ T1) so that T0 ∩ I0 ⊆ T0 ∩ [i1, i2] = ∅,
contradicting that T0 is a transversal.

For the inductive step, let 2 < d ≤ n and assume that for all smaller
d we have the result. For a contradiction, assume that I is dandy
to depth d. Let T0, T1, . . . , Td−1 be transversals of I such that T0 ∩
T1 ∩ · · · ∩ Td−1 = ∅. We can assume that T0 ∪ T1 ∪ · · · ∪ Td−1 = n.
Let π be a permutation of n such that whenever k < d, i ∈ Tk and
j 6∈ T0 ∪ T1 ∪ · · · ∪ Tk, then π(i) < π(j). Without loss of generality,
assume that π is the identity permutation. Let 0 = i0 < i1 < · · · <
id < n demonstrate that I is dandy to depth d; that is, there are
I0, I1, . . . , Id−1 ∈ I such that Ik ⊆ [ik, ik+1] for k < d. Then, i1 ∈ Td, so
that i1, i2, . . . , id−1 ∈ Td. Thus, i1 < i2 < · · · < id−1 demonstrate that
I ∩ P([i1, n)) is dandy to depth d − 1. This implies that I ∩ P(Td) is
dandy to depth d−1. Then, by the inductive hypothesis, δ(I∩P(Td)) ≥
d. However, T0 ∩ Td, T1 ∩ Td, . . . , Td−1 ∩ Td are d − 1 transversals of
I ∩ P(Td) whose intersection is ∅, thereby showing the contradiction
that δ(I ∩ P(Td)) ≤ d− 1. �
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Corollary 3.14: (cf. [9, Theorem 3.2]) Suppose that A is an n-
indexed hyperspace that is fine to depth d. If |A| < ℵd, then A has an

acceptable coloring.

Proof. It follows from Lemma 3.13 that A is fine to depth d iff
δ(I(a)) > d. Hence, by Corollary 3.3, A has an acceptable coloring. �

The hypothesis of the corollary is implied by the weaker one that for
some m < ω, A is m-fine to depth d. It is exactly this latter hypothesis
that Theorem 3.2 of [9] has when it is restricted to our context. Corol-
lary 3.14 (and its equivalent Corollary 3.3) is strictly stronger than [9,
Theorem 3.2] as the following example shows. Let E be an equiva-
lence relation on an infinite set A all of whose equivalence classes are
finite and for which there are arbitrarily large finite equivalence classes.
Then, the n-indexed hyperspace A = (A;E,E, . . . , E) is fine to depth
n but for no m < ω is it m-fine to depth 1.

§4. Extending de la Vega’s theorem. As its title suggests, this
section’s main purpose is to extend de la Vega’s Theorem 0.3 from
n-grids to n-indexed hyperspaces. This will be done in Theorem 4.2.
At the same time, the hypothesis of Theorem 0.3 will be weakened,
yielding Corollary 4.4. In Theorem 4.5 we give a modification of The-
orem 4.2 that restricts the cardinality of the indexed hyperspaces.
If A and B are n-indexed hyperspaces, then a weak embedding

of B into A is a one-to-one function f : B −→ A for which there is a
permutation π of n such that whenever x, y ∈ B and i < n, then

[x]π(i) = [y]π(i) ⇐⇒ [f(x)]i = [f(y)]i.

If there is a weak embedding of B into A, then we say that B is weakly

embeddable into A or that A weakly embeds B. Obviously, if A
weakly embeds B and A has an acceptable coloring, then so does B.
Every embedding is a weak embedding. If B is an n-cube over X , then
B is weakly embeddable into A iff B is embeddable into A. Every weak
embedding of B into A is a parbedding; in fact, if π is a permutation
that witnesses that f is a weak emebbeding, then f is a π-parbedding.
For any linearly ordered set X (for example, any X ⊆ ω) and n < ω,

let 〈X〉n be the set of strictly increasing n-tuples from X . Define the
n-halfcube to be the n-grid A|〈ω〉n, where A is the n-cube over ω. If

1 ≤ m,n < ω and ~S is an n-tuple of finite subsets of m, then we define
the ~S-halfcube to be the n-indexed hyperspace A|〈ω〉m, where A is the
~S-cube over ω. Thus, the n-halfcube is just the 〈{0}, {1}, . . . , {n−1}〉-

halfcube. For any ~S, the ~S-halfcube embeds all finite ~S-cubes; however,
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there are n-indexed hyperspaces that embed all finite ~S-cubes but do
not embed the ~S-halfcube.
Recall that Infinite Ramsey’s Theorem asserts that whenever P is a

finite partition of 〈ω〉n, then there are P ∈ P and an infinite X ⊆ ω
such that 〈X〉n ⊆ P . We will need the following canonical version of
Ramsey’s Theorem due to Erdős & Rado [2].

Lemma 4.1: (Erdős-Rado) Let n < ω and let E be any equivalence

relation on 〈ω〉n. Then there are I ⊆ n and an infinite X ⊆ ω such

that E ∩ (〈X〉n)2 is the equivalence relation on 〈X〉n induced by I.

Theorem 4.2: Suppose that A is an n-indexed hyperspace that does

not weakly embed any ~S-halfcube, where ~S is an n-tuple of nonempty

subsets of n. Then A has an acceptable coloring.

Proof. We prove the theorem by induction on the cardinality of A.
First, assume that A is countable. Then [a]0 ∩ [a]1 ∩ · · · ∩ [a]n−1 is
finite for every a ∈ A as otherwise each 〈n, n, . . . , n〉-halfcube would be
embeddable into A. By Lemma 1.2, A has an acceptable coloring.
Next, suppose that A has cardinality κ > ℵ0 and assume, as an

inductive hypothesis, that the theorem is valid when restricted to n-
indexed hyperspaces of smaller cardinality.. We will prove that A is
twisted, which, by Theorem 2.2, implies that A has an acceptable col-
oring. Thus, it suffices to show that there is a twisted filtration for A.
We will prove that every filtration for A is twisted.
Let 〈Aα : α < κ〉 be a filtration for A. Clearly, A|A0 satisfies

the hypothesis of the Theorem and |A0| < κ; hence, by the inductive
hypothesis, A|A0 is twisted. Next, consider α < κ and nonempty
I ⊆ n, and then let B be as in (2) of Definition 2.1 and B = (A|B)↾I.
We wish to show that B is twisted or, equivalently, that B has an
acceptable coloring. To do so, we will use the inductive hypothesis and
then prove: whenever ~R is an I-tuple of nonempty subsets of I, then
B does not weakly embed the ~R-halfcube.
For a contradiction, suppose that ~R is an I-tuple of nonempty subsets

of I and f : 〈ω〉I −→ B is a weak embedding of the ~R-halfcube into B.
For notational convenience and without loss of generality, we assume
that I = m > 0 and that f is actually an embedding of the ~R-halfcube
into B. It must be that m < n, as otherwise I = n and f would be an
embedding of the ~R-halfcube into A.
We define a function g : 〈ω〉n −→ Aα by recursion.
For m ≤ i < n and c ∈ 〈ω〉m, let ac,i ∈ Aα be such that [f(c)]i =

[ac,i]i. The function g will be obtained as the union of an increasing
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sequence g0 ⊆ g1 ⊆ g2 ⊆ · · · , where, for each r < ω, gr : {d ∈ 〈ω〉n :
dn−1 < r} −→ Aα. There is no choice for gr when r < n since each
domain is ∅. Now suppose we have gr and wish to get gr+1.
Let

X = {gr(d) : dn−1 < r} ∪ {ad,i : m ≤ i < n and dn−1 = r}.

Since X is a finite subset of Aα, by elementarity, we can get gr+1 ⊇ gr
such that whenever d, e ∈ 〈ω〉n and dn−1 = r = en−1, then:

(1) gr+1(d) ∈ Aα\X ;
(2) if d 6= e, then gr+1(d) 6= gr+1(e);
(3) if x ∈ X and i < n, then [gr+1(d)]i = [x]i ⇐⇒ [f(d↾m)]i = [x]i;
(4) if i < n, then [gr+1(d)]i = [gr+1(e)]i ⇐⇒ [f(d↾m)]i = [f(e↾m)]i.

By (1) and (2), this defines a one-to-one function g : 〈ω〉n −→ Aα.
We claim:

(∗) For each i < n there is j < n such that whenever d, e ∈
〈ω〉n are such that dk = ek whenever j 6= k < n, then
[g(d)]i = [g(e)]i.

The proof of the claim divides into two cases depending on whether or
not i < m.

i < m: Let j ∈ Ri, which is possible since Ri 6= ∅. Thus, j < m. Let
d, e ∈ 〈ω〉n be such that dk = ek whenever j 6= k < n, intending to prove
that [g(d)]i = [g(e)]i. Since j < m < n, we have that cn−1 = dn−1 = r.
Then, [d↾m]i = [e↾m]i, so that [f(d↾m)]i = [f(e↾m)]i. Hence, by (4),
[g(d)]i = [gr+1(d)]i = [gr+1(e)]i = [g(e)]i.

m ≤ i < n: Let j = n − 1. Let d, e ∈ 〈ω〉n be such that dk = ek
whenever k < n− 1, intending to prove that [g(d)]i = [g(e)]i. If d = e,
then the conclusion is trivial, so suppose that dn−1 = r < s = en−1.
Let c = d↾m = e↾m. Then, [f(c)]i = [ac,i]i. Therefore, by (3), we have
that [g(d)]i = [gr+1(d)]i = [ac,i]i = [gr+1(e)]i = [g(e)]i.

The claim (∗) is proved. By n applications of Lemma 4.1, we get
an infinite Y ⊆ ω such that for each i < n there is Si ⊆ n such that
whenever x, y ∈ 〈Y 〉n, then [g(x)]i = [g(y)]i iff {j < n : xj 6= yj} ⊆ Si.
It follows from (∗) that each Si 6= ∅. (In fact, from the proof of (∗),
we get that n\m ⊆ Si if i < m and that Ri ⊆ Si if m ≤ i < n.) Let
~S = 〈S0, S1, . . . , Sn−1〉, and assume, without loss, that Y = ω. Then g

is an embedding of the ~S-halfcube into A, which is a contradiction. �

It follows from Lemma 3.7 that if ~S is an n-tuple of nonempty subsets
of m and d = τ(~S), then the d-halfcube is parbeddable into the ~S-
halfcube. Therefore, the following corollary to Theorem 4.2 ensues.
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Corollary 4.3: Suppose that A is an n-indexed hyperspace that

does not parbed any d-halfcube, where d ≤ n. Then A has an acceptable

coloring.

Restricting the previous corollary to n-grids, we get the following
corollary that is a strengthening of de la Vega’s Theorem 0.3.

Corollary 4.4: Suppose that A is an n-grid that does not embed

the n-halfcube. Then A has an acceptable coloring.

Proof. Suppose that A is an n-grid. Then the only d-halfcube, where
d ≤ n, that it can parbed, is the n-halfcube. Any parbedding of the n-
halfcube into A is a weak embedding. Finally, if A weakly embeds the
n-halfube, then it embeds the n-halfcube. Thus, if A does not embed
the n-halfcube, then it satisfies the hypothesis of Corollary 4.3. �

Notice that Theorem 4.2 results when the hypothesis d < ω of the
next theorem is replaced by d = ∞.

Theorem 4.5: Suppose that 1 ≤ d < ω and A is an n-indexed
hyperspace that does not embed any ~S-halfcube, where ~S is an n-tuple
of subsets of n and τ(~S) < d. If |A| < ℵd−1, then A has an acceptable

coloring.

Proof. This proof follows very closely the proof of Theorem 4.2. The-
orem 2.4 gets used rather than Theorem 2.2. There is one additional
point that needs to be checked. In the proof, we are assuming that
d < ω and that ~R is an I-tuple of nonempty subsets of I. It then
must be shown that τ(~R) > d − 1. We then obtained the n-tuple ~S

of nonempty subsets of n such that every finite ~S-cube is embeddable
in A. This implies that τ(~S) > d. Thus, it remains to prove that

τ(~R) ≥ τ(~S)− 1. But this is clear since if T is a transversal of ~R and

i ∈ I, then T ∪ {i} is a transversal of ~S. �

Corollary 4.6: Suppose that 1 ≤ d < n and A is an n-indexed
hyperspace that does not parbed the (d − 1)-halfcube. If |A| < ℵd−1,

then A has an acceptable coloring.

Suppose that A in Corollary 4.6 is an n-grid and d = n−1. Since the
(d−1)-halfcube is not parbeddable into A, then Theorem 0.2 vacuously
follows.

Definition 4.7: If A is an n-indexed hyperspace A, then fcn(A),
the finite cube number of A, is the least d, where 1 ≤ d ≤ n, such
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that for some n-tuple ~S of subsets of d, A embeds every finite ~S-cube.
If there is no such d, then we let fcn(A) = ∞.

With this definition, we get the following corollary to Theorems 4.2
and 4.5.

Corollary 4.8: Suppose that A is an n-indexed hyperspace, fcn(A)
= d and |A| < ℵd−1. Then A has an acceptable coloring. �

This corollary will be improved for semialgebraic indexed hyper-
spaces in the next section.

§5. Semialgebraic indexed hyperspaces. Consider the ordered

real field R̃ = (R,+, ·, 0, 1,≤). We let LOF be the language for R̃. In
this section, we will make tacit use of the famous theorems of Tarski

that Th(R̃), the first-order theory of R̃, is decidable and admits the ef-

fective elimination of quantifiers. If R̃ is any LOF -structure andX ⊆ R,
then LOF (X) is LOF augmented with (constants denoting) the ele-
ments of X . A subset X ⊆ Rm is semialgebraic if it is definable in

R̃ by a formula in which parameters are allowed. An n-indexed hyper-
space A = (A;E0, E1, . . . , En−1) is semialgebraic if, for some m < ω,

A ⊆ Rm is semialgebraic as are each Ei ⊆ R2m. If ~S is an n-tuple of
finite subsets of m < ω, then the ~S-cube over R is semialgebraic. Also,
each n-indexed hyperspace (Rm;E(c0), E(c1), . . . , E(cn−1)) from the
prologue is semialgebraic. The purpose of this section is to generalize
Theorem 0.4 from n-grids to n-indexed hyperspaces.
If Y ⊆ X0 × X1 × · · · × Xm−1 and f is a function on Y , then f is

one-to-one in each coordinate if whenever x, y ∈ Y , i < m and
xj = yj whenever i 6= j < m, then f(x) = f(y) ⇐⇒ x = y. The
following definition is adapted from [4].

Definition 5.1: Suppose that ~S is an n-tuple of subsets of m < ω,
A is an n-indexed hyperspace, and X = X0 × X1 × · · · × Xm−1. A

function g : X −→ A is an immersion of the ~S-cube for X into A if
the following hold:

• g one-to-one in each coordinate;
• if x, y ∈ X , i < n and g(x) 6= g(y), then
[x]i = [y]i ⇐⇒ [g(x)]i = [g(y)]i.

If there is an immersion of the ~S-cube forX intoA, then we say that the
~S-cube forX is immersible intoA. IfX = Rm andA is semialgebraic,
then we say that the ~S-cube over R is semialgebraically immersible

into A if there is a semialgebraic immersion g : Rm −→ A.
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If g : X −→ A, where X, ~S and A are as in Definition 5.1, then
g is an embedding of the ~S-cube for X into A iff it is a one-to-one
immersion.

Lemma 5.2: Let ~S be an n-tuple of subsets of m and A a semi-

algebraic n-indexed hyperspace. If the ~S-cube over R is semialgebraically

embeddable into A, then there is a semialgebraic analytic embedding of

the ~S-cube over R into A.

Proof. Suppose that f : Rm −→ A is a semialgebraic embedding
of the ~S-cube over R into A. By analytic cylindrical decomposition,
there are disjoint analytic cylinders B0, B1, . . . , Bk ⊆ Rm whose union
is Rm and f is analytic on each Bi. There is some i ≤ k such that
dim(Bi) = m. There are rationals pj < qj, for j < m, such that
B = (p0, q0)× (p1, q1)× · · ·× (pm−1, qm−1) ⊆ Bi. Let gj : R −→ (pj, qj)
be an analytic, semialgebraic bijection, and let g = (g0, g1, . . . , gm−1).

Then, fg is a semialgebraic analytic embedding of the ~S-cube over R
into A. �

We say that an n-tuple ~S of subsets of d is reduced if τ(~S) = d < ω.

Lemma 5.3: Suppose that A is a semialgebraic n-indexed hyper-

space, ~S is a reduced n-tuple of subsets of d, and the ~S-cube over R

is semialgebraically immersible into A. Then the ~S-cube over R is

embeddable into A.

Proof. Let f : Rd −→ A be a semialgebraic immersion of the ~S-cube
over R into A. Let F ⊆ R be a countable, real-closed subfield such that
A is F-semialgebraic and f is F-definable. Let T be a transcendence
basis for T over F such that whenever a < b ∈ R, then |T ∩(a, b)| = 2ℵ0.
For i < d, let Ti = (i, i + 1) ∩ T . Each |Ti| = 2ℵ0, so we have that the
~S-cube for T0×T1×· · ·×Td−1 is isomorphic to the ~S-cube over R. We
prove (3) by proving that f↾(T0 × T1 × · · · × Td−1) is an embedding of

the ~S-cube for T0 × T1 × · · · × Td−1 into A. Clearly, it suffices to prove
that f is one-to-one on T0 × T1 × · · · × Td−1.
For a contradiction, suppose that s, t ∈ T0×T1×· · ·×Td−1, s 6= t and

f(s) = f(t). Suppose that i < d is such that si 6= t. For each x ∈ R,
let r(x) ∈ Rd be such that r(x)i = x and r(x) agrees with t on all other
coordinates. Since f is one-to-one on each coordinate, f(s) = f(r(x))
iff x = ti. But this gives an F ∪ (T\{ti})-definition of ti, contradicting
that T is algebraically independent over F. �
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Lemma 5.4: Suppose that A is a semialgebraic n-indexed hyperspace.
Then there is a finite partition {A0, A1, . . . , Am} of A such that for

every j ≤ m, there are ℓ < ω, an analytic semialgebraic bijection

f : Aj −→ Rℓ and analytic semialgebraic functions e0, e1, . . . , en−1 :
Rk −→ Rk such that for every a, b ∈ Aj and i < n, [a]i = [b]i iff

ei(f(a)) = ei(f(b)).

Proof. We give a sketch of the proof. Let A = (A;E0, E1, . . . , En−1)
be an n-indexed hyperspace where A ⊆ Rk. We are trying to get a
finite partition P of A as described in the lemma. Let g0, g1, . . . , g1 :
A −→ Rk be semialgebraic functions such that whenever a, b ∈ A and
i < n, then [a]i = [b]i iff gi(a) = gi(b). Using analytic cylindrical cell
decomposition, we get a semialgebraic partition A = C0 ∪C1 ∪ · · · ∪Ct

such that each Cj is an analytic cell and each gi is analytic on Cj . If
dim(Cj) = dim(A), then put Cj into P. Repeat process for each Cj

such that dim(Cj) < dim(A). Continue putting cells into P until P is
a partition of A into cells A0, A1, . . . , Am. For each Aj , there are ℓ ≤ k
and an analytic semialgebraic bijection f : Aj −→ Rℓ. �

The following theorem, which we refer to as the Polarized Canonical
Erdős-Rado Theorem (PCERT), will be needed. For more on this
theorem, see, for example, [5, Coro. 1.4]). If X = X0×X1×· · ·×Xr−1

and J ⊆ r, then ∼J is the equivalence relation on X induced by J ;
that is, if x, y ∈ X , then x ∼J j iff xi = yi for all i ∈ r\J .

Theorem 5.5: (PCERT) If λ is a cardinal and r < ω, then there

is a cardinal κ such that whenever ≈ is an equivalence relation on κr,
then there are J ⊆ r and X0, X1, . . . , Xr−1 ⊆ κ such that |X0| = |X1| =
· · · = |Xr−1| = λ and ≈ agrees with ∼J on X0 ×X1 × · · · ×Xr−1.

Lemma 5.6: Suppose that A is a semialgebraic n-indexed hyperspace,
~S is a reduced n-tuple of subsets of d < ω, and every finite ~S-cube
is embeddable into A. Then the ~S-cube over R is semialgebraically

immersible into A.

Proof. Let A, n and ~S be as given. Let {A0, A1, . . . , Am} be a par-

tition of A as in Lemma 5.4. Since every finite ~S-cube is embeddable
into A, then (by Finite Polarized Ramsey’s Theorem) there is j ≤ m

such that every finite ~S-cube is embeddable into A|Aj. Thus, we might
as well assume that Aj = A. Then, using the function f in Lemma 5.4,
assume that A = Rk. Thus, we have A = (Rk;E0, E1, . . . , En1

), where
1 ≤ k < ω, and analytic semialgebraic functions e0, e1, . . . , en−1 :
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Rk −→ Rk such that for each i < n and a, b ∈ Rk, [a]i = [b]i iff
ei(a) = ei(b).

Let R̃ ≻ R̃ be a sufficiently saturated elementary extension. If j < ω
and D ⊆ Rj , let DR be the subset of Rj defined in R̃ by a same formula

that defines D in R̃. Let AR = (Rd;ER
0 , E

R
1 , . . . , E

R
n−1), which is an n-

indexed hyperspace. If D ⊆ Rm and X ⊆ R, then we say that D is

X-definable if it is definable in R̃ using only parameters from X .
Let F ⊆ R be a countable real-closed subfield such that AR and all

the eRi ’s are F-definable. Let T ⊆ R be a transcendence basis for R̃ over
F such that whenever a, b ∈ F and a < b, then |(a, b) ∩ T | = |R|. This
choices of F and T are not definitive in that at various times in this
proof we may replace F by a larger real-closed field that is generated
over F by some finite subset T0 ⊆ T . When we do that, it should be
understood that we then replace T by T\T0.
If D ⊆ Rm is R-definable, then define supp(D), the support of D,

to be the smallest subset S ⊆ T such that D is (S ∪ F)-definable. For
each R-definable D ⊆ Rm, supp(D) is a unique, finite subset of T . If
a ∈ R or a ∈ Rk, then supp(a) = supp({a}). If a ∈ A and i < n, then
supp([a]i) ⊆ supp(a).
Suppose that 1 ≤ j < ω, a ∈ Rj and supp(a) = {t0, t1, . . . , tm−1}<.

(This notation implies that t0 < t1 < · · · < tm−1.) A determining

function for a is an F-definable, R̃-analytic function f : dom(f) −→ Rj

such that:

(1) dom(f) is an open subset of 〈R〉m. (Recall that 〈R〉m = {x ∈
Rm : x0 < x1 < · · · < xm−1}.)

(2) dom(f) is orthogonally convex (i.e., if ℓ ⊆ Rm is a line parallel
to a coordinate axis, then ℓ ∩ dom(f) is convex).

(3) f is one-to-one in each coordinate.
(4) 〈t0, t1, . . . , tm−1〉 ∈ dom(f) and f(t0, t1, . . . , tm−1) = a.

Claim 1: Every a ∈ Rj has a determining function.

We sketch a proof since this is probably well known and, if not,
then the proof of a very similar statement (within the proof of [5,
Theorem 3.1]) can be consulted. First, assume that j = 1 so that
a ∈ R. Let supp(a) = {t0, t1, . . . , tm−1}<. Let p(x, y0, y1, . . . , ym−1) ∈
R[x, y] be such that p(x, t) is an irreducible polynomial and p(a, t) = 0.
Let i < ω be such that a is the i-th root (in increasing order) of
this polynomial. Then there is an F-definable function g : D −→
R such that D ⊆ 〈R〉m, t ∈ D and g(d) is the i-th root of p(x, d).

Using cylindrical cell decomposition for R̃, we can get an F-definable,

orthogonally convex cell C ⊆ D such that t ∈ C, f = g↾D is R̃-analytic
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and
∂f

∂xℓ
(d) 6= 0

whenever d ∈ C and ℓ < m. This f↾C is a determining function for a..
Next, suppose that j > 1 and that a ∈ Rj. For i < j, let fi : Ci −→

R be a determining function for ai. These fi’s can easily be merged
into a function f : C −→ Rj that is a determining function for a. This
completes the (sketch of) the proof of Claim 1.

Let g : Xd −→ AR be an embedding of the ~S-cube over X into AR,
were X is sufficiently large. (It more than suffices to have |X| ≥ iω.)
We will say that Y ⊆ Xd is sufficiently large to mean that there are
sufficiently large X0, X1, . . . , Xd−1 such that Y ⊇ X0×X1×· · ·×Xd−1

We can use PCERT to get a sufficiently large Y0 ⊆ Xd such that:

(5) There is a single f that is a determining function for g(x) when-
ever x ∈ Y0.

Let m be such that dom(f) ⊆ Rm. Notice that m ≥ 1 since |Y0| ≥
2. For each x ∈ Y0, let h(x) = 〈t0, t1, . . . , tm−1〉 ∈ dom(f), where
supp(g(x)) = {t0, t1, . . . , tm−1}<. Thus, h(x)j is the j-th element in
supp(g(x)). Using PCERT again, we get a sufficiently large Y1 ⊆ Y0
such that:

(6) Whenever i ≤ j < m and x, y ∈ Y1, then h(x)i ≤ h(y)j.

Thus, whenever i < m, then either for every x, y ∈ Y1, then h(x)i =
h(y)i or else for every distinct x, y ∈ Y1, then h(x)i = h(y)i. In the
latter case, replace F by the real-closed subfield of R generated by F

and the common value h(x)i. Thus, we can assume that Y1 satisfies
the following strengthening of (6):

(6a) Whenever i < j < m and x, y ∈ Y1, then h(x)i < h(y)j.
(6b) Whenever i < m and x, y ∈ Y1 are distinct, then h(x)i 6= h(y)i.

We next make a modification of f and F. Because of (2),(3),(6b) and

the saturation of R̃, we can r0 < q0 < r1 < q1 < · · · < rm−1 < qm−1 in
T such that:

(7) Whenever i < m and x ∈ Y1, then ri < h(x)i < qi.
(8) B = (r0, q0)× (r1, q1)× · · · × (rm−1, qm−1) ⊆ dom(f).

We replace F by its extension generated by r0, q0, r1, q1, . . . , rm−1, qm−1

and then replace f with f↾B so that we have

(9) dom(f) = B.

Using PCERT again, we get a sufficiently large Y2 ⊆ Y1 such that:

(10) For every M ⊆ m, there is DM ⊆ d such that whenever x, y ∈
Y2, then x ∼DM

y iff h(x) ∼M h(y).
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Claim 2: If M,N ⊆ m, then M ⊆ N iff DM ⊆ DN .

We prove the claim. Consider x, y ∈ Y2. Suppose M ⊆ N . Then
x ∼DM

y. Then, x ∼DM
y =⇒ h(x) ∼M h(y) =⇒ h(x) ∼N h(y) =⇒

x ∼DN
y. This proves M ⊆ N =⇒ DM ⊆ DN . For the converse,

suppose that DM ⊆ DN . Then h(x) ∼DM
h(y) =⇒ x ∼M y =⇒ x ∼N

y =⇒ h(x) ∼DN
h(y).

Claim 3: For each i < n, there is Mi ⊆ m such that DMi
= Si.

Fix i < n. Let

Mi = {j < m : ∃x, y ∈ Y2
(
[x]i = [y]i ∧ h(x)j 6= h(y)j

)
}.

We first prove:

(∗) ∀j ∈Mi ∀s, t ∈ B ∩ T d
(
s ∼{j} t −→ [f(s)]i = [f(t)]i

)
.

Let j ∈ Mi. Let x, y ∈ Y2 witness that j ∈ Mi. Let s′ = h(x) and
t′ = h(y). Thus, s′j 6= t′j and [f(s′)]i = [f(t′)]i. Then, e

R
i f(s

′) = eRi f(t
′).

Since eRi f is R-analytic and F-definable, it then follows that for every
s, t ∈ B∩T d, if s ∼{j} t, then e

R
i f(s) = eRi f(t), so that [f(s)]i = [f(t)]i.

This proves (∗).
We now prove that DMi

= Si.

DMi
⊆ Si: Suppose that x ∼DMi

y (intending to show that x ∼Si
y).

Then, h(x) ∼Mi
h(y). Let t0, t1, . . . , tr ∈ B ∩ T d such that t0 = h(x),

tr = h(y) and for all ℓ < r there is j ∈ Mi such that tℓ ∼{j} tℓ+1. It
follows from (∗) that [g(x)]i = [fh(x)]i = [fh(y)]i = [g(y)]i so that
x ∼Si

y.

Si ⊆ DMi
: Suppose that x ∼Si

y (intending to show that x ∼DMi

y). Then, [x]i = [y]i so that h(x) ∼Mi
h(y) by the definition of Mi.

Therefore, x ∼DMi
y.

This completes the proof of Claim 3.

We make two more modifications of f and F. For the first one,
suppose that there are t ∈ T and j < m such that h(x)j = t whenever
x ∈ Y2. Replace F by its extension generated by t and then replace f
by the function (m − 1)-ary function by fixing the j-th coordinate at
t. We then have:

(11) If M ⊆ m and DM = ∅, then M = ∅.

Letting Mi be as in Claim 3, it follows from Claim 2 and (11),
that τ(〈M0,M2, . . . ,Md−1〉) = d. Let I ⊆ m be a transversal for
〈M0,M1, . . . ,Md−1〉 such that |I| = d, where I = {i0, i1, . . . , id−1}<.
Let t ∈ B ∩ Tm. We modify f and F by replacing F with its extension
generated by {tj : j ∈ m\I}. Let B′ = {a ∈ B : aj = tj} and then
replacing f by the function
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Theorem 5.7: Suppose that A is a semialgebraic n-indexed hyper-

space and d ≤ n. The following are equivalent:

(1) There is an n-tuple ~S of subsets of d such that the ~S-cube over

R is semialgebraically immersible into A.

(2) There is an n-tuple ~S of subsets of d such that every finite ~S-
cube is embedable into A.

(3) There is an n-tuple ~S of subsets of d such that the ~S-cube over

R is embeddable into A.

Proof. (3) =⇒ (2) is trivial. Lemma 5.6 implies (2) =⇒ (1) and
Lemma 5.3 implies (1) =⇒ (3). �

If A is a semialgebraic n-indexed hyperspace, then fcn(A) (see Def-
inition 4.7) is the least d (1 ≤ d ≤ n) such that every (or any) one of
(1) – (3) holds. If there is no such d, then fcn(A) = ∞.

Corollary 5.8: Suppose that A is a semialgebraic n-indexed hy-

perspace and fcn(A) = d. Then A has an acceptable coloring iff 2ℵ0 <
ℵd−1. �

Corollary 5.9: The set of LOF -formulas that, for some n < ω,

define in R̃ a semialgebraic n-indexed hyperspace having an acceptable

coloring is computable.

Proof. Let Γ by the set of LOF -formulas defined in the corollary.
Using (3) =⇒ (1) of the applicable one of Corollary 5.3 or 5.6, we get
that Γ is c.e., and using (3) ⇐⇒ (2) we get that Γ is co-c.e. �

In the previous corollary, the formulas are LOF -formulas, so they
are not allowed to have any parameters. There is a way to modify this
corollary for LOF (R)-formulas. A typical LOF (R)-formula has the form
ϕ(x, c), where ϕ(x, y) is an (m+ n)-ary LOF -formula and c ∈ Rn. We
say that a set Γ of LOF (R)-formulas ϕ(x, c) is decidable if there is a
computable set ∆ of LOF -formulas such that for every LOF (R)-formula
ϕ(x, c), the following are equivalent:

(1) ϕ(x, c) ∈ Γ;

(2) there is a formula θ(y) ∈ ∆ such that R̃ |= θ(c) and
∀y[θ(y) −→ ϕ(x, y)] is in ∆;

(3) there is a formula θ(y) ∈ ∆ such that R̃ |= θ(c) and
∀y[θ(y) −→ ¬ϕ(x, y)] is in ∆.
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A set of LOF -formulas is computable iff it is decidable (as a set of
LOF (R)-formulas).

Corollary 5.10: The set of LOF (R)-formulas that define in R̃ a

semialgebraic indexed hyperspace having an acceptable coloring is de-

cidable. �
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