
ar
X

iv
:1

60
8.

07
70

3v
2 

 [
m

at
h.

L
O

] 
 6

 M
ay

 2
01

9

UNSOUND INFERENCES MAKE PROOFS SHORTER

JUAN P. AGUILERA AND MATTHIAS BAAZ

Abstract. We give examples of calculi that extend Gentzen’s sequent calculus
LK by unsound quantifier inferences in such a way that (i) derivations lead
only to true sequents, and (ii) proofs therein are non-elementarily shorter than
LK-proofs.

1. Introduction

Consider the following argument:

(1) That Kurt Gödel is Austrian entails that Kurt Gödel is Austrian.
(2) Hence, that Kurt Gödel is Austrian entails that everyone is Austrian.
(3) That is, if Kurt Gödel is Austrian, then all people are Austrian.
(4) Therefore, there exists a person such that, if that person is Austrian, then

all people are Austrian.

The argument can be formalized as an instance of the following proof schema:

(1)

A(a) ⊢ A(a)

A(a) ⊢ ∀y A(y)

⊢ A(a) → ∀y A(y)

⊢ ∃x
(

A(x) → ∀y A(y)
)

The study of formal proofs is motivated by our desire for deductive reasoning to
be correct, i.e., we wish that it be such that the procedures involved derive only
true conclusions. The traditional way of ensuring this involves restricting proofs to
those satisfying the two following properties:

• Inferences are sound,1 i.e., only true conclusions result from true premises.
• Derivations are hereditary, i.e., initial segments of proofs are proofs them-
selves.

In particular, one might impose certain characteristic-variable conditions that
restrict the circumstances under which quantifiers can be inferred. We will use
unsound rules based on weak characteristic-variable conditions to define enhanced
(correct) logical calculi wherein derivations such as (1) will be allowed.

In our current treatment, the correctness of proofs can only be gauged by consid-
ering them in their entirety, as forfeiting soundness while maintaining correctness
necessarily violates hereditariness. This is not unlike other aspects of reasoning
that are traditionally not reflected in formal derivations. For example, hereditari-
ness is not compatible with proofs by contradiction—one would not take as correct

1Soundness is usually applied to derivations or logical systems. In this paper, we distinguish
‘soundness’ from ‘correctness.’ See below.
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2 JUAN P. AGUILERA AND MATTHIAS BAAZ

an initial segment of a proof obtained by interrupting it after an assumption di-
rected towards a contradiction had been made, but before the contradiction had
been reached.

To illustrate this, we note that the following subproof of the opening example
should not be allowed as a proof in the system:

1. That Kurt Gödel is Austrian entails that Kurt Gödel is Austrian.
2. Hence, that Kurt Gödel is Austrian entails that everyone is Austrian.

The strong inference from 1 to 2 is the only unsound one:

1. That Kurt Gödel is Austrian entails that Kurt Gödel is Austrian.
3′ That is, if Kurt Gödel is Austrian, then Kurt Gödel is Austrian.
4′ Therefore, there exists a person such that, if that person is Austrian, then

Kurt Gödel is Austrian.

Here, the name ‘Kurt Gödel’ is simply manipulated syntactically, so its meaning
plays no role. Moreover, the name does not even appear in sentence 4. It could
well have been replaced by any other throughout the derivation with no effect—we
call (the result of formalizing) this condition substitutability. In our example, it is
what allows us to mend the proof after a ‘lie’ has been introduced in 2.

Formal proofs can often be taken without loss of generality to be regular, i.e.,
any variable which is the characteristic variable2 of a quantifier inference can be
assumed to appear only before then. Forfeiting this condition allows us to accept
the following proof:

A(a) ⊢ A(a)

A(a) ⊢ ∀xA(x)

A(f(a)) ⊢ A(f(a))

∀xA(x) ⊢ A(f(a))

A(a) ⊢ A(f(a))

⊢ A(a) → A(f(a))

⊢ ∃x
(

A(x) → A(f(x))
)

(2)

In this example, a is the characteristic variable of only one quantifier inference.
We call this weak regularity. Our main result is that a sequent calculus augmented
with unsound quantifier inferences satisfying substitutability, weak regularity (or
even a further weakening thereof), and a technical side-variable condition is correct.
This means that, although inferences therein may not be sound, the three (global)
conditions are enough to guarantee that any lie introduced during the proof is
eventually cleared. Moreover, the calculus yields non-elementarily–shorter3 cut-free
proofs than standard proof systems. This is proved in Section 3. Some consequences
of the speed-up theorem are explained in Section 4.

The three characteristic-variable conditions are motivated by the rules governing
possible inferences in Hilbert’s ε-calculus, whose language contains no quantifiers
(see Section 5). As a consequence, proofs therein are less restrictive. The weakened
conditions thus result from attempting to pull back some extra freedom from the
ε-calculus to first-order logic. They can also be thought of as a first attempt in
tracking down and covering the spots where first-order logic proofs might break
down without the usual quantifier-inference restrictions. In particular, it seems
plausible that the conditions here can be further weakened, and the corresponding
calculi can result even faster (see Section 6).

2See Section 2 for preliminaries and definitions.
3Size can be measured, e.g., by counting the number of inferences in the proof.
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2. Quantifier Inferences

We consider derivations in sequent calculi. Sequents are expressions of the form
Γ ⊢ ∆, where Γ and ∆ represent collections of formulae. The sequent Γ ⊢ ∆
is usually interpreted as ‘if all of Γ hold, then at least one of the formulae in ∆
holds.’ Equivalently, if Γ = A0, A1, . . . , An and ∆ = B0, B1, . . . , Bm, then Γ ⊢ ∆ is
interpreted as:

(3)
∨

i≤n

¬Ai ∨
∨

i≤m

Bi

Inferences are expressions of the form

Γ ⊢ ∆
Γ′ ⊢ ∆′

which are to be interpreted as ‘the sequent Γ′ ⊢ ∆′ follows from the sequent Γ ⊢ ∆.’
Derivations are trees whose leaves are axioms and whose non-leaf nodes are sequents
obtained from their predecessors by inferences; they are to be interpreted as proofs
of the root sequent. In fact, we frequently refer to derivations as ‘proofs.’

If a formula is changed by an inference, we say that the formula is an auxil-
iary formula of the inference. If so, then the resulting formula in the conclusion is
called the critical formula. An inference is a quantifier inference if the (only) crit-
ical formula has a quantifier as its outermost logical symbol. Normally, quantifier
inferences consist of substituting a formula4 QxA(x) for an instance thereof in a
sequent, e.g., as in

Γ ⊢ ∆, A(a)

Γ ⊢ ∆, ∀xA(x)

The polarity of a quantifier in a sequent Γ ⊢ ∆ is defined as follows: rewrite Γ ⊢ ∆ in
the form (3) and then rewrite the resulting expression without implication symbols.
A quantifier is positive if it is universal (resp. existential) and under the scope of an
even (resp. odd) number of negation symbols, and negative otherwise. A quantifier
is strong if it is positive and on the right-hand side of a sequent or negative and on
the left-hand side of a sequent; it is weak otherwise.

If an inference yields a strongly-quantified formula QxA(x) from A(a), where a

is a free variable, we say that a is the characteristic variable of the inference. We
will denote free variables by letters a, b, c, ... (in contrast, we denote bound variables
by x, y, z, ...). We denote closed terms by t, s, r, ... and variants thereof.

Let π be any derivation. We say b is a side variable of a in π (written a <π b) if
π contains a strong-quantifier inference of the form:

Γ ⊢ ∆, A(a, b,~c)

Γ ⊢ ∆, ∀xA(x, b,~c)

or of the form:
A(a, b,~c),Γ ⊢ ∆

∃xA(x, b,~c),Γ ⊢ ∆

The Skolemization of a first-order formula is defined by replacing every strongly
quantified variable y with a new function symbol fy(x1, . . . , xn), where x1, . . . , xn

are the weakly quantified variables such that Qy appears in the scope of their
quantifiers, and removing the quantifier Qy. We write sk(A) for the Skolemization

4We will frequently use Q to denote any unspecified quantifier.
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of A. Recall that whether a quantifier is weak or strong depends on the side of the
sequent on which it is. Thus, sk(A) means different things depending on whether
A appears in the antecedent or the succedent. The Skolemization of a sequent

A0, . . . , Am ⊢ Am+1, . . . , Am+n

is defined as:

sk(A0), . . . , sk(Am) ⊢ sk(Am+1), . . . , sk(Am+n).

In classical logic, a sequent is derivable if and only if its Skolemization is.

Definition 2.1 (Suitable quantifier inference). We say a quantifier inference is
suitable for a proof π if either it is a weak-quantifier inference, or the following
three conditions are satisfied:

• (substitutability) the characteristic variable does not appear in the conclu-
sion of π.

• (side-variable condition) the relation <π is acyclic.
• (weak regularity) the characteristic variable is not the characteristic vari-
able of another strong-quantifier inference in π.

We will work with various sequent calculi extending Propositional LK, the se-
quent calculus whose only axioms are ⊥ ⊢ and A ⊢ A (with A atomic) and whose
rules are:

Structural rules:

Γ ⊢ ∆
Γ, A ⊢ ∆

WL
Γ ⊢ ∆

Γ ⊢ ∆, A
WR

Γ, A,A ⊢ ∆

Γ, A ⊢ ∆
CL

Γ ⊢ ∆, A,A

Γ ⊢ ∆, A
CR

Γ1, A,B,Γ2 ⊢ ∆

Γ1, B,A,Γ2 ⊢ ∆
EL

Γ ⊢ ∆1, A,B,∆2

Γ ⊢ ∆1, B,A,∆2
ER

Γ ⊢ ∆, A A,Γ ⊢ ∆

Γ ⊢ ∆
Cut

Logical rules:

Γ, A ⊢ ∆

Γ, A ∧B ⊢ ∆
∧1L

Γ ⊢ ∆, A

Γ ⊢ ∆, A ∨B
∨1R

Γ, B ⊢ ∆

Γ, A ∧B ⊢ ∆
∧2L

Γ ⊢ ∆, B

Γ ⊢ ∆, A ∨B
∨2R

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ∨B ⊢ ∆
∨L

Γ ⊢ ∆, A Γ ⊢ ∆, B

Γ ⊢ ∆, A ∧B
∧R

Γ ⊢ ∆, A Γ, B ⊢ ∆

Γ, A → B ⊢ ∆
→ L

Γ, A ⊢ ∆, B

Γ ⊢ ∆, A → B
→ R

Negation ¬A is defined as A → ⊥. The names of the structural rules stand,
respectively, for ‘weakening,’ ‘contraction,’ and ‘exchange.’ First-order LK is the
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extension of Propositional LK obtained by adding quantifier inferences:

Γ, A(t) ⊢ ∆

Γ, ∀xA(x) ⊢ ∆
∀L

Γ ⊢ ∆, A(t)

Γ ⊢ ∆, ∃xA(x)
∃R

Γ, A(a) ⊢ ∆

Γ, ∃xA(x) ⊢ ∆
∃L

Γ ⊢ ∆, A(a)

Γ ⊢ ∆, ∀xA(x)
∀R

with the only restriction that in the inferences ∀R and ∃L, the variable a is not
allowed to appear in the conclusion. In particular, note that every quantifier in-
ference is suitable for every regular LK-proof. Gentzen’s famous Cut-Elimination
Theorem states that the cut rule is redundant in both propositional and first-order
LK.

Definition 2.2 (LK+). The calculus LK+ is defined like LK, except that we instead
allow all weak and strong quantifier inferences with the proviso that they be suitable
for the proof.

A further weakening of the characteristic-variable conditions gives rise to the
notion of weak suitability:

Definition 2.3 (Weakly suitable quantifier inference). A quantifier inference is
weakly suitable for a proof π if either it is a weak-quantifier inference or it satisfies
substitutability, the side-variable condition, and:

• (very weak regularity) whenever the characteristic variable is also the char-
acteristic variable of another strong-quantifier inference in π, then it has
the same critical formula.

Definition 2.4 (LK++). The calculus LK++ is the extension of LK+ that results
from allowing all weakly suitable quantifier inferences.

It is easy to find examples of sequents that are more easily provable in LK+ than
in LK:

Example 2.5. The sequent

∀xA(x) → B ⊢ ∃x (A(x) → B)

is provable in LK:

A(a) ⊢ A(a)

A(a) ⊢ A(a), B

⊢ A(a), A(a) → B

⊢ A(a), ∃x (A(x) → B)

⊢ ∃x (A(x) → B), A(a)

⊢ ∃x (A(x) → B), ∀xA(x) B ⊢ B

∀xA(x) → B ⊢ ∃x (A(x) → B), B

∀xA(x) → B,A(b) ⊢ ∃x (A(x) → B), B

∀xA(x) → B ⊢ ∃x (A(x) → B), A(b) → B

∀xA(x) → B ⊢ ∃x (A(x) → B), ∃x (A(x) → B)

∀xA(x) → B ⊢ ∃x (A(x) → B)

However, one can find a shorter LK+-proof:
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A(a) ⊢ A(a)

A(a) ⊢ ∀xA(x) B ⊢ B

A(a), ∀xA(x) → B ⊢ B

∀xA(x) → B,A(a) ⊢ B

∀xA(x) → B ⊢ A(a) → B

∀xA(x) → B ⊢ ∃x (A(x) → B)

�

Recall that a function on the natural numbers is elementary if it can be defined
by a quantifier-free formula from +, ·, and the function x 7→ 2x. By independent
results of R. Statman [8] (which were formalized in [3]) and of V. P. Orevkov [7],
the sizes of the smallest cut-free LK-proofs of sequents of length n are not bounded
by any elementary function on n. Our main theorem is that cut-free LK+-proofs
are non-elementarily shorter than cut-free LK-proofs:

Theorem 2.6. There is no elementary function bounding the length of the shortest
cut-free LK-proof of a formula in terms of its shortest cut-free LK+-proof.

An immediate consequence is the following:

Corollary 2.7. There is no elementary function bounding the length of the shortest
cut-free LK-proof of a formula in terms of its shortest cut-free LK++-proof.

We prove Theorem 2.6 in Section 3. First, we consider the question of the cor-
rectness of LK++. The proof of Theorem 2.8 that we present here is due to the
referee:

Theorem 2.8. If a sequent is LK++-derivable, then it is already LK-derivable.

Proof. Let π be an LK++-proof. Replace every unsound universal quantifier infer-
ence by a → L inference:

Γ ⊢ ∆, A(a) ∀xA(x) ⊢ ∀xA(x)

Γ, A(a) → ∀xA(x) ⊢ ∆, ∀xA(x)

Similarly replace every unsound existential quantifier by an → L inference

∃xA(x) ⊢ ∃xA(x) A(a),Γ ⊢ ∆

Γ, ∃xA(x), ∃xA(x) → A(a) ⊢ ∆

By doing this, we obtain a proof of the desired sequent, together with many
formulae of the form A(a) → ∀xA(x) or ∃xA(x) → A(a) on the left-hand side.
However, we can eliminate each of them by adding an existential quantifier inference
and cutting with formulae of the form

⊢ ∃y
(

A(y) → ∀xA(x)
)

or of the form
⊢ ∃y

(

∃xA(x) → A(y)
)

,

both of which are easily derivable. Note that the existential quantifier inferences
can be carried out in a way that is permissible by LK because the initial proof
satisfied substitutability, weak regularity and the side-variable condition. �

Corollary 2.9. If a sequent is derivable in LK+, then it is already derivable in LK.
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3. Non-Elementary Speed-Up

Our strategy for proving Theorem 2.6 is to show that LK+ simulates a strong
calculus that is already non-elementarily faster than LK. It is related to quantifier
shifts, formulae such as:

(∀xA → B) → ∃x (A → B).

The main feature of the calculus is the addition of certain rules for quickly
shifting quantifiers. Below, if A is a subformula of B, we say that B is a context
of A. We generally write κ[A] to emphasize that A occurs in a context κ[·]; they
should be thought as syntactical operators A 7→ κ[A].

Definition 3.1. The calculus LKshift is obtained by extending LK with the fol-
lowing rules:

Γ, κ[QxA⊳B] ⊢ ∆

Γ, κ[Q′x (A⊳B)] ⊢ ∆

Γ, κ[A⊳QxB] ⊢ ∆

Γ, κ[Q′x (A⊳B)] ⊢ ∆

Γ ⊢ ∆, κ[QxA⊳B]

Γ ⊢ ∆, κ[Q′x (A ⊳B)]

Γ ⊢ ∆, κ[A⊳QxB]

Γ ⊢ ∆, κ[Q′x (A⊳B)]

where κ[·] is a context, ⊳ ∈ {∧,∨,→} and Q′ = Q, except if ⊳ is → and Q is taken
from the antecedent, in which case Q′ is opposite. We refer to these rules as deep
quantifier shifts.

Here, recall that, as per our conventions, the syntax of first-order logic includes
separate symbols for free and bound variables.

Proposition 3.2. Cut-free LK+ simulates cut-free LKshift double-exponentially,

i.e., every LKshift-provable sequent is LK+-provable and there is a double exponen-

tial function that bounds the length of the least cut-free LK+-proof of a LK+-provable
sequent in terms of its least cut-free LKshift-proof.

Proof. Let π be a cut-free LKshift-proof of size n. We transform it into a cut-free
LK+-proof. Assume by induction that there is only one application of a quantifier
shift and this is the last inference. We proceed by cases. For simplicity, we assume
κ does not change the polarity of the quantifiers. We also assume ⊳ is →; the
other connectives are treated similarly.

Case I. The last inference is:

Γ, κ[∀xA(x) → B] ⊢ ∆

Γ, κ[∃x (A(x) → B)] ⊢ ∆

so that the proof has the following structure:
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...σ2

Γ′′ ⊢ ∆′′, A(a)
(∗)

Γ′′ ⊢ ∆′′, ∀xA(x)

...σ1

Γ′ ⊢ ∆′, ∀xA(x)

...σ3

Γ′, B ⊢ ∆′

Γ′, ∀xA(x) → B ⊢ ∆′

...σ0

Γ, κ[∀xA(x) → B] ⊢ ∆

Γ, κ[∃x (A(x) → B)] ⊢ ∆

where the σi denote subproofs. The subproof σ0 might split into several branches
not indicated in the diagram, each of which could potentially include its own copy
of ∀xA(x) being inferred and its own subproof σ′

3 with conclusion of the form
Π, B ⊢ Λ. Each branch can be dealt with the same way and so we will only focus
on the indicated parts of π.

Similarly, the subproof σ1 might split into several branches not indicated in the
diagram, each of which could potentially include its own copy of ∀xA(x) being
inferred. This we need to bear in mind. Note that each of those copies of ∀xA(x)
is necessarily inferred from a different characteristic variable. In fact, the variable
a does not appear below (∗), by the regularity of LKshift.

We modify the proof. Our approach is as follows: we would like to merge the
subproofs σ1 and σ2 simply by postponing the inference (∗) as follows:

...σ2 + σ1

Γ′ ⊢ ∆′, A(a)

...σ3

Γ′, B ⊢ ∆′

Γ′, A(a) → B ⊢ ∆′

(∗∗)
Γ′, ∃x (A(x) → B) ⊢ ∆′

...σ0

Γ, κ[∃x (A(x) → B)] ⊢ ∆

The problem that might arise is that some occurrence of ∀xA(x) that would be
contracted in σ1 with the indicated occurrence is unable to be contracted. We
describe how to deal with each of them.

Notice that the problematic occurrence of ∀xA(x) must originate from a strong-
quantifier inference. Omit that inference and drag the unquantified formula A(b)
until after (∗∗), so that at that point we have a derivation of

Γ′
0, A(b),Γ

′
1, ∃x (A(x) → B),⊢ ∆′,

where Γ′ = Γ′
0,Γ

′
1. Add to that some exchanges to obtain:

Γ′, ∃x (A(x) → B), A(b) ⊢ ∆′,

and a subproof

...σ3

Γ′, B ⊢ ∆′(4)
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in order to infer

Γ′, ∃x (A(x) → B), A(b) → B ⊢ ∆′.

with an application of ∃L and a contraction, we are left again with

Γ′, ∃x (A(x) → B) ⊢ ∆′,

to which we can apply σ0 as desired. The proof grows by adding a copy of (4)—of
size at most n—for each problematic occurrence of ∀xA(x) (of which there are at
most n). Hence, it grows quadratically.

Case II. The last inference is:

Γ, κ[∃xA(x) → B] ⊢ ∆

Γ, κ[∀x (A(x) → B)] ⊢ ∆

The proof has the following structure:

...σ2

Γ′′ ⊢ ∆′′, A(t)

Γ′′ ⊢ ∆′′, ∃xA(x)

...σ1

Γ′ ⊢ ∆′, ∃xA(x)

...σ3

Γ′, B ⊢ ∆′

Γ′, ∃xA(x) → B ⊢ ∆′

...σ0

Γ, κ[∃xA(x) → B] ⊢ ∆

Γ, κ[∀x (A(x) → B)] ⊢ ∆

As in Case I, the subproof σ0 could branch off into several subtrees each of which
is taken care of in the same way, and so we only focus on the indicated parts of π.
We would like to merge the subproofs σ1 and σ2 as follows:

...σ2 + σ1

Γ′ ⊢ ∆′, A(t)

...σ3

Γ′, B ⊢ ∆′

Γ′, A(t) → B ⊢ ∆′

Γ′, ∀x (A(x) → B) ⊢ ∆′

...σ0

Γ, κ[∀x (A(x) → B)] ⊢ ∆

As before, we face the problem of circumventing a contraction of (possibly
several occurrences of) ∃xA(x) in σ1 and solve it in the same way. The
proof grows quadratically again. We note the following: it might happen that
the term t contains some free variable a. Hence, the proof of this case does
not necessarily go through in LK, as a could be the characteristic variable of
a strong-quantifier inference in σ1. Note that the side-variable condition is satisfied.



10 JUAN P. AGUILERA AND MATTHIAS BAAZ

Case III. The last inference is:

Γ, κ
[

A → ∀xB(x)
]

⊢ ∆

Γ, κ
[

∀x (A → B(x))
]

⊢ ∆

This is analogous to Case II.

Case IV. The last inference is:

Γ, κ
[

A → ∃xB(x)
]

⊢ ∆

Γ, κ
[

∃x (A → B(x))
]

⊢ ∆

This is analogous to Case I.

Case V. The last inference is:

Γ ⊢ ∆, κ
[

∀xA(x) → B
]

Γ ⊢ ∆, κ
[

∃x (A(x) → B)
]

The proof has the following form, modulo qualifications as in Cases I and II:

...σ2

Γ′′, A(t) ⊢ ∆′′

(∗)
Γ′′, ∀xA(x) ⊢ ∆′′

...σ1

Γ′, ∀xA(x) ⊢ ∆′, B

Γ′ ⊢ ∆′, ∀xA(x) → B

...σ0

Γ ⊢ ∆, κ
[

∀xA(x) → B
]

Γ ⊢ ∆, κ
[

∃x (A(x) → B)
]

We would like to postpone the inference (∗), thus merging σ1 and σ2:

...σ2 + σ1

Γ′, A(t) ⊢ ∆′, B
(∗∗)

Γ′ ⊢ ∆′, A(t) → B

Γ′ ⊢ ∆′, ∃x (A(x) → B)

...σ0

Γ ⊢ ∆, κ[∃x (A(x) → B)]

However, we might have—similarly to the previous cases—an occurrence of ∀xA(x)
that would be contracted on the left-hand side as part of σ1. For simplicity, assume
there is only one. This occurrence is inferred from a formula A(s). Postpone this
occurrence until after (∗∗) so that at that point we have a derivation of

Γ′
0, A(s),Γ

′
1 ⊢ ∆′, ∃x (A(x) → B),

where Γ′ = Γ′
0,Γ

′
1. Add to that some exchanges to obtain:

Γ′, A(s) ⊢ ∆′, ∃x (A(x) → B),
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and a weakening:

Γ′, A(s) ⊢ ∆′, ∃x (A(x) → B)

Γ′, A(s) ⊢ ∆′, ∃x (A(x) → B), B
WR

(5)

in order to infer

Γ′ ⊢ ∆′, ∃x (A(x) → B), A(s) → B.

with an application of ∃R and a contraction, we are left again with

Γ′ ⊢ ∆′, ∃x (A(x) → B),

to which we can apply the rest of σ0 as desired. In this case the proof only grows
linearly. As in Case II, the proof of this case would not necessarily work for LK,
but it is correct from the point of view of LK+, as follows from the regularity of
LKshift and the fact that the conclusion of the proof is π.

Case VI. The last inference is:

Γ ⊢ ∆, κ
[

∃xA(x) → B
]

Γ ⊢ ∆, κ
[

∀x (A(x) → B)
]

The proof has the following form, modulo qualifications as in Cases I and II:

...σ2

Γ′′, A(a) ⊢ ∆′′

(∗)
Γ′′, ∃xA(x) ⊢ ∆′′

...σ1

Γ′, ∃xA(x) ⊢ ∆′, B

Γ′ ⊢ ∆′, ∃xA(x) → B

...σ0

Γ ⊢ ∆, κ
[

∃xA(x) → B
]

Γ ⊢ ∆, κ
[

∀x (A(x) → B)
]

As before, we would like to postpone the inference (∗), thus merging σ1 and σ2:

...σ2 + σ1

Γ′, A(a) ⊢ ∆′, B

Γ′ ⊢ ∆′, A(a) → B

Γ′ ⊢ ∆′, ∀x (A(x) → B)

...σ0

Γ ⊢ ∆, κ[∀x (A(x) → B)]

We deal with contractions of ∃xA(x) on the left-hand side as in the previous case.
The proof grows linearly.
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Case VII. The last inference is:

Γ ⊢ ∆, κ
[

A → ∀xB(x)
]

Γ ⊢ ∆, κ
[

∀x (A → B(x))
]

This is analogous to Case VI.

Case VIII. The last inference is:

Γ ⊢ ∆, κ
[

A → ∃xB(x)
]

Γ ⊢ ∆, κ
[

∃x (A → B(x))
]

This is analogous to Case V.

Hence, we have dealt with all the cases. Note that for each quantifier shifted,
the proof grows at most quadratically. Since there are at most n deep quantifier
shifts, the size of the resulting proof is bounded by

n2n = 22
n·log(n) ≈ 22

n

.

This finishes the proof. �

Theorem 2.6 is a consequence of Proposition 3.2 and the following result:

Theorem 3.3. There is no elementary function bounding the length of the shortest
cut-free LK-proof of a formula in terms of its shortest cut-free LKshift-proof.

Proof. We will make use of a very specific family of sequents {Si}i<ω described in
[3] and due to Statman [8], and specific LK-proofs thereof. The sequents and the
proofs themselves are not important for our proof. What is relevant is that they
have the following properties:

(1) the size of Si is polynomial in i;
(2) there is no bound on the size of their smallest cut-free LK-proofs that is

elementary in i;
(3) the size of these proofs (with cuts), however, is polynomially bounded in i;
(4) all cut formulae are closed; we can also assume they are prenex by, e.g., [3,

Theorem 3.3].

Let Γi ⊢ ∆i be one of the sequents. We modify the proof as follows: first, replace
each cut

Γ ⊢ ∆, A A,Γ ⊢ ∆

Γ ⊢ ∆
Cut

with an application of → L:

Γ ⊢ ∆, A Γ, A ⊢ ∆

Γ, A → A ⊢ ∆
→ L

We are left with a cut free proof π0 whose end sequent is of the form:

A0 → A0, . . . , Am → Am,Γi ⊢ ∆i.(6)

Choose any occurrence of a quantifier in A0 that is not in the scope of another
quantifier. Since it appears once in the antecedent of A0 → A0 and once in the
consequent, it appears once with each polarity. Because A0 is assumed to be prenex,
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we can apply two deep quantifier shifts, so that we are left with a proof π′
0 of the

sequent:

∀x0
0 ∃x

0
1

(

A′
0 → A′

0

)

, . . . , Am → Am,Γi ⊢ ∆i,(7)

Continue choosing any occurrence of a quantifier in A′
0 that is not in the scope of

another quantifier (within A′
0) and applying deep quantifier shifts in pairs until we

obtain a proof π1 of the sequent:

∀x0
0 ∃x

0
1 . . .

(

Â0 → Â0

)

, . . . , Am → Am,Γi ⊢ ∆i,

where Â0 is quantifier-free and the prefix of Â0 → Â0 consists of alternating quan-
tifiers. Repeat this procedure for each of the Ai to obtain a proof πm where each
formula Ai → Ai is replaced by an expression of the form:

∀xi
0 ∃x

i
1 . . .

(

Âi → Âi

)

,

where Âi is quantifier free and the quantifier prefix is alternating. Let Γ̂i ⊢ ∆̂i be
the sequent:

∀x0
0 ∃x

0
1 . . .

(

Â0 → Â0

)

, . . . , ∀xm
0 ∃xm

1 . . .
(

Âm → Âm

)

,Γi ⊢ ∆i.(8)

Note that, since the size of the initial proof was polynomial in i, there were poly-
nomially many quantifiers in the proof; hence, we added only polynomially many
deep quantifier shifts, and so the size of the resulting proof πm of (8) is bounded
polynomially in i. Moreover, it is cut-free. Consequently, it suffices to show:

Claim 3.4. There is no elementary function bounding the size of the smallest cut-
free LK-proofs of (8).

Proof. Let {σi}i<ω be a sequence of such proofs. First, we transform it into a
sequence of proofs of the Skolemizations of the sequents (8), so that for each se-

quent, each of the implications Âi → Âi remains only universally quantified. Then,
by Herbrand’s theorem, there are propositional proofs {θi}i<ω of the Herbrand
sequents of (8), each of which is of the form:

∧

k

B0
k, . . . ,

∧

k

Bm
k ,Γ′ ⊢ ∆′.(9)

Moreover, the lengths of the Herbrand sequents are bounded exponentially by the
lengths of {θi}i<ω (see [3, Theorem 4.3]). Each conjunct B

p
k is a quantifier-free

implication of the form:

A(t1, . . . , tl) → A(s1, . . . , sl),(10)

for some terms t1, . . . , tl, s1, . . . , sl. The key point is that, in the process of Skolem-
izing the sequents (8), exactly one term in each pair (tj , sj) was weakly quantified
and the other (which was under the scope of the strong quantifier) was replaced
by a Skolem function. Hence, either tj is of the form f(sj , ~r) or sj is of the form
f(tj, ~r), for some tuple of terms ~r.

Transform the sequent (9) as follows: pick a pair (tj , sj) of some disjunct Bp
k such

that the element thereof that was replaced by a Skolem term—say, f(sj , ~r) = tj—
does not have any other of t1, . . . , tl, s1, . . . , sl as an argument. Such a term of
course exists—it is the first term whose quantifier was shifted in (7). Substitute sj
for tj throughout the sequent.
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By repeating this process sufficiently-many times, each formula (10) is trans-

formed into a propositional tautology of the form A(~t) → A(~t). This means that
the sequent

⊢
∧

k

B0
k, . . . ,

∧

k

Bm
k .

is also a propositional tautology, whereby so too is Γ′ ⊢ ∆′, from which follows that
it is LK-provable. By [2, Theorem 2], there is an LK-proof of the unskolemized
sequent of length exponential in that of Γ′ ⊢ ∆′. But this is impossible, since—by
assumption—there exist no short proofs of the unskolemized sequent. �

This establishes Theorem 3.3 and thus Theorem 2.6. �

4. Properties of the Calculi

We discuss some properties of the calculi augmented with unsound inferences.
Some of the arguments are only sketched—we leave the details to the interested
reader.

4.1. LJ+ and LJ++. Consider LJ+ and LJ++, the analogs of the extended calculi
LK+ and LK++ for intuitionistic logic. Specifically, these are the calculi obtained
by restricting possible sequents to those with at most one formula on the right-
hand side. The calculi are not sound for intuitionistic logic, as shown by any of
the examples in the introduction. A consequence of this that they do not admit
cut elimination. The argument makes use of an important consequence of cut
elimination, subformula property—every formula appearing in a cut-free proof of a
sequent S is a subformula of a formula in S.

Proposition 4.1. LJ+ and LJ++ do not admit cut elimination.

Proof. Consider example (2). Since only one formula appears on the right-hand
side of each sequent, this is an LJ+-proof. Suppose towards a contradiction that
there were a cut-free proof of

(11) ⊢ ∃x
(

A(x) → A(f(x))
)

.

By the subformula property, this derivation would consist entirely of subformulae
of (11). In particular, it would contain no strong quantifier inferences. Therefore, it
would already be an LJ-proof. But this is impossible, as (11) is not intuitionistically
valid. �

Proposition 4.1 has the consequence that LK+ and LK++ do not admit cut
elimination by an algorithm that resembles Gentzen’s. We give a rough definition
of what we mean by this, but the reader may consult the appendix of [1] for further
details.

Definition 4.2. We say that a cut-eliminating procedure is Gentzen-style if it is
a transformation of proofs consisting of permutation of rules, substitution of free
variables, reduction of cuts of a formula to cuts of its outermost subformulae, and
absorption of axioms, i.e., elimination of cuts

Γ ⊢ ∆, A A ⊢ A

Γ ⊢ ∆, A
Cut

by deleting the indicated occurrence of A ⊢ A.
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The point in considering Gentzen-style cut elimination algorithms is that they
transform intuitionistic proofs into cut-free intuitionistic proofs. Thus, we obtain:

Corollary 4.3. LK++ and LK+ do not admit any Gentzen-style cut elimination.

As is well known, the following three formulae are the only quantifier shifts not
derivable in LJ:

(1) ∀x (A ∨B(x)) ⊢ A ∨ ∀xB(x);
(2) (∀xA(x) → B) ⊢ ∃x (A(x) → B);
(3) (A → ∃xB(x)) ⊢ ∃x (A → B(x)).

They give rise to a characterization of LJ++:

Proposition 4.4. A sequent is provable in LJ++ if and only if it is provable in LJ
with all quantifier shifts added as axioms.

Proof. All three quantifier shifts 1–3 are provable in LJ++ (see, e.g., Example
2.5). We show the converse. Clearly, the sequents ⊢ ∀y A(y) → ∀xA(x) and
⊢ ∃y A(y) → ∃xA(x) are provable. Hence, using the quantifier shifts 2 and 3 one
derives ⊢ ∃y (A(y) → ∀xA(x)) and ⊢ ∃y (∃xA(x) → A(y)). Therefore, we can
apply the proof of Theorem 2.8 to obtain the desired result. �

4.2. Skolemization. The following are applications of (the proof of) Theorem 2.6:

Proposition 4.5. If Γ ⊢ ∆ is LK+-derivable (resp. LK++-derivable), then its
Skolemization is LK+-derivable (resp. LK++-derivable) in quadratically many steps
using additional cuts.

Proof. Let Γ ⊢ ∆ be any LK++-derivable sequent. For each formula A in ∆,
the sequent A ⊢ sk(A) is already LK-derivable, it follows that, by using one cut
per formula, we can derive Γ ⊢ sk(∆) in LK++. Similarly, sk(A) ⊢ A is already
LK-derivable. Hence, by also using one cut for each formula in Γ, we can derive
sk(Γ) ⊢ sk(∆). �

However, as we see, the additional cuts are necessary:

Proposition 4.6. Let S be a sequent. Then, there is no elementary bound on the
length of the smallest cut-free LK++-proof of the Skolemization of S in terms of the
smallest cut-free LK+-proof of S.

Proof. We argue as in the proof of Claim 3.4: if the Skolemization of Γ ⊢ ∆ were
cut-free LK++-derivable in elementary many steps, the cut-free LK++-proof would
already be an LK-proof, whence by [2, Theorem 2], there would be an LK-proof of
Γ ⊢ ∆ of elementary length with respect to the LK+-proof. �

Note, in contrast, that a cut-free proof can be Skolemized in LK at no extra cost.

Proposition 4.7. There is no elementary bound on the length of the Herbrand
sequent of a sequent in terms of its smallest cut-free LK+-proof (resp. LK++-
proof).

Proof. This follows from Proposition 4.6, as a cut-free LK++-proof of the Skolem-
ization of a sequent contains no strong quantifier and is hence already an LK-proof,
whence we can apply Herbrand’s theorem. �

Although deskolemization of cut-free proofs is exponential in LK, it is linear in
LK++:
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Proposition 4.8. If the Skolemization of Γ ⊢ ∆ is cut-free LK++-derivable, then
Γ ⊢ ∆ is cut-free LK++-derivable in linearly many steps.

Proof. Let π be a cut-free LK++-proof of the Skolemization of Γ ⊢ ∆. By definition,
the sets of Skolem functions assigned to each formula in Γ ⊢ ∆ are disjoint. Modify
π into a proof of Γ ⊢ ∆ by replacing each Skolem term t by a new free variable at
and quantifying it as soon as it is introduced. This might not have been possible in
LK, but it is in LK++: substitutability clearly holds, as does weak regularity. The
side-variable condition must also hold, since every Skolem function has only finite
arity. �

Remark 4.9. The proof of Proposition 4.8 also yields the intuitionistic analog.

5. Connections to the Epsilon Calculus

We start by recalling the sequent-calculus reformulation of Hilbert’s ε-calculus
(see [5]).

Definition 5.1. The quantifier-free language Lε is obtained by removing symbols ∃
and ∀ from the language of first-order logic and adding symbols ε and τ . Formulae
and terms are simultaneously defined by induction in a way that the following
clauses are satisfied. We leave the precise recursion to the reader.

(1) constants and free variables are terms;
(2) if t1, . . . , tn are terms and f is an n-ary function symbol, then f(t1, . . . , tn)

is a term;
(3) if A(t) is a formula, t is a term, and x is a bound variable, then εxA(x) and

τxA(x) are terms.
(4) if t0, . . . , tn are terms and A is an n-ary predicate symbol, then A(t0, . . . , tn)

is a formula;
(5) if A and B are formulae, then A∧B, A∨B, ¬A, and A → B are formulae.

The ε-sequent calculus LKε is obtained by adding to Propositional LK the rules:

Γ, A(t) ⊢ ∆

Γ, A(τxA(x)) ⊢ ∆
τ

Γ ⊢ ∆, A(t)

Γ ⊢ ∆, A(εxA(x))
ε

The term εxA is to be understood as a ‘generic’ object satisfying property A.
The dual term τxA is added for symmetry; it is in fact redundant—one can define
A(τxA) = A(εx(¬A)). The standard translation of first-order logic into epsilon
calculus is defined recursively by mapping atomic formulae to themselves, respect-
ing Booleans, and dealing with quantified formulae as follows: suppose A′ is the
standard translation of A, then we map:

∃xA(x) 7→ A′(εxA
′(x)), ∀xA(x) 7→ A′(τxA

′(x)).

Proposition 5.2. A sequent is LK-derivable if and only if the standard translation
of its Skolemization is LKε-derivable.

In the LKε-proof of the standard translation of a sequent, ε- and τ -rules play the
role of weak quantifier inferences, while the substitution of variables for ε- and τ -
terms throughout the proof plays the role of strong quantifier inferences. The proof
of Proposition 5.2 relies on the Extended First Epsilon Theorem (see [6, Theorem
16]). It states the following: let

(12) A0, . . . , Am ⊢ Am+1, . . . , Am+n
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be an LKε-provable sequent all of whose occurrences of ε and τ are weak (this is

defined analogously as for quantifiers in first-order logic) and let ~ti be all the terms
of the form τxA(x) or εxA(x) in Ai. Then there exist finitely-many tuples of terms
~tij without any occurrence of the symbols τ or ε such that if Ai

j is the result of

substituting the terms ~tij for ~ti in Ai, then the Herbrand sequent
∧

i

Ai
0, . . . ,

∧

i

Ai
m ⊢

∨

i

Ai
m+1, . . . ,

∨

i

Ai
m+n

is a propositional tautology. If so, then the sequent resulting from ‘shifting’ the
disjunctions and conjunctions inside each formula to the subformula where the ε-
and τ -terms appeared originally is also a propositional tautology. Call this sequent
S. Assuming (12) was the standard translation of the Skolemization of a sequent
Γ ⊢ ∆, one can then use S to obtain an LK-proof of Γ ⊢ ∆. Let us illustrate this
with an example:

Example 5.3. Consider the following proof of a sequent whose only occurrence of τ
is weak:

A(τx(A(x) → B)) ⊢ A(τx(A(x) → B))

A(τxA(x)) ⊢ A(τx(A(x) → B))

A(τxA(x)) ⊢ B, A(τx(A(x) → B))

⊢ A(τxA(x)) → B, A(τx(A(x) → B)) B ⊢ B

A(τx(A(x) → B)) → B ⊢ A(τxA(x)) → B, B

A(τx(A(x) → B)) → B, A(τxA(x)) ⊢ A(τxA(x)) → B, B

A(τx(A(x) → B)) → B ⊢ A(τxA(x)) → B, A(τxA(x)) → B

A(τx(A(x) → B)) → B ⊢ A(τxA(x)) → B

The corresponding Herbrand sequent is

(13) A(a) → B ⊢
(

A(a) → B
)

∨
(

A(b) → B
)

,

which is a propositional tautology. Moreover, the result of shifting the disjunction
to where the ε-term originally appeared, namely,

A(a) → B ⊢ A(a) ∧ A(b) → B,

is also a propositional tautology. Here, the disjunction is replaced by a conjunction,
as the ε-term appeared in the antecedent of an implication. The conclusion of the
proof is the translation of the Skolemized sequent

∀x
(

A(x) → B
)

⊢ ∀xA(x) → B,

and so this is LK-provable by Proposition 5.2. Compare this with

∀x
(

A(x) → B
)

⊢ ∃x
(

A(x) → B
)

,

which is the Skolemized sequent suggested by (13).

There is a very intimate connection between LK++ and the ε-calculus. In fact,
the characteristic-variable conditions of LK++ are precisely chosen so as to ensure
that we have the following result:

Proposition 5.4. If a sequent is has an LK++-proof of length k, then its standard
translation has an LKε-proof of length ≤ k.
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The proof proceeds by replacing weak-quantifier inferences with ε- or τ -rules and
omitting strong quantifier inferences—instead, we substitute the appropriate ε- or
τ -term for the characteristic variable throughout the proof.

Proposition 5.4 readily yields an alternative proof of Theorem 2.8: let Γ ⊢ ∆ be
an LK++-provable sequent. Then its Skolemization is LK++-provable by Propo-
sition 4.5. But the Skolemization is common to LK and preserves validity, so by
Propositions 5.2 and 5.4, Γ ⊢ ∆ is LK-provable.

One can state the relationship between the ε-calculus and LJ++.

Proposition 5.5. A sequent is LJ++-provable if and only if its standard translation
is LJε-provable.

Proof. Suppose Γ ⊢ D is LJ++-provable. By Proposition 4.4 it is then LJ-provable
by adding quantifier shifts as axioms. As in Proposition 5.4, the standard trans-
lation of Γ ⊢ D is LJε-provable by adding the standard translations of quantifier
shifts as axioms. However, the standard translations of quantifier shifts are already
LJε-provable.

Conversely, suppose the standard translation of Γ ⊢ D is LJε-provable, say by a
proof π. We want to directly translate π into an LJ++-proof. The problem is that
π might have inferences arranged the following way:

...
Π ⊢ B(s)

Π ⊢ B(εxB(x))

...
Π′ ⊢ A(εxB(x))

Π′ ⊢ A(εxA(x))

To rid ourselves of the problem, we will transform π into a cut-free proof where
no inferred ε- or τ -term is modified by an ε- or τ -inference. We do this by replacing
occurrences of A(εxA) by A(fA(x)), for Skolem functions fA. Suppose A(t) is a cut
formula in π and t is a term of the form εxB that is inferred in π. For example:

...
Π ⊢ B(s)

Π ⊢ B(εxB(x))

...
Π′ ⊢ A(εxB(x))

π0

...

A(εxB(x)),Π′ ⊢ E′

Π′ ⊢ E′

...

Modify π0 into a proof π1 as follows: the indicated occurrence of εxB(x) must have
been either introduced by weakening—in which case we modify the weakening so
that fB(s) is introduced instead—or by an axiom:

C(εxB(x)) ⊢ C(εxB(x))

...
A(εxB(x)),Π′ ⊢ E′
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in which case we replace it by:

C(fB(s)) ⊢ C(fB(s)) C(εxB(x)) ⊢ C(εxB(x))

C(fB(s)) → C(εxB(x)), C(fB(s)) ⊢ C(εxB(x))

...
A(fB(s)),Π

′′ ⊢ E′

where Π′′ has the form C(fB(s)) → C(εxB(x)),Π′. We modify π—say, in the latter
case—as follows:

...
Π ⊢ B(s)

...
B(fB(s)) ⊢ B(fB(s))

B(s) → B(fB(s)),Π ⊢ B(fB(s))

...
B(s) → B(fB(s)),Π

′ ⊢ A(fB(s))

π1

...

A(fB(s)),Π
′′ ⊢ E′

C(fB(s)) → C(εxB(x)), B(s) → B(fB(s)),Π
′ ⊢ E′

...

Repeat this for every weak ε- and τ -term inferred in each cut formula. We
then make a similar modification to the proof for each inferred ε- or τ -term that is
modified by an ε- or τ -inference. For example,

...
Π, ⊢ B(s)

Π, ⊢ B(εxA(x))

...
Π′, ⊢ A(εxB(x))

Π′, ⊢ A(εxA(x))

becomes

...
Π, ⊢ B(s) B(fB(s)) ⊢ B(fB(s))

B(s) → B(fB(s)),Π, ⊢ B(fB(s))

...
B(s) → B(fB(s)),Π

′, ⊢ A(fB(s))

B(s) → B(fB(s)),Π
′, ⊢ A(εxA(x))

After this, replace all cuts with → L rules as in the proof of Theorem 3.3 and
add a τ -rule for each Skolem term and each ε- and τ -term in each of the introduced
implications.

This yields a proof of a sequent A′
1, . . . , A

′
n,Γ

′ ⊢ D′ such that:

(1) Γ′ and D′ are respectively the standard translations of Γ and D;
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(2) Each A′
i is an implication of the form A → A with only τ -terms, and so

the standard translation of an implication of the form A → A preceded by
a block of universal quantifiers (in particular, A′

1, . . . , A
′
n,Γ

′ ⊢ D′ is the
standard translation of a sequent A1, . . . , An,Γ ⊢ D);

(3) No inferred ε- or τ -term is modified by an ε- or τ -inference in the proof.

Using this, one can translate back the proof to an LJ++-proof of

A1, . . . , An,Γ ⊢ D

sequent by sequent. This is done by replacing ε- and τ -rules with weak quantifier
inferences and introducing strong quantifier inferences whenever a formula is the
ε-translation of a strongly quantified formula. The point is that the ε- and τ -terms
that were not inferred in the proof can be replaced by free variables. Finally, we
obtain a proof of Γ → D by cutting the Ai. We leave the details to the reader. �

6. Concluding Remarks

Many related questions remain open. Perhaps one should more thoroughly inves-
tigate the the role that (individual) inferences (should) play in proofs, both from a
philosophical and from a technical standpoint. We believe that it is not straightfor-
ward, as there are grounds for challenging the view of inferences simply as one-step
subproofs of proofs, or—conversely—of proofs (only) as arbitrary concatenations
of inferences.

Another problem is to explore the addition of different unsound rules to proof
systems. Here, we gave two examples, but many more are possible. It is un-
known exactly how faster the calculus LK+ really is—the weakening of the usual
characteristic-variable condition into substitutability, weak regularity, and the side-
variable condition can perhaps be exploited further.

It is not clear whether LK+ is any (or significantly) slower than LK++. It is
also not clear in what precise relation they both stand to LKshift and LKε. All
these questions seem to promise fruitful lines of future research.
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