
ar
X

iv
:1

80
4.

09
77

4v
1

 [
m

at
h.

L
O

]
 2

5
A

pr
 2

01
8

On the interplay between effective notions of

randomness and genericity

Laurent Bienvenu, Christopher P. Porter

April 27, 2018

Abstract

In this paper, we study the power and limitations of computing effectively generic
sequences using effectively random oracles. Previously, it was known that every 2-
random sequence computes a 1-generic sequence (as shown by Kautz) and every 2-
random sequence forms a minimal pair in the Turing degrees with every 2-generic
sequence (as shown by Nies, Stephan, and Terwijn). We strengthen these results by
showing that every Demuth random sequence computes a 1-generic sequence (which
answers an open question posed by Barmpalias, Day, and Lewis) and that every Demuth
random sequence forms a minimal pair with every pb-generic sequence (where pb-
genericity is an effective notion of genericity that is strictly between 1-genericity and
2-genericity). Moreover, we prove that for every comeager G ⊆ 2ω, there is some weakly
2-random sequence X that computes some Y ∈ G, a result that allows us to provide a
fairly complete classification as to how various notions of effective randomness interact
in the Turing degrees with various notions of effective genericity.

1 Introduction

Randomness and genericity play an important role in computability theory in that they
both, in their own way, define what it means for an infinite binary sequence X to be typical
among all infinite binary sequences. For any reasonable way of defining randomness and
genericity, these two notions are orthogonal, i.e., a random sequence cannot be generic and
a generic sequence cannot be random. Moreover, for sufficient levels of randomness and
genericity, this orthogonality goes even further: Nies, Stephan and Terwijn [NST05] showed
that a 2-random sequence and a 2-generic sequence always form a minimal pair in the Turing
degrees.

At lower levels of randomness and genericity, however, the situation is more nuanced.
For example, by the Kučera-Gács theorem, any sequence is computed by some 1-random
sequence, thus, in particular, any n-generic sequence (for any n) is computed by some 1-
random sequence. Another striking result, due to Kautz [Kau91] (building on the work of
Kurtz [Kur81]), is that every 2-random sequence must compute some 1-generic sequence. It

1

http://arxiv.org/abs/1804.09774v1

therefore makes sense to ask how random sequences and generic sequences interact for levels
of randomness between 1-randomness and 2-randomness, and for levels of genericity between
1-genericity and 2-genericity. This is precisely the purpose of this paper. As we will see, the
notion of randomness that has the most interesting interactions with genericity turns out
to be Demuth randomness. In particular, we answer positively a question of Barmpalias,
Day, and Lewis [BDLP13], who asked whether every Demuth random sequence computes a
1-generic sequence.

2 Notation and background

While we assume the reader is familiar with computability theory, let us briefly recall some
basic definitions. We work in the Cantor space 2ω, that is, the space of infinite binary se-
quences endowed with the product topology, i.e., the topology generated by the cylinders [σ],
where σ is a finite binary sequence (also referred to as string) and [σ] is the subset of 2ω

consisting of the X ’s that have σ as a prefix. We denote by 2<ω the set of all binary strings,
Λ the empty string. For a string σ, |σ| is the length of σ and if n ≤ |σ|, σ↾n is the prefix
of σ of length n. We also use X↾n when X ∈ 2ω to denote the prefix of X of length n.
The prefix relation is denoted by �. An open subset of 2ω is a set of type

⋃

σ∈S [σ] for some
countable set S of strings; when S is computably enumerable, we say that the open set is
effectively open.

Let us briefly recall the definitions of genericity and of weak genericity. For n ≥ 1, we
say that X is weakly n-generic if X belongs to every dense open set U that is effectively
open relative to ∅(n−1). We say that n-generic if for every open set U that is effectively open
relative to ∅(n−1), X belongs to U ∪ U

c
(where U

c
is the complement of the closure of U).

Equivalently, X is weakly n-generic if for every dense set S of strings1 that is c.e. relative to
∅(n−1), some prefix of X is in S, and X is n-generic if for set S of strings that is c.e. relative
to ∅(n−1), either some prefix of X is in S or some prefix of X has no extension in S. For
every n, the following relations hold:

weak (n+ 1)-genericity ⇒ n-genericity ⇒ weak n-genericity

The Lebesgue, or uniform, measure µ on 2ω is the measure corresponding to the random
process where each bit has value 0 with probability 1/2 independently of all other bits.
Equivalently, µ is the unique measure on 2ω such that µ([σ]) = 2−|σ| for all σ ∈ 2<ω. For any
measurable subset A of 2ω and σ ∈ 2<ω, we write µ(A | σ) for µ(A ∩ [σ])/µ([σ]). When we
talk about ‘randomness’ or ‘random’ objects, we implicitly mean ‘with respect to Lebesgue
measure’.

A Martin-Löf test is a sequence (Un)n∈ω of uniformly effectively open sets such that
µ(Un) ≤ 2−n for all n. An X ∈ 2ω is Martin-Löf random if for every Martin-Löf test,
X /∈

⋂

n Un. The other notions of randomness we will encounter in this paper will be recalled
as we proceed.

1Here “dense” should be understood relative to the prefix order: a set S of strings is dense if every string
σ ∈ 2<ω has an extension in S.

2

3 Demuth randomness vs. effective genericity

In this section, we shall see how Demuth randomness interacts with various notions of effec-
tive genericity. Our main result is that every Demuth random sequence computes a 1-generic
sequence. The proof has two components. First, we shall review the classical proof that a
sufficiently random sequence computes a 1-generic sequence, and show that the failure set
(the set of X ’s that fail to compute a 1-generic) can be covered by a specific type of random-
ness test. We will then show that tests of that type in fact characterize Demuth randomness
and obtain the desired result.

3.1 Fireworks arguments

Kautz’s proof that almost every X ∈ 2ω computes a 1-generic sequence is framed in a way
that is difficult to precisely analyze in terms of algorithmic randomness (i.e., to determine
how random X needs to be for the argument to work). A more intuitive proof can be given
using a fireworks argument (which takes its name from the presentation by Rumyantsev
and Shen [RS14] with an analogy about purchasing fireworks from a purportedly corrupt
fireworks salesman), an approach that is more suitable for our purposes. The mechanics of
fireworks arguments are already thoroughly explained in [RS14] and [BP17], but we shall
review them for the sake of completeness.

For now, we will set aside notions of algorithmic randomness and state the result we want
to prove as follows: “For every k, we can, uniformly in k, design a probabilistic algorithm
that produces a 1-generic sequence with probability ≥ 1− 2−k.”

Let us thus fix k ∈ ω. Let (We)e∈ω be an effective enumeration of all c.e. sets of strings.
We must satisfy for each e ∈ ω the following requirement:

Re: There is some σ ≺ ΦX
k such that either σ ∈ We or for all τ � σ, τ /∈ We.

The strategy to satisfy requirement Re is as follows. When the strategy receives attention
for the first time, the first thing it does is pick an integer n(e, k) at random between 1 and
N(e, k) (all integers in this interval being assigned the same probability), where N(·, ·) is
a fixed computable function to be specified later. The strategy then makes a passive guess
that there is no extension of the current prefix σ of X in We, and moves on to building X
by taking care of strategies for other requirements. If this guess is correct, the requirement
Re is satisfied and the strategy will have succeeded without having to do anything (this is
why we call our guess “passive”, as it requires no action from the strategy). Of course this
passive guess may also be incorrect; that is, there may be some extension of σ in We. If that
is the case, this will become apparent at some point (because We is c.e.), but by the time
it does, a longer prefix σ′ of X may have been built that does not have an extension in We.
The strategy then makes a second passive guess that σ′ has no extension in We, and again
moves on to other strategies until this second guess is proven wrong. Again it will make a
new passive guess, and so on.

Now one needs to avoid the undesirable case where the strategy makes infinitely many
wrong passive guesses during the construction, for otherwise it might fail to satisfy Re. To

3

avoid this situation, we use n(e, k) as a cap on the number of passive guesses that the strategy
is allowed to make. Once the strategy has made n(e, k) passive guesses and each time has
realized that the guess was wrong, it will then make an active guess ; that is, it will guess
that there is an extension τ of the current prefix σ of X in We and will wait for such an
extension to be enumerated into We. While waiting, the actions of all the other strategies
are put on hold. If indeed an extension τ of σ is enumerated into We, take τ as the new
prefix of X , declare Re to be satisfied and terminate (allowing the other active strategies to
resume).

There are three possible outcomes for our strategy:

(i) After some wrong passive guesses, the strategy eventually makes a correct passive
guess.

(ii) After making n(e, k) wrong passive guesses, the strategy makes a correct active guess.

(iii) After making n(e, k) wrong passive guesses, the strategy makes a wrong active guess.

As we have seen, the first two outcomes ensure the satisfaction of the requirement Re.
The third outcome is the bad case: if the strategy makes a wrong active guess, it will wait in
vain for an extension of the current prefix of X to appear in We, and all the actions of other
strategies are stopped during this waiting period, so the algorithm fails to produce an infinite
binary sequence X . We claim that the probability that the strategy for Re has outcome (iii)
is at most 1

N(e,k)
. Indeed, assuming all values n(e′, k) for e′ 6= e have been chosen, there at

most one value n(e, k) can take that would cause the strategy to have outcome (iii). To see
why this is the case, we make the trivial observation that when a strategy makes a wrong
passive guess, if it had instead made an active guess, this active guess would have been
correct, and vice versa. Thus if the strategy ends up in case (iii) after making m wrong
passive guesses and one last active guess, then any cap m′ < m on the number of passive
guesses would have given outcome (ii) instead, and any m′ > m would have given outcome
(i), as the m-th passive guess would have been correct.

This shows that, conditional to any fixed choice of the n(e′, k) for e′ 6= e, the probability
for the Re-strategy to have outcome (iii) is at most 1

N(e,k)
, since the value of n(e, k) is

chosen randomly between 1 and N(e, k), independently of the n(e′, k) for e′ 6= e. Thus
the unconditional probability for the Re-strategy to have outcome (iii) is at most 1

N(e,k)
.

(Technically, we cannot really talk about conditional probability since any fixed choice of
n(e′, k) for e′ 6= e is a probability-0 event; what we are actually appealing to is Fubini’s
theorem, which says that for f(·, ·) a measurable function defined on the product of two
probability spaces,

∫

x

∫

y
f(x, y)dxdy =

∫

y

∫

x
f(x, y)dydx. In particular, if for every fixed

y we have
∫

x
f(x, y)dx ≤ ε, then

∫

(x,y)
f(x, y)dxdy ≤ ε; in our case x is n(e, k), y is the

sequence of n(e′, k) for e′ 6= e and f is the characteristic function of the failure set of the
algorithm).

Over all strategies, the probability of failure of our algorithm is therefore bounded by
∑

e
1

N(e,k)
. So if we take, for example, N(e, k) = 2e+k+1, the probability of failure is at most

2−k, as desired.

4

3.2 How much randomness is needed for fireworks arguments?

The probabilistic algorithm with parameter k presented above can be interpreted by a Turing
functional Ψk which has access to an oracle X ∈ 2ω chosen at random (with respect to the
uniform measure). Since the only probabilistic part of the above algorithm is the choice of
the numbers n(e, k), we can assume that Ψk splits its oracle X into blocks of bits of length
l(e, k), e ∈ ω, where 2l(e,k) = N(e, k) (for this we need N(e, k) to be a power of two, which
we can assume is the case without loss of generality) and interpret the block of bits of X of
size l(e, k) as the integer n(e, k,X).

Let Fe,k be the set of X ’s which cause Ψk to fail because of the Re-strategy having
outcome (iii). We already know that Fe,k has measure at most 1

N(e,k)
. Analyzing the above

algorithm, we see that Fe,k is the difference of two effectively open sets: the effectively open
set Ue,k of X ’s that cause the Re strategy of Ψk to make an active guess, which is a Σ1-event,
minus the effectively open set Ve,k of X ’s that cause the Re strategy of Ψk to make an active
guess and this active guess turns out to be correct, which is also a Σ1 event.

If an X belongs to only finitely many Fe,k = Ue,k \Ve,k, this means that for k large enough
it does not belong to Fe,k for any e, meaning that for sufficiently large k, ΨX

k succeeds in
producing a 1-generic. Recall that Fe,k has measure at most 1

N(e,k)
, and the function N(·, ·)

can be chosen as large as we need it to be. We can take N(e, k) = 2−〈e,k〉 and combine the
Fe,k into a single sequence of sets by taking F ′

i = Fe,k when i = 〈e, k〉, which ensures that
F ′

i has measure at most 2−i.
To sum up, we need X to only belong to finitely many sets in a sequence (F ′

i)i∈ω where
each F ′

i is the difference of two effectively open sets (uniformly in i) and F ′
i has measure

at most 2−i (by the Borel-Cantelli lemma, almost every X has this property). This is very
similar to the notion of difference tests, introduced by Franklin and Ng [FN11]. A difference
test is precisely a sequence (Di)i∈ω where each Di is a difference of two effectively open sets
(uniformly in i) and has measure at most 2−i, just like in our case. However, the passing
condition for difference randomness is weaker than what we need: X ∈ 2ω passes a difference
test if it does not belong to all of the Di’s, and we say that X is difference random if it passes
all difference tests (which, as proven by Franklin and Ng, is equivalent to X being Martin-Löf
random and not computing ∅′). In our case we need X to not belong to infinitely many F ′

i ,
the so-called Solovay passing condition.

This lead the authors, in early presentation of this work, to propose the notion of “strong
difference randomness”, where X would be said to be strongly difference random if for any
difference test (Di)i∈ω, X belong to at most finitely many Di’s. However, as observed by
Hoyrup (private communication), this is not a robust randomness notion as it depends on
the bound we put on the measure of Di. That is, if we defined instead a difference test by
requiring that each Di has measure at most 1/(i+1)2 instead of 2−i, the Borel-Cantelli lemma
would still tell us that almost every X passes the test, but it is not clear that a test with a
1/(i+ 1)2 bound can be covered by one or several tests with a 2−i bound. Indeed, what we
would normally like to do to convert a such a test (Di)i∈ω with µ(Di) ≤ 1/(i+1)2 for each i
into a test (D′

i)i∈ω with µ(D′
i) ≤ 2−i such that an X failing the first also fails the second is

apply the following technique: Construct a computable sequence of integers j1 < j2 < . . .

5

such that for every i,
∑

k≥ji
1/(k + 1)2 ≤ 2−i, which can be done since

∑

k 1/(k + 1)2 is a
computable sum. Then for each i, we set

D′
i = Dji ∪ Dji+1 . . . ∪ Dji+1−1.

By definition of the ji’s, we have µ(D′
i) ≤ 2−i, and if an X belongs to infinitely many sets

Di, it also belongs to infinitely many sets D′
i. This for example would work if the Di’s were

effectively open sets, but the problem here is that they are differences of two open sets, which
may no longer be the case for the D′

i we constructed: we only know they are a finite unions
of differences of effectively open sets (equivalently, Boolean combinations of effectively open
sets as every Boolean combination can be written in this form).

To get a more robust randomness notion that corresponds to what we need for fireworks
arguments to work, we have two main options:

• Either we keep the bound 2−i, but allow each level Di of the test to be a finite union
of differences of two effectively open sets (presented as a finite list of indices for these
sets uniformly in i) with the Solovay passing condition. (By the above argument, in
that case, the bound 2−i can be replaced by any ai such that

∑

ai
is finite and is a

computable real number without changing the power of the family of tests).

• Or we allow the measure bound to vary, i.e., we allow all tests of type (Di)i∈ω such
that each Di is a difference of two effectively open sets uniformly in i, and there is a
computable sequence (ai)i∈ω of rationals such that the sum

∑

i ai is finite (and possibly
computable), such that µ(Di) < ai (and again use the Solovay passing condition for
these tests).

The second approach seems to give a new randomness notion, which probably deserves to
be studied. But one would first have to decide whether it is more natural to require the sum
∑

i ai to be computable or simply finite, prove that it does differ from existing randomness
notions, etc. This would take us beyond the scope of this paper.

The first approach is just as natural, and has the non-negligible advantage to take us
back to an existing randomness notion: Demuth randomness. This is one of the central
randomness notions between 1-randomness and 2-randomness, which has received a lot of
attention recently; see, for example, [BDG+14, GT14, KN11]. Demuth randomness is defined
as follows. We fix an effective enumeration (We)e∈ω of all effectively open sets. A Demuth
test is a sequence (Wg(n))n∈ω where g is an ω-c.a. function (that is, g ≤wtt ∅

′, or equivalently,
g is a ∆0

2 function which has a computable approximation g(n, s) such that for every n the
number of s such that g(n, s) 6= g(n, s + 1) is bounded by h(n) for some fixed computable
function h) and µ(Wg(n)) ≤ 2−n for all n. X ∈ 2ω is Demuth random if it only belongs to
at most finitely many levels of any given Demuth test (Wg(n))n∈ω (as shown by Kučera and
Nies [KN11], the notion is independent of the bound, in that one can take any other sequence
(an)n∈ω in place of 2−n, as long as

∑

n an is finite and computable). One can also define weak
Demuth randomness by changing the passing condition: X is weakly Demuth random if for
any Demuth test (Wg(n))n∈ω, X /∈

⋂

n Wg(n). This is a strictly weaker notion: indeed, weak

6

Demuth randomness is implied by weak 2-randomness (where X ∈ 2ω is weakly 2-random if
it does not belong to any Π0

2 nullset), while Demuth randomness is incomparable with it.
Our next theorem shows that the randomness notion yielded by the first approach above

is indeed Demuth randomness.

Theorem 3.1. X ∈ 2ω is Demuth random if and only if for every test (Dn)n∈ω where Dn

is a finite union of differences of two open sets (presented as a finite list of indices for these
sets), and such that µ(Dn) ≤ 2−n, X only belongs to finitely many sets Dn.

This is the analogue of a result of Franklin and Ng [FN14] who proved the same equiva-
lence between this new type of tests and Demuth tests when the passing condition is “X does
not belong to all levels”, thus obtaining a new characterization of weak Demuth randomness.

Proof. We first see how to turn a Demuth (Wg(n))n∈ω into a test (Dn)n∈N as in the theorem.
Let h be computable bound on the number of changes of g. For each n, effectively create
a list of h(n) pairs of difference sets Uk \ Vk, where Uk is the k-th version of Wg(n) (that is,
Uk is equal to Wg(n,s+1), where s+ 1 is the k-th stage at which g(n, s+ 1) 6= g(n, s); if there
is no such s, Uk remains empty), and Vk is equal to Uk if a (k + 1)-th version of Wg(n) ever
appears, and empty otherwise. It is easy to see that all Uk \ Vk are empty, except the one
where k corresponds to the final version of Wg(n), for which we have Uk \Vk = Wg(n). Calling
Dn the finite union of the Uk \ Vk, we have Dn = Wg(n). Thus X is in infinitely many Wg(n)

if and only if it is in infinitely many Dn.
Conversely, let us see how to convert a test (Dn)n∈ω as above into a Demuth test. For

every n, the n-th level Wg(n) of the Demuth test is built as follows: consider the list of Uk \Vk

composing Dn+1. There are h(n) such difference sets, where h is a computable function. The
first version of Wg(n) is

⋃

k Uk. Meanwhile, enumerate all Vk in parallel. When we see at
some stage s that the measure of one of the Vk’s becomes greater than some new multiple
of 2−n−1/h(n), we change the version of Wg(n): The new version is now

⋃

k(Uk \ Vk[s]).
The number of versions of Wg(n) is bounded by h(n)2 · 2n+1. Indeed, each Vk can reach

a new multiple of 2−n−1/h(n) only h(n) · 2n+1 times (causing a new version of Wg(n)), and
there are h(n) sets Vk’s. By definition, every version of Wg(n) contains Dn+1, so any sequence
contained in infinitely many Dn’s is contained in infinitely manyWg(n). It remains to evaluate
the measure of Wg(n). Let s be the stage at which the final version of Wg(n) has appeared.
Since this is the final version, this means that no Vk will increase by more than 2−n−1/h(n)
in measure after stage s, thus for each k,

∣

∣

∣
µ(Uk \ Vk[s])− µ(Uk \ Vk)

∣

∣

∣
≤ 2−n−1/h(n).

Since there are h(n) terms Uk \ Vk in Dn, we have
∣

∣

∣
µ(
⋃

k

Uk \ Vk[s])− µ(
⋃

k

Uk \ Vk)
∣

∣

∣
≤ 2−n−1,

i.e.,
∣

∣

∣
µ(Wg(n))− µ(Dn+1)

∣

∣

∣
≤ 2−n−1.

As µ(Dn+1) ≤ 2−n−1, we get µ(Wg(n)) ≤ 2−n−1 + 2−n−1 = 2−n as desired.

7

From this theorem and our analysis of the tests induced by fireworks arguments, we
immediately get that Demuth randomness is sufficient to compute a 1-generic.

Theorem 3.2. Every Demuth random computes a 1-generic.

Theorem 3.1 more generally tells us that if S ⊆ 2ω is such that a member of S can be
obtained with positive probability via a fireworks argument, one can conclude that every
Demuth random X computes some element of S. For example, more intricate fireworks
arguments were used in [BP17] for the set S consisting of the diagonally non-computable
(DNC) functions which compute no Martin-Löf random. Together with the present paper,
we have established that every Demuth randomX computes a DNC function which computes
no Martin-Löf random.

This theorem cannot be generalized to currently available definitions of randomness (other
than those that imply Demuth randomness): any notion implied by weak 2-randomness,
which includes weak Demuth randomness, difference randomness, Martin-Löf randomness,
Oberwolfach randomness, balanced randomness, etc., do not guarantee the computation of
a 1-generic. Indeed, every 1-generic is hyperimmune while there are sequences that are both
weakly 2-random and of hyperimmune-free Turing degree [Nie09, Proposition 3.6.4].

One of the main results of [BDLP13] is that every non-computable X which is merely
Turing below a 2-random Y computes a 1-generic (Kurtz [Kur81] had proven this result for
almost all Y , but the exact level of randomness needed was unknown). One cannot replace
2-randomness by Demuth randomness in this statement. Indeed, take a Y which is Demuth
random but not weakly 2-random. By a result of Hirschfeldt and Miller, Y computes a
non-computable c.e. set A (see [DH10, Corollary 7.2.12]). Applying a second result, due to
Yates, that every non-computable c.e. set computes some X of minimal degree, it follows
that a sequence X that is below a Demuth random does not compute any 1-generic, as no
1-generic has minimal degree.

3.3 Demuth randomness vs stronger genericity notions

So far we have seen that every Demuth random computes a 1-generic sequence, and that this
was in some sense optimal among the randomness notions that have been considered in the
litterature. One may wonder whether the same is true of the genericity notion; that is, can
we improve Theorem 3.2 by replacing 1-genericity with a stronger genericity notion? Again,
we give a negative answer for the genericity notions we are aware of between 1-genericity
and 2-genericity. We have seen in the introduction that a good candidate for a possible
strengthening of Theorem 3.2 would be weak 2-genericity. We show that at this level of
genericity, the situation changes significantly: a Demuth random sequence and a weakly
2-generic sequence always form a minimal pair. In fact, we will show this even for a weaker
notion, known as pb-genericity, introduced by Downey, Jockusch and Stob [DJS96].

Definition 3.3. G ∈ 2ω is pb-generic if for every function f : 2<ω → 2<ω such that

(i) f is computable in ∅′ with a primitive recursive bound on the use, and

8

(ii) σ � f(σ) for all σ,

there are infinitely many n such that f(G↾n) � G.

It is easy to see that weak 2-genericity implies pb-genericity. Indeed, for each n, consider
the set of strings Sn = {f(σ) | |σ| ≥ n}. By definition of f , Sn is both dense and ∅′-c.e.,
thus a weakly 2-generic sequence G must have a prefix in every Sn, which is exactly what it
means for G to be pb-generic.

It is already known that a Demuth random cannot compute a pb-generic: indeed, Downey
et al. [DJS96] proved that X ∈ 2ω computes a pb-generic if and only if it has array non-
computable degree, meaning that X can compute a total function f : N → N which is
dominated by no ω-c.a. function g (where g is said to dominate f if f(n) ≤ g(n) for almost
all n), and Downey and Ng [DN09] showed that all Demuth randoms have array computable
degree. The next theorem improves this.

Theorem 3.4. If X is Demuth random and G is pb-generic, then X and G form a minimal
pair in the Turing degrees.

This also strengthens the theorem of Nies et al.’s mentioned in the introduction which
asserts that for any pair (X,G) consisting of a 2-random and a 2-generic forms a minimal
pair. As we shall see later, among the available effective notions of randomness and genericity
in the literature (that we are aware of), this theorem is the best we can get.

Proof. For this proof, we fix a primitive recursive bijection Nat from strings to integers. Let
us consider a pair (Φ,Ψ) of Turing functionals. We want to show that if ΦG and ΨX are both
defined and equal, then they are computable. For each such pair of functionals, we exploit
the pb-genericity of G by building a specific function f , and exploit the Demuth randomness
of X , by building a Demuth test (Wg(n))n∈N. The function f is defined as follows. For a
given σ ∈ 2<ω, look for a family of pairs of strings (σ1, τ1), ..., (σ2N , τ2N), where N = Nat(σ),
such that:

• all σi strictly extend σ,

• for all i, Φσi � τi,

• and the τi are pairwise incomparable.

Note that these conditions are c.e. and therefore if there is such a family, it can be effec-
tively found. If such a family is eventually found, let f(σ) = σj where j is the smallest index
such that the measure of Ψ−1(τj) (that is, the effectively open set {X ∈ 2ω | ΨX � τj})
is smaller or equal to 2−N (note that since the τi are mutually incomparable, the open sets
Ψ−1([τi]) are disjoint, hence at least one of them must have measure at most 2−N) and define
Wg(N) to be equal to Ψ−1([τj]). If there is no such family of pairs of strings, set f(σ) = σ
and Wg(N) to be the empty set. We show that this construction works via a series of claims.

Claim. The function f is computable in ∅′ with a primitive recursive bound on the use.

9

Proof. Indeed f has a computable approximation with a primitive recursive bound on the
number of mind changes. For a given σ and stage s, let f(σ)[s] be equal to σ if no family of
pairs as in the construction has been found by stage s and in case such a family was found
before stage s, set f(σ)[s] be equal to σk where k is the minimal such that the measure
of Ψ−1(τk)[s] is smaller or equal to 2−N (where, again, N = Nat(σ)). Note that this is
indeed a computable approximation, and f(σ)[t] can change at most 2N times. Indeed, it
changes once when (and if) the family of pairs is found, and changes every time the current
candidate τk is discovered to be such that the measure of Ψ−1(τk)[s] is bigger than 2−N ,
which can only happen to 2N − 1 strings. Moreover, Nat is a primitive recursive function,
thus so is σ 7→ 2Nat(σ).

Claim. The sequence (Wg(N))N∈N is a Demuth test.

Proof. For a given N , let σ be the string such that N = Nat(σ). By definition of Wg(N), we
have µ(Wg(N)) ≤ 2−N . Moreover, g has a computable approximation with at most 2N -many
changes, the proof of this being almost identical to that of the previous claim. Initially, and
at any stage s before the desired family of strings is found, Wg(N)[s] is empty, and at any
stage s posterior to finding such a family, one can take Wg(N)[s] = Ψ−1(τk)[s], where k is
minimal such that µ(Ψ−1(τk)[s]) ≤ 2−N . It follows that g(N) can change at most 2N many
times.

Claim. If there are infinitely many n such that f(G↾n) � G and if X passes the Demuth
test (Wg(N))N∈N, then either ΦG is partial, or ΦG is computable, or ΦG 6= ΨX .

Proof. By definition of ‘passing a Demuth test’, we know that X only belongs to finitely
many Wg(n). Therefore let us take n such that f(G↾n) � G and large enough so that
X /∈ Wg(N), where N = Nat(G↾n). Let σ = G↾n. We distinguish two cases.

Case 1: f(σ) = σ. By definition of f , this means that no family of pairs was ever found for
that σ, meaning that the set of strings

T = {τ | (∃σ′ � σ) Φσ′

� τ}

contains at most 2N − 1 incomparable strings. Observe that T is a c.e. tree (the computable
enumerability is obvious by definition, and it is clearly closed under the prefix relation).
Therefore, all infinite paths of T are strongly isolated, in the sense that for every infinite
path X , there is an n0 such that for all n ≥ n0, X↾(n+1) is the only extension of X↾n in T .
Indeed, if this were not the case for some path X , we would have infinitely many n such that
τn = (X↾n)⌢(1 − X(n)) is in the tree. Since for any n 6= m τn and τm are incomparable,
this would contradict our assumption that there is no family of 2N incomparable strings in
the tree. Of course, any strongly isolated path in a c.e. tree is computable since for almost
all n, X(n) can be effectively found from X↾n. Now observe that since σ is a prefix of G,
ΦG, if it is defined, is a path of T . Thus ΦG is either undefined or is a computable sequence.

10

Case 2: f(σ) strictly extends σ. By construction, this means that there is a string τ such
that ΦG � Φf(σ) � τ and Wg(N) = Ψ−1(τ). Since by assumption X /∈ Wg(N), this means
that ΨX � τ , and thus ΦG 6= ΨX .

This last claim completes the proof.

4 Weak 2-randomness vs genericity

The other main randomness notion below 2-randomness, namely weak 2-randomness, be-
haves quite differently from Demuth randomness in terms of the “escaping power” of the
functions f : ω → ω that such random elements can compute. Following the terminology
of [AGM14], given F a countable family of functions, we say that a function g is F -escaping
if it is not dominated by any function f ∈ F . We will also say that X ∈ 2ω has F -escaping
degree if it computes an F -escaping function. For example, X has ∆0

1-escaping degree iff it
has hyperimmune degree and X has (ω-c.a.)-escaping degree iff it has array non-computable
degree.

For Demuth random sequences we have an upper and a lower bound on escaping power:
every Demuth random sequence has ∆0

1-escaping degree (see [Nie09]; this also follows from
the fact that every Demuth random computes a 1-generic), but no Demuth random is (ω-
c.a.)-escaping as mentioned in the previous section (a fortiori, no Demuth random is ∆0

2-
escaping).

By contrast, weak 2-randomess is completely orthogonal to this measure of computational
strength. On the one hand, some weakly 2-random sequences have hyperimmune-free degree
(see for example [Nie09]). On the other hand, a striking result by Barmpalias, Downey and
Ng [BDN11] is that for any countable family F of functions, there is a weakly 2-random X
that has has F -escaping degree.

There are close connections between escaping degrees and the ability to compute generics:

• X computes a weak-1-generic iff X has ∆0
1-escaping degree [Kur81],

• X computes a pb-generic iff it has (ω-c.a.)-escaping degree [DJS96],

• X computes a weak-2-generic iff it has ∆0
2-escaping degree [AGM14],

• If X has ∆0
3-escaping degree, it computes a 2-generic [AGM14].

Together with the theorem of Barmpalias, Downey and Ng, the last item shows that
there exists a weak-2-random which computes a 2-generic. However, a very interesting result
from [AGM14] is that we cannot extend this correspondence much further in the genericity
hierarchy: indeed, for any countable family F of functions, there exists an F -escaping
function g which computes no weakly 3-generic sequence. Thus the theorem of Barmpalias,
Downey and Ng does not say how weak 2-randomness interacts with weak 3-genericity or
higher genericity notions. Our next theorem strengthens their result to show that in fact,
there always exists a weakly 2-random sequence that computes a generic sequence, no matter
how strong the genericity notion is.

11

Theorem 4.1. Let G be a comeager subset of 2ω. There exists a weakly 2-random X that
computes some Y ∈ G.

The rest of this section is dedicated to the proof of Theorem 4.1. The main ideas are the
same as the ones use by Barmpalias et al. in [BDN11], and there is little doubt that they
would have been able to refine their proof to get Theorem 4.1 had they been considering the
problem of coding generics into randoms. Nonetheless, some adaptations are needed, and
this is what we provide below. Also, this is more an expository choice, but our proof differs
from Barmpalias et al.’s by the characterization we use of weak 2-randomness: while they
used the fact that an X ∈ 2ω is weakly 2-random iff it is Martin-Löf random and forms a
minimal pair with ∅′ (see [DH10]), we directly use the definition of weak 2-randomness, that
is, X is weakly 2-random iff it does not belong to any Π0

2 nullset.
The main tool we need for our proof is the so-called Kučera-Gács coding, which allows

one to encode any information into a Martin-Löf random real. Let us review the basic
mechanisms of this technique.

Kučera-Gács coding begins by fixing a Π0
1 class R containing only Martin-Löf random

sequences (in particular, R has positive measure). Kučera proved that this class has the
following property: There exists a computable function h such that for any Π0

1 class P
contained in R, and any σ ∈ 2<ω,

[σ] ∩ P 6= ∅ ⇔ µ([σ] ∩ P) > 2−h(σ,P)

(in the above equivalence and in what follows, a Π0
1 class as an argument should be read as

an index for this Π0
1 class). In particular this means that when [σ] ∩ P 6= ∅, σ has at least

two extensions τ of length h(σ,P) such that [τ] ∩ P 6= ∅. The Kučera-Gács coding, in its
simpler form, consists in coding 0 by τleft , the leftmost such τ and 1 by the τright rightmost
one. Indeed, knowing σ, P, and given a τ which is either the leftmost or rightmost string of
length h(σ,P), we can figure out which is which because the strings τ such that [τ] ∩P 6= ∅
form a co-c.e. set. One can then encode a second bit by an extension of τ of length h(τ,P),
and iterate the process above τ . If we were to continue this process indefinitely, since coding
is monotonic (each time we encode one more bit the new code word is an extension of the
previous one), we can take the union of all the codewords to get a sequence X ∈ 2ω from
which we can can computably recover all the bits we encoded during the construction. Since
at each step of the process we ensure that the new codeword τ satisfies [τ] ∩ P 6= ∅, this
means that X has arbitrarily long prefixes X↾n such that [X↾n] ∩ P 6= ∅, and thus X ∈ P,
as P is a closed set.

Coming back to finite encoding, the Kučera-Gács technique gives us a (non-computable)
function KG : 2<ω × 2<ω × ω → 2<ω such that KG(ξ | σ,P) is the encoding of the string ξ
above σ within the Π0

1 class P following the above technique, and thus enjoying the following
properties for all ξ, σ, and P a Π0

1 subset of R:

• KG(ξ | σ,P) � σ

• [σ] ∩ P 6= ∅, then [KG(ξ | σ,P)] ∩ P 6= ∅

12

• KG(· | σ,P) is one-to-one for every fixed σ,P; furthermore, up to composing with
a prefix-free encoding of 2<ω, we can assume that for a fixed (σ,P), the range of
KG(· | σ,P) is prefix-free.

• There exists an effective ‘decoding’ procedure, which we denote by KG−1, which is a
partial computable function such that (a) KG−1(τ | σ,P) = ξ when τ = KG(ξ | σ,P)
and (b) for a fixed (σ,P), the domain of KG−1(· | σ,P) is prefix-free.

Now, we want to encode information into a weakly 2-random sequence. Of course since
a weakly 2-random sequence cannot compute any non-computable ∆0

2 set, we cannot hope
for an encoding which can be perfectly decoded and thus the decoding procedure will be
allowed to make errors.

The idea is to sequentially use Kučera-Gács codings where the Π0
1 class shrinks at each

step in order to make the union of the codewords a weakly 2-random sequence. To do this,
let (Ue

k)e,k∈ω be an effective enumeration of Σ0
1 subsets of 2ω such that every Π0

2 set is equal
to

⋂

k U
e
k for some e. Without loss of generality, we can ensure that Ue

k+1 ⊆ Ue
k for all e, k.

We let Ce
k be the complement of Ue

k . We also let e∗1 < e∗2 < . . . the sequence of indices e such
that

⋂

k U
e
k is a nullset. This is, of course, not a computable sequence, but the idea is to

make this sequence part of the encoded information.
Let g : ω × 2<ω × ω → ω ∪ {∞} be the function defined by

g(e, σ,P) = inf
{

k | [σ] ∩ Ce
k ∩ P 6= ∅

}

.

Observe that g is lower semi-computable.
Let us fix a computable, one-to-one pairing function 〈·, ·〉 : ω × 2<ω → 2<ω. Given

a sequence of strings ξ1, . . . , ξk, its W2R-encoding, denoted by E(ξ1, . . . , ξk) is the string
τ1τ2 · · · τk where

{

P0 = R
τ1 = KG(〈e∗1, ξ1〉 | Λ,P0)

and for 1 ≤ n < k,
{

Pn = Pn−1 ∩ C
e∗n
g(e∗n,τn,Pn−1)

τn+1 = KG(〈e∗n+1, ξn+1〉 | τn,Pn).

By construction, E(ξ1, . . . , ξk) is a prefix of E(ξ1, . . . , ξk+1) for all k, so we can extend
the definition of E to infinite sequences of strings (ξi)i∈ω by setting

E
(

(ξi)i∈ω
)

=
⋃

k

E(ξ1, . . . , ξk).

Moreover, the construction ensures that E
(

(ξi)i∈ω
)

belongs to all Pn, and Pn+1 is chosen

to be disjoint from
⋂

k U
e∗n
k , the n-th Π0

2 nullset. Thus, E
(

(ξi)i∈ω
)

is weakly 2-random for any
sequence (ξi)i∈ω.

Let us now define a ‘decoding’ functional Γ. This functional will make ‘errors’ in the
decoding process, i.e., we will not have ΓE((ξi)i∈ω) = ξ1ξ2 · · · . However, we will ensure the

13

following property: if ξ1, . . . , ξk are fixed, there is an r such that for any extension ξk+1ξk+2 · · ·
of the sequence, the prefix of ΓE((ξi)i∈ω) of size |ξ1ξ2 · · · ξk+1| differs from ξ1ξ2 · · · ξk+1 on at
most r bits.

The procedure Γ is defined as follows. On input X , for all t in parallel, Γ runs a sub-
procedure (which we call a t-sub-procedure) that tries to find a prefix τ1 · · · τk of X and a
sequence of triples 〈an, ζn,Qn〉1≤n≤k such that

{

Q0 = R
〈a1, ζ1〉 = KG−1(τ1|Λ,Q0)

and for 1 ≤ n < k,
{

Qn = Qn−1 ∩ Can
g(an,τn,Qn−1)[t]

〈an+1, ζn+1〉 = KG−1(τn+1|τn,Qn).

Note that there is at most one such sequence because KG is prefix-free and one-to-one for
each fixed pair of conditions (σ,P). If such a sequence is found, then setting ζ = ζ1 · · · ζk,
ΓX(i) is defined to be ζ(i) for any i ≤ min(t, |ζ |−1) on which ΓX(i) has not yet been defined
by other sub-procedures with parameter t′ < t.

We now prove two claims which are going to allow us to conclude the proof.

Claim. For any sequence of strings ξ1, . . . , ξk, there exists a N ∈ ω such that for any ξk+1, if
ξ = ξ1 · · · ξk+1 has length at least N , then ΓX(i) = ξ(i) for any X extending E(ξ1, . . . , ξk+1)
and i ≥ N .

Proof. Fix ξ1, . . . , ξk, let ξk+1 be any string, and let X be an infinite sequence extending
E(ξ1, . . . , ξk+1). Let τ1, . . . , τk+1 and P1, . . .Pk+1 be the strings and Π0

1 classes inductively
built in the definition of E(ξ1, . . . , ξk+1). Recall that the function g is lower semi-computable
and g(e∗n, τn,Pn−1) is always finite, thus there is an N such that

g(e∗n, τn,Pn−1)[t] = g(e∗n, τn,Pn−1)

for all n ≤ k + 1 and all t ≥ N .
This means that for t ≥ N , the t-sub-procedure of Γ will eventually find the desired

sequence 〈an, ζn,Qn〉1≤n≤k+1 because 〈e∗n, ξn,Pn〉1≤n≤k+1 satisfies that property. By unique-
ness, we must have ζn = ξn, an = e∗n and Qn = Pn for n ≤ k + 1. By definition of Γ, the
t-subprocedure for t < N can only define ΓX(i) for i < N . Thus if i ≥ N one must have
ΓX(i) = ξ(i) where ξ = ξ1 · · · ξk+1. This proves our claim.

Claim. Let ξ1, . . . , ξk be fixed and let U be a dense open set. There exists ξk+1 such that
ΓE(ξ1,...,ξk+1) � σ for some σ such that [σ] ⊆ U .

Proof. By the previous claim, there exists an N ∈ ω such that for any ξk+1, Γ
X(i) = ξ(i) for

all i ≥ N , where ξ = ξ1 · · · ξk+1. We can assume that N ≥ |ξ1 · · · ξk|.
Now, given a string η ∈ 2<ω, we denote by Uη the set {Z | ηZ ∈ U}. Since U is dense, it

is in particular dense above η, so Uη is dense. Consider the open set V =
⋂

|η|=N Uη. A finite
intersection of dense open sets is dense and, in particular, non-empty, so there must a ζ such

14

that [ζ] ⊆
⋂

|η|=N Uη, which is equivalent to saying that [ηζ] ⊆ U for all η of length N . Thus,
it suffices to choose ξk+1 so that the bits ξ = ξ1 · · · ξk+1 after position N are an extension
of ζ to get the desired result.

This last claim is just what we need to complete the proof of Theorem 4.1. Let G be
comeager and (Uk)k∈N a family of dense open sets such that

⋂

k Uk ⊆ G. The previous
claim allows us to construct by induction a sequence (ξk)k∈N of strings such that for all k,
ΓX is guaranteed to be in Uk when X extends E(ξ1, . . . , ξk) and ΓX is total. Thus, taking
X = E((ξk)k∈N), we have that ΓX is total, belongs to all Uk, and as explained earlier on, X
must be weakly 2-random. Our theorem is proven.

5 Conclusion

The following table recaps the various interactions between randomness and genericity dis-
cussed in the paper:

n-gen. (n ≥ 2) weakly 2-gen. pb-gen. 1-gen.
n-random (n ≥ 2) min. pair min. pair min. pair computes
weakly 2-random may compute may compute may compute may compute
Demuth random min. pair min. pair min. pair computes

1-random may compute may compute may compute may compute

For a given pair consisting of a randomness notion and a genericity notion:

• ‘min. pair’ means that for any random X and any generic G, (X,G) forms a minimal
pair in the Turing degrees;

• ‘may compute’ means that there is a random X and a generic G such that X com-
putes G; and

• ‘computes’ means that any random X computes some generic G.

We note that these three cases do not form an exhaustive list of possibilities. It would
for example be interesting to find natural pair of one randomness notion and one genericity
notion such that a random never computes a generic but that a random and a generic do
not necessarily form a minimal pair.

References

[AGM14] Uri Andrews, Peter Gerdes, and Joseph S. Miller. The degrees of bi-
hyperhyperimmune sets. Annals of Pure and Applied Logic, 165(3):803–811, 2014.
11

15

[BDG+14] Laurent Bienvenu, Rodney Downey, Noam Greenberg, André Nies, and Daniel
Turetsky. Characterizing lowness for Demuth randomness. Journal of Symbolic
Logic, pages 526–560, 2014. 6

[BDLP13] George Barmpalias, Adam Day, and Andy Lewis-Pye. The typical Turing degree.
Proceedings of the London Mathematical Society, 109(1):1–39, 2013. 2, 8

[BDN11] George Barmpalias, Rodney Downey, and Keng Meng Ng. Jump inversions inside
effectively closed sets and applications to randomness. Journal of Symbolic Logic,
76(2):491–518, 2011. 11, 12

[BP17] Laurent Bienvenu and Ludovic Patey. Diagonally non-computable functions and
fireworks. Information and Computation, 253:64–77, 2017. 3, 8

[DH10] Rodney Downey and Denis Hirschfeldt. Algorithmic randomness and complexity.
Theory and Applications of Computability. Springer, 2010. 8, 12

[DJS96] Rodney Downey, Carl Jockusch, and Michael Stob. Array nonrecursive de-
grees and genericity. In S. Barry Cooper, Theodore A. Slaman, and Stanley S.
Wainer, editors, Computability, Enumerability, Unsolvability. Directions in Re-
cursion Theory, London Mathematical Society Lecture Notes Series, pages 93–
104. Cambridge University Press, 1996. 8, 9, 11

[DN09] Rodney Downey and Keng Meng Ng. Lowness for Demuth randomness. In
Conference on Computability in Europe (CiE 2009), volume 5635 of Lecture Notes
in Computer Science, pages 154–166. Springer, 2009. 9

[FN11] Johanna N.Y. Franklin and Keng Meng Ng. Difference randomness. Proceedings
of the American Mathematical Society, 139:345–360, 2011. 5

[FN14] Johanna N.Y. Franklin and Keng Meng Ng. ω-change randomness and weak
Demuth randomness. Journal of Symbolic Logic, 79(3):776–791, 2014. 7

[GT14] Noam Greenberg and Daniel Turetsky. Strong jump-traceability and Demuth
randomness. Proceedings of the London Mathematical Society, 108:738–779, 2014.
6

[Kau91] Steven M. Kautz. Degrees of random sequences. PhD thesis, Cornell University,
1991. 1

[KN11] Antońın Kucera and André Nies. Demuth randomness and computational com-
plexity. Annals of Pure and Applied Logic, 162(7):504–513, 2011. 6

[Kur81] Stuart Kurtz. Randomness and genericity in the degrees of unsolvability. PhD
dissertation, University of Illinois at Urbana, 1981. 1, 8, 11

16

[Nie09] André Nies. Computability and randomness. Oxford Logic Guides. Oxford Uni-
versity Press, 2009. 8, 11

[NST05] André Nies, Frank Stephan, and Sebastiaan Terwijn. Randomness, relativization
and Turing degrees. Journal of Symbolic Logic, 70:515–535, 2005. 1

[RS14] Andrei Yu. Rumyantsev and Alexander Shen. Probabilistic constructions of com-
putable objects and a computable version of lovász local lemma. Fundamenta
Informaticae, 132(1):1–14, 2014. 3

17

	1 Introduction
	2 Notation and background
	3 Demuth randomness vs. effective genericity
	3.1 Fireworks arguments
	3.2 How much randomness is needed for fireworks arguments?
	3.3 Demuth randomness vs stronger genericity notions

	4 Weak 2-randomness vs genericity
	5 Conclusion

