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Abstract. We generalise the α-Ramsey cardinals introduced in Holy and Schlicht (2018) for cardinals α to

arbitrary ordinals α, and answer several questions posed in that paper. In particular, we show that α-Ramseys

are downwards absolute to the core model K for all α of uncountable cofinality, that strategic ω-Ramsey car-

dinals are equiconsistent with remarkable cardinals and that strategic α-Ramsey cardinals are equiconsistent

with measurable cardinals for all α ą ω. We also show that the n-Ramseys satisfy indescribability proper-

ties and use them to provide a game-theoretic characterisation of completely ineffable cardinals, as well as

establishing further connections between the α-Ramsey cardinals and the Ramsey-like cardinals introduced

in Gitman (2011), Feng (1990) and Sharpe and Welch (2011).1

1 Introduction

Most of the large cardinals above measurable cardinals can be characterised as the critical points of elementary
embeddings j : V ÑM, where the strength of the large cardinal notion in question is increased by requiring
more closure of the target modelM and more properties of the embedding j. In analogy, Ramsey-like cardinals
were introduced in Gitman (2011) and Gitman and Welch (2011) to be a natural weakening of this concept,
being roughly cardinals κ that can be characterised as critical points of elementary embeddings j : MÑ N
between κ-sized ZFC´-modelsM and N . Here we then increase our consistency strength by requiring more
closure of the domain model M and more properties of the embedding j.

Implicit work in Mitchell (1979) and Donder et al. (1981) shows that Ramsey cardinals are precisely of this
type, in which the derived measure from j is both weakly amenable and countably complete.2 The question
is then how many of the well-known large cardinals can be characterised in this fashion? Gitman (2011)
introduced various Ramsey-like cardinals, whose definitions we will recall in the next section, and recently
Holy and Schlicht (2018) have introduced a new family of cardinals, called (strategic) α-Ramsey cardinals,
which have the added feature of having a game-theoretic definition.

In Holy and Schlicht (2018) the (strategic) α-Ramseys were considered for α being an infinite cardinal,
and in this paper we will expand this definition to any ordinal α. Section 3 will cover the finite case which
12010 Mathematics Subject Classification. 03E35, 03E45, 03E55.

Keywords and phrases. Ramsey-like cardinals, large cardinals, games, weakly compact cardinals, ineffable cardinals, com-
pletely ineffable cardinals, remarkable cardinals, virtually measurable cardinals, measurable cardinals, core model.
2For a proof of this result see Theorem 1.3 of Gitman (2011).
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allows us to characterise ineffable-type cardinals and show indescribability properties of these cardinals —
these arguments are based on arguments in Abramson et al. (1977).

Section 4 contains the countable case in which we establish that strategic ω-Ramseys are equiconsistent
with Schindler’s remarkable cardinals, and use this to show that strategic ω-Ramseys are of strictly stronger
consistency strength than the ω-Ramseys. We will also consider a hierarchy between ω-Ramsey cardinals
and Ramsey cardinals called pω, αq-Ramsey cardinals, which we will show interleaves with the α-iterable
cardinals introduced in Gitman (2011), and lastly show that pω`1q-Ramseys are Ramsey limits of Ramseys
and that strategic pω`1q-Ramseys are equiconsistent with a measurable cardinal.

In section 5 we investigate how the strongly Ramsey and super Ramsey cardinals introduced in Gitman
(2011) relate to the α-Ramsey cardinals and show that these latter cardinals are downwards absolute to the
core model K . The last part of this section is dedicated to showing a tight correspondence between strategic
α-Ramsey cardinals and the α-very Ramsey cardinals introduced in Sharpe and Welch (2011), leading to the
result that strategic ω1-Ramsey cardinals are measurable in the core model K below a Woodin cardinal.
Section 6 contains an overview of open problems concerning these Ramsey-like cardinals.

The last section includes two diagrams, showing the relations between all the Ramsey-like cardinals
considered in this paper, both in terms of consistency strength and direct implication. A solid line means that
the (consistency or direct) implication is “strict”, in the sense that no proof exists for the implication in the
opposite direction, and a dashed line means that we do not know whether the implication is strict or not.

2 Setting the scene

In this section we will recall a handful of definitions concerning Ramsey-like cardinals, as well as define the
α-Ramsey cardinals for arbitrary ordinals α. We start out with the models and measures that we are going to
consider.

Definition 2.1. For a cardinal κ, a weak κ-model is a set M of size κ satisfying that κ ` 1 Ď M and
pM, Pq |ù ZFC´. If furthermore Măκ

ĎM, M is a κ-model.3 %

Recall that µ is an M-measure if pM, P, µq |ù xµ is a κ-complete ultrafilter on κy.

Definition 2.2. Let M be a weak κ-model and µ an M-measure. Then µ is
• weakly amenable if xX µ PM for every x PM with M-cardinality κ;
• countably complete if

Ş ~X ‰ H for every ω-sequence ~X P ωµ;
• M-normal if pM, P, µq |ù @ ~X P κµ : 4 ~X P µ;
• genuine if |4 ~X| “ κ for every κ-sequence ~X P κµ;
• normal if 4 ~X is stationary in κ for every κ-sequence ~X P κµ;
• 0-good, or simply good, if it has a well-founded ultrapower;
• α-good for α ą 0 if it is weakly amenable and has α-many well-founded iterates.
3Note that our (weak) κ-models do not have to be transitive, in contrast to the models considered in Gitman (2011) and

Gitman and Welch (2011). Not requiring the models to be transitive was introduced in Holy and Schlicht (2018).
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Note that a genuine M-measure is M-normal and countably complete, and a countably complete weakly
amenable M-measure is α-good for all ordinals α. We’ll use the fact shown in Holy and Schlicht (2018) that
an M-measure µ is normal iff 4 ~X is stationary for some enumeration ~X “ xXα | α ă κy of µ. We are also
going to use the following alternative characterisation of weak amenability.

Proposition 2.3 (Folklore). Let M be a weak κ-model, µ an M-measure and j : MÑ N the associated
ultrapower embedding. Then µ is weakly amenable if and only if j is κ-powerset preserving, meaning
that MXPpκq “ N XPpκq. %

The α-Ramsey cardinals in Holy and Schlicht (2018) are based upon the following game.4

Definition 2.4 (Holy-Schlicht). For an uncountable cardinal κ “ κăκ, a limit ordinal γ ď κ and a regular
cardinal θ ą κ define the game wfGθγpκq of length γ as follows.

I M0 M1 M2 ¨ ¨ ¨

II µ0 µ1 µ2 ¨ ¨ ¨

Here Mα ă Hθ is a κ-model and µα is a filter for all α ă γ, such that µα is an Mα-measure, the Mα’s and
µα’s are Ď-increasing and xMξ | ξ ă αy, xµξ | ξ ă αy PMα for every α ă γ. Letting µ :“

Ť

αăγ µα and
M :“

Ť

αăγ Mα, player II wins iff µ is an M-normal good M-measure. %

Recall that two games G1 and G2 are equivalent if player I has a winning strategy in G1 iff they have one in
G2, and player II has a winning strategy in G1 iff they have one in G2. Holy and Schlicht (2018) showed that
the games wfGθ0γ pκq and wfGθ1γ pκq are equivalent for any γ with cof γ ‰ ω and any regular θ0, θ1 ą κ.
We will be working with a variant of the wfGγpκq games in which we require less of player I but more of
player II. It will turn out that this change of game is innocuous, as Proposition 2.6 will show that they are
equivalent.

Definition 2.5 (Holy-Schlicht-N.). Let κ “ κăκ be an uncountable cardinal, γ ď κ and ζ ordinals and θ ą κ

a regular cardinal. Then define the following game Gθγpκ, ζq with pγ`1q-many rounds:

I M0 M1 ¨ ¨ ¨ Mγ

II µ0 µ1 ¨ ¨ ¨ µγ

Here Mα ă Hθ is a weak κ-model for every α ď γ, µα is a normal Mα-measure for α ă γ, µγ is an Mγ-
normal goodMγ-measure and theMα’s and µα’s areĎ-increasing. For limit ordinals α ď γ we furthermore
4Unless otherwise stated, every game considered will be a game with perfect information between two players I and II.

For a formal framework modelling these games, see e.g. Kanamori (2008).
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require that Mα “
Ť

ξăαMξ , µα “
Ť

ξăα µξ and that µα is ζ-good. Player II wins iff they could continue
to play throughout all pγ`1q-many rounds. %

For convenience we will write Gθγpκq for the game Gθγpκ, 0q, and Gγpκq for Gθγpκq whenever cof γ ‰ ω,
as again the existence of winning strategies in these games doesn’t depend upon a specific θ. Note that we
assume that κ “ κăκ is uncountable in the definition of the games that we’re considering, so this is a standing
assumption throughout the paper, whenever any one of the above two games are considered.

Proposition 2.6 (Holy-Schlicht-N.). Gθγpκq, G
θ
γpκ, 1q and wfGθγpκq are all equivalent for all limit ordinals

γ ď κ, and Gθγpκ, ζq is equivalent to Gθγpκq whenever cof γ ą ω and ζ P On.

Proof. We start by showing the latter statement, so assume that cof γ ą ω. Consider now the auxilliary
game, call it G, which is exactly like Gθγpκ, 0q, but where we also require that ωMα Ď Mα`1 and xMξ |

ξ ď αy, xµξ | ξ ď αy PMα`1 for every α ă γ.

Claim 2.6.1. G is equivalent to Gθγpκq.

Proof of claim. If player I has a winning strategy in G then they also have one in Gθγpκq, by doing
exactly the same. Analogously, if player II has a winning strategy in Gθγpκq then they also have one in G.
If player I has a winning strategy σ in Gθγpκq then we can construct a winning strategy σ1 in G, which is
defined as follows. Fix some α ď γ and, writing ~Mξ :“ xMξ | ξ ď αy and ~µξ :“ xµξ | ξ ď αy, we set

σ1pxMξ, µξ | ξ ď αyq :“ HullHθ pσpxMξ, µξ | ξ ď αyq Y ωMα Y t ~Mξ, ~µξuq,

i.e. that we’re simply throwing in the sequences into our models and making sure that we’re still an elemen-
tary substructure ofHθ . This new strategy σ1 is clearly winning. Assuming now that τ is a winning strategy
for player II in G, we define a winning strategy τ 1 for player II in Gθγpκq by letting τ 1pxMξ, µξ | ξ ď αyq

be the result of throwing in the appropriate sequences into the models Mξ , applying τ to get a measure,
and intersecting that measure with Mα to get an Mα-measure. %

Now, letting Mγ be the final model of a play of G, cof γ ą ω implies that any ω-sequence ~X PMγ really is
a sequence of elements from some Mξ for ξ ă γ, so that ~X PMξ`1 by definition of G, making Mγ closed
under ω-sequences and thus also µγ countably complete. Since γ is a limit ordinal and the models contain the
previous measures and models as elements, the proof of e.g. Theorem 5.6 in Holy and Schlicht (2018) shows
that µγ is also weakly amenable, making it ζ-good for all ordinals ζ .

Now we deal with the first statement, so fix a limit ordinal γ. Firstly Gθγpκq is equivalent to Gθγpκ, 1q as
above, since both are equivalent to the auxilliary game G when γ is a limit ordinal. So it remains to show
that Gθγpκq is equivalent to wfGθγpκq. If player I has a winning strategy σ in wfGθγpκq then define a winning
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strategy σ1 for player I in Gθγpκq as

σ1pxMξ, µξ | ξ ď αyq :“ σpxM0, µ0y
axMξ`1, µξ`1 | ξ ` 1 ď αyq

and for limit ordinals α ď γ set σ1pxMξ, µξ | ξ ă αyq :“
Ť

ξăαMξ ; i.e. they simply follow the same
strategy as in wfGθγpκq but plugs in unions at limit stages. Likewise, if player II had a winning strategy in
Gθγpκq then they also have a winning strategy in wfGθγpκq, this time just by skipping the limit steps in Gθγpκq.

Now assume that player I has a winning strategy σ in Gθγpκq and that player I doesn’t have a winning
strategy in wfGθγpκq. Then define a strategy σ1 for player I in wfGθγpκq as follows. Let s “ xMα, µα | α ď

ηy be a partial play of wfGθγpκq and let s1 be the modified version of s in which we have ’inserted’ unions
at limit steps, just as in the above paragraph. We can assume that every µα in s1 is good and Mα-normal as
otherwise player II has already lost and player I can play anything. Now, we want to show that s1 is a valid
partial play of Gθγpκq. All the models in s are κ-models, so in particular weak κ-models.

Claim 2.6.2. Every µα in s1 is normal.

Proof of claim. Assume without loss of generality that α “ η. Let player I play any legal response M
to s in wfGθγpκq (such a response always exists). If player II can’t respond then player I has a winning
strategy by simply following sXxMy,  , so player II does have a response µ to sXM. But now the rules
of wfGθγpκq ensures that µη PM, so since

pM, P, µq |ù @ ~X P κµ : x4 ~X is stationary in κy,

we then also get that M |ù x4µη is stationary in κy since µη Ď µ, so elementarity of M in Hθ implies
that 4µη really is stationary in κ, making µη normal. %

This makes s1 a valid partial play of Gθγpκq, so we may form the weak κ-model M̃η :“ σps1q. Now let
Mη ă Hθ be a κ-model with M̃η Ď Mη and s P Mη and set σ1psq :“ Mη . This defines the strategy σ1

for player I in wfGθγpκq, which is winning since the winning condition for the two games is the same for γ
a limit.5

Next, assume that player II has a winning strategy τ in wfGθγpκq. We recursively define a strategy τ̃
for player II in Gθγpκq as follows. If M̃0 is the first move by player I in Gθγpκq, let M0 ă Hθ be a κ-model
with M̃0 Ď M0, making M0 a valid move for player I in wfGθγpκq. Write µ0 :“ τpxM0yq and then set
τ̃pxM̃0yq to be µ̃0 :“ µ0 X M̃0, which again is normal by the same trick as above, making µ̃0 a legal move
for player II in Gθγpκq. Successor stages α ` 1 in the construction are analogous, but we also make sure that
xMξ | ξ ă α ` 1y, xµξ | ξ ă α ` 1y PMα`1. At limit stages τ outputs unions, as is required by the rules
of Gθγpκq. Since the union of all the µα’s is good as τ is winning, µ̃γ :“

Ť

αăγ µ̃α is good as well, making τ̃

5More precisely, that σ is winning in Gθγpκq means that there’s a sequence xfn : κÑ κ | n ă ωy with the fn’s all being
elements of the last model M̃γ , witnessing the illfoundedness of the ultrapower. But then all these functions will also be
elements of the union of the Mα’s, since we ensured that Mα Ě M̃α in the construction above, making the ultrapower of
Ť

αăγ Mα by
Ť

αăγ µα illfounded as well.
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winning and we are done. �

We now arrive at the definitions of the cardinals we will be considering. They were in Holy and Schlicht
(2018) only defined for γ being a cardinal, but given the above result we generalise it to all ordinals γ.

Definition 2.7. Let κ be a cardinal and γ ď κ an ordinal. Then κ is γ-Ramsey if player I does not have a
winning strategy in Gθγpκq for all regular θ ą κ. We furthermore say that κ is strategic γ-Ramsey if player
II does have a winning strategy in Gθγpκq for all regular θ ą κ. Define (strategic) genuine γ-Ramseys and
(strategic) normal γ-Ramseys analogously, but where we require the last measure µγ to be genuine and
normal, respectively. %

Definition 2.8 (N.). A cardinal κ is ăγ-Ramsey if it is α-Ramsey for every α ă γ, almost fully Ramsey
if it is ăκ-Ramsey and fully Ramsey if it is κ-Ramsey. Further, say that κ is coherent ăγ-Ramsey if it’s
strategic α-Ramsey for every α ă γ and that there exists a choice of winning strategies τα in Gαpκq for player
II satisfying that τα Ď τβ whenever α ă β. In other words, there is a single strategy τ for player II in Gγpκq
such that τ is a winning strategy for player II in Gαpκq for every α ă γ.6 %

This is not the original definition of (strategic) γ-Ramsey cardinals however, as this involved elementary
embeddings between weak κ-models – but as the following theorem of Holy and Schlicht (2018) shows, the
two definitions coincide whenever γ is a regular cardinal.

Theorem 2.9 (Holy-Schlicht). For regular cardinals λ, a cardinal κ is λ-Ramsey iff for arbitrarily large θ ą κ

and every A Ď κ there is a weak κ-model M ă Hθ with Măλ
Ď M and A P M with an M-normal

1-good M-measure µ on κ. %

3 The finite case

In this section we are going to consider properties of the n-Ramsey cardinals for finite n. Note in particular
that the Gθnpκq games are determined, making the “strategic” adjective superfluous in this case. We further
note that the θ’s are also dispensible in this finite case:

Proposition 3.1 (N.). Let κ ă θ be regular cardinals and n ă ω. Then player II has a winning strategy in
Gθnpκq iff they have a winning strategy in the game Gnpκq, which is defined as Gθnpκq except that we don’t
require that Mn ă Hθ .

Proof. ð is clear, so assume that II has a winning strategy τ in Gθnpκq. Whenever player I plays Mk in
Gnpκq for k ď n then define M˚

k :“ HullHθ pPq where P –Mk is the transitive collapse of Mk , and play
M˚

k in Gθnpκq. Let µk be the τ -responses to the M˚
k ’s and let player II play the µk ’s in Gnpκq as well.

6Note that, with this terminology, “coherent” is a stronger notion than “strategic”. We could’ve called the cardinals
coherent strategic ăγ-Ramseys, but we opted for brevity instead.
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Assume that this new strategy isn’t winning for player II in Gnpκq, so that UltpMn, µnq is illfounded.
This is witnessed by some ω-sequence ~f :“ xfk | k ă ωy of fk P κopMnq XMn with Xk :“ tα ă

κ | fk`1pαq ă fkpαqu P µn for all k ă ω. Let ν " κ, H :“ cHullHν pMnYt~f,Mn, µnuq be the
transitive collapse of the Skolem hull HullHν pMnYt~f,Mn, µnuq, and π : HÑ Hν be the uncollapse; write
x̄ :“ π´1pxq for all x P ranπ.

Now Ā “ A for every A P Ppκq XMn and thus also µ̄n “ µn. But now the f̄k ’s witness that
UltpM̄n, µnq is illfounded and thus also that UltpM˚

n, µnq is illfounded since M˚
n “ HullHθ pM̄nq, contra-

dicting that τ is winning. �

For this reason we’ll work with the Gnpκq games throughout this section. Since we don’t have to deal with
the θ’s anymore we note that n-Ramseyness can now be described using a Π1

2n`2-formula and normal n-
Ramseyness using a Π1

2n`3-formula.
We already have the following characterisations, as proven in Abramson et al. (1977).

Theorem 3.2 (Abramson et al.). Let κ “ κăκ be a cardinal. Then
(i) κ is weakly compact if and only if it is 0-Ramsey;
(ii) κ is weakly ineffable if and only if it is genuine 0-Ramsey;
(iii) κ is ineffable if and only if it is normal 0-Ramsey.

Proof. This is mostly a matter of changing terminology from Abramson et al. (1977) to the current game-
theoretic one, so we only show piq. Theorem 1.1.3 in Abramson et al. (1977) shows that κ is weakly compact
if and only if every κ-sized collection of subsets of κ is measured by a ăκ-complete measure, in the sense that
every ăκ-sequence (in V ) of measure one sets has non-empty intersection.

For theñ direction we can let player II respond to anyM0 by first getting theăκ-completeM0-measure
ν0 on κ from the above-mentioned result, forming the (well-founded) ultrapower π : M0 Ñ UltpM0, νq and
then playing the derived measure of π, which is M0-normal and good. Forð, if X Ď Ppκq has size κ then,
using that κ “ κăκ, we can find a κ-model M0 ă Hθ with X Ď M0. Letting player I play M0 in G0pκq

we get some M0-normal good M0-measure µ0 on κ. Since M0 is closed under ăκ-sequences we get that
µ0 is ăκ-complete. �

Indescribability

In this section we aim to prove that n-Ramseys are Π1
2n`1-indescribable and that normal n-Ramseys are

Π1
2n`2-indescribable, which will also establish that the hierarchy of alternating n-Ramseys and normal n-

Ramseys forms a strict hierarchy. Recall the following definition.

Definition 3.3. A cardinal κ is Π1
n-indescribable if whenever ϕpvq is a Πn formula, X Ď Vκ and Vκ`1 |ù

ϕrXs, then there is an α ă κ such that Vα`1 |ù ϕrX X Vαs. %

7



Our first indescribability result is then the following, where the n “ 0 case is inspired by the proof of weakly
compact cardinals being Π1

1-indescribable — see Abramson et al. (1977).

Theorem 3.4 (N.). Every n-Ramsey κ is Π1
2n`1-indescribable for n ă ω.

Proof. Let κ be n-Ramsey and assume that it is not Π1
2n`1-indescribable, witnessed by a Π2n`1-formula

ϕpvq and a subset X Ď Vκ, meaning that Vκ`1 |ù ϕrXs and, for every α ă κ, Vα`1 |ù  ϕrX X Vαs. We
will deal with the p2n` 1q-many quantifiers occuring in ϕ in pn` 1q-many steps. We will here describe the
first two steps with the remaining steps following the same pattern.

First step. Write ϕpvq ” @v1ψpv, v1q for a Σ2n-formula ψpv, v1q. As we are assuming that Vα`1 |ù

 ϕrX X Vαs holds for every α ă κ, we can pick witnesses Ap0qα Ď Vα to the outermost existential quantifier
in  ϕrX X Vαs.

Let M0 be a weak κ-model such that Vκ Ď M0 and ~Ap0q, X P M0. Fix a good M0-normal M0-
measure µ0 on κ, using the 0-Ramseyness of κ. Form Ap0q :“ r ~Ap0qsµ0

P UltpM0, µ0q, where we without
loss of generality may assume that the ultrapower is transitive. M0-normality of µ0 implies that Ap0q Ď Vκ,
so that we have that Vκ`1 |ù ψrX,Ap0qs. Now Łoś’ Lemma,M0-normality of µ0 and Vκ ĎM0 also ensures
that

UltpM0, µ0q |ù xVκ`1 |ù  ψrX,Ap0qsy. p1q

This finishes the first step. Note that if n “ 0 then  ψ would be a ∆0-formula, so that p1q would be absolute
to the true Vκ`1, yielding a contradiction. If n ą 0 we cannot yet conclude this however, but that is what we
are aiming for in the remaining steps.

Second step. Write ψpv, v1q ” Dv2@v3χpv, v1, v2, v3q for a Σ2pn´1q-formula χpv, v1, v2, v3q. Since
we have established that Vκ`1 |ù ψrX,Ap0qs we can pick some Bp0q Ď Vκ such that

Vκ`1 |ù @v3χrX,Ap0q, Bp0q, v3s p2q

which then also means that, for every α ă κ,

Vα`1 |ù Dv3 χrX X Vα, A
p0q
α , Bp0q X Vα, v3s. p3q

Fix witnesses Ap1qα Ď Vα to the existential quantifier in p3q and define the sets

Sp0qα :“ tξ ă κ | A
p0q
ξ X Vα “ Ap0q X Vαu

for every α ă κ and note that Sp0qα P µ0 for every α ă κ, since Vκ ĎM0 ensures that Ap0qX Vα PM0 and
M0-normality of µ0 then implies that Sp0qα P µ0 is equivalent to

UltpM0, µ0q |ù Ap0q X Vα “ Ap0q X Vα,

8



which is clearly the case. Now let M1 Ě M0 be a weak κ-model such that Ap0q, ~Ap1q, ~Sp0q, Bp0q P M1.
Let µ1 Ě µ0 be an M1-normal M1-measure on κ, using the 1-Ramseyness of κ, so that M1-normality of µ1

yields that4~Sp0q P µ1. Observe that ξ P 4~Sp0q if and only if Ap0qξ XVα “ Ap0qXVα for every α ă ξ, so if ξ
is a limit ordinal then it holds that Ap0qξ “ Ap0qXVξ . Now, as before, form Ap1q :“ r ~Ap1qsµ1 P UltpM1, µ1q,
so that p2q implies that

Vκ`1 |ù χrX,Ap0q, Bp0q,Ap1qs

and the definition of the Ap1qα ’s along with p3q gives that, for every α ă κ,

Vα`1 |ù  χrX X Vα, A
p0q
α , Bp0q X Vα, A

p1q
α s.

Now this, paired with the above observation regarding 4~Sp0q, means that for every α P 4~Sp0q X Lim we
have that

Vα`1 |ù  χrX X Vα,Ap0q X Vα, Bp0q X Vα, Ap1qα s,

so that M1-normality of µ1 and Łoś’ lemma implies that

UltpM1, µ1q |ù xVκ`1 |ù  χrX,Ap0q, Bp0q,Ap1qsy.

This finishes the second step. Continue in this way for a total of pn`1q-many steps, ending with a ∆0-formula
φpv, v1, . . . , v2n`1q such that

Vκ`1 |ù φrX,Ap0q, Bp0q, . . . ,Apn´1q, Bpn´1q,Apnqs p4q

and that UltpMn, µnq |ù xVκ`1 |ù  φrX,Ap0q, Bp0q, . . . ,Apnqsy. But now absoluteness of  φ means that
Vκ`1 |ù  φrX,Ap0q, Bp0q, . . . ,Apnqs, contradicting p4q. �

Note that this is optimal, as n-Ramseyness can be described by a Π1
2n`2-formula. As a corollary we then

immediately get the following.

Corollary 3.5 (N.). Every ăω-Ramsey cardinal is ∆2
0-indescribable. %

The second indescribability result concerns the normal n-Ramseys, where the n “ 0 case here is inspired by
the proof of ineffable cardinals being Π1

2-indescribable — see Abramson et al. (1977).

Theorem 3.6 (N.). Every normal n-Ramsey κ is Π1
2n`2-indescribable for n ă ω.

Before we commence with the proof, note that we cannot simply do the same thing as we did in the proof
of Theorem 3.4, as we would end up with a Π1

1 statement in an ultrapower, and as Π1
1 statements are not
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upwards absolute in general we would not be able to get our contradiction.

Proof. Let κ be normal n-Ramsey and assume that it is not Π1
2n`2-indescribable, witnessed by a Π2n`2-

formula ϕpvq and a subset X Ď Vκ. Use that κ is n-Ramsey to perform the same n` 1 steps as in the proof
of Theorem 3.4. This gives us a Σ1-formula φpv, v1, . . . , v2n`1q along with sequences xAp0q, ¨ ¨ ¨ ,Apnqy,
xBp0q, . . . , Bpn´1qy and a play xMk, µk | k ď ny of Gnpκq in which player II wins and µn is normal, such
that

Vκ`1 |ù φrX,Ap0q, Bp0q, . . . ,Apn´1q, Bpn´1q,Apnqs p1q

and, for µn-many α ă κ,

Vα`1 |ù  φrX X Vα,Ap0q X Vα, Bp0q X Vα, . . . ,Apn´1q X Vα, B
pn´1q X Vα, A

pnq
α s.

Now form S
pnq
α P µn as in the proof of Theorem 3.4. The main difference now is that we do not know if

~Spnq P Mn (in the proof of Theorem 3.4 we only ensured that ~Spkq P Mk`1 for every k ă n and we only
defined ~Spkq for k ă n), but we can now use normality7 of µn to ensure that we do have that 4~Spnq is
stationary in κ. This means that we get a stationary set S Ď κ such that for every α P S it holds that

Vα`1 |ù  φrX X Vα,Ap0q X Vα, Bp0q X Vα, . . . , Bpn´1q X Vα,Apnq X Vαs. p2q

Now note that since κ is inaccessible it is Σ1
1-indescribable, meaning that we can reflect p1q. Furthermore,

Lemma 3.4.3 of Abramson et al. (1977) shows that the set of reflection points of Σ1
1-formulas is in fact club, so

intersecting this club with S we get a ζ P S satisfying that

Vζ`1 |ù φrX X Vζ ,Ap0q X Vζ , Bp0q X Vζ , . . . , Bpn´1q X Vζ ,Apnq X Vζs,

contradicting p2q. �

Note that this is optimal as well, since normal n-Ramseyness can be described by a Π1
2n`3-formula. In

particular this then means that every pn`1q-Ramsey is a normal n-Ramsey stationary limit of normal n-
Ramseys, and every normal n-Ramsey is an n-Ramsey stationary limit of n-Ramseys, making the hierarchy of
alternating n-Ramseys and normal n-Ramseys a strict hierarchy.

Downwards absoluteness to L

The following proof is basically the proof of Theorem 4.1.1 in Abramson et al. (1977).
7Recall that this is stronger than just requiring it to be Mn-normal — we don’t require ~Spnq PMn.
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Theorem 3.7 (N.). Genuine- and normal n-Ramseys are downwards absolute to L, for every n ă ω.

Proof. Assume first that n “ 0 and that κ is a genuine 0-Ramsey cardinal. Let M P L be a weak κ-model
— we want to find a genuine M-measure inside L. By assumption we can find such a measure µ in V ; we
will show that in fact µ P L. Fix any enumeration xAξ | ξ ă κy P L of Ppκq XM. It then clearly suffices
to show that T P L, where T :“ tα ă κ | Aξ P µu.

Claim 3.7.1. T X α P L for any α ă κ.

Proof of claim. Let ~B be the µ-positive part of ~A, meaning that Bξ :“ Aξ if Aξ P µ and Bξ :“  Aξ

if Aξ R µ. As µ is genuine we get that 4 ~B has size κ, so we can pick δ P 4 ~B with δ ą α. Then
T X α “ tξ ă α | δ P Aξu, which can be constructed within L. %

But now Lemma 4.1.2 in Abramson et al. (1977) shows that there is a Π1 formula ϕpvq such that, given any
non-zero ordinal ζ , Vζ`1 |ù ϕrAs if and only if ζ is a regular cardinal and A is a non-constructible subset
of ζ . If we therefore assume that T R L then Vκ`1 |ù ϕrT s, which by Π1

1-indescribability of κ means
that there exists some α ă κ such that Vα`1 |ù ϕrT X Vαs, i.e. that T X α R L, contradicting the claim.
Therefore µ P L. It is still genuine in L as p4µqL “ 4µ, and if µ was normal then that is still true in L
as clubs in L are still clubs in V . The cases where κ is a genuine- or normal n-Ramsey cardinal is analogous. �

Since pn`1q-Ramseys are normal n-Ramseys we then immediately get the following.

Corollary 3.8 (N.). Every pn`1q-Ramsey is normal n-Ramsey in L, for every n ă ω. In particular, ăω-
Ramseys are downwards absolute to L. %

Complete ineffability

In this section we provide a characterisation of the completely ineffable cardinals in terms of the α-Ramseys.
To arrive at such a characterisation, we need a slight strengthening of the ăω-Ramsey cardinals, namely the
coherent ăω-Ramseys as defined in 2.8. Note that a coherent ăω-Ramsey is precisely a cardinal satisfying
the ω-filter property, as defined in Holy and Schlicht (2018).

The following theorem shows that assuming coherency does yield a strictly stronger large cardinal notion.
The idea of its proof is very closely related to the proof of Theorem 3.6 (the indescribability of normal n-
Ramseys), but the main difference is that we want everything to occur locally inside our weak κ-models.

Theorem 3.9 (N.). Every coherent ăω-Ramsey is a stationary limit of ăω-Ramseys.

Proof. Let κ be coherent ăω-Ramsey. Let θ " κ be regular and let M0 ă Hθ be a weak κ-model with
Vκ ĎM0. Let then player I play arbitrarily while player II plays according to her coherent winning strategies
in Gnpκq, yielding a weak κ-model M ă Hθ with an M-normal M-measure µ :“

Ť

năω µn on κ.
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Assume towards a contradiction thatX :“ tξ ă κ | ξ is ăω-Ramseyu R µ. SinceX “
Ş ~X and ~X PM,

where Xn :“ tξ ă κ | ξ is n-Ramseyu, we must have by M-normality of µ that  Xk P µ for some k ă ω.
Note that  Xk P M0 by elementarity, so that  Xk P µ0 as well. Perform the k ` 1 steps as in the proof
of Theorem 3.6 with ϕpξq being xξ is k-Ramseyy, so that we get a weak κ-model Mk`1 ă Hθ , an Mk`1-
normal Mk`1-measure µ̃k`1 on κ, a Σ1-formula ϕpv, v1, v2, . . . , v2k`1q and sequences xAp0q, . . . ,Apkqy
and xBp0q, . . . , Bpk´1qy such that

Vκ`1 |ù ϕrκ,Ap0q, Bp0q,Ap1q, Bp1q, . . . ,Apk´1q, Bpk´1q,Apkqs p2q

and there is a Y P µ̃k`1 with Y Ď  Xk such that given any ξ P Y ,

Vξ`1 |ù  ϕrξ, A
p0q
ξ , Bp0q X Vξ, A

p1q
ξ , Bp1q X Vξ, . . . , A

pk´1q
ξ , Bpk´1q X Vξ, A

pkq
ξ s, p3q

where Apiq “ r ~Apiqsµi P UltpMi, µiq as in the proof of Theorem 3.4.
Since κ in particular is Σ1

1-indescribable, Lemma 3.4.3 of Abramson et al. (1977) implies that we get a club
C Ď κ of reflection points of p2q. Let Mk`2 Ě Mk`1 be a weak κ-model with Apkq P Mk`2, where the
above pn` 1q-steps ensured that the Bpiq’s and the remaining Apiq’s are all elements of Mk`1. In particular,
as C is a definable subset in the Apiq’s and Bpiq’s we also get that C PMk`2. Letting µ̃k`2 be the associated
measure on κ, Mk`2-normality of µ̃k`2 ensures that C P µ̃k`2. Now define, for every α ă κ,

Sα :“ tξ P Y | @i ď k : Apiq X Vα “ A
piq
ξ X Vαu

and note that Sα P µ̃k`2 for every α ă κ. Write ~S :“ xSα | α ă κy and note that since ~S is definable it is an
element of Mk`2 as well. Then Mk`2-normality of µ̃k`2 ensures that 4~S P µ̃k`2, so that C X4~S P µ̃k`2

as well. But letting ζ P C X4~S we see, as in the proof of Theorem 3.4, that

Vζ`1 |ù ϕrζ,A
p0q
ζ , Bp0q X Vζ , A

p1q
ζ , Bp1q X Vζ , . . . , A

pkq
ζ s

since 4~S Ď Y , contradicting p3q. Hence X P µ, and since M ă Hθ we have that M is correct about
stationary subsets of κ, meaning that κ is a stationary limit of ăω-Ramseys. �

Now, having established the strength of this large cardinal notion, we move towards complete ineffability. We
recall the following definitions.

Definition 3.10. A collection R Ď Ppκq is a stationary class if
(i) R ‰ H;
(ii) every A P R is stationary in κ;
(iii) if A P R and B Ě A then B P R.

%
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Definition 3.11. A cardinal κ is completely ineffable if there is a stationary class R such that for every
A P R and f : rAs2 Ñ 2 there is an H P R homogeneous for f . %

We then arrive at the following characterisation, influenced by the proof of Theorem 1.3.4 in Abramson et al.
(1977).

Theorem 3.12 (N.). A cardinal κ is completely ineffable if and only if it is coherent ăω-Ramsey.

Proof. pðq: Assume κ is coherent ăω-Ramsey, witnessed by strategies xτn | n ă ωy. Let f : rκs2 Ñ 2 be
arbitrary and form the sequence xAfα | α ă κy as

Afα :“ tβ ą α | fptα, βuq “ 0u.

Let Mf be a transitive weak κ-model with ~Af PMf , and let µf be the associated Mf -measure on κ given
by τ0.8 1-Ramseyness of κ ensures that µf is normal, meaning4µf is stationary in κ. Define a new sequence
~Bf as the µf -positive part of ~Af .9 Then Bfα P µf for all α ă κ, so that normality of µf implies that 4 ~Bf is
stationary.

Let now M1
f be a new transitive weak κ-model with Mf Ď M1

f and µf P M1
f , and use τ1 to get an

M1
f -measure µ1f Ě µf on κ. Then 4 ~Bf X tξ ă κ | Afξ P µfu and 4 ~Bf X tξ ă κ | Afξ R µfu are both

elements of M1
f , so one of them is in µ1f ; set Hf to be that one. Note that Hf is now both stationary in κ

and homogeneous for f .
Now let g : rHf s

2 Ñ 2 be arbitrary and again form

Agα :“ tβ P Hf | β ą α^ gptα, βuq “ 0u

for α P Hf . Let Mf,g Ě M1
f be a transitive weak κ-model with ~Ag P Mf,g and use τ2 to get an Mf,g-

measure µf,g Ě µ1f on κ. As before we then get a stationary Hf,g P µ
1
f,g which is homogeneous for g. We

can continue in this fashion since τn Ď τn`1 for all n ă ω. Define then

R :“ tA Ď κ | D~f : H~f Ď Au,

where the ~f ’s range over finite sequences of functions as above; i.e. f0 : rκs2 Ñ 2 and fk`1 : rHfk s Ñ 2 for
k ă ω. This is clearly a stationary class which satisfies that whenever A P R and g : rAs2 Ñ 2, we can find
H P R which is homogeneous for f . Indeed, if we let ~f be such that H~f Ď A, which exists as A P R, then
we can simply let H :“ H~f,g . This shows that κ is completely ineffable.

pñq: Now assume that κ is completely ineffable and letR be the corresponding stationary class. We show
that κ is n-Ramsey for all n ă ω by induction, where we inductively make sure that the resulting strategies
are coherent as well. Let player I in G0pκq play M0 and enumerate Ppκq XM0 as ~A0xA0

α | α ă κy such
8Technically we would have to require that Mf ă Hθ for some regular θ ą κ to be able to use τ0, but note that we

could simply get a measure on HullHθ pMf q and restrict it to Mf . We will use this throughout the proof.
9The µ-positive part was defined in Claim 3.7.1.
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that A0
ξ Ď A0

ζ implies ξ ď ζ . For α ă κ define sequences rα : α Ñ 2 as rαpξq “ 1 iff α P A0
ξ . Let ăαlex be

the lexicographical ordering on α2. Define now a colouring f : rκs2 Ñ 2 as

fptα, βuq :“

#

0 if rminpα,βq ă
minpα,βq
lex rmaxpα,βq æminpα, βq

1 otherwise

LetH0 P R be homogeneous for f , using that κ is completely ineffable. For α ă κ consider now the sequence
xrξ æα | ξ P H0 ^ ξ ą αy, which is of length κ so there is an η P rα, κq satisfying that rβ æα “ rγ æα

for every β, γ P H0 with η ď β ă γ. Define g : κ Ñ κ as gpαq being the least such η, which is then a
continuous non-decreasing cofinal function, making the set of fixed points of g club in κ – call this club C .

Since H0 is stationary we can pick some ζ P C X H0. As ζ P C we get gpζq “ ζ , meaning that
rβ æ ζ “ rγ æ ζ holds for every β, γ P H0 with ζ ď β ă γ. As ζ is also a member ofH0 we can let β :“ ζ , so
that rζ “ rγ æ ζ holds for every γ P H0, γ ą ζ . Now, by definition of rα we get that for every α, γ P H0XC

with α ď γ and ξ ă α, α P A0
ξ iff γ P A0

ξ . Define thus the M0-measure µ0 on κ as

µ0pA
0
ξq “ 1 iff p@β P H0 X Cqpβ ą ξ Ñ β P A0

ξq

iff pDβ P H0 X Cqpβ ą ξ ^ β P A0
ξq,

where the last equivalence is due to the above-mentioned property of H0 X C . Note that the choice of
enumeration implies that µ0 is indeed a filter. Letting ~B “ xBα | α ă κy be the µ0-positive part of ~A0, it
is also simple to check that H0 X C Ď 4 ~B, making µ0 normal and hence also both M0-normal and good,
showing that κ is 0-Ramsey.

Assume now that κ is n-Ramsey and let xM0, µ0, . . . ,Mn, µn,Mn`1y be a partial play of Gn`1pκq.
Again enumerate Ppκq X Mn`1 as ~An`1 “ xAn`1

ξ | ξ ă κy, again satisfying that ξ ď ζ whenever
An`1
ξ Ď An`1

ζ , but also such that given any ξ ă κ there are ζ, ζ 1 P pξ, κq satisfying that An`1
ζ P PpκqXMn

and An`1
ζ1 P pPpκq XMn`1q ´Mn. The plan now is to do the same thing as before, but we also have to

check that the resulting measure extends the previous ones.
Let Hn P R and C be club in κ such that HnXC Ď 4µn, which exist by our inductive assumption. For

α ă κ define rα : αÑ 2 as rαpξq “ 1 iff α P An`1
ξ , and define a colouring f : rHns

2 Ñ 2 as

fptα, βuq :“

#

0 if rminpα,βq ă
minpα,βq
lex rmaxpα,βq æminpα, βq

1 otherwise

As Hn P R there is an Hn`1 P R homogeneous for f . Just as before, define g : κ Ñ κ as gpαq being the
least η P rα, κq such that rβ æα “ rγ æα for every β, γ P Hn`1 with η ď β ă γ, and let D be the club of
fixed points of g. As above we get that given any α, γ P Hn`1 X D with α ď γ and ξ ă α, α P An`1

ξ iff
γ P An`1

ξ . Define then the Mn`1-measure µn`1 on κ as

µn`1pA
n`1
ξ q “ 1 iff p@β P Hn`1 XD X Cqpβ ą ξ Ñ β P An`1

ξ q

iff pDβ P Hn`1 XD X Cqpβ ą ξ ^ β P An`1
ξ q.
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Then Hn`1XDXC Ď 4µn`1, making µn`1 normal, Mn`1-normal and good, just as before. It remains to
show that µn Ď µn`1. Let thus A P µn be given, and say A “ An`1

ξ “ Anη , where ~An was the enumeration
of Ppκq XMn used at the n’th stage. Then by definition of µn we get that for every β P Hn X C with
β ą η, β P Anη . We need to show that

pDβ P Hn`1 XD X Cqpβ ą ξ ^ β P An`1
ξ q

holds. But here we can simply pick a β ą maxpξ, ηq with β P Hn`1 XD X C Ď Hn X C . This shows that
µn Ď µn`1, making κ pn`1q-Ramsey and thus inductively also coherent ăω-Ramsey. �

4 The countable case

This section covers the (strategic) γ-Ramsey cardinals whenever γ has countable cofinality. This case is special
because, as mentioned in Section 2, we cannot ensure that the final measure is countably complete and so the
existence of winning strategies in the Gθγpκq might depend on θ, in contrast with the uncountable cofinality
case; see e.g. Question 6.3.

[Strategic] ω-Ramsey cardinals

We now move to the strategic ω-Ramsey cardinals and their relationship to the (non-strategic) ω-Ramseys.
For this we define a new addition to the family of virtual cardinals from Gitman and Schindler (2015), the
virtually measurable cardinals.

Definition 4.1. A cardinal κ is virtually measurable if for every regular ν ą κ there exists a transitive M
and a forcing P such that, in V P, there exists an elementary embedding j : HV

ν ÑM with crit j “ κ. %

We’ll need the following well-known lemmata; see Lemma 7.1 in Holy and Schlicht (2018) and Lemma 3.1 in
Gitman and Schindler (2015) for their proofs.

Lemma 4.2 (Ancient Kunen Lemma). Let M |ù ZFC´ and j : M Ñ N an elementary embedding with
critical point κ such that κ` 1 ĎM Ď N . Assume that X PM hasM -cardinality κ. Then j æX P N . %

Lemma 4.3 (Absoluteness of embeddings on countable structures). LetM be a countable first-order structure
and j : M Ñ N an elementary embedding. If W is a transitive (set or class) model of (some sufficiently
large fragment of) ZFC such thatM is countable inW and N PW , then for any finite subset ofM ,W has
some elementary embedding j˚ : M Ñ N , which agrees with j on that subset. Moreover, if both M and
N are transitive P-structures and j has a critical point, we can also assume that critpj˚q “ critpjq. %
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Theorem 4.4 (Schindler-N.). Every virtually measurable cardinal is strategic ω-Ramsey, and every strategic
ω-Ramsey cardinal is virtually measurable in L.

Proof. Let κ be virtually measurable and fix a regular ν ą κ, a transitive M , a poset P and, in V P, an
elementary embedding π : HV

ν ÑM with critπ “ κ. Fix a name 9µ and a P-condition p such that10

p,x 9µ is a 1-good Ȟν -normal Ȟν -measurey

We now define a strategy σ for player II in Gνωpκq as follows. Whenever player I plays a weak κ-model
Mn ă HV

ν , player II fixes pn P P, an Mn-measure µn and a function πn : Mn Ñ V such that p0 ď p,
pn ď pk for every k ď n and that

pn,x 9µX M̌n “ µ̌n ^ π̌n “ 9π æ M̌ny. p1q

Note that by the Ancient Kunen Lemma 4.2 we get that π æMn P M Ď V , so such πn always exist in V .
The µn’s also always exist in V , by weak amenability of µ. Player II responds toMn with µn. It’s clear that
the µn’s are legal moves for player II, so it remains to show that µω :“

Ť

năω µn is good. Assume it’s not, so
that we have a sequence xgn | n ă ωy of functions gn : κÑMω :“

Ť

năωMn such that gn PMω and

Xn`1 :“ tα ă κ | gn`1pαq ă gnpαqu P µω p2q

for every n ă ω. Without loss of generality we can assume that gn, Xn P Mn. Then p2q implies that
pn`1,x 9πpǧn`1qpκ̌q ă 9πpǧnqpκ̌qy, but by p1q this also means that

pn`1,xπ̌n`1pǧn`1qpκ̌q ă π̌npǧnqpκ̌qy, p3q

so defining, in V , the ordinals αn :“ πnpgnqpκq, p3q implies that αn`1 ă αn for all n ă ω,  . So µω is good,
making σ a winning strategy and thus also making κ strategic ω-Ramsey since ν was arbitrary.

Next, let κ be strategic ω-Ramsey and fix a winning strategy σ for player II in Gνωpκq for a regular ν ą κ.
Let g Ď Colpω,HL

ν q be V -generic and in V rgs fix an elementary chain xLκn | n ă ωy of weak κ-models
Lκn ă HL

ν such that HL
ν Ď

Ť

năω Lκn , using that ν is regular and has countable cofinality in V rgs. Player
II follows σ, resulting in a HL

ν -normal HL
ν -measure µ on κ.

Claim 4.4.1. UltpHL
ν , µq is well-founded.

Proof of claim. Assume for a contradiction that UltpHL
ν , µq is illfounded, witnessed by a sequence

xgn | n ă ωy of functions gn : κ Ñ ν such that gn P HL
ν and tα ă κ | gn`1pαq ă gnpαqu P µ.

Now, in V , define a tree T of triples pf,Mf , µf q such that f : κ Ñ ν , Mf is a weak κ-model, µf is an
Mf -measure on κ and letting f0 ăT ¨ ¨ ¨ ăT fn “ f be the T -predecessors of f ,
• xMf0 , µf0 , . . . ,Mfn , µfny is a partial play of Gνωpκq in which player II follows σ; and

10Recall that an M -measure µ is 1-good if it’s weakly amenable and UltpM,µq is well-founded.
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• tα ă κ | fk`1pαq ă fkpαqu P µk`1 for every k ă n.

Now, the gn’s induce a cofinal branch through T in V rgs, so by absoluteness of well-foundedness there’s
a cofinal branch b through T in V as well. But b now gives us a play of Gνωpκq where player II is following
σ but player I wins, a contradiction. Thus UltpHL

ν , µq is well-founded. %

Let j : HL
ν Ñ UltpHL

ν , µq – M be the ultrapower embedding followed by the transitive collapse, so that
M “ Lα for some α by elementarity. Let now h Ď Colpω, κ`LqL be L-generic, so that HL

ν is count-
able in Lrhs and (trivially) M P Lrhs. By Lemma 4.3 we then get that there’s an elementary embedding
j˚ : HL

ν Ñ M in Lrhs with critical point κ. Since we also have that M P L and as ν was arbitrary, this
makes κ virtually measurable in L. �

We get the following immediate corollary.

Corollary 4.5 (Schindler-N.). Strategic ω-Ramseys are downwards absolute to L, and the existence of a
strategic ω-Ramsey cardinal is equiconsistent with the existence of a virtually measurable cardinal. Further,
in L the two notions are equivalent. %

Note also that the proof of Theorem 4.4 shows that whenever κ is strategic ω-Ramsey then for every regular
ν ą κ there’s a generic extension in which there exists a weakly amenable HV

ν -normal Hν -measure on κ.
We end this section with a result showing precisely where in the large cardinal hierarchy the strategic

ω-Ramsey cardinals and ω-Ramsey cardinals lie, namely that strategic ω-Ramseys are equiconsistent with
remarkables and ω-Ramseys are strictly below. Theorem 4.8 of Gitman and Welch (2011) showed that 2-
iterables are limits of remarkables, and our Propositions 2.6 and 4.13 shows that ω-Ramseys are limits of
1-iterables, so that the strategic ω-Ramseys and the ω-Ramseys both lie strictly between the 2-iterables and
1-iterables. It was shown in Holy and Schlicht (2018) that ω-Ramseys are consistent with V “ L. Remarkable
cardinals were introduced by Schindler (2000), and Gitman and Schindler (2015) showed the following two
equivalent formulations.

Definition 4.6. A cardinal κ is remarkable if one of the two equivalent properties hold:
(i) For all λ ą κ there exist ν ą λ, a transitive set M with HV

λ Ď M and a forcing poset P, such that in
V P there’s an elementary embedding π : HV

ν ÑM with critical point κ and πpκq ą λ;
(ii) For all λ ą κ there exist ν ą λ, a transitive set M with λM Ď M and a forcing poset P, such that in

V P there’s an elementary embedding π : HV
ν ÑM with critical point κ and πpκq ą λ.

%

17



Theorem 4.7 (N.). Let κ be a virtually measurable cardinal. Then either κ is either remarkable in L or
Lκ |ù xthere is a proper class of virtually measurablesy. In particular, the two notions are equiconsistent.

Proof. Virtually measurables are downwards absolute to L by Lemma 4.3, so we may assume V “ L.
Assume κ is not remarkable. This means that there exists some λ ą κ such that for every ν ą λ, transitive
M with HV

λ Ď M and forcing poset P it holds that, in V P, there’s no elementary embedding π : HV
ν Ñ M

with critπ “ κ and πpκq ą λ.
Fix ν :“ λ` and use that κ is virtually ν-measurable to fix a transitiveM and a forcing poset P such that,

in V P, there’s an elementary π : HV
ν Ñ M . Note that because M |ù V “ L and M is transitive, M “ Lα

for some α ě ν , so that HV
ν “ Lν Ď M . This means that πpκq ď λ ă ν since we’re assuming that κ isn’t

remarkable. Then by restricting the generic embedding to HV
κ we get that HV

κ ă HM
πpκq “ HV

πpκq, using that
πpκq ă ν and HV

ν “ HM
ν by the above.

Note that πpκq is a cardinal in HV
ν since πpκq ă ν , and as HV

ν ă1 V we get that πpκq is a cardinal. But
then, again using that Hπpκq ă1 V , κ is virtually measurable in HV

πpκq since being virtually measurable is Π2.
This means that for every ξ ă κ it holds that

HV
πpκq |ù Dα ą ξ : xα is virtually measurabley,

implying that HV
κ |ù xThere is a proper class of virtually measurablesy. �

Now Theorem 4.7 and Corollary 4.5 yield the following immediate corollary.

Corollary 4.8 (Schindler-N.). Let κ be strategic ω-Ramsey. Then either κ is remarkable in L or otherwise
Lκ |ù xthere is a proper class of strategic ω-Ramseysy. In particular, the two notions are equiconsistent. %

Now, using these results we show that the strategic ω-Ramseys have strictly stronger consistency strength than
the ω-Ramseys.

Theorem 4.9 (N.). Remarkable cardinals are strategic ω-Ramsey limits of ω-Ramsey cardinals.

Proof. Let κ be remarkable. Using property piiq in the definition of remarkability above we can find
a transitive M closed under 2κ-sequences and a generic elementary embedding π : HV

ν Ñ M for some
ν ą 2κ. We will show that κ is ω-Ramsey in M . Note that remarkables are clearly virtually measurable,
and thus by Theorem 4.4 also strategic ω-Ramsey; let τθ be the winning strategy for player II in Gθωpκq for all
regular θ ą κ.

In M we fix some regular θ ą κ and let σ be some strategy for player I in GθωpκqM . Since M is closed
under 2κ-sequences it means that PpPpκqq Ď M and thus that M contains all possible filters on κ. We
let player II follow τ , which produces a play σ ˚ τ in which player II wins. But all player II’s moves are in
PpPpκqq and hence inM , and asM is furthermore closed under ω-sequences, σ ˚ τ PM . This means that
M sees that σ is not winning, so κ is ω-Ramsey inM .
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This also implies that κ is a limit of ω-Ramseys in Hν . But as κ is remarkable it holds that Hκ ă2 V , in
analogy with the same property for strongs and supercompacts, and as being ω-Ramsey is a Π2-notion this
means that κ is a limit of ω-Ramseys. �

This immediately yields the following corollary.

Corollary 4.10 (Schindler-N.). If κ is a strategic ω-Ramsey cardinal then

Lκ |ù xthere is a proper class of ω-Ramseysy. %

pω, αq-Ramsey cardinals

A natural generalisation of the γ-Ramsey definition is to require more iterability of the last measure. Of course,
by Proposition 2.6 we have that Gγpκ, ζq is equivalent to Gγpκq when cof γ ą ω so the next definition is only
interesting whenever cof γ “ ω.

Definition 4.11 (N.). Let α, β be ordinals. Then a cardinal κ is pα, βq-Ramsey if player I does not have a
winning strategy in Gθαpκ, βq for all regular θ ą κ.11 %

Definition 4.12 (Gitman). A cardinal κ is α-iterable if for everyA Ď κ there exists a transitiveweak κ-model
M with A PM and an α-good M-measure µ on M. %

Proposition 4.13. If β ą 0 then every pα, βq-Ramsey is a β-iterable stationary limit of β-iterables.

Proof. Let pM, P, µq be a result of a play of Gκ
`

α pκ, βq in which player II won. Then the transitive collapse
of pM, P, µq witnesses that κ is β-iterable, since µ is β-good by definition of Gκ

`

α pκ, βq.
That κ is β-iterable is reflected to some Hθ , so let now pN , P, νq be a result of a play of Gθαpκ, βq in

which player II won. Then N ă Hθ , so that κ is also β-iterable in N . Since being β-iterable is witnessed by
a subset of κ and β ą 0 implies12 that we get a κ-powerset preserving j : N Ñ P , P also thinks that κ is
β-iterable, making κ a stationary limit of β-iterables by elementarity. �

We now move towards Theorem 4.17 which gives an upper consistency bound for the pω, αq-Ramseys. We
first recall a few definitions and a folklore lemma.

Definition 4.14. For an infinite ordinal α, a cardinal κ is α-Erdős for α ď κ if given any club C Ď κ and
regressive c : rCsăω Ñ κ there is a set H P rCsα homogeneous for c; i.e. that |c“rHsn| ď 1 holds for every
n ă ω. %

11Note that an α-Ramsey cardinal is the same as an pα, 0q-Ramsey cardinal.
12Recall that β-good for β ą 0 in particular implies weak amenability.
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Definition 4.15. A set of indiscernibles I for a structure M “ pM, P, Aq is remarkable if I ´ ι is a set of
indiscernibles for pM, P, A, xξ | ξ ă ιyq for every ι P I . %

Lemma 4.16 (Folklore). Let κ be α-Erdős where α P rω, κs and let C Ď κ be club. Then any structure M
in a countable language L with κ` 1 ĎM has a remarkable set of indiscernibles I P rCsα.

Proof. Let xϕn | n ă ωy enumerate all L-formulas and define c : rCsăω Ñ κ as follows. For an increasing
sequence α1 ă ¨ ¨ ¨ ă α2n P C let

cptα1, . . . , α2nuq :“ the least λ ă α1 such that Dδ1 ă ¨ ¨ ¨ δkDm ă ω : λ “ xm, δ1, . . . , δky^

M*ϕmr~δ, α1, . . . , αns Ø ϕmr~δ, αn`1, . . . , α2ns

if such a λ exists, and cpsq “ 0 otherwise. Clearly c is regressive, so since κ is α-Erdős we get a homogeneous
I P rCsα for c; i.e. that |c“rIsn| ď 1 for every n ă ω. Then cptα1, . . . , α2nuq “ 0 for every α1, . . . , α2n P I ,
as otherwise there exists an m ă ω and δ1 ă ¨ ¨ ¨ δk such that for any α1 ă . . . ă α2n P I ,

M*ϕmr~δ, α1, . . . , αns Ø ϕmr~δ, αn`1, . . . , α2ns. p:q

But then simply pick α1 ă . . . α2n ă α11 ă ¨ ¨ ¨ ă α12n so that both tα1, . . . , α2nu and tα11, . . . , α12nu wit-
nesses p:q; then either tα1, . . . , αn, α

1
1, α

1
nu or tα1, . . . , αn, α

1
n`1, . . . , α

1
2nu also witnesses that p:q fails,  . �

Theorem 4.17 (N.). Let α P rω, ω1s be additively closed. Then any α-Erdős cardinal is a limit of pω, αq-
Ramsey cardinals.

Proof. Let κ be α-Erdős, θ ą κ a regular cardinal and β ă κ any ordinal. Use the above Lemma 4.16 to get
a set of remarkable indiscernibles I P rκsα for the structure pHθ, P, xξ | ξ ă βyq, and let ι P I be the least
indiscernible in I . We will show that player I has no winning strategy in Gθωpι, αq, so by the proof of Theorem
5.5(d) in Holy and Schlicht (2018) it suffices to find a weak ι-model M ă Hθ and an α-good M-measure on
ι. Define

M :“ HullHθ pιY Iq ă Hθ

and let π : I Ñ I be the right-shift map. Since I is remarkable, I (“ I ´ ι) is a set of indiscernibles for the
structure pHθ, P, xξ | ξ ă ιyq, so that π induces an elementary embedding j : M Ñ M with crit j “ ι,
given as

jpτMr~ξ, ιi0 , . . . , ιik sq :“ τMr~ξ, ιi0`1, . . . , ιik`1s,

with ~ξ Ď ι. Since j is trivially ι-powerset preserving we get that M ă Hθ is a weak ι-model satisfying ZFC´

with a 1-good M-measure µj on ι. Furthermore, as we can linearly iterate M simply by applying j we get
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an α-iteration of M since there are α-many indiscernibles. Note that at limit stages γ ă α our iteration sends
τMr~ξ, ιi0 , . . . , ιik s to τMr~ξ, ιi0`γ , . . . , ιik`γs so here we are using that α is additively closed.

This shows that player I has no winning strategy in Gθωpι, αq. Since ι ą β and β ă κ was arbitrary, κ is
a limit of η such that player I has no winning strategy in Gθωpη, αq. If we repeat this procedure for all regular
θ ą κ we get by the pidgeon hole principle that κ is a limit of pω, αq-Ramsey cardinals. �

As Theorem 4.5 in Gitman and Schindler (2015) shows that pα`1q-iterable cardinals have α-Erdős cardinals
below them for α ě ω additively closed, this shows that the pω, αq-Ramseys form a strict hierarchy. Further,
as α-Erdős cardinals are consistent with V “ L when α ă ωL1 and ω1-iterable cardinals aren’t consistent
with V “ L, we also get that pω, αq-Ramsey cardinals are consistent with V “ L if α ă ωL1 and that they
aren’t if α “ ω1.

[Strategic] pω`1q-Ramsey cardinals

The next step is then to consider pω`1q-Ramseys, which turn out to cause a considerable jump in consistency
strength. We first need the following result which is implicit in Mitchell (1979) and in the proof of Lemma 1.3
in Donder et al. (1981) — see also Dodd (1982) and Gitman (2011).

Theorem 4.18 (Dodd, Mitchell). A cardinal κ is Ramsey if and only if every A Ď κ is an element of a weak
κ-model M such that there exists a weakly amenable countably complete M-measure on κ. %

The following theorem then supplies us with a lower bound for the strength of the pω`1q-Ramsey cardinals.
It should be noted that a better lower bound will be shown in Theorem 5.9, but we include this Ramsey lower
bound as well for completeness.

Theorem 4.19 (N.). Every pω`1q-Ramsey cardinal is a Ramsey limit of Ramseys.

Proof. Let κ be pω`1q-Ramsey and A Ď κ. Let σ be a strategy for player I in Gκ
`

ω`1pκq satisfying that
whenever ~Mα ˚ ~µα is consistent with σ it holds that A PM0 and µα PMα`1 for all α ď ω. Then σ isn’t
winning as κ is pω`1q-Ramsey, so we may fix a play σ ˚ ~µα of Gκ

`

ω`1pκq in which player II wins. Then by
the choice of σ we get that µω is a weakly amenable Mω-measure on κ, and by the rules of Gκ

`

ω`1pκq it’s also
countably complete (it’s even normal), which makes κ Ramsey by the above Theorem 4.18.

Since κ is Ramsey, Mω |ù xκ is Ramseyy as well. Letting j : Mω Ñ N be the κ-powerset preservering
embedding induced by µω , we also get that N |ù xκ is Ramseyy by κ-powerset preservation. This then im-
plies that κ is a stationary limit of Ramsey cardinals inside Mω , and thus also in V by elementarity. �

As for the consistency strength of the strategic pω`1q-Ramsey cardinals, we get the following result that
they reach a measurable cardinal. The proof of the following is closely related to the proof due to Silver
and Solovay that player II having a winning strategy in the cut and choose game is equiconsistent with a
measurable cardinal — see e.g. p. 249 in Kanamori and Magidor (1978).
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Theorem 4.20 (N.). If κ is a strategic pω`1q-Ramsey cardinal then, in V Colpω,2κq, there’s a transitive class
N and an elementary embedding j : V Ñ N with crit j “ κ. In particular, the existence of a strategic
pω`1q-Ramsey cardinal is equiconsistent with the existence of a measurable cardinal.

Proof. Set P :“ Colpω, 2κq and let σ be player II’s winning strategy in Gκ
`

ω`1pκq. Let 9M be a P-name of an
ω-sequence xMn | n ă ωy of weak κ-models Mn P V such that Mn ă HV

κ` and PpκqV Ď
Ť

năωMn,
and let 9µ be a P-name for the ω-sequence of σ-responses to the Mn’s in Gκ

`

ω`1pκq
V .

Assume that there’s a P-condition p which forces the generic ultrapower UltpV,
Ť

n 9µnq to be illfounded,
meaning that we can fix a P-name 9f for an ω-sequence xfn | n ă ωy such that

p, 9Xn :“ tα ă κ | 9fn`1pαq ă 9fnpαqu P
ď

năω

9µn.

Now, in V , we fix some large regular θ " κ and a countable N ă Hθ such that 9M, 9µ, 9f,HV
κ` , σ, p P N .

We can find an N -generic g Ď PN in V with p P g since N is countable, so that N rgs P V . But the play
9M
g

n ˚ 9µgn is a play of Gκ
`

ω pκq
V which is according to σ, meaning that

Ť

năω 9µgn is normal and in particular
countably complete (in V ). Then

Ş

năω
9Xg
n ‰ H, but if α P

Ş

năω
9Xg
n then x 9fgnpαq | n ă ωy is a strictly

decreasing ω-sequence of ordinals,  . This means that UltpV,
Ť

n µnq is indeed wellfounded.
This conclusion is well-known to imply that κ is a measurable in an inner model; see e.g. Lemma 4.2 in

Kellner and Shelah (2011). �

The above Theorem 4.20 then answers Question 9.2 in Holy and Schlicht (2018) in the negative, asking if
λ-Ramseys are strategic λ-Ramseys for uncountable cardinals λ, as well as answering Question 9.7 from the
same paper in the positive, asking whether strategic fully Ramseys are equiconsistent with a measurable.

5 The general case

Gitman’s cardinals

In this subsection we define the strongly- and super Ramsey cardinals from Gitman (2011) and investigate
further connections between these and the α-Ramsey cardinals. First, a definition.

Definition 5.1 (Gitman). A cardinal κ is strongly Ramsey if every A Ď κ is an element of a transitive κ-
model M with a weakly amenable M-normal M-measure µ on κ. If furthermore M ă Hκ` then we say
that κ is super Ramsey. %

Note that since the model M in question is a κ-model it is closed under countable sequences, so that the
measure µ is automatically countably complete. The definition of the strongly Ramseys is thus exactly the
same as the characterisation of Ramsey cardinals, with the added condition that the model is closed under
ăκ-sequences. Gitman (2011) shows that every super Ramsey cardinal is a strongly Ramsey limit of strongly
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Ramsey cardinals, and that κ is strongly Ramsey iff every A Ď κ is an element of a transitive κ-model
M |ù ZFC with a weakly amenable M-normal M-measure µ on κ.

Now, a first connection between the α-Ramseys and the strongly- and super Ramseys is the result in Holy
and Schlicht (2018) that fully Ramsey cardinals are super Ramsey limits of super Ramseys. The following
result then shows that the strongly- and super Ramseys are sandwiched between the almost fully Ramseys
and the fully Ramseys.

Theorem 5.2 (N.-W.). Every strongly Ramsey cardinal is a stationary limit of almost fully Ramseys.

Proof. Let κ be strongly Ramsey and let M |ù ZFC be a transitive κ-model with Vκ PM and µ a weakly
amenable M-normal M-measure. Let γ ă κ have uncountable cofinality and σ PM a strategy for player I
in GγpκqM. Now, whenever player I plays Mα PM let player II play µXMα, which is an element of M
by weak amenability of µ. As Măκ

ĎM the resulting play is inside M, so M sees that σ is not winning.
Now, letting jµ : M Ñ N be the induced embedding, κ-powerset preservation of jµ implies that µ is

also a weakly amenable N -normal N -measure on κ. This means that we can copy the above argument to
ensure that κ is also almost fully Ramsey in N , entailing that it is a stationary limit of almost fully Ramseys
in M. But note now that λ is almost fully Ramsey iff it is almost fully Ramsey in a transitive ZFC-model
containing Hp2λq` as an element by Theorem 5.5(e) in Holy and Schlicht (2018), so that κ being inaccessible,
Vκ PM and M being transitive implies that κ really is a stationary limit of almost fully Ramseys. �

Downwards absoluteness toK

Lastly, we consider the question of whether the α-Ramseys are downwards absolute to K , which turns out
to at least be true in many cases. The below Theorem 5.4 then also answers Question 9.4 from Holy and
Schlicht (2018) in the positive, asking whether α-Ramseys are downwards absolute to the Dodd-Jensen core
model for α P rω, κs a cardinal. We first recall the definition of 0¶.

Definition 5.3. 0¶ is “the sharp for a strong cardinal”, meaning the minimal sound active mouse M with
M | critp 9FMq |ù xThere exists a strong cardinaly, with 9FM being the top extender of M. %

Theorem 5.4 (N.-W.). Assume 0¶ does not exist. Let λ be a limit ordinal with uncountable cofinality and
let κ be λ-Ramsey. Then K |ù xκ is a λ-Ramsey cardinaly.

Proof. Note first that κ`K “ κ` by Schindler (1997), since κ in particular is weakly compact. Let σ P K be
a strategy for player I in Gκ

`

λ pκq
K , so that a play following σ will produce weak κ-models M ă K|κ`. We

can then define a strategy σ̃ for player I in Gκ
`

λ pκq as follows. Firstly let σ̃pHq :“ HullHκ` pK|κ Y σpHqq.
Assuming now that xM̃α, µ̃α | α ă γy is a partial play of Gκ

`

λ pκq which is consistent with σ̃, we have two
cases. If µ̃α P K for every α ă γ then let xMα | α ă γy be the corresponding models played in Gκ

`

λ pκq
K
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from which the M̃α’s are derived and let

σ̃pxM̃α, µ̃α | α ă γyq :“ HullHκ` pK|κY σpxMα, µ̃α | α ă γyqq,

and otherwise let σ̃ play arbitrarily. As κ is λ-Ramsey (in V ) there exists a play xM̃α, µ̃α | α ď λy of Gκ
`

λ pκq

which is consistent with σ̃ in which player II won. Note that M̃λXK|κ
` ă K|κ` so let N be the transitive

collapse of M̃λ XK|κ`. But if j : N Ñ K|κ` is the uncollapse then crit j is both an N -cardinal and also
ą κ because we ensured that K|κ Ď N . This means that j “ id because κ is the largest N -cardinal by
elementarity in K|κ`, so that M̃λ XK|κ

` “ N is a transitive elementary substructure of K|κ`, making it
an initial segment of K .

Now, since µ :“ µ̃λ is a countably complete weakly amenable K|opN q-measure13, the “beaver argu-
ment”14 shows that µ P K , so that we can then define a strategy τ for player II in Gκ

`

λ pκq
K as simply playing

µ XN P K whenever player I plays N . Since µ “ µ̃λ we also have that µ XMα “ µ̃α XMα, so that σ
will eventually play N , making τ win against σ.15 �

Note that the only thing we used cof λ ą ω for in the above proof was to ensure that µ was countably
complete. If now κ instead was either genuine- or normal α-Ramsey for any limit ordinal α then µα would
also be countably complete and weakly amenable, so the same proof shows the following.

Corollary 5.5 (N.-W.). Assume 0¶ does not exist and let α be any limit ordinal. Then every genuine- and
every normal α-Ramsey cardinal is downwards absolute toK . In particular, if α is a limit of limit ordinals
then every ăα-Ramsey cardinal is downwards absolute to K as well. %

Indiscernible games

We now move to the strategic versions of the α-Ramsey hierarchy. The first thing we want to do is define
α-very Ramsey cardinals, introduced in Sharpe and Welch (2011), and show the tight connection between
these and the strategic α-Ramseys. We need a few more definitions. Recall the definition of a remarkable set
of indiscernibles from Definition 4.15.

Definition 5.6. A good set of indiscernibles for a structure M is a set I ĎM of remarkable indiscernibles
for M such that M |ι ă M for any ι P I . %

Definition 5.7 (Sharpe-W.). Define the indiscernible game GIγpκq in γ many rounds as follows

I M0 M1 M2 ¨ ¨ ¨

II I0 I1 I2 ¨ ¨ ¨

13Here we use that N CK .
14See Lemmata 7.3.7–7.3.9 and 8.3.4 in Zeman (2002) for this argument.
15Note that τ is not necessarily a winning strategy — all we know is that it is winning against this particular strategy σ.
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Here Mα is an amenable structure of the form pJκrAs, P, Aq for some A Ď κ, Iα P rκsκ is a good set of
indiscernibles for Mα and the Iα’s are Ď-decreasing. Player II wins iff they can continue playing through all
the rounds. %

Definition 5.8 (Sharpe-W.). A cardinal κ is γ-very Ramsey if player II has a winning strategy in the game
GIγpκq. %

The next couple of results concerns the connection between the strategic α-Ramseys and the α-very Ramseys.
We start with the following.

Theorem 5.9 (N.). Every pω`1q-Ramsey is an ω-very Ramsey stationary limit of ω-very Ramseys.

Proof. Let κ be pω`1q-Ramsey. We will describe a winning strategy for player II in the indiscernible game
GIωpκq. If player I plays M0 “ pJκrA0s, P, A0q in GIωpκq then let player I in Gκ

`

ω`1pκq play

H0 :“ HullHκ` pJκrA0s Y tM0, κ, A0uq ă Hκ` .

Let player I now follow a strategy in Gκ
`

ω`1pκq which starts off with H0 and ensures that, whenever ~Mα ˚ ~µα

is consistent with player I’s strategy, then µα PMα`1 for all α ď ω. Since player II is not losing in Gκ
`

ω`1pκq

there is a play ~Mα ˚~µα in which player I follows this strategy just described and where player II wins – write
Hpαq0 :“Mα and µpαq0 :“ µα for the models and measures in this play.

I Hp0q0 ¨ ¨ ¨ Hpωq0 Hpω`1q
0

II µ
p0q
0 ¨ ¨ ¨ µ

pωq
0 µ

pω`1q
0

By the choice of player I’s strategy we get that µpωq0 is both weakly amenable, and it’s also countably complete
by the rules of Gκ

`

ω`1pκq (it’s even normal). Now Lemma 2.9 of Sharpe and Welch (2011) gives us a set of
good indiscernibles I0 P µpωq0 for M0, as M0 P Hpωq0 and µpωq0 is a countably complete weakly amenable
Hpωq0 -normal Hpωq0 -measure on κ. Let player II play I0 in GIωpκq. Let now M1 “ pJκrA1s, P, A1q be the
next play by player I in GIωpκq.

I M0 M1

II I0

Since µpωq0 “
Ť

n µ
pnq
0 we must have that I0 P µpn0q

0 for some n0 ă ω. In the pn0`1q’st round of Gκ
`

ω`1pκq

we change player I’s strategy and let player I play

H1 :“ HullHκ` pJκrA0s Y tM0,M1, κ, A0, A1, xHpkq0 , µ
pkq
0 | k ď n0yuq ă Hκ`

and otherwise continues following some strategy, as long as the measures played by player II keep being
elements of the following models. Our play of the game Gκ

`

ω`1pκq thus looks like the following so far.
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I Hp0q0 ¨ ¨ ¨ Hpn0q

0 H1

II µ
p0q
0 ¨ ¨ ¨ µ

pn0q

0

Now player II in Gκ
`

ω`1pκq is not losing at round n0, so there is a play extending the above in which player
I follows their revised strategy and in which player II wins. As before we get a set I 11 P µ

pn1q

1 of good
indiscernibles for M1, where n1 ă ω. Since I0 P µ

pn0q

0 Ď µ
pn1q

1 we can let player II in GIωpκq play
I1 :“ I0 X I 11 P µ

pn1q

1 . Continuing like this, player II can keep playing throughout all ω rounds of GIωpκq,
making κ ω-very Ramsey.

As for showing that κ is a stationary limit of ω-very Ramseys, let M ă Hκ` be a weak κ-model with
a weakly amenable countably complete M-normal M-measure µ on κ, which exists by Theorem 4.19 as κ
is pω`1q-Ramsey. Then by elementarity M |ù xκ is ω-very Ramseyy and since κ being ω-very Ramsey is
absolute between structures having the same subsets of κ it also holds in the µ-ultrapower, meaning that κ is
a stationary limit of ω-very Ramseys by elementarity. �

The above proof technique can be generalised to the following.

Theorem 5.10 (N.). For limit ordinals α, every coherent ăωα-Ramsey is ωα-very Ramsey.

Proof. This is basically the same proof as the proof of Theorem 5.9. We do the “going-back” trick in
ω-chunks, and at limit stages we continue our non-losing strategy in Gκ

`

ωαpκq by using our winning strategy,
which we have available as we are assuming coherent ăωα-Ramseyness. We need α to be a limit ordinal for
this to work, as otherwise we would be in trouble in the last ω-chunk, as we cannot just extend the play to
get a countably complete measure, which we need to use the proof of Theorem 5.9. �

As for going from the α-very Ramseys to the strategic α-Ramseys we got the following.

Theorem 5.11 (N.). For γ any ordinal, every coherent ăγ-very Ramsey16 is coherent ăγ-Ramsey.17

Proof. The reason why we work with ăγ-Ramseys here is to ensure that player II only has to satisfy a
closed game condition (i.e. to continue playing throughout all the rounds). If γ “ β ` 1 then set ζ :“ β and
otherwise let ζ :“ γ. Let κ be ζ-very Ramsey and let τ be a winning strategy for player II in GIζpκq. Let
Mα ă Hθ be any move by player I in the α’th round of Gζpκq. Let Aα Ď κ encode all subsets of κ in Mα

16Here the coherency again just means that the winning strategies σα for player II in GIαpκq are Ď-increasing.
17Here a “coherent ăγ-very Ramsey cardinal” is defined from γ-very Ramseys in the same way as coherent ăγ-Ramsey

cardinals is defined from γ-Ramseys. When γ is a limit ordinal then coherent ăγ-very Ramseys are precisely the same as
γ-very Ramseys, so this is solely to “subtract one” when γ is a successor ordinal — i.e. a coherent ăpγ ` 1q-very Ramsey
cardinal is the same thing as a γ-very Ramsey cardinal.
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and form now

Nα :“ pJκrAαs, P, Aαq,

which is a legal move for player I in GIζpκq, yielding a good set of indiscernibles Iα P rκsκ for Nα such
that Iα Ď Iβ for every β ă α. Now by section 2.3 in Sharpe and Welch (2011) we get a structure Pα with
Nα P Pα and a Pα-measure µ̃α on κ, generated by Iα.18 Set µα :“ µ̃α XMα and let player II play µα in
Gζpκq.

As the µα’s are generated by the Iα’s, the µα’s are Ď-increasing. We have thus created a strategy for
player II in Gζpκq which does not lose at any round α ă γ, making κ coherent ăγ-Ramsey. �

The following result is then a direct corollary of Theorems 5.10 and 5.11.

Corollary 5.12 (N.). For limit ordinals α, κ is ωα-very Ramsey iff it is coherentăωα-Ramsey. In particular,
κ is λ-very Ramsey iff it is strategic λ-Ramsey for any λ with uncountable cofinality. %

We can now use this equivalence to transfer results from the α-very Ramseys over to the strategic versions.
The completely Ramsey cardinals are the cardinals topping the hierarchy defined in Feng (1990). A completely
Ramsey cardinal implies the consistency of a Ramsey cardinal, see e.g. Theorem 3.51 in Sharpe and Welch
(2011). We are going to use the following characterisation of the completely Ramsey cardinals, which is Lemma
3.49 in Sharpe and Welch (2011).

Theorem 5.13 (Sharpe-W.). A cardinal is completely Ramsey if and only if it is ω-very Ramsey. %

This, together with Theorem 5.9, immediately yields the following strengthening of Theorem 4.19.

Corollary 5.14 (N.). Every pω`1q-Ramsey cardinal is a completely Ramsey stationary limit of completely
Ramsey cardinals. %

The above Theorem 5.11 also yields the following consequence.

Corollary 5.15 (N.). Every completely Ramsey cardinal is completely ineffable.

Proof. From Theorem 5.13 we have that being completely Ramsey is equivalent to being ω-very Ramsey,
so the above Theorem 5.11 then yields that a completely Ramsey cardinal is coherent ăω-Ramsey, which we
saw in Theorem 3.12 is equivalent to being completely ineffable. �

Now, moving to the uncountable case, Corollary 5.12 yields that strategic ω1-Ramsey cardinals are ω1-very
Ramsey, and Theorem 3.50 in Sharpe and Welch (2011) states that ω1-very Ramseys are measurable in the
18By generated here we mean that X P µ̃α iff X contains a tail of indiscernibles from Iα.
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core model K , assuming 0¶ doesn’t exist, which then shows the following theorem. We also include the
original direct proof of that theorem, due to Welch.

Theorem 5.16 (W.). Assuming 0¶ doesn’t exist, every strategic ω1-Ramsey cardinal is measurable in K .

Proof. Let κ be strategic ω1-Ramsey, say τ is the winning strategy for player II in Gω1
pκq. Jump to V rgs,

where g Ď Colpω1, κ
`q is V -generic. Since Colpω1, κ

`q is ω-closed, V and V rgs have the same countable
sequences of V , so τ is still a strategy for player II in Gω1pκq

V rgs, as long as player I only plays elements of
V .

Now let xκα | α ă ω1y be an increasing sequence of regular K-cardinals cofinal in κ`, let player I in
Gω1

pκq play Mα :“ HullHθ pK|καq ă Hθ and player II follow τ . This results in a countably complete
weakly amenable K-measure µω1

, which the “beaver argument”19 then shows is actually an element of K ,
making κ measurable in K . �

A natural question is whether this behaviour persists when going to larger core models. It turns out that the
answer is affirmative: every strategic ω1-Ramsey cardinal is also measurable in Steel’s core model below a
Woodin, a result due to Schindler which we include with his permission here. We will need the following
special case of Corollary 3.1 from Schindler (2006).20

Theorem 5.17 (Schindler). Assume that there exists no inner model with a Woodin cardinal, let µ be a
measure on a cardinal κ, and let π : V Ñ UltpV, µq – N be the ultrapower embedding. Assume that N
is closed under countable sequences. Write KN for the core model constructed inside N . Then KN is a
normal iterate of K , i.e. there is a normal iteration tree T on K of successor length such that MT

8 “ KN .
Moreover, we have that πT

08 “ π æK . %

Theorem 5.18 (Schindler). Assuming there exists no inner model with a Woodin cardinal, every strategic
ω1-Ramsey cardinal is measurable in K .

Proof. Fix a large regular θ " 2κ. Let κ be strategic ω1-Ramsey and fix a winning strategy σ for player II
in Gω1pκq. Let g Ď Colpω1, 2

κq be V -generic and in V rgs fix an elementary chain xMα | α ă ω1y of weak
κ-modelsMα ă HV

θ such thatMα P V , ωMα ĎMα`1 and HV
κ` ĎMω1 :“

Ť

αăω1
Mα.

Note that V and V rgs have the same countable sequences since Colpω1, 2
κq is ăω1-closed, so we can

apply σ to the Mα’s, resulting in an Mω1
-measure µ on κ. Let j : Mω1

Ñ UltpMω1
, µq be the ultrapower

embedding. Since we required that ωMα Ď Mα`1 we get that Mω1
is closed under ω-sequences in V rgs,

making µ countably complete in V rgs. As we also ensured that HV
κ` ĎMω1 we can lift j to an ultrapower

embedding π : V Ñ UltpV, µq – N with N transitive.
Since V is closed under ω-sequences in V rgs we get by standard arguments that N is as well, which

means that Theorem 5.17 applies, meaning that π æK : K Ñ KN is an iteration map with critical point κ,
19See Lemmata 7.3.7–7.3.9 and 8.3.4 in Zeman (2002) for this argument.
20That paper assumes the existence of a measurable as well, but by Jensen and Steel (2013) we can omit that here.
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making κ measurable in K . �

6 Questions and answers

In this section we give an update on previously posed open questions in the area, as well as posing further
open questions. We provide answers for the following questions, which were posed in Holy and Schlicht
(2018).
(i) If γ is an uncountable cardinal and the challenger does not have a winning strategy in the game Gθγpκq,

does it follow that the judge has one?
(ii) If ω ď α ď κ, are α-Ramsey cardinals downwards absolute to the Dodd-Jensen core model?
(iii) Does 2-iterability imply ω-Ramseyness, or conversely?
(iv) Does κ having the strategic κ-filter property have the consistency strength of a measurable cardinal?

Here the “challenger” is player I and the “judge” is player II, so this is asking if every γ-Ramsey is strategic
γ-Ramsey, when γ is an uncountable cardinal. Theorem 5.16 therefore gives a negative answer to (i) for all
uncountable ordinals γ. Theorem 5.4 and Corollary 5.5 answer (ii) positively, for α-Ramseys with α having
uncountable cofinality, and for ăα-Ramseys when α is a limit of limit ordinals. Note that (ii) in the α “ ω

case was answered positively in Holy and Schlicht (2018).
As for (iii), it’s mentioned in Holy and Schlicht (2018) that Gitman has showed that ω-Ramseys are not in

general 2-iterable by showing that 2-iterables have strictly stronger consistency strength than the ω-Ramseys,
which also follows from Theorem 4.9 and Theorem 4.8 in Gitman and Welch (2011). Corollary 3.5 shows
that ω-Ramsey cardinals are ∆2

0-indescribable, and as 2-iterables are (at least) Π1
3-definable it holds that any

2-iterable ω-Ramsey cardinal is a limit of 2-iterables, so that in general 2-iterables can’t be ω-Ramsey either,
answering (iii) in the negative. Lastly, Theorem 4.20 gives a positive answer to (iv).

Question 6.1. It’s not too hard to see that, for a regular uncountable λ, κ is strategic λ-Ramsey iff there’s a
ăλ-closed forcing P such that, in V P, there’s a weakly amenable measure on κwith a wellfounded ultrapower.
Can we get similar characterisations of strategic α-Ramseys for α countable? The proofs of Theorems 4.4 and
4.20 give plausible candidates.

Question 6.2. Are genuine n-Ramsey cardinals limits of n-Ramsey cardinals? We conjecture this to be
true, in analogy with the weakly ineffables being limits of weakly compacts. Since “weakly ineffable = Π1

1-
indescribability + subtlety”, this might involve some notion of “n-iterated subtlety”. The difference here is that
n-Ramseys cannot be equivalent to Π1

2n`1-indescribables for consistency reasons, so there is some work to
be done.

Question 6.3. Fix some γ with countable cofinality and an uncountable κ “ κăκ. For θ ą κ say that κ is
pγ, θq-Ramsey if player I has no winning strategy in Gθγpκq, so that κ is γ-Ramsey iff it’s pγ, θq-Ramsey for
every θ ą κ. Do the pγ, θq-Ramseys then eventually form a strict hierarchy? I.e. is there some θ ą κ such
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that ZFC` xthere exists a pγ, θ1q-Ramsey cardinaly$xthere exists a pγ, θ0q-Ramsey cardinaly holds for every
θ1 ą θ0 ě θ? Or, at the opposite end of the spectrum, do the pγ, θq-Ramseys become eventually equivalent?
I.e. is there a θ ą κ such that κ is pγ, θ0q-Ramsey iff it’s pγ, θ1q-Ramsey, for all θ1, θ0 ě θ?
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7 Diagrams

Consistency implications21

21Here dashed lines represent consistency implications which might be equiconsistencies.

31



Direct implications22

22Here dashed lines represent provable direct implications which might be equivalences.
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