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projective levels
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Abstract

Using a non-Laver modification of Uri Abraham’s minimal ∆1

3
collapse

function, we define a generic extension L[a] by a real a, in which, for a given
n ≥ 3, {a} is a lightface Π1

n singleton, a effectively codes a cofinal map
ω → ωL

1
minimal over L, while every Σ1

n set X ⊆ ω is still constructible.
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1 Introduction

It is well-known that all sets x ⊆ ω of the lightface class Σ1
2 or Π1

2 are Goedel-
constructible. In fact this is an immediate corollary of the Shoenfield absoluteness
theorem. But one gets models with nonconstructible sets which belong to the
analytic hierarchy just above the mentioned threshold. In particular it is consis-
tent with ZFC that there exists a ∆1

3 real and a Π1
2 real singleton, see [10], and

such a real can be of minimal L-degree, [11].
Many more results on definable sets of different kind have been obtained on

the base of forcing methods invented in the abovementioned papers. Most of them
employ versions of the almost disjoint coding method of [10]. A recent article [6]
contains several powerful applications of almost disjoint coding, in particular, to
the construction of models with ∆1

3 well-orderings of the reals, in which the reals
have some very special properties. The paper also contains further references.

Yet the almost disjoint coding technique is pretty useless in the case of models
containing definable generic objects and minimal over the ground model with
respect to this or another property. The first example of such a model was
presented by Jensen [11]. Namely, Jensen’s forcing notion J ∈ L consists of
perfect trees in ω<ω (a subset of the Sacks forcing), and if a real a ∈ ωω is
J -generic over L then 1) it is true in L[a] that {a} is a nonconstructible Π1

2

singleton, and 2) a is minimal over L, in the sense that if b ∈ L[a] ∩ ωω then
either b ∈ L or a ∈ L[b]. (See also 28A in [9] on this forcing.)

Several variations of this forcing are known. In particular, a model in [13] in
which, for a given n ≥ 3 there exists a minimal nonconstructible Π1

n singleton
but all Σ1

n sets x ⊆ ω are constructible, an ω2-long iteration of Jensen’s forcing
in [1], or a recent model in [12] in which there is an equivalence class of the
equivalence relation E0

1 (a E0-class, for brevity), which is a lightface Π1
2 set

in ωω , not containing OD elements, and a related model in [7] containing a Π1
2

Groszek – Laver pair of E0-classes.
The research of this paper was inspired by another minimal-style forcing con-

struction, a generic extension L[a] by Abraham [2] such that 1) {a} is a non-

constructible Π1
2 singleton in L[a], 2) ω

L[a]
1 = ωL

2 (so a codes a collapse of ωL
1 ),

and 3) a is a minimal collapse over L, in the sense that if b ∈ L[a], b : ω → ωL
1 ,

and b is cofinal in ωL
1 , then a ∈ L[b]. Abraham’s forcing in [2] consists of Laver-

style trees in ω1
<ω , and its complicated construction in L, while having a certain

semblance of Jensen’s method in [11], involves some crucial novel ideas.
Our main result extends this research line. The next theorem asserts the

existence of a model of ZFC, in which, for a given n ≥ 2, there is a Π1
n real

singleton which codes the collapse of ωL
1 in minimal way, and in the same time

reals in Σ1
n do not code the collapse. The abovementioned result of [2] corresponds

to the case n = 2 in this theorem, of course. We use the blackboard n to
distinguish the fixed number n in the theorem from other numbers n in the text.

1
E0 is defined on the Baire space ωω so that x E0 y iff the set {n : x(n) 6= y(n)} is finite.
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Theorem 1.1. Let n ≥ 2. There is a generic extension L[a] of L, by a real

a ∈ ωω , such that the following is true in L[a] : (i) ω
L[a]
1 = ωL

2 ;

(ii) (minimality) if b ∈ L[a], b : ω → ωL
1 , b is cofinal in ωL

1 , then a ∈ L[b] ;

(iii) the singleton {a} is a (lightface) Π1
n set;

(iv) (vacuous for n = 2) every Σ1
n set x ⊆ ω belongs to L.

2 Structure of the proof

The proof of Theorem 1.1 is organized as follows. Basic notions, related to ω1-
branching trees in ω1

<ω (wide trees), are introduced in Section 3. Unlike [2],
we’ll not focus on Laver-style trees, which makes basic constructions somewhat
simpler. Every set P of wide trees T , closed under restrictions, is considered
as a forcing by wide trees, a WT-forcing in brief, Section 4. Every WT-forcing
adjoins a P-generic “real” a ∈ ω1

ω.
Section 6 presents a non-Laver modification of Abraham’s method in [2, 2.14],

designed to define uncountable decreasing sequences of wide trees. Basically, any
collection F of wide trees, satisfying rather transparent conditions of Defini-
tion 6.1, yields a wide tree wr(F ), so that if F ⊆ F ′ then wr(F ′) ⊆ wr(F ). We
apply the method to prove Theorem 5.3 in sections 7, 8, which allows, given a
wide tree S and a family of continuous functions fα : ω1

ω → ω1
ω , α < ωL

1 , to
define a smaller wide tree T ⊆ S , regular in some sense with respect to each fα .

Another technical device, also having its roots in [2], is introduced in Section 9.
It allows to shrink a given wide tree S to a smaller wide tree T such that any
pre-dense set U ⊆ S in a given family of ℵ1-many such sets meets every infinite
branch in T except for a bounded set of them (Corollary 9.5).

Then, arguing in the constructible universe L, we define a forcing notion to
prove Theorem 1.1 in Section 11 in the form P =

⋃

α<ω2
Pα . The summands Pα

are ℵ1-large WT-forcings defined by induction. Any P-generic extension of L

happens to be a model for Theorem 1.1, which we prove in the remainder.
The inductive construction of Pα involves two key genericity ideas. The first

idea, essentially by Jensen [11], is to make every level Pα of the construction
generic in some sense over the union of lower levels Pξ , ξ < α. This is based on
a construction developed in sections 10, 11, which includes the abovementioned
modification of Abraham’s method. The iterated genericity of the levels Pα

implies that the two sets are equal in any P-generic extension of L:

1) the singleton {a[G]} of the principal generic element a[G] ∈ ω1
ω ,

2) the intersection
⋂

α<ω2

⋃

T∈Pα
.

This equality, eventually leading to (ii) of Theorem 1.1, is established in sections
12, 13, on the base of studies of continuous functions in sections 7, 8.

The second idea goes back to old papers [8], [13]. In L, let WTF be the
set of all countable sequences P = 〈Pξ〉ξ<α (α < ω1), compatible with the

3



first genericity idea at each step ξ < α. Then a whole sequence 〈Pα〉α<ω1
can be

interpreted as a maximal chain in WTF. It happens that if such a chain is generic,
in some sense precisely defined in Section 11, (ii) of Theorem 11.4, with respect to
all Σ1

n−1 subsets of WTF, then the ensuing forcing notion P =
⋃

α<ω1
Pα inherits

some basic forcing properties of the whole forcing by (all) wide trees, up to the
n-th level of projective hierarchy. This includes, in particular, the invariance of
the forcing relation with respect to some natural transformations of wide trees,
leading eventually to the proof of (iv) of Theorem 1.1 in sections 15 – 18.

3 Wide trees

Let ω1
<ω be the set of all strings (finite sequences) of ordinals ξ < ω1 — including

the empty string Λ. If s ∈ ω1
<ω then lh(s) < ω is the length of a string s, and

max s < ω1 is the largest term in s. Let ωn
1 = {s ∈ ω1

<ω : lh(s) = n} (strings of
length n). If t ∈ ω1

<ω and ξ < ω1 , then taξ is the extension of t by ξ as the
rightmost term. If s, t ∈ ω1

<ω then s ⊆ t means that the string t extends s, while
s ⊂ t means a proper extension. A set T ⊆ ω1

<ω is a tree iff s ∈ T =⇒ t ∈ T
whenever s, t ∈ ω1

<ω and t ⊂ s. Then:

− if s ∈ T then succT (s) = {t ∈ T : s ⊂ t ∧ lh(t) = lh(s) + 1}, the set of all
successors of s in T . If succT (s) = ∅ then s is an endnode of T ;

− BN(T ) = {s ∈ T : card (succT (s)) ≥ 2}, all branching nodes of T , and
BNn(T ) = {s ∈ BN(T ) : card ({u ∈ BN(T ) : u ⊂ s}) = n};

− if u ∈ T then define T ↾ u = {t ∈ T : u ⊆ t ∨ t ⊆ u}, a restricted tree;

− if T is not pairwise ⊆-compatible then there is a largest string u ∈ T such
that T ↾ u = T , denoted by u = stem(T ), then {stem(T )} = BN0(T );

− [T ] = {x ∈ ω1
ω : ∀m (x↾m ∈ T )}, a closed set in ω1

ω .

Definition 3.1. A set U ⊆ T is dense in a tree T if ∀ s ∈ T ∃u ∈ U (s ⊆ u),
open dense, if in addition s ∈ U holds whenever s ∈ T , u ∈ U , u ⊆ s, and
pre-dense, if the set U ′ = {s ∈ T : ∃u ∈ U(u ⊆ s)} is dense.

Definition 3.2. A tree ∅ 6= T ⊆ ω1
<ω is a wide tree, in symbol T ∈ WT, if any

s ∈ T can be extended to a branching node t ∈ BN(T ), s ⊆ t, and if t ∈ BN(T )
then card (succT (s)) = ℵ1 — i.e., all branching nodes are ω1-branching.

A bigger set WT′ consists of all trees ∅ 6= T ⊆ ω1
<ω such that each subtree

of the form T ↾ s , s ∈ T , is uncountable. Clearly WT $ WT′ , but WT is still
dense in WT′ , so that every tree T ∈ WT′ contains a subtree S ∈ WT, S ⊆ T .

Generally, WT and WT′ belong to the category of uncountably-splitting ver-
sions of the perfect set forcing. Similar forcing notions of this kind, as well as
their Laver-style versions (which require every node above the stem to be a wide-
splitting node), have been thoroughfully studied in set theoretic papers, see e.g.

Namba [14], Bukovsky [4], Abraham [2], Jech [9, Chap. 28], to mention a few.
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Lemma 3.3. Suppose that T ∈ WT. If s ∈ T then T ↾ s ∈ WT. If x ∈ X ⊆ [T ],
X is open in [T ], then there is s ∈ T such that s ⊂ x and T ↾ s ⊆ X .

Definition 3.4. We introduce two notions of inclusion between trees which
partially honor the branching structure. If S, T ⊆ ω1

<ω are trees then define:

− S ⊆n T iff BNn(T ) ⊆ S ⊆ T ;

− S ⊆′
n T iff S ⊆ T and BNn−1(S) = BNn−1(T ).

Lemma 3.5. (i) The relations ⊆0 and ⊆′
0 coincide with just ⊆ ;

(ii) S ⊆′
n+1 T =⇒ S ⊆n T =⇒ S ⊆′

n T ;

(iii) if S ⊆n T then ∀u ∈ BNn(T )(there is a unique v ∈ BNn(S) with u ⊆ v) ;

(iv) if S ⊆′
n T then S ⊆n T iff ∀u ∈ BNn−1(T ) (succT (u) = succS(u)).

Lemma 3.6. Let T ∈ WT, n < ω. Assume that if u ∈ BNn(T ) then Tu ∈ WT,
Tu ⊆ T ↾ u. Then the tree S =

⋃

u∈BNn(T ) Tu belongs to WT and satisfies S ⊆n T
and S↾ u = Tu for all u ∈ BNn(T ).

Note that under the conditions of the lemma, if u ∈ BNn(T ) then u ⊆
stem(Tu), and in addition BNn(S) = {stem(Tu) : u ∈ BNn(T )}.

Lemma 3.7. Assume that . . . ⊆4 T4 ⊆3 T3 ⊆2 T2 ⊆1 T1 ⊆0 T0 is an infinite
decreasing sequence of trees in WT. Then the tree T =

⋂

n Tn belongs to WT,
and we have T ⊆n Tn, and hence BNn(T ) = BNn(Tn+1), for all n.

4 Wide tree forcing notions and dense sets

A non-empty set P ⊆ WT is a wide tree forcing , WT-forcing in brief, if we have
T ↾ u ∈ P whenever u ∈ T ∈ P . Thus WT itself is a WT-forcing, and if S ∈ WT
then the set {S↾ t : t ∈ S} is a WT-forcing.

Remark 4.1. Any WT-forcing P can be considered as a forcing notion ordered
so that if T ⊆ T ′ , then T is a stronger condition. The forcing P adjoins a cofinal
element x ∈ ω1

ω . More exactly if a set G ⊆ P is P-generic over a given set
universe V (and P ∈ V is assumed) then the intersection

⋂

T∈G[T ] contains
a unique element a[G] ∈ (ωV

1 )ω , and a[G] satisfies G = {T ∈ P : a[G] ∈ [T ]},
V[G] = V[a[G]], and supa[G] = ωV

1 (cardinality collapse).
Elements a[G] of this kind are called P-generic.

To prove Theorem 1.1 we’ll make use of a certain WT-forcing P ⊆ WT.

Definition 4.2. A set D ⊆ P is dense in P if for any S ∈ P there is a tree
T ∈ D, T ⊆ S , open dense, if in addition S ∈ D holds whenever S ∈ P, T ∈ D,
S ⊆ T , and pre-dense, if the set D′ = {S ∈ P : ∃T ∈ D(S ⊆ T )} is dense.

If T ∈ WT and D ⊆ WT then let D⇑T = {s ∈ T : ∃S ∈ D (T ↾ s ⊆ S)}.

5



Lemma 4.3. Assume that P is a WT-forcing, and Dn ⊆ P is pre-dense in P

for all n. Let S0 ∈ P. Then there is a tree T ∈ WT (not necessarily in P!)
such that T ⊆ S0 and if n < ω then BNn(T ) ⊆ Dn⇑T .

Proof. We wlog assume that each Dn is open dense; otherwise replace it by
D′

n = {S′ ∈ P : ∃S ∈ Dn (S
′ ⊆ S)}. Using Lemma 3.6 and the open density,

define a sequence . . . ⊆4 T4 ⊆3 T3 ⊆2 T2 ⊆1 T1 ⊆0 T0 ⊆ S0 , such that if n < ω
and s ∈ BNn(Tn+1) then Tn+1↾ s ∈ Dn . By Lemma 3.7, the tree T =

⋂

n Tn is as
required: if s ∈ BNn(T ) then s ∈ BNn(Tn+1), so that T ↾ u ⊆ Tn+1↾ u ∈ Dn .

There is no way to directly extend Lemma 4.3 to the case of ω1-sequences of
dense sets. But a somewhat weaker result of Lemma 9.4 will be possible.

5 Bounded sets and continuous maps

It is known from descriptive set theory that if a continuous map f : P → ωω is
defined on a perfct set P ⊆ ωω then f is a bijection or a constant on a suitable
perfect subset P ′ ⊆ P . A similar but somewhat more complicated dichotomy
holds for wide trees. Say that a set X ⊆ ω1

ω is bounded , if there is an ordinal
β < ω1 such that X ⊆ βω . Note that if T ∈ WT then the set [T ] is unbounded.

Lemma 5.1. Let S ∈ WT and f : [S] → ω1
ω be continuous. There is a tree

T ⊆ S , T ∈ WT, such that either f ”[T ] is bounded or f ↾ [T ] is a bijection.

Proof. Suppose that for no T ∈ WT, T ⊆ S , f ↾ [T ] is bounded. Then, as
the set BN1(S) is uncountable, by a simple cardinality argument there exist: an
uncountable set U ⊆ BN1(S), a number k, and for each t ∈ U — an ordinal
ξt < ω1 and a tree Ut ∈ WT satisfying Ut ⊆ S↾ t , f(x)(k) = ξt for all x ∈ [Ut]
(same k for all t ∈ U !), and if t 6= t′ belong to U then ξt 6= ξt′ .

Then the tree S1 =
⋃

t∈U Ut belongs to WT and satisfies S1 ⊆
′
1 S . In addition,

there is a number k = k1 such that if u 6= u′ belong to BN1(S1) and x, x
′ ∈ [S1],

u ⊂ x, u′ ⊂ x′ , then f(x)(k1) 6= f(x′)(k1).
Similarly, there is a tree S2 ∈ WT, S2 ⊆′

2 S1 , and a number k2 , such
that if u 6= u′ belong to BN2(S2) and x, x′ ∈ [S1], u ⊂ x, u′ ⊂ x′ , then
〈f(x)(k1), f(x)(k2)〉 6= 〈f(x′)(k1), f(x

′)(k2)〉.
Iterating this construction appropriately by induction, we get a required tree

T =
⋂

n Sn ∈ WT by Lemma 3.6.

The next theorem presents a dichotomy somewhat different than the one
considered by Lemma 5.1, and related to the case of ℵ1-many maps.

Definition 5.2. If f : ω1
ω → ω1

ω is a continuous map, and U, V ∈ WT, then
H(U, f, V ) is the set of all strings s ∈ U such that (1) [V ]∩ (f ”[U ↾ s]) is bounded
or (2) f ↾ [U ↾ s] is a total identity , that is, f(x) = x for all x ∈ [U ↾ s].

Note that (1) and (2) are incompatible provided U ⊆ V .
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Theorem 5.3 (the proof ends in Section 8). Assume that S ∈ WT and, for each
α < ω1, fα : ω1

ω → ω1
ω is a continuous function. Then there is a tree T ∈ WT,

T ⊆1 S , such that, for any α < ω1, the set H(T, fα, T ) is dense in T .

6 Iteration of wide trees

Here we develop another method of construction of trees in WT, similar to a
construction introduced in [2, 2.14], and designed for the proof of Theorem 5.3.

Definition 6.1. A function J is an iteration (of wide trees), in symbol J ∈ IWT,
if its core C = dom J is a subtree of ω1

<ω (possibly with endnodes and/or isolated
branches), all values J(u) are trees in WT, and in addition

(1) if u ⊆ v belong to C then v ∈ J(u) and J(v) ⊆ J(u)↾ v ;

(2) if u ⊂ v belong to C , lh(v) = lh(u) + 1, and u /∈ BN(J(u)) then J(v) =
J(u).

In this case we define the wrap of J ,

(3) wr(J) = {s ∈ ω1
<ω : ∀u ∈ domJ (u ⊂ s =⇒ s ∈ J(u)}.

If P ⊆ WT then IWT(P) consists of all iterations J ∈ IWT with ran J ⊆ P.
An iteration J ∈ IWT is small if the core C = domJ is at most countable.

In particular ∅ ∈ IWT and wr(∅) = ω1
<ω .

If C ⊆ ω1
<ω is a tree and s ∈ ω1

<ω then let projC(s) (the projection) be the
largest string in C with u ⊆ s; projC(s) = s provided s ∈ C .

Lemma 6.2. If J ∈ IWT then T = wr(J) ∈ WT, C = domJ ⊆ T , and

(i) if s ∈ C then s ⊆ stem(J(s)), T ↾ s ⊆ J(s), and succT (s) = succJ(s)(s) ;

(ii) if s ∈ T r C and u = projC(s) then s ∈ J(u) and T ↾ s = J(u)↾ s ;

(iii) if s ∈ C is an endnode in C then we have T ↾ s = J(s).

Proof. If u ∈ C then u ∈ T by 6.1(1), so we have C ⊆ T .
(i) If s ∈ C then J(s) = J(s)↾ s by 6.1(1) with u = v = s, so that obviously

s ⊆ stem(J(s)). If now t ∈ T and s ⊆ t then t ∈ J(s) by 6.1(3), therefore
T ↾ s ⊆ J(s). This implies succT (s) ⊆ succJ(s)(s). To get the equality, let t =

saξ ∈ succJ(s)(s). Then t ∈ T by 6.1(1),(3), so t ∈ succT (s), as required.
(ii) If s /∈ C then by 6.1(1)(3) the criterion of s ∈ T = wr(J) is just s ∈ J(u),

where u = projC(s). This easily implies the result. And (iii) is similar to (ii).
To prove T ∈ WT, let s ∈ T . We have to prove that (a) if s ∈ BN(T ) then

succT (s) is uncountable, and (b) there is a string s′ ∈ BN(T ) with s ⊆ s′ . By
(i), (ii) we have (a) immediately, so it remains to check (b).

Case 1: s ∈ T r C . Then T ↾ s = J(u)↾ s by (ii), where u = projC(s). But
J(u)↾ s ∈ WT by Lemma 3.3, which easily implies (b).

7



Case 2: s is an endnode in C , so T ↾ s = J(s) ∈ WT by (iii), follow Case 1.

Case 3: there is an endnode s′ in C with s ⊆ s′ — apply Case 2 for s′ .

Case 4: if all the above fails then there is an infinite branch in C containing
s, that is, b ∈ ω1

ω such that b↾n ∈ C , ∀n, and s = b↾n0 , where n0 = lh(s).
Then b↾n ∈ J(s) for all n by (i). Therefore, as J(s) ∈ WT, there is a least
number k ≥ n0 with t = b↾k ∈ BN(J(s)). Then by the way J(t) = J(s) by
6.1(2), hence t ∈ BN(J(t)), and finally t ∈ BN(T ) by (i), as required.

The lemma allows to maintain infinite, even uncountable ⊆-decreasing se-
quences of trees in WT, with the help of the following two rather obvious results.

Lemma 6.3. If J ⊆ J ′ are iterations in IWT then wr(J ′) ⊆ wr(J).
If 〈Jξ〉ξ<λ is a ⊂-increasing sequence of iterations Jξ ∈ IWT then J =

⋃

ξ<λ Jξ ∈ IWT and wr(J) =
⋂

ξ wr(Jξ).

Lemma 6.4. Let J ∈ IWT, domJ = C ⊆ C ′ ⊆ T = wr(J), C ′ be a tree.

• Define a natural extension J ′ of J to C ′ by domJ ′ = C ′ , J ′(s) = J(s) for
s ∈ C , and if s ∈ C ′ r C and u = projC(s) then J ′(s) = J(u)↾ s .

Then J ′ ∈ IWT, J ⊆ J ′, wr(J ′) = wr(J).

Condition (2) of Definition 6.1 imposes important restrictions on the con-
struction of iterations, basically justifying proper shrink only at successors of
branching nodes. Nevertheless it leaves us enough freedom.

Lemma 6.5. Assume that P is a WT-forcing, J ∈ IWT(P), C = domJ ,
s ∈ T = wr(J), and s /∈ C or s is an endnode in C . Let U ∈ P, U ⊆ T ↾ s .
Then there exists an iteration J ′ ∈ IWT(P) and a string s′ ∈ dom J ′ such that
J ⊆ J ′, s ⊆ s′, and J ′(s′) ⊆ U .

Proof. Let t = stem(U), thus s ⊆ t ∈ BN(U) and all shorter strings v ⊂ t do
not belong to BN(U). Pick any s′ ∈ U with lh(s′) = lh(t) + 1; then t ⊂ s′ /∈ C .
Let u = projC(s). Let J ′ ∈ IWT(P) be the extension of J to the domain
C ′ = C ∪ {v : u ⊂ v ⊆ t} ∪ {s′} by J ′(u) = J(s) = J(s)↾ u whenever s ⊂ u ⊆ t,
and finally J ′(s′) = U ↾ s′ . To see that 6.1(2) is satisfied for J ′ at u = t and
v = s′ , recall that t ∈ BN(U), hence t ∈ BN(J(s)) = BN(J(t)) as well.

7 Key dichotomy lemma

Lemma 7.1. Assume that P ⊆ WT is a WT-forcing, J ∈ IWT(P) is a small
iteration, S = wr(J), g0 ∈ C = domJ , and f : ω1

ω → ω1
ω is continuous. There

is a small iteration J ′ ∈ IWT(P) and a string g ∈ C ′ = domJ ′, such that g0 ⊆ g,
J ⊆ J ′, and g ∈ H(T, f, T ), where T = wr(J ′), i.e.,

(1) [T ] ∩ (f ”[T ↾ g]) is bounded, or (2) f is a total identity on [T ↾ g].
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The lemma will be crucial in the proof of Theorem 5.3 in Section 8.

Proof. Pick any g1 ∈ SrC satisfying g0 ⊆ g1 . Let u = projC(g1). If f ”[S↾ g1 ] ⊆
[C] (a bounded set) then let J1 ∈ IWT(P) be the natural extension of J to the
domain C1 = C ∪ {s : u ⊂ s ⊆ g1} by Lemma 6.4. Thus J ⊆ J1 , domJ1 = C1 ,
J1(g1) = J(u)↾ g1 , and wr(J1) = S . Therefore J ′ = J1 and g = g1 satisfy (1).

Thus suppose that x1 ∈ [S↾ g1 ], and y1 = f(x1) ∈ [S]r[C]. As f is continuous
while ω1

ω r [C] open, there is a longer string g2 ∈ S r C , g1 ⊂ g2 , such that
f(x) /∈ [C] for all x ∈ S↾ g2 . If f is a total identity on [T ↾ g2 ] then let J2 ∈
IWT(P) be the natural extension of J to the domain C2 = C ∪ {s : u ⊂ s ⊆ g2}
by Lemma 6.4; now J ′ = J2 and g = g2 satisfy (2).

Thus suppose that x2 ∈ [S↾ g2 ], and y2 = f(x2) 6= x2 . There is a yet longer
string g3 ∈ S r C , g2 ⊂ g3 , such that f(x) 6= x and f(x) /∈ [C] for all x ∈ S↾ g3 .
If (f ”[S↾ g3 ]) ∩ [S] = ∅ then let J3 ∈ IWT(P) be the natural extension of J to
the domain C3 = C ∪ {s : u ⊂ s ⊆ g3}; now J ′ = J3 , g = g3 satisfy (1).

Thus suppose that x3 ∈ S↾ g3 and y3 = f(g3) ∈ [S]. In addition, x3 6= y3 /∈
[C] holds as g2 ⊆ g3 , hence there is m ≥ lh(g3) such that t = y3↾m ∈ BN(S)rC
and t 6= s = x3↾m. Let t′ = y3↾ (m+ 1) (a successor of t in S). There is a string
h ∈ S such that t′ ⊂ h but h 6= t′′ = y3↾ℓ, where ℓ = lh(h). As f is continuous,
pick a number n ≥ n3 = lh(g3) such that t′′ ⊂ f(x) holds for all x ∈ [S↾ g],
where g = x3↾n. Recall that u = projC(g). Let v = projC(t),

C ′ = C ∪ {w ∈ ω1
<ω : u ⊂ w ⊆ g} ∪ {w ∈ ω1

<ω : v ⊂ w ⊆ t′} ,

and extend the iteration J to the domain C ′ by J ′(w) = J(u)↾w whenever
u ⊂ w ⊆ g, J ′(w) = J(v)↾w whenever v ⊂ w ⊂ t, and J ′(t′) = J(v)↾ h .

Now it suffices to prove (1) in the form [T ]∩ (f ”[T ↾ g]) = ∅. Let g ⊂ x ∈ [S].
Then y = f(x) satisfies t′′ ⊂ y, hence h 6⊂ y. Let’s show that y /∈ [T ]. It suffices
to check t′′ /∈ T . Suppose otherwise. Then, as t′ ∈ C ′, we have t′′ ∈ J ′(t′) by
6.1(3). However J ′(t′) = J(v)↾ h , so it follows that t′′ and h are compatible,
which contradicts to the construction, as required.

8 The proof of the restriction theorem

Here we accomplish the proof of Theorem 5.3 on the base of the results above.
We argue in the assumptions of Theorem 5.3.

The set P = {S↾ t : t ∈ S} is a WT-forcing and S ∈ P.
By Lemmas 7.1 and 6.3, 6.4, there is a ⊆-increasing sequence of small itera-

tions Jγ ∈ IWT(P), γ < ω1 , with domains Cγ = dom Jγ and trees Sγ = wr(Jγ),
such that C0 = {u : u ⊆ σ}, where σ = stem(S), and J0(u) = S for all u ∈ C0 ,
the sets C =

⋃

γ<ω1
Cγ and T =

⋂

γ<ω1
Tγ coincide (Lemma 6.4 is responsible),

and in addition (Lemma 7.1 is responsible), if s0 ∈ C = T and α < ω1 then
there is an index γ = γ(s0, α) < ω1 and a string s ∈ Cγ such that s0 ⊆ s and
s ∈ H(Tγ , fα, Tγ). Then J =

⋃

α Jα ∈ IWT(P), C = dom J , and T = wr(J), by
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Lemma 6.3. Moreover, as T ⊆ Tγ , we have s ∈ H(T, fα, T ) as well. It follows
that the set H(T, fα, T ) is dense in T , and obviously open dense. And finally we
have T ⊆1 S by Lemma 6.2(i) with s = σ = stem(S). (Recall that J0(σ) = S .)

� (Theorem 5.3)

9 Belts and covering

Here we introduce the last major tool employed in the definition of the forcing
notion for Theorem 1.1. It is based on the following definition.

Definition 9.1. A set H ⊆ ω1
<ω :

− meets x ∈ ω1
ω iff ∃m (x↾m ∈ H);

− is a belt for a tree T ∈ WT, if it meets every x ∈ [T ];

− weakly covers T , in symbol T ⊆w B , if there is an ordinal β < ω1 such that
H is a belt for each subtree T ↾ s , where s ∈ T and max s ≥ β — in other
words, we require H to meet every x ∈ [T ] with supx ≥ β .

For instance, if n < ω then BNn(T ) is a belt for T ∈ WT.

Lemma 9.2. Let H ⊆ T weakly cover T ∈ WT with a parameter β < ω1. Then

(i) H is pre-dense in T ;

(ii) H weakly covers any tree S ∈ WT, S ⊆ T , with the same β ;

(iii) the set X = {x ∈ [T ] :H does not meet x} satisfies X ⊆ βω .

Proof. (iii) Let x ∈ [T ]r βω , x(j) ≥ β for some j . Let s = x↾ (j + 1). Then H
is a belt for T ↾ s , hence H meets x.

Remark 9.3. Being a belt is equivalent to the wellfoundedness of the subtree
T ′ = {s ∈ T : ¬ ∃ t ∈ H (t ⊆ s)}, hence it is an absolute notion. It follows that
to weakly cover with a parameter β is an absolute notion, too.

Now assume that H ⊆ T weakly covers T ∈ WT with a parameter β < ω1 .
Let x ∈ [T ] be an element cofinal in ω1 (=ωV

1 of the given set universe V), which
may exist in an extension of V, Remark 4.1. We claim that H meets x. Indeed,
x /∈ βω by the cofinality, and on the other hand, the absoluteness of the weak
covering allows to apply Lemma 9.2(iii) in the extension containing x.

Lemma 9.4. Assume that P is a WT-forcing, T ∈ P, and Dξ ⊆ P is open
dense in P for all ξ < ω1. Then there is a tree S ∈ WT such that S ⊆1 T , and
each set Dξ⇑S = {t ∈ S : ∃U ∈ Dξ (S↾ t ⊆ U)} weakly covers S .

Proof. If α < ω1 then fix an enumeration of the countable set {Dξ : ξ ≤ α} =
{Dα

k : k < ω}. Using Lemma 3.6 and the open-density of each Dξ in P, define a
sequence . . . ⊆5 T4 ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 = T of trees in WT, such that if
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n ≥ 1 and u ∈ BNn(Tn) then Tn↾ u ∈
⋂

j,k≤nD
u(j)
k . The tree S =

⋂

n Tn belongs
to WT and satisfies S ⊆n+1 Tn and BNn(S) = BNn(Tn) for all n, by Lemma 3.7.
In particular S ⊆1 T . Now suppose that ξ < ω1.

We claim that ξ itself witnesses Dξ⇑S to weakly cover S . Let x ∈ [S] and
x(j) = α ≥ ξ for some j . Then Dξ = Dα

k for some k. Let n = 1 + max{j, k}.
There is a number m ≥ n such that u = x↾m belongs to BNn(S) = BNn(Tn).

Then S↾ u ⊆ Tn↾ u ∈ D
u(j)
k = Dα

k = Dξ by construction, and we are done.

Corollary 9.5. If T ∈ WT and Hξ ⊆ T is open dense in T for all ξ < ω1 then
there is S ∈ WT such that S ⊆1 T and each Hξ ∩ S weakly covers S.

Proof. Apply the lemma for P = {T ↾ s : s ∈ T } and Dξ = {T ↾ s : s ∈ Hξ}.

10 Extensions of wide tree forcing notions

The forcing notion to prove Theorem 1.1 will be defined in the form of an ω1-
union of its parts — WT-forcings of cardinality ≤ ℵ1 .

Definition 10.1. Let M be any set and P be a WT-forcing. Another WT-
forcing Q is an M-extension of P, in symbol P ❁M Q, if the following holds:

(A) Q is dense in Q ∪P;

(B) Q refines P: if Q ∈ Q then there exists T ∈ P satisfying Q ⊆ T ;

(C) if a set D ∈ M, D ⊆ P is pre-dense in P and U ∈ Q then the set
D⇑U = {s ∈ U : ∃S ∈ D (U ↾ s ⊆ S)} weakly covers U ;

(D) if T0 ∈ P and 〈Dn〉n<ω ∈ M is a sequence of pre-dense sets Dn ⊆ P then
there is a tree T ∈ Q such that T ⊆ T0 , and BNn(T ) ⊆ Dn⇑T for all n;

(E) if T0 ∈ P and f : ω1
ω → ω1

ω , f ∈ M, is continuous, then there is T ∈ Q

such that T ⊆ T0 , and either f ”[T ] is bounded or f ↾ [T ] is a bijection;

(F) if f ∈ M, f : ω1
ω → ω1

ω is a continuous map, and U, V ∈ Q, then the
set H(U, f, V ), of all strings s ∈ U such that [V ]∩ (f ”[U ↾ s]) is bounded or
f ↾ [U ↾ s] is a total identity, weakly covers U .

If M = ∅ then we write P ❁ Q instead of P ❁∅ Q; in this case (C) – (F)
are trivial. Generally, in the role of M we’ll consider transitive models of the
theory ZFC′ which includes all ZFC axioms except for the Power Set axiom, but
an axiom is adjoined, which claims the existence of ω1 and P (ω1). (Then the
existence of sets like ω1

<ω and WT easily follows.)

Lemma 10.2. Let P,Q,R be WT-forcings satisfying P ❁ Q ∧Q ❁ R. Then
P ❁ R, and if (K) is one of (C), (D), (E), (F) and the pair P ❁ Q satisfies
(K) with some M, then the pair P ❁ R satisfies (K) with the same M.
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Proof. (C) Let R ∈ R. As Q ❁ R, there is a tree Q ∈ Q with R ⊆ Q. Then
D⇑Q weakly covers Q by (C) for P,Q. Then easily D⇑R weakly covers R.

(D) If T ′ ⊆ T and t ∈ BNn(T
′) then there is a string s ∈ BNn(T ) with s ⊆ s′ .

(F) If U ′ ⊆ U and V ′ ⊆ V then H(U, f, V ) ∩ U ′ ⊆ H(U ′, f, V ′).

Lemma 10.3. Assume that M |= ZFC′ is a transitive model, and P ∈ M and
Q are WT-forcings satisfying P ❁M Q. Then

(i) if a set D ∈ M, D ⊆ P is pre-dense in P then D is pre-dense in P ∪Q ;

(ii) if T, T ′ ∈ P are incompatible in P then T, T ′ are incompatible in P∪Q .

Proof. (i) Let U ∈ Q. Then D⇑U weakly covers U by 10.1(C). Let s ∈ D⇑U .
Then U ′ = U ↾ s ∈ Q, U ′ ⊆ U , and U ′ ⊆ S for some S ∈ D.

(ii) The sets D(T ) = {S ∈ P : S ⊆ T ∨ [S] ∩ [T ] = ∅} and D(T ′) belong
to M and are open dense in P by Lemma 3.3. Therefore D = D(T ) ∩ D(T ′)
is open dense either, and in fact S ∈ D =⇒ [S] ∩ [T ] = ∅ ∨ [S] ∩ [T ′] = ∅ by
the incompatibility. It follows that if U ∈ Q and, by (i), S ∈ D and U ′ ∈ Q,
U ′ ⊆ U , U ′ ⊆ S ∩ U , then [U ′] ∩ [T ] = ∅ or [U ′] ∩ [T ′] = ∅, hence U cannot
witness the compatibility of T, T ′ .

We now establish the existence of extensions.

Theorem 10.4. Assume that M |= ZFC′ is a transitive model of cardinality
≤ℵ1, and P ∈ M is a WT-forcing, cardP ≤ ℵ1 in M. Then there exists a
WT-forcing Q of cardinality ℵ1, satisfying P ❁M Q.

Proof. Step 1. If P ∈ P then by Lemma 9.4 there is a tree T (P ) ∈ WT,
T (P ) ⊆ P , such that D⇑T (P ) weakly covers T (P ) for each D ∈ M, D ⊆ P,
predense in P. The set P′ = {T (P )↾ s : P ∈ P ∧ s ∈ T (P )} is a WT-forcing of
cardinality ℵ1 and 10.1(A),(B),(C) hold for Q = P′ .

Step 2. To fulfill 10.1(E), if P ′ ∈ P′ and f : ω1
ω → ω1

ω , f ∈ M is continuous,
then by Lemma 5.1 there is a tree T (P ′, f) ∈ WT, such that T (P ′, f) ⊆ T ,
and either f ”[T (P ′, f)] is bounded or f ↾ [T (P ′, f)] is a bijection. We let P′′ =
{T (P ′, f)↾ s : P

′ ∈ P′∧s ∈ T (P ′, f)}. Now 10.1(A),(B),(C),(E) hold for Q = P′′ .
Step 3. To fulfill 10.1(D), note first of all that each set D ∈ M, D ⊆ P,

pre-dense in P, remains pre-dense in P∪P′′ by Lemma 10.3(i). If P ′′ ∈ P′′ and
d = 〈Dn〉n<ω ∈ M is a sequence of pre-dense sets Dn ⊆ P, then by Lemma 4.3
there is a tree T (P ′′,d) ∈ WT such that T (P ′′,d) ⊆ P ′′ , and if n < ω and
s ∈ BNn(T (P

′′,d)) then ∃S ∈ Dn (T (P
′′,d)↾ s ⊆ S). We let

P′′′ = {T (P ′′,d)↾ s : P
′′ ∈ P′′ ∧ d ∈ M} .

Now 10.1(A),(B),(C),(D),(E) hold for Q = P′′′ .
To fulfill 10.1(F), we begin with some notation. If S ∈ WT and α < ω1 then

let αaS = {αas : s ∈ S}; then αaS ∈ WT and 〈α〉 ⊆ stem(αaS). Conversely,
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if W ∈ WT and 〈α〉 ⊆ stem(W ) then let W↓ = {s ∈ ω1
<ω : αas ∈ W }; then

W↓ ∈ WT and W = αa(W↓). We have (αaS)↓ = S , of course.
Step 4. Let P′′′ = {Rα : α < ω1}. We convert P′′′ into a single tree

R = {Λ} ∪
⋃

α<ω1
(αaRα) ∈ WT ; then Rα = (R↾ 〈α〉)↓ , ∀α.

If f : ω1
ω → ω1

ω is continuous and α, β < ω1 then define fαβ : ω1
ω → ω1

ω

so that fαβ(α
ax) = βaf(x), fαβ(β

ax) = αaf(x), and fαβ(y) = y whenever
y(0) 6= α, β . The set of continuous functions F = {fαβ : f ∈ M ∧ α, β < ω1} is
still of cardinality ℵ1 . By Theorem 5.3 there exists a tree T ∈ WT, T ⊆1 R,
such that if h ∈ F then the set H(T, h, T ) is open dense in T . Therefore by
Corollary 9.5 there is a tree Q ∈ WT such that Q ⊆1 T (hence Q ⊆1 R as well)
and if h ∈ F then H(T, h, T ) weakly covers Q. Then H(Q,h,Q) weakly covers
Q as well by Lemma 9.2(ii) since H(T, h, T ) ∩Q ⊆ H(Q,h,Q).

Step 5. Note that if α < ω1 then the one-term string 〈α〉 belongs to Q since
Q ⊆1 R. Now let Qα = (Q↾ 〈α〉)↓ = {q ∈ ω1

<ω : αaq ∈ Q}. We claim that the
WT-forcing Q = {Qα↾ q : α < ω1 ∧ q ∈ Qα} satisfies P ❁M Q.

First of all, P ❁ P′
❁ P′′

❁ P′′′
❁ Q by construction, and hence P ❁ Q

holds, and we have 10.1(C),(D),(E) for the pair P ❁ Q by Lemma 10.2.
To check 10.1(F), let f ∈ M, f : ω1

ω → ω1
ω be continuous, and U = Qα ,

V = Qβ be trees in Q. To prove that H(U, f, V ) weakly covers U , let h = fαβ .
Then H(Q,h,Q) weakly covers Q by Step 4. Thus there is an ordinal ξ < ω1

such that if x ∈ [Q] and supx ≥ ξ then H(Q,h,Q) meets x, so x↾m ∈ H(Q,h,Q)
for some m. We claim that ξ witnesses that H(U, f, V ) weakly covers U .

Assume that y ∈ [U ] = [Qα], max y ≥ ξ . Then x = αay ∈ [Q], so s =
x↾ (m+ 1) ∈ H(Q,h,Q) for some m, by the above. Then s = αat, where
t = y↾m. It remains to prove that t ∈ H(U, f, V ).

Case 1 : [Q]∩(h”[Q↾ s]) is bounded. However h = fαβ and U = Qα , V = Qβ ,
hence [Q] ∩ (h”[Q↾ s]) = βa([V ] ∩ (f ”[U ↾ t])). Thus the set [V ] ∩ (f ”[U ↾ t]) is
bounded, therefore t ∈ H(U, f, V ).

Case 2 : h↾ [Q↾ s] is a total identity, h(x) = x whenever x ∈ Q↾ s . Then
β = α, U = V , and f ↾ [U ↾ t] is a total identity, thus still t ∈ H(U, f, V ).

11 Blocking sequences and the forcing

We argue in the constructible universe L in this section.
The forcing to prove Theorem 1.1 will be defined as the union of a ω1-sequence

of WT-forcings of size ℵ1 , increasing in the sense of a relation ❁ (Definition 10.1).
We here introduce the notational system to be used in this construction.

Definition 11.1. Let WTF be the set of all WT-forcings of cardinality ≤ ℵ1 .
If P = 〈Pα〉α<λ is a sequence of forcings Pα ∈ WTF, then let

⋃

P =
⋃

α<λ Pα ,
and let M(P) be the least transitive model of ZFC− of the form Lϑ , containing
P, in which both λ and the set

⋃

P are of cardinality ≤ ℵ1 .
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If λ ≤ ω2 then let WTFλ be the set of all λ-sequences P = 〈Pα〉α<λ of forcings
Pα ∈ WTF, satisfying the following:

(∗) if γ < λ then
⋃

(P↾γ) ❁
M(P↾ γ) Pγ .

Let WTF =
⋃

λ<ω2
WTFλ .

The set WTF ∪ WTFω2
is ordered by the extension relations ⊂ and ⊆.

Lemma 11.2. Assume that κ < λ < ω2, and P = 〈Pα〉α<κ ∈ WTF. Then:

(i) the union P =
⋃

P belongs to WTF ;

(ii) there is a sequence Q ∈ WTF such that dom(Q) = λ and P ⊂ Q .

Proof. To prove (ii) apply Theorem 10.4 by induction on λ.

Definition 11.3 (key definition). A sequence P ∈ WTF blocks a set W ⊆ WTF

if either P ∈W or there is no sequence Q ∈W satisfying P ⊆ Q.

Sets Hκ and definability classes. Recall that Hκ is the set of all sets heredi-
tarily of cardinality < κ. Thus x ∈ Hκ if the transitive closure TC (x) is a set of
cardinality < κ. In particular HC = Hω1

is the set of all hereditarily (at most)
countable sets, while Hω2 is the set of all sets hereditarily of cardinality ≤ ℵ1 ;
HC = Lω1

and Hω2 = Lω2
in the constructible universe L.

Σn(Hκ), resp., Σ
Hκ
n is the class of all sets X ⊆ Hκ , definable in Hκ by a Σn

formula with parameters in Hκ , resp., with no parameters. The classes Πn(Hκ),
ΠHκ

n have the same meaning (with Πn formulas), and ∆n(Hκ) = Σn(Hκ) ∩
Πn(Hκ), ∆

Hκ
n = ΣHκ

n ∩ΠHκ
n , as usual. In particular, ∆0(Hκ) = Σ0(Hκ) = Π0(Hκ)

and ∆Hκ
0 = ΣHκ

0 = ΠHκ
0 (definability by bounded formulas, with/without param-

eters). See more on ∈-definability in [3, Part B, Chap. 5, Sect. 4] or elsewhere.
In particular, we consider the classes ΣHω2

n , ΠHω2

n , ∆Hω2

n of definability in
Hω2 (parameters not allowed) and Σn(Hω2), Πn(Hω2), ∆n(Hω2) (all parameters
in Hω2 allowed) — this is the case κ = ℵ2 in the above definitions.

Theorem 11.4 (the blocking sequence theorem, in L). Let n ≥ 2. There exists
a sequence P = 〈Pα〉α<ω2

∈ WTFω2
satisfying the following two conditions:

(i) P, as the set of pairs 〈α, Pα〉, belongs to the definability class ∆Hω2

n−1 ;

(ii) if n ≥ 3 and W ⊆ WTF is a Σn−2(Hω2) set then there is an ordinal
γ < ω2 such that the restricted sequence P↾γ = 〈Pα〉α<γ ∈ WTF blocks W .

Proof. Let 6L be the canonical ∆1 wellordering of L; thus its restriction to
Hω2 = Lω2

is ∆Hω2

1 . As n ≥ 3, there exists a universal ΣHω2

n−2 set U
n ⊆ ω2×Hω2 .

That is, Un is ΣHω2

n−2 (parameter-free Σ
n−2 definable in Hω2), and for every set

X ⊆ Hω2 of type Σ
n−2(Hω2) (Σn−2 definable in Hω2 with arbitrary parameters)

there is an ordinal δ < ω1 such that X = U
n
δ = {x : 〈δ, x〉 ∈ U

n}. The choice of
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ω2 as the domain of parameters is validated by the assumption V = L, which

implies the existence of a ∆Hω2

1 surjection ω2
onto
−→ Hω2 .

Coming back to Definition 11.3, note that for any sequence P ∈ WTF and any
set W ⊆ WTF there is a sequence Q ∈ WTF which satisfies P ⊂ Q and blocks
W . This allows us to define Qα ∈ WTF by induction on α < ω1 so that Q0 = ∅,
Qλ =

⋃

α<λ Qα , and each Qα+1 is equal to the 6L-least sequence Q ∈ WTF

which satisfies 1) Qα ⊂ Q and 2) if n ≥ 3 then Q blocks U
n
α .

Then P =
⋃

α<ω2
Qα ∈ WTFω2

. Condition (ii) holds by construction, while

(i) follows by a routine verification, based on the fact that WTF ∈ ∆Hω2

1 and
U

n ∈ ΣHω2

n−2 (provided n ≥ 3).

Definition 11.5 (in L). We fix a sequence P = 〈Pα〉α<ω2
∈ WTFω2

, given by
Theorem 11.4 for a number n ≥ 2, for which Theorem 1.1 is to be established.

In particular P satisfies (i) and (ii) of Theorem 11.4.
If γ < ω2 then let Mγ = M(P↾γ), and P<γ =

⋃

α<γ Pα , P =
⋃

α<ω2
Pα .

12 Some forcing properties

The WT-forcing P ∈ L defined by 11.5 will be the forcing notion for the proof
of Theorem 1.1. The next lemma establishes some properties of P .

We continue to argue in L in the conditions and notation of Definition 11.5.

Lemma 12.1. P is a WT-forcing, all sets Pα , P<γ belong to WTF. In addition:

(i) if α < ω2 then P<γ ❁Mγ
Pγ ;

(ii) if α < ω2 and the set D ∈ Mα , D ⊆ P<α is pre-dense in P<α then it is
pre-dense in P, too;

(iii) every set Pα is pre-dense in P;

(iv) if α < ω2 and trees T, T ′ ∈ P<α are incompatible in P<α then T, T ′ are
incompatible in P, too;

(v) if f : ω1
ω → ω1

ω is continuous then the set of all trees T ∈ P such that
f ”[T ] is bounded or f ↾ [T ] is a bijection, is dense in P ;

(vi) if f : ω1
ω → ω1

ω is continuous then the set of all trees T ∈ P such that (1)
f ↾ [T ] is a total identity, or, for some γ < ω2, (2) f ↾ [T ] avoids Pγ in the
sense that if V ∈ Pγ then the subset {s ∈ T : [V ] ∩ (f ”[T ↾ s] is bounded}
weakly covers T , is dense in P ;

(vii) if n ≥ 3 and a set Q ⊆ WT belongs to Σn−2(Hω2), then P ∩ (Q ∪Q−) is
dense in P, where Q− = {T ∈ WT : ¬ ∃S ∈ Q (S ⊆ T )}.

Proof. (i) holds by (∗) of Definition 11.1.

15



(ii) We use induction on γ, α ≤ γ < ω2 , to check that if D is pre-dense in
P<γ then it remains pre-dense in P<γ ∪ Pγ = P<γ+1 by (i) and Lemma 10.3(i).
Limit steps, including the final step to P (γ = ω2) are routine.

(iii) Pα is dense in P<α+1 = P<α ∪ Pα by 10.1(A). It remains to refer to (ii).
(iv) Prove by induction on γ that if α < γ ≤ ω1 then T, T ′ are incompatible

in P<γ , using (i) and Lemma 10.3(ii).
To prove (v) and (vi) let T0 ∈ P . There is an ordinal γ < ω2 such that

T0 ∈ P<γ and f ∈ Mγ . We have P<γ ❁Mγ
Pγ by (i). Therefore by (E) of

Definition 10.1 there is a tree T ∈ Pγ such that T ⊆ T0 and f ”[T ] is bounded or
f ↾ [T ] is a bijection, so we get (v). Further by (F) of Definition 10.1 if V ∈ Pγ

then the set H(T, f, V ), of all strings s ∈ T such that [V ]∩ (f ”[T ↾ s]) is bounded
or f ↾ [T ↾ s] is a total identity, weakly covers T . We have two cases.

Case 1: f ↾ [T ↾ s] is a total identity for at least one s ∈ T . Then the corre-
sponding subtree T ′ = T ↾ s satisfies (1) of (vi).

Case 2: for each V ∈ Pγ , the set H(V ) of all strings s ∈ T such that
[V ] ∩ (f ”[T ↾ s]) is bounded, weakly covers T , thus T itself satisfies (2) of (vi).

(vii) Suppose that n ≥ 3. Let T0 ∈ P , that is, T0 ∈ P<α0
, α0 < ω2 . The set

W of all sequences P ∈ WTF, such that P↾α0 ⊆ P and ∃T ∈ Q∩(
⋃

P) (T ⊆ T0),
belongs to Σn−2(Hω2) along with Q. Therefore there is an ordinal α < ω2 such
that P↾α blocks W . We have two cases.

Case 1: P↾α ∈W . Then the related tree T ⊆ T0 belongs to Q ∩ P .
Case 2: there is no sequence in W which extends P↾α. Let γ = max{α,α0}.

Then P<γ ❁Mγ
Pγ by (i). As α0 ≤ γ , there is a tree T ∈ Pγ , T ⊆ T0 . We claim

that T ∈ Q− , which completes the proof in Case 2.
Suppose to the contrary that T /∈ Q− , thus there is a tree S ∈ Q, S ⊆ T .

The set R = Pγ ∪ {S↾ t : t ∈ S} is a WT-forcing and obviously Pγ ❁ R, hence
still P<γ ❁Mγ

R holds by Lemma 10.2. It follows that the sequence R defined by

domR = γ + 1, R↾γ = P↾γ , and R(γ) = R, belongs to WTF, and even R ∈ W
since S ∈ Q∩R. Yet P↾α ⊂ R, which contradicts to the Case 2 hypothesis.

To prove a chain condition for P , we’ll need the following general lemma. See
Definition 11.5 on models Mα .

Lemma 12.2 (in L). If X ⊆ Hω2 = Lω2
then the set OX of all ordinals α < ω2

such that the model 〈Lα ;X ∩ Lα〉 is an elementary submodel of 〈Lω2
;X〉 and

X ∩ Lα ∈ Mα , is unbounded in ω2.

Proof. Let α0 < ω2 . There is an elementary submodel M of 〈Lω3
; ∈〉, of cardi-

nality cardM = ℵ1 , which contains α0 , ω2 , X and is such that the set M ∩ Lω2

is transitive. Consider the Mostowski collapse φ : M
onto
−→ Lλ . Let α = φ(ω2).

Then α0 < α < λ < ω2 and φ(X) = X ∩ Lα by the choice of M . We conclude
that 〈Lα ;X ∩ Lα〉 is an elementary submodel of 〈Lω2

;X〉. And cardα > ℵ1 in
Lλ , hence Lλ ⊆ Mα . Then X ∩ Lα ∈ Mα , as X ∩ Lα ∈ Lλ by construction.

Corollary 12.3 (in L). (i) If A ⊆ P is an antichain then cardA ≤ ℵ1.
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(ii) Let Dn ⊆ P be pre-dense in P, for each n. Then the set of all trees T ∈ P,
satisfying ∀n (BNn(T ) ⊆ Dn⇑T ), is dense in P.

Proof. (i) Let A ⊆ P be a maximal antichain. By Lemma 12.2 there is an ordinal
α such that 〈Lα ; P

′, A′〉 is an elementary submodel of 〈Lω2
; P, A〉, where P′ =

P∩Lα and A′ = A∩ P<α , and in addition P′, A′ ∈ Mα . By the elementarity, we
have P′ = P<α and A′ = A∩P<α ∈ Mα , and A

′ is a maximal antichain, hence a
pre-dense set, in P<α . But then A

′ is a pre-dense set, hence, a maximal antichain,
in the whole set P by Lemma 12.1(ii). Thus A = A′ , and cardA = cardA′ ≤ ℵ1 .

(ii) We wlog assume that all Dn are open dense, for if not then replace Dn by
the set {T ∈ P : ∃S ∈ Dn (T ⊆ S)}. Let T0 ∈ P . Pick a maximal antichain An ⊆
Dn in each Dn . Then all sets An are maximal antichains in P by the open density,
and cardAn ≤ ℵ1 by (i). Therefore there is an ordinal α < ω2 such that the
set A =

⋃

nAn satisfies A ⊆ P<α and A, T0 , and the sequence 〈An〉n<ω belong
to Mα . By the maximality of Dn and Lemma 12.1(iv), each D′

n = Dn ∩ P<α is
dense in P<α . It follows by Lemma 12.1(i) and (D) of Definition 10.1 that there
is a tree T ∈ Pα such that T ⊆ T0 and BNn(T ) ⊆ Dn⇑T for all n.

13 The model

This section presents some key properties of P-generic extensions L[G] of L

obtained by adjoining a P-generic set G ⊆ P to L. Recall that the forcing notion
P ∈ L was introduced by Definition 11.5, along with some related notation.

Corollary 13.1. If a set G ⊆ P is P-generic over L then ωL
1 < ω

L[G]
1 = ωL

2 .

Proof. That ωL
1 < ω

L[G]
1 follows from the fact that a[G] is a cofinal map ω → ωL

1 .

To prove ω
L[G]
1 = ωL

2 use Corollary 12.3.

Blanket agreement 13.2. Arguing in generic extensions of L, we’ll use stan-
dard notation like ωL

ξ to denote L-cardinals. We also use (WT)L to denote “the

set WT defined in L”. Thus for instance P ⊆ (WT)L .

We’ll make use of a coding system for continuous maps, helpful whenever
“the same” continuous f : ω1

ω → Ordω is considered in different models.

Definition 13.3. Let ϑ ∈ Ord. A code of continuous function from (ωL
1 )

ω to
ϑω is any map c : dom c → ϑ with dom c ⊆ (ωL

1 )
<ω × ω, such that the sets

Sc

nξ = {s ∈ (ωL
1 )

<ω : 〈s, n〉 ∈ dom c ∧ c(s, n) = ξ} satisfy the following for any n:

(1) if ξ 6= η, u ∈ Sc

nξ , v ∈ Sc
nη , then u, v are incompatible, and

(2) Sc
n =

⋃

ξ S
c

nξ is a belt for (ωL
1 )

<ω , i.e., ∀x ∈ (ωL
1 )

ω ∃m (x↾m ∈ Sc
n).

Let CCFϑ be the set of all such codes. If c ∈ CCFϑ then a continuous fc :
(ωL

1 )
ω → ϑω is defined as follows. If x ∈ (ωL

1 )
ω and n < ω, then by definition

there is a unique ξ < ϑ such that x↾k ∈ Sc

nξ for some k. Let fc(x)(n) = ξ .
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If f : (ωL
1 )

ω → ϑω is continuous then its code c = code(f) ∈ CCFϑ is defined
by Sc

nξ = {s ∈ (ωL
1 )

<ω : ∀x ∈ (ωL
1 )

ω (s ⊂ x =⇒ f(x)(n) = ξ)}; then fc = f .

Remark 13.4 (absoluteness). Being a code in CCFϑ is absolute since so is the
condition of being a belt, see Remark 9.3.

Lemma 13.5. If G ⊆ P is generic over L, ϑ ∈ Ord, y ∈ ϑω ∩ L[G], then

(i) there is a code c ∈ CCFϑ ∩ L such that y = fc(a[G]) ;

(ii) if ϑ = ωL
1 then y is bounded in ωL

1 or G ∈ L[y] ;

(iii) if ϑ = ωL
1 and y is unbounded in ωL

1 then y = a[G] or there is an ordinal
γ < ωL

2 such that y /∈
⋃

V ∈Pγ
[V ].

Proof. (i) There is a P-name t ∈ L satisfying y = t[G] (the G-valuation of t).
It can be assumed that P forces that t is valuated as an element of ϑω .

Arguing in L, let τnξ = {T ∈ P : T forces t(n) = ξ} (n < ω and ξ < ϑ). The
sets τn =

⋃

ξ τnξ are open dense in P . It follows by Corollary 12.3(ii) that there is
a tree T ∈ G such that T ↾ s ∈ τn whenever n < ω and s ∈ BNn(T ). This allows
us to define, still in L, a continuous f ′ : [T ] → ϑω by f ′(x)(n) = ξ iff the only
string s ∈ BNn(T ) with s ⊂ x belongs to τnξ . Let f : ω1

ω → ϑω be a continuous
extension of f ′. Then c = code(f) ∈ CCFϑ ∩ L, and easily y = fc(a[G]).

(ii) Let, by (i), c ∈ CCFωL

1

∩ L and y = fc(a[G]). By Lemma 12.1(v), there

is a tree T ∈ G such that, in L, fc”[T ] is bounded or fc↾ [T ] is a bijection.
Case 1 : in L, fc”[T ] is bounded, that is, there is an ordinal β < ωL

1 satisfying
fc(x) ∈ βω for all x ∈ [T ] ∩ L. But fc is continuous while [T ] ∩ L is dense in
[T ] in L[G]. It follows that fc(x) ∈ βω for all x ∈ [T ] ∩ L[G]. In particular
y = fc(a[G]) ∈ βω since a[G] ∈ [T ] (because T ∈ G), so y is bounded.

Case 2 : in L, fc↾ [T ] is a bijection. The bijectivity is equivalent to the
wellfoundedness of the tree Wc of all pairs 〈s, t〉 of strings s, t ∈ T such that
lh(s) = lh(t) and there exist no strings u, v satisfying: u ⊆ s, v ⊆ t, and
u ∈ Sc

nξ , v ∈ Sc
nη for some n and ξ 6= η. Therefore the bijectivity of fc↾ [T ] is

an absolute property of c, T . Thus fc↾ [T ] is a bijection in L[G], and we have
a[G] = f−1

c (y) ∈ L[y], as required.
(iii) We still assume that, by (i), y = fc(a[G]), where c ∈ CCFωL

1

∩ L. By

Lemma 12.1(vi), there is a tree T ∈ G such that, in L, fc↾ [T ] is a total identity
or, for some γ < ωL

2 , fc↾ [T ] avoids Pγ in the sense of 12.1(vi).
Case 1 : in L, fc↾ [T ] is a total identity, that is, fc(x) = x for all x ∈ [T ]∩L.

By the same simple continuity/density argument, we have fc(x) = x for all
x ∈ [T ] ∩ L[G], in particular y = fc(a[G]) = a[G].

Case 2 : γ < ωL
2 and, in L: fc↾ [T ] avoids Pγ , that is, if V ∈ Pγ then the

subset T (V ) = {s ∈ T : [V ]∩(f ”[T ↾ s]) is bounded} (defined in L) weakly covers
T . Now let V ∈ Pγ and check that y /∈ [V ]. By the Case 2 assumption, T (V )
weakly covers T . Therefore, as a[G] ∈ [T ] is definitely unbounded, there is a
string s ∈ T (V ) satisfying s ⊆ a[G]. Then S = T ↾ s ∈ G and [V ] ∩ (f ”[S])
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is bounded, so that there is an ordinal β < ωL
1 satisfying: if x ∈ [S] ∩ L and

fc(x) ∈ [V ] then fc(x) ∈ βω . We claim that the implication fc(x) ∈ [V ] =⇒
fc(x) ∈ βω also holds for all x ∈ [S]∩L[G]. Assume that this is established. As
x = a[G] ∈ [S] (because S ∈ G), we then have y ∈ [V ] =⇒ y ∈ βω . (Recall that
y = fc(a[G]).) But y is unbounded, hence y /∈ [V ], as required.

To prove the claim, let x0 ∈ [S]∩L[G] be a counterexample, so y0 = fc(x0) ∈
[V ] but y0(n0) = ξ for some n0 and ξ ≥ β . The existence of such x0 is equivalent
to the non-wellfoundedness of the tree W of all strings s ∈ S such that s ∈ Sc

n0η

for all η 6= ξ , and there is no string u /∈ V satisfying: ∀ j < lh(u) (s ∈ Sc

ju(j)).
Therefore the existence of x0 is an absolute property of c, S, V . Thus such an
x0 ∈ [S] exists already in L, contrary to the Case 2 assumption.

Corollary 13.6. Let G ⊆ P be generic over L. Then it is true in L[G] that

(i) a[G] is the only member of the intersection
⋂

γ<ω1

⋃

T∈Pγ
[T ] ;

(ii) {a[G]} is a ΠHC
n−1 singleton;

(iii) there is a Π1
n real singleton {r}, r ∈ ωω , such that L[r] = L[a[G]].

Proof. (i) Each Pγ is pre-dense in P by Lemma 12.1(iii). It follows that a[G] ∈
⋃

T∈Pγ
[T ], by the genericity. The uniqueness follows from Lemma 13.5(iii).

(ii) The sequence P = {〈γ, Pγ〉 : γ < ωL
2 } is of type ∆Hω2

n−1 in L by Defini-
tion 11.5. However Hω2 in the sense of L coincides with the constructible part

of HC (= hereditarily countable sets) in the sense of L[G], because ω
L[G]
1 = ωL

2

by Corollary 13.1. It easily follows that P is ∆HC
n−1 in L[G]. On the other hand,

{a[G]} = {x : ∀ γ ∀ Q (〈γ, Q〉 ∈ P =⇒ ∃T ∈ Q (x ∈ [T ])}

by (i). This yields the result since ∃T ∈ Q is a bounded quantifier.
(iii) If r ∈ ωω then let (r)n(k) = r(2n(2k + 1) − 1), thus (r)n ∈ ωω . Let W

be the Π1
1 set of all reals which code an ordinal, and let |w| < ω1 be the ordinal

coded by w ∈ W . Let r ∈ ωω be defined so that each (r)n belongs to W ∩ L

and is 6L-minimal of all w ∈ W ∩ L satisfying |w| = a[G](n). Thus r is a real
in L[G]. The singleton {r} is defined in HC of L[G] by the following formula:

∀n, (r)n ∈ W ∩ L and (r)n is 6L-minimal of all w ∈ W ∩ L with
|w| = |(r)n|, and ∀x ∈ Ordω (∀n (x(n) = |(r)n|) =⇒ x = a[G]).

It easily follows by the result of (ii) that {r} is a ΠHC
n−1 singleton as well, hence

a Π1
n singleton.

Corollary 13.1 and Corollary 13.6(ii),(iii) account for items (i), (ii), (iii) of
Theorem 1.1. Item (iv) of the theorem is based on different ideas related to
claim (vii) of Lemma 12.1. From now on we work towards this goal.
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14 Shoenfield’s transformation of Σ
1
2 formulas

The following useful transformation of Σ1
2 formulas involves an idea in the proof

of the Shoenfield absoluteness theorem.

Blanket agreement 14.1. From now on p, q, r denote reals in ωω .

Theorem 14.2. Let ϕ(p1, . . . , pn) be a Σ1
2 formula of the form

ϕ(p1, . . . , pn) := ∃ q ∀ r ∃mR(q↾m, r↾m, p1↾m, . . . , pn↾m) ,

where R ⊆ (ω<ω)n+2, R ∈ L, and q, r, pi are variables over ωω

}

, (∗)

and ϑ ≥ ℵL
1 a cardinal in L. Then there is a relation Q = Qϑ(R) ⊆ ϑ<ω ×

(ω<ω)n+1, Q ∈ L, such that Q is ∆Hϑ
0 (R) as a subset of Hϑ in L 2, and it holds

in any generic extension M of L with ϑ ≥ ωM
1 that if p1, . . . , pn ∈ ωω then

ϕ(p1, . . . , pn) ⇐⇒ ∃χ ∈ ϑω ∃ q ∈ ωω ∀mQ(χ↾m, q↾m, p1↾m, . . . , pn↾m) .

Proof. ϕ(p1, . . . , pn) is equivalent to ∃ q (Wq,p1,...,pn is wellfounded) , where

Wq,p1,...,pn = {u ∈ ω<ω : ∀ j ≤ lh(u)¬ R(q↾j, u↾ j, p1↾j, . . . , pn↾j)} ,

hence — in any universe M as in the theorem — to the formula:

∃ q ∈ ωω ∃ f :Wq,p1,...,pn → ϑ (f is order-preserving) .

By “order-preserving” we mean: if u, v ∈ Wq,p1,...,pn then u 6LS v ⇐⇒ f(u) ≤
f(v), where 6LS is the Lusin – Sierpinski (= Kleene – Brouwer) order on strings.

Fix a recursive bijection k 7→ sk : ω
onto
−→ ω<ω , with the inverse bijection

num : ω<ω → ω, so that s = s
num(s) . We assume that lh(s) ≤ num(s), ∀ s. Let

Wm
q,p1,...,pn

= {s ∈Wq,p1,...,pn : num(s) < m} ,

a finite set. Then ϕ(p1, . . . , pn) is equivalent to the formula

∃ q ∈ ωω ∃χ ∈ ϑω ∀m (χ ◦ num is order-preserving on Wm
q,p1,...,pn

) .

(χ ◦ num is the superposition.) The subformula in brackets depends on χ↾m and
q↾m, p1↾m, . . . , pn↾m only. In other words, we have a relation Q = Qϑ(R) ⊆
ϑ<ω× (ω<ω)n+1 , still Q ∈ L, such that ϕ(p1, . . . , pn) is equivalent to the formula

∃χ ∈ ϑω ∃ q ∈ ωω ∀mQ(χ↾m, q↾m, p1↾m, . . . , pn↾m) . (†)

2 Meaning that the equality Q = {w ∈ Hϑ : ψ(w)} holds in L, where ψ is a bounded formula
with R as the only parameter.
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Namely Q contains all tuples 〈σ, v, u1, . . . , un〉 of strings σ ∈ ϑ<ω and v, ui ∈ ω<ω

of same length lh(σ) = lh(v) = lh(ui) = some m, such that the superposition
σ ◦ num (defined on the set Sm = {sj : j < m}) is order-preserving on the set

Wm
v,u1,...,un

= {u ∈ Sm : ∀ j ≤ lh(u)¬ R(v↾ j, u↾ j, u1↾ j, . . . , un↾ j)} .

To see that Q is a ∆Hϑ

0 (R) subset of Hϑ , note first of all that ϑ = Ord ∩ Hϑ ,
which eliminates ϑ and ϑ<ω from the list of parameters. In the rest, we skip
a routine verification of all elements of the definition of Q being expressible by
bounded formulas.

15 Auxiliary forcing relation

Here we introduce a key tool for the proof of claim (iv) of Theorem 1.1. This is a
forcing-like relation forc. It is not explicitly connected with the forcing notion
P (but rather connected with the full wide tree forcing WT), however it will be
compatible with P for formulas of certain quantifier complexity (Theorem 17.1).
The crucial advantage of forc will be its invariance a certain group of transfor-
mations (Lemma 16.3), a property that cannot be expected for P . This will be
the key argument in the proof of Theorem 1.1 below in Section 18.

Blanket agreement 15.1. From now on, we let Θ = ωL
2 , so Θ = ω2 in L but

Θ = ω1 in P-generic extensions of L.

We argue in L. We consider a language L whose elementary formulas, called
LΣ1

2 (in spite that they are looking more like Σ1
1 ), are those of the form

ϕ(p1, . . . , pn) := ∃χ ∈ Θω ∃ q ∈ ωω ∀mQ(χ↾m, q↾m, p1↾m, . . . , pn↾m) ,

where Q ∈ L, Q ⊆ Θ<ω × (ω<ω)n+1, Q is a ∆0(Hω2) set,

and q, pi are variables over ωω.











(1)
The dual class LΠ1

2 consists of formulas

ϕ(p1, . . . , pn) := ∀χ ∈ Θω ∀ q ∈ ωω ∃mQ(χ↾m, q↾m, p1↾m, . . . , pn↾m) ,

with the same specifications.

}

(2)
Higher classes LΣ1

k and LΠ1
k are defined naturally, e.g. LΣ1

5 contains formulas
of the form ∃ q1 ∀ q2 ∃ q3Φ(q1, q2, q3), where Φ is LΠ1

2 and qi vary over ωω .
We allow codes c ∈ CCFω to substitute free variables over ωω . If ϕ :=

ϕ(c1, . . . , cn) is an L -formula, and x ∈ ω1
ω , then ϕ[x] denotes the formula

ϕ(fc1(x), . . . , fcn(x)), where all fci(x) are reals in ωω , of course.

Definition 15.2 (in L). We define a relation T forcϕ between trees T ∈ WT
and closed L -formulas in

⋃

k≥2(LΣ
1
k ∪ LΠ1

k). Recall that Θ = ω2 (in L).
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(A) Let ϕ(c1, . . . , cn) be a LΣ1
2 formula as in (1), and c1, . . . , cn ∈ CCFω . Let

finally T ∈ WT. We define T forcϕ iff there exist codes c ∈ CCFω and
d ∈ CCFΘ such that the following holds for all x ∈ [T ]:

∀mQ(fd(x)↾m, fc(x)↾m, fc1(x)↾m, . . . , fcn(x)↾m).

(B) If ϕ is a closed LΠ1
k formula, k ≥ 2, then T forcϕ iff there is no tree

S ∈ WT such that S ⊆ T and S forcϕ− , where ϕ− is the result of
canonical transformation of ¬ ϕ to LΣ1

k form.

(C) If ϕ := ∃xψ(x) is a closed LΣ1
k+1 formula, k ≥ 2 (ψ being of type LΠ1

k ),
then T forcϕ iff there is a code c ∈ CCFω such that T forcψ(c).

If ϕ(p1, . . . , pn) is an L -formula then let

Forc(ϕ) = {〈T, c1, . . . , cn〉 : T ∈ WT ∧ ci ∈ CCFω ∧ T forcϕ(c1, . . . , cn)}.

In particular if ϕ is closed then Forc(ϕ) = {T ∈ WT : T forcϕ}. We also define
Des(ϕ) = Forc(ϕ) ∪ Forc(ϕ−) in this case.

Theorem 15.3 (in L). If k ≥ 2 and ϕ is a formula in LΣ1
k , resp., LΠ1

k , then
the set Forc(ϕ) belongs to Σk−1(Hω2), resp., Πk−1(Hω2).

Proof. The proof goes on by induction on k. We begin with LΣ1
2 formulas.

We argue in the assumptions and notation of (1) above. According to defini-
tion 15.2(A), the existence quantifiers over c and d are in line with the Σ1

definability, but we have to prove that the set

W = {〈d, c, c1, . . . , cn, T,m〉 ∈ CCFΘ × (CCFω)
n+1 ×WT× ω :

∀x ∈ [T ]Q(fd(x)↾m, fc(x)↾m, fc1(x)↾m, . . . , fcn(x)↾m)}

belongs to Σ1(Hω2). Recall that Q is ∆0(Hω2) by (1). It can also be mentioned
that CCFΘ ∪ CCFω ∪WT ⊆ Hω2 , so that W ⊆ Hω2 anyway.

The hostile elements in the definition of W , which do not allow it to be
Σ1(Hω2) straightaway, are the quantifier ∀x ∈ [T ] in the second line, and the
quantifier ∀x ∈ ω1

ω in (2) of Definition 13.3. (As we argue in L, the upper
index L as in 13.3 is removed.) But, ω1

ω ∈ Hω2 (under V = L), hence, as we
don’t care here about the choice of parameters in Hω2 ,

3 we can pick up ω1
ω as

the extra parameter. The quantifier ∀x ∈ ω1
ω in (2) of 13.3 then immediately

becomes bounded, while the quantifier ∀x ∈ [T ] (. . . x . . . ) in the definition of W
changes to ∀x ∈ ω1

ω (x ∈ [T ] =⇒ . . . x . . . ), hence becomes bounded as well, and
overall we get even W ∈ ∆0(Hω2), as required.

The induction steps are easy applications of 15.2(B),(C).

Recall that a number n ≥ 2 is fixed by Definition 11.5.

3 If we do care then the result holds too but by means of more thoroughful arguments.
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Lemma 15.4 (in L). Let ϕ be a closed formula in LΣ1
k ∪ LΠ1

k , k ≥ 2. Then
the set Des(ϕ) is dense in WT. If k < n, then Des(ϕ) ∩ P is dense in P.

Proof. The first claim is a simple application of Definition 15.2(B). The second
claim follows from the first one by lemmas 15.3 and 12.1(vii).

16 Invariance

It happens that the relation forc is invariant under some natural transformations
of wide trees. Here we prove the invariance. We still argue in L.

Let S ∈ WT. To define a canonical homeomorphism hS : [S]
onto
−→ ω1

ω , assume
that x ∈ [S]. Let k < ω. Then x↾mk ∈ BNk(T ) for some (unique) number mk .
The set Ξ(x, k) = {ξ < ω1 : (x↾mk)

aξ ∈ S} has cardinality card (Ξ(x, k)) = ℵ1 ;
let Ξ(x, k) = {ξγ : γ < ω1} be the enumeration in the increasing order. In
particular, x(mk) = ξγ for some (unique) γ = γ(x, k). Define y = hS(x) ∈ ω1

ω

by y(k) = γ(x, k), ∀ k. The map hS is a required homeomorphism.
It follows that if T ∈ WT is another tree then hST = hT

−1 ◦hS (the superpo-
sition) is a homeomorphism of [S] onto [T ]. Moreover, in this case, if U ⊆ S is a
subtree then the according subtree hST ·U = {hST (x)↾m : x ∈ [U ]∧m < ω} ⊆ T
satisfies U ∈ WT iff hST · U ∈ WT, and [hST · U ] = {hST (x) : x ∈ [U ]}.

Lemma 16.1 (in L). If S, T ∈ WT and U ∈ WT, U ⊆ S , then V = hST ·U ∈
WT, V ⊆ T , and hUV = hST ↾ [U ].

If λ ∈ Ord and f : [S] → λω then a function hST · f = f ◦ h−1
ST : [T ] → λω

is defined by (hST · f)(x) = f(hST (x)), equivalently, (hST · f)(hST (x)) = f(x).
If c, c′ ∈ CCFλ then we symbolically write c′↾T = hST · (c↾S), in case the
associated functions fc and fc′ satisfy: fc′ ↾ [T ] = fST · (fc↾ [S]).

Lemma 16.2 (in L). If S, T ∈ WT, λ ∈ Ord, and c ∈ CCFλ then there is a
code c′ ∈ CCFλ satisfying c′↾T = fST · (c↾S)

Proof. The map f = fc↾ [S] : [S] → λω is continuous, hence so is the transformed
map f ′ = hST · f : [T ] → λω . Let g : ω1

ω → λω be any continuous extension of
f ′ , and let c′ = code(g).

Finally if ϕ := ϕ(c1, . . . , cn) is a L -formula, and ϕ′ := ϕ(c′1, . . . , c
′
n), where

c′1, . . . , c
′
n is another set of codes c′i ∈ CCFω , then we symbolically write ϕ′↾T =

hST · (ϕ↾S), in case c′i↾T = hST · (ci↾S) holds for each i = 1, . . . , n.

Lemma 16.3 (in L). Let S, T ∈ WT and let ϕ,ϕ′ be closed formulas in LΣ1
k ∪

LΠ1
k , k ≥ 2, and finally ϕ′↾T = hST · (ϕ↾S). Then S forcϕ iff T forcϕ′.

Proof. We argue by induction. Let ϕ,ϕ′ be LΣ1
2 , so that ϕ := ϕ(c1, . . . , cn)

and ϕ′ := ϕ(c′1, . . . , c
′
n), where c1, . . . , c

′
n, c

′
1, . . . , c

′
n are codes in CCFω , and

ϕ(p1, . . . , pn) := ∃χ ∈ Θω ∃ q ∈ ωω ∀mQ(χ↾m, q↾m, p1↾m, . . . , pn↾m)
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is a formula as in (1) of Section 15, and c′i↾T = hST · (ci↾S) holds for each i.
Assume that S forcϕ. Then by definition (Definition 15.2(A)) there are

codes c ∈ CCFω and d ∈ CCFΘ such that

∀x ∈ [S]∀mQ(fd(x)↾m, fc(x)↾m, fc1(x)↾m, . . . , fcn(x)↾m).

Pick, by Lemma 16.2, codes c′ ∈ CCFω and d′ ∈ CCFΘ with c′↾T = hST · (c↾S)
and d′↾T = hST · (d↾S). Then we obtain

∀ y ∈ [T ]∀mQ(fd′(y)↾m, fc′(y)↾m, fc′
1
(y)↾m, . . . , fc′n(y)↾m) ,

and hence the codes c′ and d′ witness T forcϕ′ .
Step LΣ1

k → LΠ1
k . Let ϕ be a closed formula in LΠ1

k , so that ϕ is ψ− ,
where ψ is LΣ1

k , and accordingly ϕ′ is (ψ′)− , ψ′↾T = hST · (ψ↾S). Assuming
that S forcϕ, prove that T forcϕ′ . Suppose to the contrary that T forcϕ′

fails. Then, by Definition 15.2(B), there is a tree V ∈ WT, V ⊆ T , V forcψ′ .
We let U = hTS · V , so that U ∈ WT, U ⊆ S , V = hst · U . And, by the way,
hUV = hST ↾ [U ] by Lemma 16.1, thus still ψ′↾V = hUV · (ψ↾ [U ]). It follows that
U forcψ, by the inductive hypothesis, which contradicts to S forcϕ.

Step LΠ1
k → LΣ1

k+1. Let ϕ be a closed formula in LΣ1
k+1 , so that ϕ is

∃ q ψ(q), where ψ(q) is LΠ1
k , and accordingly ϕ′ is ∃ q ψ′(q), ψ′↾T = hST ·(ψ↾S).

Assuming that S forcϕ, prove that T forcϕ′ . By Definition 15.2(C), there is
a code c ∈ CCFω satisfying S forcψ(c). By Lemma 16.2, there exists a code
c′ ∈ CCFω such that c′↾T = hST · (c↾S). Then ψ′(c′)↾T = hST · (ψ(c)↾S). It
follows that T forcψ′(c′), by the inductive hypothesis, hence T forcϕ′ .

Corollary 16.4. Let S, T ∈ WT and let ϕ be a closed formula in LΣ1
k ∪LΠ1

k ,
k ≥ 2, with no codes in CCFω as parameters. Then S forcϕ iff T forcϕ.

17 Forcing and truth

Recall that n ≥ 2 is fixed by Definition 11.5.
Moreover we’ll assume that n ≥ 3, because we now focus on the proof of

claim (iv) of Theorem 1.1, vacuous in the case n = 2.
The last part of the proof of Theorem 1.1 will be the next theorem which

connects the forcing relation forc with the truth in P-generic extensions. This
will be the key ingredient of the proof of Theorem 1.1(iv): we use the invariant
relation forc to surprisingly approximate the forcing P , definitely non-invariant
under the transformations considered in Section 16.

Theorem 17.1. Assume that 2 ≤ k < n, ϕ ∈ L is a closed formula in LΠ1
k ∪

LΣ1
k+1, and a set G ⊆ P is generic over L. Then the sentence ϕ[a[G]] is true

in L[G] if and only if ∃T ∈ G (T forcϕ).

Proof. We argue in L[G]. Base of induction: ϕ is a closed LΣ1
2 formula,

ϕ := ϕ(c1, . . . , cn) := ∃χ ∈ Θω ∃ q ∈ ωω ∀mQ(χ↾m, q↾m, c1↾m, . . . , cn↾m) ,
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as in 15.2(A) and (1) of Section 15. Assume that T ∈ G and T forcϕ. Then by
Definition 15.2(A) there are codes c ∈ CCFω ∩ L and d ∈ CCFΘ ∩ L such that

∀m ∀x ∈ [T ] ∩ LQ(fd(x)↾m, fc(x)↾m, fc1(x)↾m, . . . , fcn(x)↾m).

(Recall Remark 13.4 on the absoluteness of being a code in any CCFλ .) However
all functions fd, fc, fci are continuous. It follows that the last displayed formula
can be strengthened to

∀x ∈ [T ]∀mQ(fd(x)↾m, fc(x)↾m, fc1(x)↾m, . . . , fcn(x)↾m).

Therefore, as a[G] ∈ [T ] (because T ∈ G), we obtain

∀mQ(fd(a[G])↾m, fc(a[G])↾m, fc1(a[G])↾m, . . . , fcn(a[G])↾m).

Thus elements χ = fd(a[G]) and q = fc(a[G]) witness ϕ[a[G]] to be true.
To establish the inverse, suppose that ϕ[a[G]] is true in L[G], that is,

∀mQ(χ↾m, q↾m, fc1(a[G])↾m, . . . , fcn(a[G])↾m)

true for some χ ∈ Θω and q ∈ ωω in L[G]. By Lemma 13.5 there are codes
d ∈ CCFΘ ∩ L and c ∈ CCFω ∩ L such that χ = fd(a[G]) and q = fc(a[G]).
Thus there is a tree T ∈ G which P-forces the formula

∀mQ(fd(a[G])↾m, fc(a[G])↾m, fc1(a[G])↾m, . . . , fcn(a[G])↾m) (∗)

over L. We claim that the codes c and d witness T forcϕ as in 15.2(A). Indeed
otherwise there are x ∈ [T ] and m such that

¬ Q(fd(x)↾m, fc(x)↾m, fc1(x)↾m, . . . , fcn(x)↾m). (†)

But, the maps fd, fc, fci are continuous. It follows that there is a string u = x↾j
for some j such that (†) holds for all x ∈ [S], where S = T ↾ u ∈ P . But then
clearly T cannot P-force (∗) as S forces the opposite.

Step LΣ1
k =⇒ LΠ1

k , k < n. Let ϕ be a LΠ1
k formula. By Lemma 15.4, there

is a tree T ∈ G such that either T forcϕ or T forcϕ− . Assume that T forcϕ;
we have to prove that ϕ[a[G]] is true. Suppose otherwise. Then ϕ−[a[G]] is
true. By the inductive hypothesis, there is a tree S ∈ G such that S forcϕ− .
But the trees S, T belong to the same generic set G, hence they are compati-
ble, which leads to a contradiction with the assumption T forcϕ, according to
Definition 15.2(B). Now assume that T forcϕ− . Then ϕ−[a[G]] is true by the
inductive hypothesis, hence ϕ[a[G]] is false. On the other hand, there is no tree
S ∈ G such that S forcϕ− , just as above.

Step LΠ1
k =⇒ LΣ1

k+1 , k < n. Let ϕ be ∃xψ(x) where ψ is LΠ1
k . Assume

that T ∈ G and T forcϕ. Then by Definition 15.2(C) there is a code c ∈ CCF∩L
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such that T forcψ(c). By the inductive hypothesis, the formula ψ(c)[a[G]], that
is, ψ[a[G]](fc(a[G])), is true in L[G]. But then ϕ[a[G]] is true as well.

Conversely assume that ϕ[a[G]] is true. Then there is a real y ∈ L[G]∩ωω such
that ψ[a[G]](y) is true. By Lemma 13.5(i), y = fc(a[G]) for a code c ∈ CCFω∩L.
But then ψ(c)[a[G]] is true in L[G]. By the inductive hypothesis, there is a tree
T ∈ G satisfying T forcψ(c). Then T forcϕ as well.

18 The final argument

Proof (Theorem 1.1, the main theorem). We assert that any P-generic extension
L[G] = L[a[G]] satisfies conditions (i), (ii), (iii), (iv) of the theorem. Regarding
(i), (ii), (iii) see a review in the very end of Section 13. Let’s concentrate on (iv).
Let Φ(j) be a parameter-free Σ1

n formula. 4 Thus

Φ(j) := ∃ r1 ∀ r2 . . . ∀(∃)rn ∃(∀)mRj(r1↾m, r2↾m, . . . , rn↾m) ,

where ri are variables over ωω , Rj ⊆ (ω<ω)n, Rj ∈ L, and the map j 7→ Rj is

arithmetically definable in L. Applying Theorem 14.2 in L with Θ = ωL
2 = ω

L[G]
1

and M = L[G], we get relations Qj = QΘ(Rj), and closed LΣ1
n formulas

ϕj := ∃ r1 ∀ r2 . . . ∃(∀)rn−2 ∀ (∃)χ ∈ Θω ∀ (∃) q ∃ (∀)m

Qj(χ↾m, q↾m, r1↾m, r2↾m, . . . , rn−2↾m) ,

satisfying Φ(j) ⇐⇒ ϕj , ∀ j , both in L and in any P-generic extension L[G] of
L. It follows, by Theorem 17.1, that the set X = {j : Φ(j)L[G]} (defined in L[G])
satisfies X = {j : ∃T ∈ G (T forcϕj)}. Furthermore, as the formulas ϕj do not
contain codes in CCFω , it follows, by Corollary 16.4, that X = {j : T forcϕj},
where T is any particular tree in (WT)L , one and he same for all j . We conclude
that X ∈ L, as required.

19 A problem

It is a challenge to figure out what kind of models the method of the proof of
Theorem 1.1 gives for cardinals bigger than ℵ1 . For instance, let WTω2

be the set
of all trees T ⊆ ω2

<ω whose all branching nodes are ω2-branching nodes. This is
a non-Laver version of the Namba forcing; the Namba forcing per se requires that
in addition every node above the stem is a branching node. The forcing WTω2

(or an equivalent forcing) is considered e.g. in [4], [9, Section 28], and [5, 18.4].
Clearly WTω2

adds a cofinal infinite sequence, say ~a = 〈αn〉n<ω , in ω2 . On
the other hand, if CH holds in the ground universe then, essentially by Namba,
WTω2

does not add new reals, hence, does not collapse ω1 . (See [9, Section 28]

for a simple proof.) Thus ~a ∈ Hλ in the extension V[~a], where λ = ω
V[~a]
2 > ωV

2 .
(Where V is the ground set universe, as usual.) It is then an interesting problem

4 The case when Φ has real parameters in L can also be handled with some extra care.
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to check whether there are results for the definability of ~a in Hλ similar to the
results in [2] and those of this paper.
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Index 5

avoids, 15

belt, 10
blocks, 14
bounded, 6

code
code(f), 18

code of continuous function, CCFϑ , 17

definability classes
ΣHω2

n , ΠHω2

n , ∆Hω2

n , 14
Σn(Hω2), Πn(Hω2), ∆n(Hω2), 14
ΣHκ

n , ΠHκ

n , ∆Hκ

n , 14
Σn(Hκ), Πn(Hκ), ∆n(Hκ), 14

dense, 4, 5

equivalence relation
E0 , 2

forcing
WTF, 13
M-extension, ❁M , 11
extension, ❁, 11
stronger condition, 5
wide tree forcing, 5
WT-forcing, 5
P , 15

formula
ϕ[x], 21

generic element
a[G], 5

hereditarily countable
HC, 14

hereditarily of cardinality < κ
Hκ , 14

hereditarily of cardinality ≤ ℵ2

Hω2 , 14

identity, 6
inclusion

S ⊆′

n T , 5
S ⊆n T , 5

iteration

IWT, 7
IWT(P), 7
core, 7
of wide trees, 7
small, 7
wrap, wr(J), 7

length
lh(s), 4

meets, 10
M-extension, ❁M , 11
model

σ-closed, 11
Mγ , 15
M(P), 13

number n ≥ 2, 15

open dense, 4, 5

pre-dense, 4, 5
projection

projC(s), 7

set
bounded, 6
dense, 4, 5
open dense, 4, 5
pre-dense, 4, 5

stem, stem(T ), 4
string, 4

Λ, the empty string, 4
ω1

<ω, string, 4
ωn
1
, strings of length n, 4

extension, ⊆, ⊂, 4
length, 4

successor
succT (s), 4

theory
ZFC′ , 11

total identity, 6
tree, 4

branch, 4
restricted T ↾ u , 4
stem, stem(T ), 4

5 The index is not a part of the text, but is added for the convenience of the the

process of refereeing of the manuscript.
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wide, WT, 4
WT′ , 4

weakly covers, 10
wide tree forcing, 5
WT-forcing, 5

a[G], generic element, 5
⋃

P, 13
CCFϑ , 17
code(f), 18
D⇑T , 5
E0 , 2
fc , 17
ϕ[x], 21
HC, 14
Hω2 , 14
Hκ , 14
H(U, f, V ), 6
IWT, 7
IWT(P), 7
Sc

n , 17
Λ, the empty string, 4
lh(s), length, 4
max s, largest term, 4
Mγ , 15
M(P), 13

n ≥ 2, 15
ω1

<ω , 4
P , 15
projC(s), 7
Sc

nξ , 17

ΣHω2

n , ΠHω2

n , ∆Hω2

n , 14
Σn(Hω2), Πn(Hω2), ∆n(Hω2), 14
ΣHκ

n , ΠHκ

n , ∆Hκ

n , 14
Σn(Hκ), Πn(Hκ), ∆n(Hκ), 14
❁, 11
❁M , 11
S ⊆′

n T , 5
S ⊆n T , 5
stem(T ), 4
s ⊆ t, 4
s ⊂ t, 4
succT (s), 4
[T ], 4
T ↾ u , 4
taξ , 4
T ⊆w D, 10
wr(J), 7
WT, 4
WT′ , 4
WTF, 13
ZFC′ , 11
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