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A THEORY OF PAIRS FOR NON-VALUATIONAL STRUCTURES

ELITZUR BAR-YEHUDA, ASSAF HASSON†, AND YA’ACOV PETERZIL

ABSTRACT. Given a weakly o-minimal structure M and its o-minimal completion M̄, we first associate toM̄ a canon-

ical language and then prove that Th(M) determines Th(M̄). We then investigate the theory of the pair (M̄,M)
in the spirit of the theory of dense pairs of o-minimal structures, and prove, among other results, that it is near model

complete, and every definable open subset of M̄n is already definable in M̄.

We give an example of a weakly o-minimal structure which interprets M̄ and show that it is not elementarily

equivalent to any reduct of an o-minimal trace.

1. INTRODUCTION

An expansion M of an ordered group is weakly o-minimal non-valuational (below we use “non-valuational”

for short) if it is weakly o-minimal (every definable subset of M is a finite union of convex sets) and does not

admit any definable non-trivial convex sub-groups. Non-valuational structures were introduced in [6] and more

systematically studied in [10] and [11]. In those works Wencel showed that to a non-valuational structure M
one can associate an o-minimal structure M̄, whose universe is M̄ – the definable Dedekind completion of M
– and with the additional property that the structure which M̄ induces on (the natural embedding of) M (in M̄)

is precisely the structure M. Wencel called the structure M̄ the canonical o-minimal completion of M. In [5]

Keren shows that M̄ has the same definable sets as the structure M∗, whose atomic sets are all sets of the form

clM̄ (S) ⊆ M̄n for M-definable S ⊆ Mn, (see Proposition 2.7 below). Both Wencel and Keren’s constructions

have the problem that the signatures of the resulting structures depend on the structure M, rather than on its

signature.

In the present paper we address this problem by considering, for A ⊆ M , structures of the form M∗
A whose

atomic sets are all sets of the form clM̄ (S) for S an M-definable set over A. The starting point of the present work,

and the main result of Section 2 is:

Theorem 1. Let M be a non-valuational structure. Then M∗
∅ and M∗ have the same definable sets. Moreover, if

M ≡ N then M∗
∅ ≡ N ∗

∅ .

This result shows that to a non-valuational theory T we can associate an o-minimal theory T ∗ which can be

viewed as an invariant of T . Consequently, any of the o-minimal properties of T ∗ can reflect on the weakly

o-minimal T and vice versa. This plays a crucial role in the proof of Theorem 3 below.

Section 5 is dedicated to the study of the theory of the pair MP = (M∗
∅,M) for M non-valuational, in the

spirit of van den Dries’ study of o-minimal dense pairs (see [9]). Our main result is the following:

Theorem 2. Let M be non-valuational.

(1) If M ≡ N then MP ≡ N P .

We let TP = Th(MP ) and assume Ñ = (N ′,N ) |= TP .

(2) If Y ⊆ (N ′)n is ∅-definable in Ñ then it can be written as a boolean combination of sets defined by

formulas of the form

(1) ∃x1 · · · ∃xk(
k∧

i=1

xi ∈ P &ϕ(x1, . . . , xk, y),

and ϕ(x, y) is a formula of the o-minimal structure M′.
(3) If X ⊆ Nk is definable in Ñ over A ⊆ N then X is already definable in the weakly o-minimal N .
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(4) If U ⊆ (N ′)k is a definable open set in Ñ then U is already definable in the o-minimal structure N ′. In

particular, Ñ has an o-minimal open core.

The above results show that pairs (M′,M) as above fit into the setting of recent works by Eleftherious, Gunay-

din and Hieronymi (see for example [3]) on expansions of o-minimal structures by dense predicates.

Non-valuational structures arise naturally in the study of dense pairs of o-minimal structures. Namely, if M ≺
N are o-minimal expansions of ordered groups and M is dense in N then the structure induced on M from N
is non-valuational (weak o-minimality follows from [1] and non-valuationality is easy, see e.g., [4]). Since every

ordered group which is a reduct of a non-valuational structure, or even elementarily equivalent to one, is also such,

a question arises whether every non-valuational structure arises in this manner.

First, some terminology. A non-valuational structure M is called an o-minimal trace if there is a dense pair

M0 ≺ N such that 〈M0, <〉 = 〈M,<〉 (ı.e., the structures M0 and M have the same underlying ordered set) and

the induced structure on M in the pair (N ,M0) has the same definable sets as M (see [4] for details). In [4] we

showed that an ordered reduct of a non-valuational o-minimal trace need not be an o-minimal trace itself, and that

the class of reducts of o-minimal traces is not closed under elementary equivalence. In the present paper we show

that even after closing the class of o-minimal traces under reducts and elementary equivalence we still do not cover

all non-valautional structures:

Theorem 3. Let Q
√
2 be the expansion of (Q,+) by the predicate y <

√
2x. Then Q

√
2 is non-valuational and not

elementarily equivalent to a reduct of an o-minimal trace.

Along the way we reveal a new dividing line between two types of non-valuational structures:

• Tight structures (of which Q
√
2 is a typical example), in which M∗ is interpretable in M. These are small

(in the sense of [9]), and in that respect differ significantly from o-minimal traces.

• Non-tight structures, whose theory resembles to a much greater extent that of o-minimal traces.

This project was initiated by the M.Sc thesis of the first author at Ben Gurion University, under the supervision of

the other authors. We thank Pantelis Eleftheriou for his helpful comments.

2. PRELIMINARIES

We fix a non-valuational structure M and its definable completion M̄ . Recall that the elements of M̄ are all

(unique) realizations of definable cuts in M. These will be identified here with the definable open subsets of M
that are bounded above and downward closed. The set M̄ is equipped with ordering by inclusion. The structure

〈M,<〉 is naturally embedded into M̄ via the map a 7→ (−∞, a), and from now on we will view M as a subset

of M̄ . The topology on M̄ and M̄n are the order and the product topology, respectively. We let clM̄ (−), ∂M̄ (−)
denote the corresponding topological operations in M̄n. Unless otherwise stated, all definability below refers to

the structure M.

Recall that a partial function f : Mn → M̄ is said to be definable if the set {(x, y) ∈ Mn+1 : y < f(x)} is

definable. Equivalently, the family of cuts {y ∈ M : y < f(x)}, for x ∈ Mn, is a definable family (and can be

identified with a sort in M).

We start by collecting several useful facts concerning the relationship of M and various structures on M̄ . We

first recall the definition of a strong cell C ⊆ Mn from [10] 1 The definition will be inductive in n and for the

induction step we will also associate inductively to each strong cell C ⊆ Mn its so-called iterative convex hull C̄,

C ⊆ C̄ ⊆ M̄n. Having defined C and C̄ below, we say that an M-definable function f : C → M̄ is strongly

continuous if it extends continuously to f̄ : C̄ → M̄ , and in addition either f(C) ⊆ M or f(C) ⊆ M̄ \M . We

are now ready to state the definition:

Definition 2.1. A set C ⊆ M is a strong cell if it is either a point, in which case C̄ = C , or an open convex set, in

which case C̄ is defined as the convex hull of C in M̄ .

Inductively, If C ⊆ Mn is a strong cell (with the associated C̄ ⊆ M̄n) and f, g : C → M̄ are strongly

continuous with f̄(x) < ḡ(x) for all x ∈ C̄ (note the strong assumption here!) then Γf (C) – the graph of f on C

1We are using Wencel’s definition, in a slightly different formulation than in [6].
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– and (f, g)C := {(x, y) ∈ Mn+1 : f(x) < y < g(y)} are strong cells. In the first case the iterative convex hull

is defined to be the graph of the extension f̄ : C̄ → M̄ , and in the second case it is defined to be

{(x, y) ∈ M̄n+1 : x ∈ C̄ & f̄(x) < y < ḡ(x)}.
Remark 2.2. (1) It is easy to verify that for each strong cell C ⊆ Mn there exists a homeomorphic projection

πC : C → D ⊆ Mk onto k of the coordinates, k ≤ n, whose image is an open strong cell in Mk. In this

case dimC := k. The coordinate functions of π−1
C are strongly continuous on D.

(2) Notice that each strong cell C is a subset of Mn that is definable in M, and furthermore the various

functions f and g in the inductive definition of C are definable in M, even though they might take values

in M̄ \M . However, in general C̄ ⊆ M̄n is not definable in M in any obvious sense because it might not

be contained in finitely many sorts in M.

We can now describe Wencel’s canonical completion M̄, but we refine his definition so we have a better control

of parameters.

Definition 2.3. Given A ⊆ M , we let M̄A be the expansion of M̄ by all iterative convex hulls C̄ ⊆ M̄n, so that

C ⊆ Mn is a strong cell defined over A.

It is easy to see that the order relation < is an atomic relation in M̄A. Since 〈M,<,+〉 is divisible, [6], and

M is dense in M̄ , the group operation extends uniquely to M̄ , so it is strongly continuous, and its graph C+ is a

strong cell whose iterative convex hull is the graph of a group operation on M̄ that we still denote by +.

We now collect some of the main results from [11]

Fact 2.4. Let M be a weakly o-minimal non-valuational structure.

(1) Every A-definable set has a decomposition into finitely many strong cells, each defined over A.

(2) The structure M̄M is o-minimal.

(3) If X ⊆ M̄n is definable in M̄ then X ∩Mn is definable in M.

In [5], the language of M̄A was replaced by another one, which we find more convenient to work with.

Definition 2.5. Given A ⊆ M , and an A-definable set X ⊆ Mn in M, we associate to X a predicate symbol X̂.

We interpret X̂ in M̄n as the topological closure of X in M̄n, denoted by clM̄ (X), and let M∗
A be the expansion

of M̄ by all X̂, for X ⊆ Mn definable over A.

It was proved in [5] that the structures M̄M and and M∗
M have the same definable sets. We re-prove here a

more precise version. We first prove:

Lemma 2.6. If C ⊆ Mn is a strong cell then clM̄ (C) = clM̄ (C̄).

Proof. Since C ⊆ C̄ it suffices to show that C̄ ⊆ Ĉ for every strong cell C . We use induction on n.

If C ⊆ M the claim is obvious. Now, suppose that C̄ ⊆ Ĉ for some strong cell C and let f1, f2 < f3 be

strongly continuous such that the range of f1 is in M . We let C1 = Γ(f1)C and C2 = (f2, f3)C be the associated

strong cells, and will show that C̄1 ⊆ Ĉ1 and C̄2 ⊆ Ĉ2.

Let (c,m) ∈ C̄ × M̄ . If (c,m) ∈ C̄1 then f̄1(c) = m. But then since c ∈ C̄ and Γ(f1)C is dense in

Γ(f̄1)C̄ (because C is dense C̄) then (c,m) is a limit point of f1 and therefore (c,m) ∈ Ĉ1. If (c,m) ∈ C̄2 then

f̄2(c) < m < f̄3(c), and again since c ∈ C̄ and (f2, f3)C is dense in (f̄2, f̄3)C̄ then (c,m) is a limit point of

(f2, f3)C and therefore (c,m) ∈ Ĉ2. �

We can now prove:

Proposition 2.7. For every A ⊆ M , the (o-minimal) structures M∗
A and M̄A have the same ∅-definable sets (so

in particular the same definable sets).

Proof. We first show that every atomic set in M∗
A is ∅-definable in M̄A. So we take an A-definable X ⊆ Mk, and

consider its closure X̂ ⊆ M̄k. By Fact 2.4, X can be written as the union
⋃k

i=1 Ci of strong cells that are definable

over A in M. By Lemma 2.6, each C̄i is dense in clM̄ (Ci). It follows that clM̄ (X) =
⋃k

i=1 clM̄ (C̄i). Since each

C̄i is ∅-definable in M̄A, and the closure operation is itself definable, it follows that clM̄ (X) is ∅-definable in M̄A.
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For the other inclusion, we need to see that for every strong cell C ⊆ Mn that is definable over A, the set C̄ is

∅-definable in M∗
A. This is done by induction on n.

For 0-cells in M this is clear. If C ⊆ M is a 1-cell then C̄ is an open interval (a, b) in M̄ . The interval [a, b] is

∅-definable in M∗
A, hence so is C̄. So we now assume that we have proved the result for all strong cells in Mn and

we prove it for strong-cells in Mn+1. Let C ⊆ Mn be a strong cell defined over A. Let f : C → M be a strongly

continuous function definable in M over A, and let Y be Γf , the graph of f . Then Ȳ := {(x, f̄ (x)) : x ∈ C̄}. We

have to show that Ȳ is ∅-definable in M∗
A. As f̄ is continuous we get that Ȳ = clM̄ (Γf ) ∩ (C̄ × M̄), which is

∅-definable in M∗
A by the inductive hypothesis.

Now let f, g : C → M̄ be A-definable strongly continuous functions in M, with f < g (unlike the above, we

cannot assume here that they take values in M ). We have to show that the iterative convex hull of Y := (f, g)C is

∅-definable in M∗
A. By definition,

Ȳ = {(x, y) : x ∈ C̄, f̄(x) < y < ḡ(x)}.
Since, by induction C̄ is ∅-definable in M∗

A, it will suffice to show that f̄ (and similarly ḡ) is ∅-definable in M∗
A.

If f is the constant function −∞, then there is nothing to prove. So we assume this is not the case. By definition,

the set

F := {(x, y) : x ∈ C, y < f(x)}
is A-definable in M. For every c ∈ C̄ let

s(c) := sup{y ∈ M̄ : (c, y) ∈ clM̄ (F )}.
Since f is strongly continuous, s(c) is well defined, and by definition it coincides with f on C . Since C is dense

in C̄ and f̄ is the unique continuous extension of f to C̄ , necessarily s = f̄ , and as s is ∅-definable in M∗
A, we are

done. �

From now on we can use interchangeably the structures M∗
A and M̄A. Notice however, that the language

of M̄A depends on the specific structure M, thus for different M and N , even if elementarily equivalent, the

structures M̄M and N̄N are of different signature. One of the initial goals of this work was to obtain a uniform

signature by showing that the definable sets in M̄∅ ad M̄M are the same. We need the following observations

Proposition 2.8. (1) Every ∅-definable set in M can be written as a boolean combination of ∅-definable sets

each of which is the closure of an open ∅-definable set. In particular, this is true if M is o-minimal.

(2) The o-minimal structure M∗
M eliminates quantifiers. Moreover, it is sufficient to take as atomic relations

all clM̄ (X) with X ⊆ Mn an open definable set.

Proof. (1) We first prove the result for an arbitrary definable open set X ⊆ Mn. Note that X = cl(X) \ ∂(X)
(here ∂(X) is the boundary of X), and then that

∂(X) = cl(X) ∩ cl(Mn \ cl(X)).

The set on the right is of the desired form, so we are done.

For an arbitrary definable X ⊆ Mn, we apply strong cell decomposition, so we may assume that X is a cell.

Hence, X is either a point or the graph of a definable map f from an open cell C ⊆ Mn−k into Mk (the n − k
coordinates need not be the first ones), and each of the coordinate functions of f are strongly continuous.

Thus it is sufficient to show that the graph of each strongly continuous fi : C → M is definable in the desired

form. By the continuity of fi, such a graph can be written as the complement in C ×M of the open set:

{(x, y) ∈ C ×M : y > fi(x)} ∪ {(x, y) ∈ C ×M : y < fi(x)}.
Since each of the open sets can be defined in the required form, so is the graph of fi, and hence so is X. �

For (2), we first apply (1) to the o-minimal structure M∗
M and reduce the problem to definable sets X̂ ⊆ M̄n,

which are the closure of an open definable set U ⊆ M̄n. Since Mn is dense in M̄n, clM̄ (U) = clM̄ (U ∩Mn). By

fact 2.4, the set U ∩ M̄n is definable in M (possibly over parameters). We now apply (1). �

In the text the first part of the above proposition will be applied, mostly, when M is, in fact, o-minimal.

Lemma 2.9. Let C ⊆ Mk+n be a strong cell, a ∈ π(C), where π is the projection onto the first k-coordinate. Let

Ca = {x ∈ Mn : (a, x) ∈ C}. Then
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(1) Ca is a strong cell.

(2) (C̄)a = Ca.

Proof. It is sufficient to prove the result for k = 1 (and then proceed by induction). This is straightforward from

the definition of a strong cell. �

Theorem 2.10. For every A ⊆ M , the structures M̄M and M̄A have the same definable sets.

Proof. Absorbing A to the language we, at this stage, assume that A = ∅. We first claim that for every n ∈ N, we

have

(2) {Y ∩Mn : Y ⊆ M̄n definable in M̄∅} = {Y ∩Mn : Y ⊆ M̄n definable in M̄M}.
Since M̄∅ is a reduct of M̄M it is sufficient to prove the right-to-left inclusion. We first show: For every

∅-definable X ⊆ Mn, there exists a ∅-definable Y ⊆ M̄n in M̄∅ such that Y ∩ Mn = X. Indeed, X has

a decomposition into ∅-definable strong cells (see Fact 2.4), and for each ∅-definable strong cell Ci we have

C̄i ∩Mn = Ci, so Y =
⋃

i C̄i is the desired set.

Now, let Z ⊆ Mn be definable in M̄M . By Fact 2.4, Z ∩ Mn is definable in M, possibly over parameters.

Hence, it is of the form Xa, for some X ⊆ Mn+k which is ∅-definable in M and a ∈ Mk. By what we just shown,

there is Y ⊆ M̄k which is ∅-definable in M̄∅, such that X = Y ∩Mn+k. Hence,

Z = (Y ∩Mn+k)a = Ya ∩Mn,

and Ya is definable in M̄∅. This ends the proof of (2).

We now make the following general observation:

Lemma 2.11. Let 〈N,<〉 be a densely ordered set, with M ⊆ N a dense subset. Assume that N1, N2 are two

o-minimal expansions of 〈N,<〉 with the property that for every n ∈ N, we have

(3) {Y ∩Mn : Y ⊆ M̄n definable in N1} = {Y ∩Mn : Y ⊆ M̄n definable in N2}.
Then N1 and N2 have the same definable sets.

Proof. It easily follows from the assumptions that we have

(4) {Y ∩Mn : Y ⊆ M̄n open definable in N1} = {Y ∩Mn : Y ⊆ M̄n open definable in N2}.
By Proposition 2.8 (1), it is enough to know that for every open U ⊆ Nn, the set cl(U) is definable in N1 if and

only if it is definable in N2. However, since M is dense in N , it is enough to consider sets of the form cl(U ∩Mn).
By (4), both collections of sets of the form U ∩Mn, where U is definable in either N1 or in N2, are the same.. �

In order to prove Theorem 2.10, we apply Lemma 2.11 to the structures M̄∅ and M̄M using (2).

�

3. THE STRUCTURE MA AND ELEMENTARY EXTENSIONS

Again, we let M be a fixed non-valuational structure . From now on we shall work with M∗
A rather than M̄A.

3.1. The canonical completion and elementary extensions. Let N be an elementary extension of M. Every

definable cut C in M has a natural realization C(N ) in N and so M̄ can be embedded into N̄ . Under this

embedding, if n ∈ N̄ is the supremum of a cut in N which is definable over some A ⊆ M then n is already in M̄ .

We have:

N ι
//

g

N̄

M ι
// M̄

OO

Where ι is the natural embedding of (M,<) in (M̄,<). We now fix an arbitrary A ⊆ M and consider the

structures M∗
A and N ∗

A. Both structures are in the language L∗
A, and we claim that M∗

A is a substructure of N ∗
A:

Indeed, first note that for a fixed x ∈ M̄n, and ǫ > 0 in M , the set B(x, ǫ) ∩Mn = {y ∈ Mn : |x − y| < ǫ} is
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definable in M and moreover, it is uniformly definable as ǫ varies in M>0 (x still fixed). It easily follows that for

x ∈ M̄n, being in the closure of a definable X ⊆ Mn is a first order property. Namely, for x ∈ M̄n,

x ∈ clM̄ (X(M)) ⇔ x ∈ clN̄ (X(N)).

Said differently, X̂(N) ∩ M̄n = X̂(M), so M∗
A is a substructure of N ∗

A.

Our goal is to show that M∗
A is in fact an elementary substructure of N ∗

A.We do that in several steps.

Lemma 3.1. Assume that A ⊆ M and that M is |A|+-saturated. If Y ⊆ M̄n is ∅-definable in M∗
A then Y ∩Mn

is A-definable in M.

Proof. By fact 2.4, Y ∩Mn is definable in M. By the saturation assumption it is enough to show that any auto-

morphism of M which fixes A point-wise leaves Y ∩Mn invariant. Let α : M → M be such an automorphism.

We claim that α has a (unique) extension to a bijection ᾱ : M̄ → M̄ which is an automorphism of M∗
A. Because

α is an automorphism of M it sends definable cuts to definable cuts so extends naturally to ᾱ : M̄ → M̄ . The map

ᾱ is an order preserving bijection so in particular continuous on M̄ . To see that ᾱ is an automorphism of M∗
A, let

X ⊆ Mn be A-definable and consider its closure X̂ . Since α(X) = X, continuity implies that ᾱ(X̂) = X̂ , thus

ᾱ is an automorphism of M∗
A.

Since Y was ∅-definable in M∗
A it is left invariant under ᾱ, and because ᾱ(M) = M , we have

α(Y ∩Mn) = ᾱ(Y ∩Mn) = ᾱ(Y ) ∩ ᾱ(Mn) = Y ∩Mn.

�

Lemma 3.2. For A ⊆ M arbitrary, if M ≺ N then M∗
A ≺ N ∗

A.

Proof. First note that we may assume that N is sufficiently saturated. Indeed, we may consider N ′ ≻ N which is

saturated enough. The above would then imply that M∗
A ≺ (N ′

A)
∗ and N ∗

A ≺ (N ′
A)

∗, from which it follows that

M∗
A ≺ N ∗

A.

By The Tarski-Vaught Criterion, it is enough to prove, for every nonempty Y ⊆ N̄ which is definable in N ∗
A

over M̄ , that Y ∩ M̄ 6= ∅.

Since N ∗
A is an o-minimal expansion of a group, Y contains some element b ∈ dclN ∗

A
(M̄ ). So, there exists

a finite tuple a = (a1, . . . , ar) from M̄ , such that b ∈ dclN ∗
A
(a). Each ai realizes a cut in M , definable in M

over some finitely many parameters. Thus there is a finite F ⊆ M such that each ai realizes a cut definable over

F . If we now let A′ = A ∪ F ⊆ M ⊆ N then clearly every element in A′ is ∅-definable in N ∗
A′ , hence b is in

dclN ∗
A′
(∅) so the set (−∞, b) is ∅-definable in N ∗

A′ . Since N is sufficiently saturated it follows from Lemma 3.1

that (−∞, b) ∩N is A′-definable in N .

Since M ≺ N and A′ ⊆ M it follows, as we already noted above, that b ∈ M̄ , so X ∩ M̄ 6= ∅. Thus

M∗
A ≺ N ∗

A. �

Note: It only makes sense to compare M∗
A and N ∗

A for A ⊆ M , since otherwise the two structures do not have a

common language.

Finally, we can now prove:

Theorem 3.3. For A ⊆ M (with no saturation assumption), assume that X ⊆ M̄n is ∅-definable in the structure

M∗
A. Then X ∩ Mn is A-definable in M. In particular, if f : M̄n → M̄ is ∅-definable in M∗

A then f ↾ Mn :
Mn → M̄ is A-definable in M.

Proof. We consider an elementary extension N of M that is |A|+-saturated. By Lemma 3.2, we have M∗
A ≺ N ∗

A

and by Lemma 3.1, the set Y = X(N̄ ) ∩ Nn is definable in N over A. Since M ≺ N we can conclude that

Y ∩Mn = X(N̄ ) ∩Mn is also definable over A in M. It is left to see that this last set equals X ∩Mn. Because

M∗
A ≺ N ∗

A we have X(N̄) ∩ M̄n = X, and therefore

Y ∩Mn = X(N̄) ∩Mn = X ∩Mn.

For the second clause, just note that the set {x ∈ Mn : x < f(x)} is the intersection of a ∅-definable subset of

M̄n with Mn. �

We now return to Proposition 2.8 and Theorem 2.10 and prove finer results:
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Proposition 3.4. For any A ⊆ M ,

(1) The structure M∗
A eliminates quantifiers. In fact every ∅-definable set is a boolean combination of sets of

the form clM̄ (X) for X ⊆ Mn open and definable in M over A.

(2) If X ⊆ M̄n is ∅-definable in M∗
A then it is A-definable in M∗

∅.

Proof. (1) We may repeat the short argument in the proof of 2.8 with the additional data given by Theorem 3.3,

that whenever X ⊆ M̄n is ∅-definable in M∗
A, the set X ∩ Mn is A-definable in M. For (2), assume that Z is

∅-definable in M∗
A. By (1), Z is a boolean combination of atomic sets (with no extra parameters), so it is sufficient

to prove that each atomic such set Z is A-definable in M∗
∅. By the first paragraph of the proof of Proposition 2.7

Z =
⋃k

i=1 clM̄ (C̄i) for some A-definable strong cells Ci ⊆ Mn. So Ci = (Di)a for some ∅-definable set Di nd

a ⊆ A. By strong cell decomposition, each Di is itself a finite union of ∅-definable strong cells, so we may write

each Ci as a union of the form
⋃

j(Di,j)a, where each Di,j is a ∅-definable strong cell.

By Lemma 2.9 we know that (Di,j)a = (Di,j)a for every j. The right-hand side of this equation is A-definable

in M∗
∅, and hence so is its M̄ -closure. Therefore the closure of each Ci is a finite union of sets that are A-definable

in M∗
∅. The conclusion follows. �

Since any two elementarily equivalent structures have a common elementary extension, we can also conclude

from Lemma 3.2:

Corollary 3.5. If M is non-valuational and N ≡ M then M̄∅ ≡ N̄∅ (both are L̄∅-structures), and M∗
∅ ≡ N ∗

∅
(as L∗

∅-structures)

Finally, we shall be using the following technical lemma:

Lemma 3.6. For every A ⊆ M , dclM∗
∅
(A) ∩M = dclM(A).

Proof. Assume that a ∈ dclM∗
∅
(A)∩M . Then it follows that a ∈ dclM∗

A
(∅) (since each element of A is ∅-definable

in M∗
A). Hence, the interval (−∞, a) ⊆ M̄ is ∅-definable in M∗

A, so by Theorem 3.3, the intersection of (−∞, a)
with M is A-definable in M. Because a ∈ M , we have a ∈ dclM(A).

For the converse, assume that a ∈ dclM(A) (so in particular in M ). Thus, the interval (−∞, a) is definable in

M over A and its iterative convex hull, the interval (∞, a) ⊆ M̄ , is ∅-definable in MA. By Proposition 2.8(2),

this interval is A-definable in M∗
∅ so a ∈ dclM∗(A) ∩M . �

4. TIGHT WEAKLY O-MINIMAL STRUCTURES

As was pointed out before, the set M̄ can be viewed as a union of sorts in M, where each sort corresponds to a

∅-definable family of cuts in M. In general, there might be infinitely many such sorts, but in some cases there are

only finitely many such sorts.

4.1. Definition and basic properties.

Definition 4.1. A non-valuational structure M is tight if there are finitely many ∅-definable families of cuts in M
such that every definable cut belongs to one of them.

Clearly, if M is an o-minimal structure then it is (trivially) non-valuational and tight, since the family of defin-

able cuts is just all intervals of the form (−∞, a), as a varies in M .

It immediately follows that if M ≡ N then M is tight if and only if N is tight. Thus, we may use the term

“tight” for T as well.

Proposition 4.2. The structure M is tight if and only if there are finitely many ∅-definable functions fi : M
ni →

M̄ , i = 1, . . . , k, such that M̄ ⊆ ⋃k
i=1 Im(fi).

In particular, M is tight then the structure M∗ is interpretable in M without parameters.

Proof. The first clause is easy to verify. For the second clause, note first that the universe of M̄ is a quotient

of some Mn by a definable set, and furthermore the embedding of M in this quotient (i.e. the family of cuts

{Cx : x ∈ M}, where Cx = {y < x}) is definable in M. It is easy to see that the ordering on M̄ is definable in

M and hence clM̄ (X) is definable in M for every M-definable X ⊆ Mn. �

Remark 4.3. The above proof shows, in fact, that the pair (M∗,M) is bi-interpretable with M, i.e., not only is

M∗ interpretable in M, but so is the natural embedding of M in M̄ .
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4.2. An example of a tight structure. We shall now see that there are examples of tight structures which are not

o-minimal.

Let Qvs = 〈Q, <,+, 1, {λq}q∈Q〉 denote the group of rational numbers, viewed as an ordered vector space over

itself, with a function symbol for every rational scalar. Let Q
√
2 be the expansion of Qvs by the relation

P
√

2 = {(x, y) ∈ Q2 : y <
√
2x}.

We denote the langauge by L√
2. (In [4, Section 3] a similar expansion of Qvs by the predicate Pπ was investigated.)

The idea is to eventually identify P
√

2 with a map x 7→
√
2x from the structure Q

√
2 into its canonical comple-

tion. Our goal is to show that Th(Q
√
2) is axiomatised by the following theory T :

(1) The ordered Q-vector space axioms.

(2) An axiom expressing the fact that P
√

2 is “linear”:

(∀x1, y1, x2, y2) (((x1, y1) ∈ P
√

2 ∧ (x2, y2) ∈ P
√

2) → (x1 + x2, y1 + y2) ∈ P
√

2).

(3) (Ensuring that we define the positive
√
2): (∃x, y)((x, y) ∈ P

√

2 ∧ x > 0 ∧ y > 0)
(4) For all r ∈ Q, such that r <

√
2, we have ∀x (x > 0 → (x, rx) ∈ P

√

2), and for all r ∈ Q such that

r >
√
2, we have ∀x (x > 0 → (x, rx) /∈ P

√

2).
(5) For all x 6= 0, the set

{y : (x, y) ∈ P
√

2}
is closed downwards, and has no supremum. Furthermore,

Inf {y2 − y1 : (x, y1) ∈ P
√

2&(x, y2) /∈ P
√

2} = 0.

(6) An axiom expressing the fact that the composition of x 7→
√
2x with itself yields the map x 7→ 2x:

∀(x, y > 0) ([(∃z > 0)P
√

2(x, z) ∧ P
√

2(z, y)] ⇐⇒ y < 2x) .

(7) The quantifier-free theory of Q
√
2.

Clearly, Q
√
2 is a model of T .

For simplicity we write F = Q(
√
2). Before we prove quantifier elimination we note that if M is a model of T

then we may consider the associated F -vector space V = F ⊗QM . If we identify M with the Q-subspace 1⊗M ,

then each element of V can be written uniquely as x+
√
2y for x, y ∈ M . We can now endow V with an ordering

by declaring x +
√
2y > 0 when (y,−x) ∈ P

√

2. Indeed, the above axioms imply that this is a linear ordering of

the vector space V , compatible with the ordering of F .

The definition of the ordering and Axiom (3) allows us to conclude:

Claim 4.4. (1) For x, y ∈ M , we have (x, y) ∈ P
√

2 ⇔ if and only if y <
√
2x in V .

(2) M is dense in V .

We can now endow V with an L√
2-structure, by interpreting P

√

2 as we did over Q. Clause (1) above then

implies that M is a substructure of V as an L√
2-structures.

The following lemma is similar to [4, Proposition 3.3]:

Lemma 4.5. The theory T is complete and has quantifier elimination.

Proof. Let Q1,Q2 |= T be κ-saturated models of the same cardinality. In order to prove quantifier elimination it

suffices to prove (see for example [7, Corollary 3.1.6]):

If A is a substructure of Q1 and Q2 of cardinality smaller than κ, then for every a1 ∈ Q1 there is a2 ∈ Q2 such

that a1 and a2 have the same quantifier-free type over A.

As above, consider the ordered F -vector spaces Gi := F ⊗Q Qi. Since Qi is dense in Gi, and Gi is o-minimal,

the saturation of Qi implies that Gi is also κ-saturated. Let Bi be the F -span of A inside Gi. Then B1 and B2 are

isomorphic-over-A ordered vector spaces (both isomorphic to A +
√
2A, with the same ordering). Thus we may

write B = B1 = B2

Let p(x) := tpG1
(a1/B). We may assume that a1 /∈ A and hence a1 /∈ B (note that B ∩ Q1 = A). By the

completeness of the theory of ordered F -vector spaces and saturation, we can find a2 ∈ G2 such that a2 |= p(x).
In fact, because G2 is κ-saturated and p is non-algebraic there is more than one such a2, so since Q2 is dense in

G2, we can find such an a2 inside Q2.
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Finally, since each Qi is a substructure of Gi, and a1, a2 |= p, it follows that the quantifier-free types of a1 and

a2 over A, in the structures Q1, Q2, respectively, are the same. This completes the proof of quantifier elimination.

To see that T is complete we just notice that every model of T contains the structure Q
√
2, which is itself a

model of T . �

Corollary 4.6. The theory T is a tight weakly o-minimal non-valuational theory and T ∗ is the theory of ordered

Q
√
2-ordered vector spaces (in the language L√

2).

Proof. The atomic subsets of Q, the universe of any Q |= T , are rays with or without endpoints. By quantifier elim-

ination the definable subsets of Q are in the boolean algebra generated by those, proving the weak o-minimality.

The same argument also shows that the only definable cuts are non-valuational, because so are the atomic cuts.

By the proof of lemma 4.5 and the preceding discussion, each model Q of T is a dense substructure of the

o-minimal structure V = F ⊗Q Q. It is easy to verify that the intersection with Q of every ray (−∞, a) in V is

definable in Q, and hence every element of V realizes a definable cut in Q. Conversely, by quantifier elimination,

the definable cuts in any model Q of T are of the form x1 + r
√
2x2 for r ∈ Q and x1, x2 ∈ Q, so they are realized

in V . It follows that V is the canonical completion of Q, and its theory, in the language L√
2, is that of an ordered

F -vector space.

To see that T is tight we note that each definable cut in Q can also be written as x1 +
√
2x2, for x1, x2 ∈ Q,

and that this is a definable family in T . �

Note that the above construction worked because of the algebraicity of
√
2. If we consider Qt, the expansion of

Qvs by x 7→ tx where t realizes a cut defining a real transcendental number we would not obtain a tight structure.

See the example Qπ
vs in [4].

We now prove:

Theorem 4.7. The structure Q
√
2 is not elementarily equivalent to a reduct of an o-minimal trace.

Proof. Assume towards a contradiction that there is a dense pair (R,Q) of o-minimal expansions of groups such

that Q
√
2 is elementarily equivalent to a reduct of the trace which this pair induces on a structure Q. By that we

mean that there is some expansion Q̂ of 〈Q, <,+〉 satisfying T , such that every definable set in Q̂ is definable in

the dense pair (R,Q). While some of these sets are already definable in the o-minimal structure Q others may be

the intersection with Qn of subsets of Rn that are definable in R over parameters which are not in Q. The order

relation < and the group operation + are assumed to be definable in Q.

Let us consider the predicate P
√

2(Q̂). It is a definable set in (R,Q), hence by [9, Theorem2], there is a definable

Y√
2 ⊆ R2 in the o-minimal structure R such that Y√

2 ∩ Q = P√

2(Q̂). Because Q is dense in R (the universe of

the o-minimal structure R), it easily follows that for every x ∈ Q, there is y(x) ∈ R such that

y(x) = sup{y ∈ Q : (x, y) ∈ Y√
2}.

By taking the closure of the graph of y(x) we obtain an R-definable function, which we will denote by λ√
2 :

R → R, which gives y(x) for every x ∈ Q. It is not hard to see that λ√
2 is a definable automorphism of 〈R,+〉

satisfying λ√
2 ◦ λ√

2(x) = 2x.

We now consider two cases. If the function λ√
2 is ∅-definable in R then it comes from a definable function in

the o-minimal structure Q, and in particular, for every x ∈ Q, the set {y ∈ Q : (x, y) ∈ P
√

2} has a supremum in

Q. This contradicts the axioms of T .

On the other hand, if λ√
2 is not ∅-definable then by [8], one can define in the o-minimal structure R a multi-

plication function · on R2, making 〈R,<,+, ·〉 a real closed field, call it K . A-priori the multiplication function

might not be ∅-definable but in that case there is a ∅-definable family of such multiplications all of which expand

〈R,+〉 to a real closed field. By definable choice we may find one such multiplication function that is ∅-definable.

Since λ√
2 is an R-definable automorphism of the additive group of K it must be of the form x 7→ c · x for

some scalar c ∈ K . Because λ√
2 ◦ λ√

2(x) = 2x, and because λ√
2 takes positive values on x > 0, the scalar c is

necessarily
√
2 (in the sense of K). In particular, λ√

2 is ∅-definable in R, yielding a contradiction as before. �
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5. THE THEORY OF (M∗,M)

From now on, given a complete non-valuational theory T we will denote by T ∗ the theory of the associated

o-minimal completion, in the language L∗
∅ (by Corollary 3.5, the theory T indeed determines T ∗). We write M̄

and M∗, for the structure M̄∅, and M∗
∅, respectively.

While M and M∗
∅ initially have different signatures it will be convenient to treat them in the same langauge.

We thus modify the language of M.

Lemma 5.1. Let M be a weakly o-minimal non-valuational structure. Let M0 be the reduct of M generated by

all ∅-definable closed sets. Then every ∅-definable set in M is ∅-definable in M0. In particular, M and M0 have

the same ∅-definable sets.

Proof. This follows from the proof of Proposition 2.8. �

So from now on we will assume that M is given in the signature consisting of a function symbol for +, the

ordering <, and a predicate for each ∅-definable closed set in Mn. We let L be the associated language, so we may

use the same language for M∗. By Proposition 4.5, the structure M∗ eliminates quantifiers.

We let LP = L ∪ {P}, where P is a unary predicate. We consider the LP -structure

MP = 〈M∗,M〉,
where the interpretation of P is M . As we will see, the theory of MP depends only on T . We propose the

following axiomatization for this theory:

Let T d be the LP -language axiomatized as follows (we write (M′,M) for models of T d),

(1) M |= T , M′ |= T ∗.

(2) M dense in M ′.
(3) Every definable cut in M has a supremum in M ′.
(4) (when T is tight) Every element of M′ realizes a definable cut in M.

Our goal is to prove:

Theorem 5.2. The theory T d is complete.

5.1. The tight case. Assume that T is tight. As we saw in Proposition 4.2, the structure M∗ is interpretable in

M without parameters. Using axiom (4) above we immediately conclude:

Lemma 5.3. Assume that T is tight.

(1) If (M′,M) |= T d then necessarily M′ = M∗.

(2) For all M,N |= T , we have (N ∗,N ) ≡ (M∗,M).

5.2. The general case.

Theorem 5.4. If Md = (M′,M) and N d = (N ′,N ) are models of T d, then Md ≡ N d.

Proof. We may assume that T is non-tight. We may assume that Md and N d are κ-saturated for sufficiently large

κ.

Notice that every M-definable cut is realized in M′ exactly once, hence there is a natural embedding of M∗ into

M′, and the same holds for N ′ and N . However, by saturation, unless M is tight it is not the case that M′ equals

M∗, since it realizes cuts which are not definable as well. Our goal is to show that there are (B,A) ≺ (M′,M)
and (D,C) ≺ (N ′,N ) which are isomorphic.

Notice first that both M and M ′ \M are dense in M ′, for i = 1, 2. Indeed, this follows from the fact that T is

non-valuational, so if c ∈ M̄ \M is any element then c+M ⊆ M̄ is dense in M̄ , so also in M ′.
Since M∗ |= T ∗ and M∗ eliminates quantifiers, the pair (M′,M∗) is an elementary dense pair of o-minimal

structures, so we shall apply to it the theory of dense pairs as in [9].

We first need:

Lemma 5.5. Let (M′,M) |= T d. Let M0 ≺ M. Then dclM∗
0
(M0) = M̄0. Moreover, dclM′(M0) = M̄0.

Proof. It will suffice to prove the first part of the lemma as the second part follows from the fact that M∗
0 ≺ M′.

First we show the right-to-left inclusion. For that we need:
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Claim 5.6. Assume that f : Mn
0 → M̄0 is a ∅-definable function in M0. Then there are in M0 finitely many

∅-definable strong cells of the form C1, . . . , Ck ⊆ Mn
0 , with Mn

0 ⊆ ⋃
i C̄i, and in M∗

0 there are finitely many

∅-definable functions f̄i : C̄i → M̄0, such that for all x ∈ Ci, f̄i(x) = f(x).

Proof. We decompose Mn
0 into ∅-definable strong cells, C1, . . . , Ck, on each of which f is strongly continuous.

For each i, the graph of f̄ ↾ C̄i is the iterative convex hull of Γ(f ↾ Ci), so it is ∅-definable in M∗
0. �

Assume now that b ∈ M̄0, then by definition of the completion, the cut Y = {x ∈ M0 : x < b} is definable

in M0, over a tuple of parameters a. We may assume that Y = Ya for a ∅-definable family of sets {Yt : t ∈ T}
and ∅-definable set T ⊆ Mm

0 , and that we have b = sup Ya. It follows that there is in M0 a ∅-definable function

f : T → M̄0, such that f(a) = b.
By the above claim, we have T =

⋃
Ci a union of ∅-definable strong cells in M, and there are fi : C̄i → M̄0

all ∅-definable in M∗
0, , such that

(5)

k∧

i=1

∀x ∈ Ci f̄(x) = f(x).

In particular, there is i ∈ {1, . . . , k} such that a ∈ Ci and b = f̄i(a) is in dclM∗
0
(M0). Thus, M̄0 ⊆ dclM∗

0
(M0).

For the converse, we assume that g(a) = b for some ∅-definable function g in M∗
0 and a ∈ Mm

0 . We want to

show that b ∈ M̄0, namely that b is the supremum of a definable cut in the structure M0.

The function g is ∅-definable in the o-minimal structure M∗
0, so by Theorem 3.3, the set

Y = {(x, y) ∈ Mn+1
0 : y < g(x)}

is ∅-definable in M0 and we have

(6) ∀x ∈ Mn
0 g(x) = sup(Yx).

It follows that b = g(a) = supYa, with Y ⊆ Mn+1
0 a ∅-definable set in M0. Hence, b ∈ M̄0. �

We will also need:

Claim 5.7. For A ⊆ M and a ∈ M , the M-type of a over A is determined by the cut of a in dclM′(A).

Proof. Assume that a and b in M realize the same cut over dclM′(A). To see that a and b realize the same M-type

over A, it is sufficient, by the weak o-minimality of M, to show, for every cut C ⊆ M definable in M over A, that

a ∈ C iff b ∈ C . Using our assumptions, it is enough to prove that the supremum of C exists in M ′ and belongs

to dclM′(A).
If C has a supremum s in M then s ∈ dclM(A) ∩M , and therefore (Lemma 3.6) s ∈ dclM∗(A). Since M∗ is

an elementary substructure of M′ we have s ∈ dclM′(A).
If C has no supremum in M then, by definition, its supremum is realized in M̄ . As C is definable in M over A,

its closure in M̄ is ∅-definable in M∗
A, so by 4.5(2) it is definable in M∗

∅ over A. But then supC ∈ dclM∗(A) =
dclM′(A). This finishes the proof. �

The rest of the proof follows closely the arguments from [9]. In order to proceed we borrow the following

terminology:

Definition 5.8. For B ⊆ M ′ and A = B ∩M , we say that (B,A) is free if dimM′(B′/A) = dimM′(B′/M) for

every finite B′ ⊆ B. Namely, every subset of B which is M′-independent over A remains independent over M .

We make the same definitions for subsets of N ′ and N .

We consider all (B,A) ⊆ (M ′,M) (and similarly (D,C) in (N ′, N)) which satisfy:

(i) B ∩M = A.

(ii) dclM′(B) = B.

(iii) (B,A) is free.

We now begin the construction of the intended isomorphism. By saturation, there is M0 ≺ M, of cardinality

smaller than κ that is isomorphic to some N0 ≺ N .

If we let A0 := M0 B0 := Ā0 and C0 =:= N̄0, D0 := C̄0. Then (i) holds. By Lemma 5.5 dimM′(B0/A0) = 0,

so (B0, A0) is (trivially) free. Also, by this lemma, B0 is definably closed in M′, so (B0, A0) satisfy (i),(ii),(iii).

Similarly, (D0, C0) satisfies (i),(ii),(iii).



12 E. BAR-YEHUDA, A. HASSON, AND Y. PETERZIL

Our goal is to use back-and-forth and Tarski-Vaught in order to build isomorphic elementary substructures of

(M′,M) and (N ′,N ). Towards that goal we need to prove the following result:

Lemma 5.9. Assume that (B,A) ⊆ (M′,M) and (D,C) ⊆ (N ′,N ) satisfy (i),(ii),(iii), and isomorphic (namely,

there is an L-isomorphism α : B → D sending A onto C), with |A| < κ. Then, for every b ∈ M ′, there are

B′ ⊆ M ′, A′ ⊆ M with b ∈ B′, and there are D′ ⊆ N ′, C ′ ⊆ N , such that (B′, A′) , (D′, C ′) satisfy (i),(ii),(iii),

and there is an isomorphism α′ : (B′, A′) → (D′, C ′) extending α.

(We also have the analogous result for (D,C) and d ∈ N ′.)

Proof. We divide the argument into several cases:

Case I. b ∈ M .

First, we find d ∈ N such that α(tpM′(b/B)) = tpN ′(d/D) (so by Lemma 5.7, also α(tpM(b/A)) =
tpN (d/C)). Indeed, this is possible because N is dense in N ′ and N ′ is κ-saturated. The function α then ex-

tends naturally to an isomorphism α′ of the o-minimal structures B′ := dclM′(Bb) and D′ := dclN ′(Dd). We let

A′ = B′ ∩ M and C ′ = D′ ∩ N . In order to see that α′ is an isomorphism of (B′, A′) and (D′, C ′) it is left to

verify is that for every a ∈ B′,

(7) a ∈ M ⇔ α′(a) ∈ N.

So, we take a ∈ dclM′(Bb) and prove (7).

Assume first that a ∈ dclM′(Ab). By Lemma 5.5, a ∈ M̄ , so we have a ∈ dclM∗(Bb). Hence, there exists

a ∅-definable function F of (n + 1)-variables in M∗, and e ∈ (M̄ )n, with F (b, e) = a. The function F is

definable in M∗, and, by 3.3, its restriction to Mn+1 is ∅-definable in M (as a function into M̄ ). Thus, we can

definably in M partition its domain into ∅-definable strong cells on each of which F takes either values in M or

in M̄ \ M . This partition is part of the weakly o-minimal theory T , and thus holds in both M and N . Since

α(tpM(b/A)) = tpN (d/C) it follows that a = F (b, e) ∈ M if and only if α′(a) = F (d, α(e)) ∈ N .

Assume now that a ∈ dclM′(Bb) \ dclM′(Ab) (so α′(a) ∈ dclN ′(Dd) \ dclN ′(Cd)). We claim that a /∈ M
and α′(a) /∈ N .

Indeed, assume towards a contradiction that a ∈ M , and let Y ⊆ B be a minimal finite set which is dclM′-

independent over Ab such that a ∈ dclM′(Y Ab). Because a /∈ dclM′(Ab) the set Y is nonempty so fix y0 ∈ Y .

We have a ∈ dclM′(Y ′y0Ab), with Y ′ = Y \ {y0}, so by exchange (and minimality of Y ′), y0 ∈ dclM′(Y ′Aba).
Because a, b ∈ M and A ⊆ M , it follows that Y is not independent over M , even though it is independent over

A. This contradicts the fact that (B,A) was free, so a /∈ M . The same argument shows that α′(a) /∈ N .

Thus, we showed that α′ : (B′, A′) → (D′, C ′) is an isomorphism. It is clear, that the pairs satisfy (i) and

(ii), so we are left to see that they are free. So, we take Y ⊆ B′ independent over A′ and claim that it remains

independent over M . Indeed, because b ∈ A′ (since b ∈ M ), it must be the case that Y ⊆ B, and the result follows

immediately from the freeness of (B,A) (because A ⊆ A′). This ends Case I.

Case II. b ∈ dclM′(BM).

In this case, there is m̄ = (m1, . . . ,mk) ∈ Mk such that b ∈ dclM′(Bm̄). We first apply Case I to each mi,

and thus may assume that m̄ ⊆ B, and in particular may assume that b is already in B.

Case III. b /∈ dclM′(BM)

Notice first that in this case M (and hence also N ) is not tight (since in the tight case M ′ = M̄ = dclM′(M)).
We let B′ = dclM′(Bb) and A′ = B′ ∩M . Our goal is to show that (B′, A′) satisfies (i),(ii),(iii), so we need to

show that it is free.

We first claim that A′ = A. Indeed, if a ∈ dclM′(Bb) ∩M then either a ∈ dclM′(B), so a ∈ A, or if not then

by exchange, b ∈ dclM′(Ba), contradicting the assumption on b.
Assume now that Y ⊆ B′ is independent over A′ = A. If Y ⊆ B then Y is independent over M , and otherwise,

we may assume that it is of the form Y ′b with Y ′ ⊆ B. By freeness of (B,A) we have Y ′ independent over M
and by assumption on b we may conclude that Y ′b independent over M . Thus, (B′, A′) is indeed free.
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Next, we claim that we may find in N ′ an element d such that α(tpM′(b/B)) = tpN ′(d/D) and in addition

d /∈ dclN ′ (DN). It is here that we use the fact that N is non-tight. We prove:

Lemma 5.10. Let D ⊆ N ′ be of cardinality smaller than κ. Then for every M′-type p(x) over B, there is a

realization of α(p) which is not in dclN ′(DN).

Proof. By the saturation of (N ′, N) it is sufficient to prove that X * dclN ′(DN) for every infinite set X ⊆ N ′

that is definable in N ′ over D. For that it is clearly sufficient to show that X * dclN ′(DN̄). By applying the

theory of dense pairs to the pair of o-minimal structures (N ′, N̄ ), we may conclude from [9, Lemma 4.1], that

no interval in N ′ is in the image of N̄n under an N ′-definable map. This is easily seen to imply the result we

want. �

This ends the proof of Lemma 5.9. �

Going back to our proof of completeness of T d, we find d ∈ N ′ with α(tpM′(b/B)) = tpN ′(d/D) and with

d /∈ dclN ′ DN . We let D′ = dclN ′(Dd) and C ′ = D′ ∩ N ′ (which equals C), so as before (D′, C ′) is free. It

is left to see that the natural extension of α to α′ : B′ → D′ preserves M ∩ B′. However, B′ ∩ M = A′ so by

applying what we already know to both α and α−1 we conclude that x ∈ M ′ ⇔ α′(x) ∈ N ′. This ends the proof

of Theorem 5.4. �

Notice that the proof above showed that any isomorphism of weakly o-minimal structures M1 ≺ M and M2 ≺
N can be extended to an isomorphism of elementary substructures (B,A) ≺ (M ′,M) and (D,C) ≺ (N ′, N).
Lemma 5.9 also implies:

Lemma 5.11. Assume that (M′,M), (N ′,N ) |= T d and (B,A) ⊆ (M′,M), (D,C) ⊆ (N ′,N ) satisfy

(i),(ii),(iii). If α : B → D is an L-isomorphism sending A to C and α(b) = d for some b ∈ Bn then

α(tp(M′,M)(b/∅)) = tp(N ′,N )(d/∅).
We can now prove analogues of several theorems from [9]. The proofs are very similar to the original ones.

Theorem 5.12. LetMd = (M′,M) be a model of T d.

(1) In Md, every ∅-definable subset of (M ′)n is a boolean combination of sets defined by formulas of the form

(8) ∃x1 · · · ∃xk(
k∧

i=1

xi ∈ P &ϕ(x1, . . . , xk, y),

where |y| = n and ϕ(x, y) is an L formula.

(2) Let B ⊆ M ′ be such that (B,B ∩ M) is free. Then every subset of Mk that is definable in Md over

B ⊆ M ′ is of the form Y ∩Mk for some Y ⊆ (M ′)k that is definable in M′ over B.

(3) Every subset of Mk that is definable in Md over A0 ⊆ M is definable in the structure M over A0.

(4) Every subset of Mn that is definable in (M∗,M) (here M∗ is the completion of M) is definable in the

structure M.

Proof. Without loss of generality, (M′,M) is sufficiently saturated.

(1) By standard model theoretic considerations it is enough to prove the following: For any b, d ∈ (M ′)k,

assume that b satisfies a formula of the form (8) if and only if d does. Then b and d have the same type in M∗ over

∅.

Let r = dimM′(b/M). We can find a ⊆ M finite such that dimM′(b/a) = r. It follows that if we let

B = dclM′(ab) and A = dclM′(a) then (B,A) is free and A = B ∩M .

We consider the L-type of (b, a) over ∅. Because b and d realize the same formulas of the form (8), and because

of saturation we can find c ∈ M such that tpM′(b, a/∅) = tpM′(d, c/∅). The pair (D,C), with D = dclM′(cd)
and C = dclM′(c) is free with C = D ∩M . Just like in the proof of Lemma 5.9, the natural L-isomorphism of B
and D (sending (b, a) to (d, c)) sends A to C .

By Lemma 5.11, the LP -types of b and d in (M′,M) are the same. Thus we proved (1).

(2) By standard model theoretic arguments it is sufficient to prove: If b1, b2 ∈ Mk satisfy the same M′-type

over B then they satisfy the same LP -type over B. For that, let A = B ∩M . It is sufficient to show that there are

(B1, A1), (B2, A2) ≺ (M′,M), with (B,A) ⊆ (Bi, Ai) and bi ∈ Bi for i = 1, 2, and there is an L-isomorphism

between (B1, A1) and (B2, A2), which fixes B point-wise, and sending b1 to b2.
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We are now in the setting of Case I of the proof of Lemma 5.9, with our b1, b2 replacing b, d there. Thus, we

may first find two free pairs (B′
1, A

′
1) and (B′

2, A
′
2) with B ⊆ B′

i and bi ∈ B′
i, i = 1, 2, and an isomorphism

α : (B′
1, A

′
1) → (B′

2, A
′
2) extending the identity map, with α(b1) = b2. We now proceed exactly as in the proof

of Theorem 5.4 and obtain the desired (B1, A1), (B2, A2) ≺ (M′,M). Thus, b1 and b2 realize the same LP type

over B and we may conclude (1).

For (3), let X ⊆ Mk be definable in (M′,M) over A0 ⊆ M . Notice that the mere definability of X in M
follows immediately from (2) but we want to show that X is definable over the same A0. For that, it is sufficient

to prove that any a1, a2 ∈ M which realize the same M-type over A0 realize the same LP -type over A0.

To do that, we first find a small model M1 ≺ M containing A0 a1, a2, and an automorphism α of M1 over

A0, sending a1 to a2. As we commented previously, we may the extend α to an isomorphism of two structures

(B,A), (D,C) ≺ (M′,M). This is clearly sufficient.

To see (4), we note that every element of M∗ is in dclM∗(N) and hence every definable subset of M̄k in M∗

can be defined over M . We now apply (3). �

Note that (3) above fails if we omit the requirement that M0 ⊆ M , since in the non-tight case, in general, M′

will realize cuts which are not definable in M and thus their intersection with M is not definable in M.

We also point out:

Lemma 5.13. If Md = (M′,M) |= T d then it is definably complete.

Proof. If X ⊆ M ′ is definable in Md and bounded below then the intersection of its convex hull with M is defin-

able in Md, and thus has the form Y ∩M for some Y ⊆ M ′ which is definable in M′. Without loss of generality,

Y is also convex and thus InfY = InfX. This suffices, by o-minimality of M′. �

We can now conclude, using Boxall and Hieronymi, [2]:

Theorem 5.14. Let Md = (M′,M) |= T d. If U ⊆ (M ′)n is open and definable in Md then it is definable in

M′. More precisely, if an open U is defined in Md over B ⊆ M ′ such that (B,B∩M) is free, then U is definable

in M′ over B. In particular, MP has an o-minimal open core.

Proof. This is an immediate corollary of [2, Corollary 3.2] and what we proved so far. We extract from their

argument a direct proof, which is underlined by the following simple corollary of cell decomposition.

Fact 5.15. If Y ⊆ (M ′)n is definable in M′ and dimY < n then Y ∩Mn has empty interior in Mn.

We now first claim that clM ′(U) is definable in M′ over B. Indeed, by Theorem 5.12 (2), there is Y ⊆ (M ′)n

definable in M′ over B such that Y ∩Mn = U ∩Mn. By the above observation, dimY = n.

Since Mn is dense in (M ′)n, the set Int(Y ) ∩ Mn is dense in the open set Int(Y ). We claim that it is also

dense in U . Indeed, we know that Y ∩ Mn = U ∩ Mn is open in Mn and dense in U , and by o-minimality

dimM′(Y \ Int(Y )) < n. It thus follows from Fact 5.15, that Int(Y ) ∩Mn is dense in U .

So,

clM ′(U) = clM ′(Int(Y ) ∩Mn) = clM ′(Int(Y )).

Because Y was definable in M′ over B, clM ′(U) is definable in M′ over B.

We thus showed that the closure of every Md-definable open set over B ⊆ M ′ is definable in M′ over B.

It follows that every Md-definable continuous function f : (M ′)n → M is definable in M′, over the same

parameters. Indeed, the closure of the open set {(x, y) ∈ (M ′)n+1 : y < f(x)} is exactly {(x, y) ∈ (M ′)n+1 :
y ≤ f(x)}, from which the definability of f follows.

Finally, we show that every closed F ⊆ (M ′)n set which is Md-definable over B ⊆ M ′ is definable in M′ over

B. For every x ∈ Mn we let f(x) = d(x, F ) = Inf{d(x, y) : y ∈ F}. By Lemma 5.13, this is a well defined

function in Md (over B), and since F is closed, the function f is continuous and F is its zero set. Because f is

definable in M′ over B, so is the set F .

Since every definable set in M′ can be defined over some B ⊆ M ′ with (B,B ∩M) free, the theorem follows.

�
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