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Abstract

We continue the study of the theories of Baldwin-Shi hypergraphs from [5]. Restricting our attention
to when the rank δ is rational valued, we show that each countable model of the theory of a given
Baldwin-Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the
original class of finite structures with the inherited notion of strong substructure. We introduce a notion
of dimension for a model and show that there is a an elementary chain {Mβ : β < ω + 1} of countable
models of the theory of a fixed Baldwin-Shi hypergraph with Mβ 4 Mγ if and only if the dimension
of Mβ is at most the dimension of Mγ and that each countable model is isomorphic to some Mβ . We
also study the regular types that appear in these theories and show that the dimension of a model is
determined by a particular regular type. Further, drawing on the work of Brody and Laskowski, we use
these structures to give an example of a pseudofinite, ω-stable theory with a non-locally modular regular
type, answering a question of Pillay in [9].

1 Introduction

Fix a finite relational language L where each relation symbol has arity at least 2 and let KL be the class
of finite structures where each relation symbols is interpreted reflexively and symmetrically. Fix a function
α : L → (0, 1) ∩Q. Define a rank function δ : KL → Q by δ(A) = |A| −

∑
E∈L α(E)|EA| where |EA| is the

number of subsets of A on which E holds. Let Kα = {A ∈ KL : δ(A′) ≥ 0 for all A′ ⊆ A}. Given A,B ∈ Kα,
we say that A ≤ B if and only if A ⊆ B and δ(A) ≤ δ(A′) for all A ⊆ A′ ⊆ B. The class (Kα,≤) forms a
Fräıssé class, i.e. Kα has amalgamation and joint embedding under ≤. In [3], Baldwin and Shi initiated
a systematic study of the generic structures constructed from various sub-classes K∗ ⊆ Kα where (K∗,≤)
forms a Fräıssé class. In particular they obtained the stability of the theory of the (Kα,≤) generic Mα. We
call Mα the Baldwin-Shi hypergraph for α and denote its theory by Sα. We continue their study from [5]

We begin in Section 2 by introducing preliminary notions that we will be using throughout this paper
that closely follows Section 2 of [5]. In Section 3 we collect some known results that will be using throughout
the rest of the paper. We also use the notion of an essential minimal pair and state Theorem 3.8, a key
result from [5], which provides the existence of essential minimal pairs. This result will play a significant
part in the results that follow.

In Section 4 we begin by studying the countable models of Sα. In Theorem 4.5, we prove that certain
countable models of Sα can be obtained as a generic structure by considering a particular subclass of the class
of finite substructures used to construct the Baldwin-Shi hypergraph with the naturally inherited notion of
strong substructure. We then use this result, along with a notion of dimension for models, to prove Theorem
4.7 which establishes that the countable spectrum is ℵ0. In Theorem 4.8 we sharpen this result and show that
for countable M,N |= Sα, if the dimension of M is at most the dimension of N, then M embeds elementarily
into N. Thus the countable models of Sα form an elementary chain {Mβ : β < ω + 1} with Mβ 4 Mγ for
β ≤ γ with each model of Sα isomorphic to some Mβ .

In Section 5 we study the regular types of Sα. A key result is Theorem 5.11 which identifies certain types
as being regular. In Theorem 5.12 we establish that a certain class of types are non-orthogonal. We also
show that there is a regular type whose realizations determine the dimension of a model that was introduced
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in Section 4. We show in Theorem 5.13, that these types are in fact not locally modular. We end the section
with Theorem 5.15, which establishes that a large class of types are not regular.

In Section 6 drawing on the work of Brody and Laskowski, we observe that certain of these generic
structures have pseudofinite theories. Thus we obtain pseudofinite ω-stable theories with non-locally regular
modular types. This answers a question of Pillay in [9] on whether all regular types in a pseudofinite stable
theory are locally modular.

The author wishes to thank Chris Laskowski for all his help and guidance in the preparation of this
paper.

2 Preliminaries

We work throughout with a finite relational language L where each relation symbol E ∈ L is at least binary.
Let ar : L→ {n : n ∈ ω and n ≥ 2} be a function that takes each relation symbol to its arity.

2.1 Some general notions

We begin with some notation.

Notation 2.1. We let KL denote the class of all finite L structures A (including the empty structure),
where each E ∈ L is interpreted symmetrically and irrelexively in A: i.e. A ∈ KL if and only if for every
E ∈ L, if A |= E(a), then a has no repetitions and A |= E(π(a)) for every permutation π of {0, . . . , n− 1}.
By KL we denote the class of L-structures whose finite substructures all lie in KL, i.e. KL = {M :
M an L− structure and if A ⊆Fin M, then A ∈ KL}. We write X ⊆Fin Z, X ⊆Fin Z to indicate that |X| is
finite and we let ∅ denote the unique L-structure with no elements in it.

We now introduce the class Kα as a subclass of KL.

Definition 2.2. Fix a function α : L → (0, 1) ∩ Q. Given A ∈ KL, NE(A) will denote the number
of distinct subsets of A on which E holds positively inside of A. Define a function δ on KL by δ(A) =
|A| −

∑
E∈L α(E)NE(A) for each A ∈ KL. Let Kα = {A|δ(A′) ≥ 0 for all A′ ⊆ A}.

We adopt the convention ∅ ∈ KL and hence ∅ ∈ Kα as δ(∅) = 0. It is easily observed that Kα is closed
under substructure. Further the rank function δ allows us to view both KL and Kα as collections of weighted
hypergraphs. We proceed to use the rank function to define a notion of strong substructure ≤. Typically the
notion of ≤ is usually defined on Kα ×Kα. However, we define the concept on the broader class KL ×KL.
This will allow us to make the exposition significantly simpler via Remark 2.4.

Definition 2.3. Given A,B ∈ KL with A ⊆ B, we say that A is strong in B, denoted by A ≤ B, if and
only if A ⊆ B and δ(A) ≤ δ(A′) for all A ⊆ A′ ⊆ B.

Remark 2.4. Let A,B ∈ KL. Further assume that A ⊆ B with A ∈ Kα. If A ≤ B, then B ∈ Kα. (use (1)
of Fact 2.18).

Definition 2.5. By Kα we denote the class of all L-structures whose finite substructures are all in Kα, i.e.
Kα = {M : M an L− structure and if A ⊆Fin M, then A ∈ Kα}.

Remark 2.6. The relation ≤ on KL ×KL is reflexive, transitive and has the property that given A,B,C ∈
KL, if A ≤ C, B ⊆ C then A ∩B ≤ B (use (1) of Fact 2.18). The same statement holds true if we replace
KL by Kα in the above. Further for any given A ∈ Kα, ∅ ≤ A.

The following definition extends the notion of strong substructure to structures in KL:

Definition 2.7. Let X ∈ KL. For A ⊆Fin X, A is strong in X, denoted by A ≤ X, if A ≤ B for all
A ⊆ B ⊆Fin Z. Given A′ ∈ KL an embedding f : A′ → X is called a strong embedding if f(A′) is strong in
X.
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Definition 2.8. Let n be a positive integer. A set {Bi : i < n} of elements of Kα is disjoint over A if
A ⊆ Bi for each i < n and Bi ∩ Bj = A for i < j < n. If {Bi : i < n} is disjoint over A, then D is the
free join of {Bi : i < n} if the universe D =

⋃
{Bi : i < n}, Bi ⊆ D for all i and, there are no additional

relations, i.e. ED =
⋃
{EBi : i < n} for all E ∈ L. We denote a free join by ⊕i<nBi . In the case n = 2 we

will use the notation B0 ⊕A B1 for ⊕i<2Bi.

Fact 2.9. If B,C ∈ Kα, A = B ∩ C, and A ≤ B, then B⊕A C ∈ Kα and C ≤ B⊕A C.

We now turn our attention towards constructing the generic structure for (Kα,≤). We use the convention
that ∅ ∈ Kα. It is also immediate that δ(∅) = 0 and that Kα is closed under substructure.

Definition 2.10. A countable structure M ∈ Kα is said to be the generic for (Kα,≤) if

1. M is the union of an ω-chain A0 ≤ A1 ≤ . . . with each Ai ∈ Kα.

2. If A,B ∈ Kα with A ≤ B and A ≤M, then there is B′ ≤M such that B ∼=A B′.

Fact 2.11. (Kα,≤) is a Fräıssé class (i.e. (Kα,≤) satisfies joint embedding and amalgamation with respect
to ≤) and a generic structure for (Kα,≤) exists and is unique up to isomorphism.

This justifies the following definition:

Definition 2.12. For a fixed α we call the generic for (Kα,≤) the Baldwin-Shi hypergraph for α.

2.2 Closed sets

In this section we generalize the notion of strong substructure to substructures of arbitrary size by introducing
the notion of a closed set. This will provide us with a useful tool for analyzing the various theories of Baldwin-
Shi hypergraphs.

Definition 2.13. Let A,B ∈ KL. Now (A,B) is a minimal pair if and only if A ⊆ B, A ≤ C for all
A ⊆ C ⊂ B but A � B.

Note that (A,B) is a minimal pair if and only if A ⊆ B, δ(A) ≤ δ(C) for all A ⊆ C ⊂ B but δ(B) < δ(A).

Definition 2.14. Let Z ∈ KL and X ⊆ Z. We say X is closed in Z if and only if for all A ⊆Fin X, if (A,B)
is a minimal pair with B ⊆ Z, then B ⊆ X.

Remark 2.15. As any A,B,C ∈ KL with A ≤ C and B ⊆ C satisfies A ∩B ≤ B (see Remark 2.6) an easy
argument yields that given Z ∈ KL and A ⊆Fin Z, A ≤ Z if and only if A is closed in Z.

It is immediate from the above definition that any Z ∈ KL, Z is closed in Z and that the intersection of
a family of closed sets of Z is again closed. These observations justify the following definition:

Definition 2.16. Let Z ∈ KL and X ⊆ Z. The intrinsic closure of X in Z, denoted by iclZ(X) is the
smallest set X ′ such that X ⊆ X ′ ⊆ Z and X ′ is closed in Z.

2.3 Some basic properties of the rank function

We start exploring the rank function δ in more detail. The following facts are easily obtained by routine
computations involving the δ function.

Definition 2.17. Given Z ∈ KL and A,B ⊆Fin Z, let δ(B/A) = δ(BA)− δ(A).

Fact 2.18. Let Z ∈ KL be non-empty and let A,B,Bi, C ⊆Fin Z.

1. Let A′ = A ∩ B. Now δ(B/A′) ≥ δ(B/A) = δ(AB/A). Further if B,C are disjoint and freely joined
over A, then δ(B/AC) = δ(B/A).

2. If {Bi : i < n} is disjoint over A and Z = ⊕i<nBi is their free join over A, then δ(Z/A) =∑
i<n δ(Bi/A). In particular, if A ≤ Bi for each i < n, then A ≤ ⊕i<nBi.

3. δ(B1B2 . . . Bk/A) = δ(B1/A) +
∑k
i=2 δ(Bi/AB1 . . . Bi−1)

3



3 A collection of known results

In this section we provide some key definitions and results. We let c := lcm{qE : E ∈ L} where α(E) = pE
qE

is in reduced form. We begin with some definitions and some notation.

Definition 3.1. The theory Sα is the smallest set of sentences insuring that if M |= Sα, then

1. M ∈ Kα, i.e. every finite substructure of M is in Kα

2. For all A ≤ B from Kα, every (isomorphic) embedding f : A→M extends to an embedding g : B→M

Notation 3.2. Given A ∈ KL with a fixed enumeration a of A, we write ∆A(x) for the atomic diagram
of A. Also for A,B ∈ KL with A ⊆ B and fixed enumerations a, b respectively with a an initial segment
of b; we let ∆A,B(x, y) the atomic diagram of B with the universe of A enumerated first according to the
enumeration a.

Definition 3.3. Let A,B ∈ K and assume A ⊆ B. Let ΨA,B(x) = ∆A(x) ∧ ∃y∆(A,B)(x, y). Such formulas
are collectively called extension formulas (over A). A chain minimal extension formula is an extension
formula ΨA,B where B us the union of a minimal chain over A.

The following appears in many places, including [3], [10], [11].

Definition 3.4. Let A,B ⊆Fin M. Then d(A) = min{δ(A′)|A ⊆ A′ ⊆ N,A′ is finite.}. Further d(B/A) =
d(AB)− d(B). If X ⊆M is infinite, then d(A/X) = min{d(A/X0)|X0 ⊆Fin X}.

Remark 3.5. For finite A,B,C, it is easily observed that d(A/C) ≥ 0, d(AB/C) = d(A/BC)+d(B/C) and
that d(A) = δ(icl(A)). In more general contexts, if X ⊆M is infinite, then d(A/X) := inf{d(A/X0)|X0 ⊆Fin

X}. However it is easily observed that we can replace the infimum with minimum in the definition of d as
for any A ∈ Kα, δ(A) ∈ {k/c : k ∈ ω}.

We collect some key results about Sα from various sources in the following.

Theorem 3.6. 1. Every L-formula is Sα-equivalent to a boolean combination of chain-minimal extension
formulas (see [5]).

2. The theory Sα is complete and is the theory of the generic for (Kα,≤). (see [7] or [5]).

3. Sα is ω-stable. (see [3]).

4. Given any M |= Sα and X ⊆M , X is algebraically closed in M if and only if X is intrinsically closed
in M . (see [3], [11] or [5]).

5. The theory Sα has weak elimination of imaginaries, i.e. every complete type over an algebraically
closed set in the home sort is stationary. (see [3], [5] or [10])

6. Let M |= Sα be ℵ0-saturated and let A be a finite closed set of M. Suppose that π is a consistent
partial type over A. If any realization b of π in M has the property that bA is closed in M, then π has
a unique completion to a complete type p over A (see [5]).

7. Sα has finite closures, i.e. given any N |= Sα for any finite A ⊆ N, there exists C ∈ Kα s.t. A ⊆ C ≤ N.

8. LetM be a monster model of Sα. For algebraically closed X,Y, Z with Z = X∩Y , X |̂
Z
Y if and only if

XY is algebraically closed and X,Y are freely joined over Z if and only if for any finite X0 ⊆ X,Y0 ⊆ Y ,
d(X0/Z) = d(X0/ZY0) and acl(X0Z)∩acl(Y0Z) = acl(Z) (or equivalently icl(X0Z)∩icl(Y0Z) = icl(Z):
see [3] or [10]).

9. Let M be a monster model of Sα. Then M is flat, i.e. given a finite collection of finite closed sets
{Ei : i ∈ I},

∑
s⊆I(−1)|s|d(Es) ≤ 0 where Es =

⋂
i∈S Ei and E∅ =

⋃
i∈I Ei (see Section 7 of [11]).
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3.1 Essential Minimal Pairs

We now define essential minimal pairs. We use them here to study various properties of forking.

Definition 3.7. Let B ∈ Kα with δ(B) > 0. We call D ∈ Kα with B ⊆ D an essential minimal pair if
(B,D) is a minimal pair and for any D′ ( D, δ(D′/D′ ∩B) ≥ 0.

The following, in more general form, appears in [5] as Theorem 3.32. It will form the backbone of many
of the results to follow,

Theorem 3.8. Let A ∈ Kα with δ(A) = k/c > 0. There are D ∈ Kα such that (A,D) is an essential
minimal pair and satisfies δ(D/A) = −1/c.

We immediately obtain the following useful lemma.

Lemma 3.9. Let k ∈ ω. Given any B ∈ Kα, there is some D ∈ Kα such that D ⊇ B, δ(D) = k/c and for
any A ≤ B with δ(A) ≤ k/c, A ≤ D.

Proof. Given B take D0 to be the free join of B with a structure with k + 1 many points with no relations
among them over ∅. Note that B ≤ D0. Let l = cδ(D0)− k. Consider a sequence D0 ⊆ . . . ⊆ Dl where each
(Di,Di+1) is an essential minimal pair with δ(Di+1/D1) = −1/c. We claim that D = Dl is as required. Fix
any A ≤ B with δ(A) ≤ k/c. We show by induction on i < l that if A ≤ Di, then A ≤ Di+1. Clearly A ≤ D0

as A ≤ B ≤ D0. Fix i < l and consider any F such that A ⊆ F ⊆ Di+1. If F = Di+1 then δ(F) ≥ k/c ≥ δ(A)
and so δ(F/A) ≥ 0. On the other hand, if F 6= Di+1, then, δ(F/Di+1 ∩ F) since (Di,Di+1) is an essential
minimal pair and δ(Di∩F/A) ≥ 0 as A ≤ Di. Thus δ(F/A) = δ(F/Di∩F)+δ(F∩Di/A) ≥ 0 as required.

4 Countable models of Sα

Our goal in this section is to study the countable models of Sα. We begin by defining a notion of dimension
for (countable) models. We then show that this notion of dimension is able to categorize countable models
up to both isomorphism and elementary embeddability. Recall that c is the least common multiple of the
denominators of the αE (in reduced form).

Definition 4.1. Let M |= Sα. Let A ≤M. We let dim(M/A) = max{δ(B/A) : A ≤ B ≤M}. If there is
no maximum, i.e. given any z > 0, there will be some B ≤M with δ(B/A) > z, we let dim(M/A) = ∞.
We write dim(M) for dim(M/∅).

Definition 4.2. Fix an integer k ≥ 0 and let Kk/c = {A : A ∈ Kα and δ(A) = k/c}. Let (Kk/c,≤) be
such that ≤ is inherited by Kα i.e. A ≤ B for A,B ∈ Kk/c if and only if for all A ⊆ B′ ⊆ B with B′ ∈ Kα,
A ≤ B′

We begin with the following technical lemma:

Lemma 4.3. Let A,B,C,D ∈ Kα with A ≤ B,C; δ(C/A) ≥ δ(B/A) and D = B⊕ C the free join of
B,C over A. We can construct H ∈ Kα such that A,B,C ≤ H, D ⊆ H and δ(H/C) = 0. Further if
δ(B/A) = δ(C/A), the H that was constructed has the property δ(H/B) = 0.

Proof. This follows from an easy application of Lemma 3.9 on D.

We now work towards showing that certain countable models of Sα can be built as Fräıssé limits (Kk/c,≤).
In Theorem 4.7 we show that these are in fact, all of the countable models up to isomorphism.

Lemma 4.4. For any fixed integer k ≥ 0, (Kk/c,≤), where ≤ is inherited from Kα is a Fräıssé class.

Proof. Fix an integer k ≥ 0 and consider Kk/c. Let A,B,C ∈ Kk/c. Note that for the purposes of proving
amalgamation, we may as well assume B,C are freely joined over A and that A ≤ B,C. Note that δ(B/A) =
δ(C/A) = 0. The required statement follows by a simple application of Lemma 4.3 on B⊕A C. For joint
embedding consider ∅ ≤ B,C. Note that δ(B/∅) = δ(C/∅) = k/c. Apply Lemma 4.3 on B⊕∅ C, the free
join of B,C over ∅.
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We now prove the following theorem. To account for the fact that Kk/c is not closed under substructure,
we tweak the second condition in the definition of the generic structure (Definition 2.10) to: for every finite
A ⊆M, there exists B ∈ Kk/c with A ⊆ B and B ≤M.

Theorem 4.5. Let k be a fixed integer with k ≥ 0. Let Mk/c be the generic for the Fräıssé class (Kk/c,≤)
where ≤ is inherited from Kα. Now Mk/c |= Sα and dim(Mk/c) = k/c.

Proof. Fix an integer k ≥ 0. From Lemma 4.4, it follows that (Kk/c,≤) where ≤ is inherited from Kα is a
Fräıssé class. Let Mk/c be the (Kk/c,≤) generic. Note that given B ∈ Kα, there is some D ∈ Kk/c such
that D ⊇ B by Lemma 3.9. Thus it suffices to show that Mk/c satisfies the extension formulas in Sα.

Let A,B ∈ Kα with A ≤ B and assume that A ⊆Fin Mk/c. As Mk/c is the (Kk/c,≤) generic, there is
some C ≤Mk/c with A ⊆ C and δ(C) = k/c. By Fact 2.9, we have that D = B ⊕ C, the free join of B,C
over A is in Kα and that C ≤ D. Now using Lemma 3.9, we can find G ∈ Kk/c such that D ⊆ G and C ≤ G.
But as Mk/c is the (Kk/c,≤) generic we can find a strong embedding of G into Mk/c over C. Thus it follows
that Mk/c |= ∀x∃y(∆A(x) ∧∆A,B(x, y)). Hence it follows that Mk/c |= Sα. Further as noted above, given
any A ⊆Fin Mk/c, there is some C ≤Mk/c with A ⊆ C and δ(C) = k/c. Hence dim(Mk/c) = k/c.

We now work towards classifying the countable models of Sα up to isomorphism using our notion of
dimension.

Lemma 4.6. Let M |= Sα and A ≤M be finite. Let D ∈ Kα be such that A ≤ D. Then dim(M/A) ≥
δ(D/A) if and only if there is some g such that g strongly embeds D into M over A.

Proof. The statement that if there is some g such that g strongly embeds D into M over A, then dim(M/A) ≥
δ(D/A) is immediate from the definition. Thus we prove the converse. Let A ≤ M be finite. Let D ∈ Kα

be such that A ≤ D.
First assume that δ(D/A) = 0. Now as Sα |= ∀x∃y(∆A(x) ∧∆A,D(x, y)). Thus there is some A ⊆ D′ ⊆M

such that D ∼=A D′. Further as δ(D′/A) = 0, from (2) of Lemma 3.6, D′ ≤M. Thus regardless of the value
of dim(M/A), if δ(D/A) = 0 then there is some g such that g strongly embeds D into M over A.

Now assume that m/c = δ(D/A) ≤ dim(M/A) with m ≥ 1 and further assume that dim(M/A) ≥ k/c
with k ≥ m. Let A ≤ F ≤M be such that δ(F/A) = k/c. Let G = D⊕ F, the free join of D,F over A. By
Lemma 4.3, there exists H ∈ Kα with G ⊆ H and A,D,F ≤ H and δ(H/F) = 0. Since F ≤M and δ(H/F) = 0
we are in the setting above. So take a strong embedding g of H into M over F. Clearly g fixes A and D has
the property that g(D) ≤ F ≤M and thus g(D) ≤M.

We now obtain:

Theorem 4.7. Let M,N |= Sα be countable. Now M ∼= N if and only if dim(M) = dim(N) and dim(M) =
∞ if and only if M is the generic for Kα. Thus there are precisely ℵ0 many non-isomorphic models of Sα
of size ℵ0. Further each countable model of Sα can be built up from a subclass of (Kα,≤).

Proof. Since δ is invariant under isomorphism, it immediately follows that if M ∼= N, then dim(M) = dim(N).
Now from Theorem 4.5, it follows that the number of non-isomorphic countable models is at least ℵ0.

Case 1 : dim(M) = dim(N) = k/c for some k ∈ ω. Fix enumerations forM,N . Let A ≤M with dim(M/A) =
0. Thus δ(A) = dim(M) = dim(N). Assume that we have constructed a strong embedding g : A→ N. Pick
b ∈ N− g(A), where b in the enumeration corresponds to the element of N with least index not in g(A).
Consider iclN({b} ∪ g(A)) = B ≤ N. Now B is finite. Since g(A) ≤ N and g(A) = dim(N), it follows that
δ(B/g(A)) = 0 and g(A) ≤ B. Now as A ∼= g(A) by Lemma 4.6, there exists a strong embedding g′ : B→M
and g′|g(A) = g−1. Clearly this allows us to form a back and forth system between M,N.

Thus all that remains to be shown is that we can find a strong embedding of A ≤M where δ(A) = dim(M).
To see this first note that ∅ ≤ N. Further dim(N/∅) = δ(A/∅). Thus there exists some strong embedding of
A over ∅ into N by an application of Lemma 4.6 as required.
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Case 2 : M |= Sα and dim(M) =∞. We claim that in this case M is isomorphic to the generic. Clearly M
has finite closures and hence condition (1) of the generic is satisfied. Note that if we show that dim(M) =∞
implies that for any A ≤M, dim(M/A) =∞, then condition (2) follows immediately from Lemma 4.6. We
claim that this is indeed the case. By way of contradiction, assume that there is some A ≤M such that
dim (M/A) is finite. Now there is some A ≤ D ≤M such that dim(M/A) = δ(D/A). It is immediate from
the definition that δ(M/D) = 0. As dim(M) =∞, fix a B ≤M with δ(B) > δ(D). Consider G, the closure
of BD in M . Now G is finite and since B,D ≤ M , B,D ≤ G. Further δ(G/D) = 0 as dim(M/D) = 0. So
δ(G) = δ(D). But B ≤ M , so δ(G/B) ≥ 0 and hence δ(G) ≥ δ(B). Thus δ(B) ≤ δ(D), a contradiction to
our choice of B that establishes the claim. Hence it follows that the number of non-isomorphic countable
models of Sα is ℵ0.

From Theorem 4.5, it follows that we can construct a countable model of a fixed dimension (the dim(M) =
∞ case being the generic as seen above) as the generic of a subclass of (Kα,≤). But as the dimension
determines the countable model up to isomorphism, we obtain the result.

We now use our notion of dimension to characterize elementary embedability.

Theorem 4.8. Let M,N be countable models of Sα. If dim(M) ≤ dimN, then there is some elementary
embedding f : M→ N. Thus there is an elementary chain M0 4 . . . 4Mn . . . 4Mω of countable models of
Sα with each countable model isomorphic to some element of the chain.

Proof. Let M,N be countable models of Sα with dim(M) ≤ dim(N). Note that if dim(M) = dim(N), then
by Theorem 4.7, M ∼= N. So assume that dim(M) < dim(N) and fix an enumeration {mi : i ∈ ω}. Now
we have that dim(M) < ∞. Let A ≤M be such that δ(A) = dim(M). Now by Lemma 4.6, there exists a
strong embedding f1 of A into N. Let B ≤M be such that A{mi} ⊆ B where i is the least index such that
mi /∈ A. Note that as δ(A) = dim(M), δ(B) = δ(A). Again using Lemma 4.6, we can extend f1 to f2 so
that f2 is a strong embedding of B into N over A.

Proceeding iteratively we can find a ≤ chain {Ai : i ∈ ω} such that M =
⋃
i<ω Ai and f : M→ N

such that f(Ai) ≤ N for each i ∈ ω. It is easily seen that f is an isomorphic embedding. We claim that
f is actually an elementary embedding of M into N. Note that given C ≤M with C finite, there is some
Ai with C ≤ Ai ≤ M. Using the transitivity of ≤, it easily follows that f(C) ≤ N. In particular f(M) is
(algebraically) closed in N. For notational convenience we will assume that M ⊆ N.

Let ψ(x, y) be an L formula. Let a ∈ M lg(x). Assume that N |= ∃yψ(a, y). But ψ(x, y) is equivalent to
the boolean combination of chain minimal formulas, say Sα ` ∀(x)(∃ψ(x, y) ↔

∧
i<n ϕi(x, y)) where each

ϕ(x, y) is either a chain minimal formula or the negation of a chain minimal formula. Suppose that b ∈ N lg(y)

is such that N |= ψ(a, b). If ϕi is a chain minimal formula then it follows that b ∈ M lg(y) as M is a closed
set. So assume that each ϕi is the negation of a chain minimal formula. Note that we may split b = b1b2
where b1 is formed via a minimal chain and Ab1 ≤ N . As above, it follows that b1 ⊆∈M lg(y)−lg(b1). But as

M |= Sα, it follows that there exists a b′2 ∈M lg(y)−lg(b1) that is isomorphic to b2 over Ab1. It is now easily
seen that the b1b′2 ∈M lg(y) and N |= ϕi(a, b1b′2) for each i. Thus N is an elementary extension of M.

Note that given an elementary chain M1 4 . . . 4Mn of models of Sα we may construct Mn+1 such that
M1 4 . . . 4 Mn 4 Mn+1. Note that we may also insist that dim(Mk) = k/c. Now given an elementary
chain M0 4 . . . 4Mn . . . 4 set Mω =

⋃
n<ωMn. As elementary embeddings preserve closed sets it is easily

seen that dim(Mω) =∞. The rest of the claim now follows from Theorem 4.7.

5 Regular Types

In Section 5 we turn our attention towards the study of regular types. We fix a monster model M of Sα.
Recall the notions of d(A) and d(B/X) for some finite A ⊆ M and X ⊆ M from Definition 3.4. We begin
by extending this notion to a type as follows (see also [2])

Definition 5.1. Let M be a monster model of Sα and let X be a small subset of M. Let p ∈ S(X). We let
d(p/X) = d(b/X) for some (equivalently any) realization b of p.
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Now, due to ω-stability and weak elimination of imaginaries (see (3) and (5) of Theorem 3.6), it suffices
to restrict our attention to non-algebraic types over finite algebraically closed sets in the home sort for the
study of regular types. So fix some finite A ≤ M (recall that algebraically closed sets are precisely the
intrinsically closed ones). In what follows we freely use regular types, orthogonality, modular types etc. and
facts about them. The relevant definitions and results can be found in [8].

Remark 5.2. Let A ≤M be finite and b be finite such that b ∩A = ∅. Now let A ⊆ C also be finite. Note
that b |̂

A
C if and only if acl(bA) |̂

acl(A)
acl(C). Since Sα has finite closures it follows that acl(bA), acl(C)

are both finite. Thus in order to understand non-forking, it suffices to look at types p ∈ S(A) such that
x 6= a ∈ p for all a ∈ A such that for any b |= p, bA ≤M. Note that this information, along with the atomic
diagram of some (of any) realization of p is sufficient to determine p uniquely as noted in (1) of Lemma 3.6.
Also such a type p is non-algebraic and stationary as A is algebraically closed.

In light of our comments at the beginning of Section 5 and Remark 5.2 it suffices to study basic types over
finite sets in order to understand regular types (i.e. we can choose a basic type to represent the required
parallelism class).

Definition 5.3. Let A ≤ M be finite and p ∈ S(A), we say that p is a basic type if x 6= a ∈ p for all a ∈ A
and for some (equivalently any) b |= p, bA ≤M.

Remark 5.4. Note that if A,B ∈ KL with A ∈ Kα and A ≤ B, then B ∈ Kα.

Lemma 5.5. Let A ∈ Kα. Then there exists B ∈ Kα such that A ≤ B and δ(B/A) = 1/c.

Proof. Consider the structure given by A∗ = A ⊕ A0 where A0 ∈ Kα consists of a single point. Now an
application of Lemma 3.9 to A∗ yields the required result.

We begin by studying basic types such that d(p/A) = 0, 1/c where A ≤M is finite. The choice to restrict
our attention to such types will be justified by Theorem 5.15, where we show any type p with d(p/A) ≥ 2/c
cannot be regular. We begin our analysis of types that can be regular types by defining nuggets and nugget-
like types.

Definition 5.6. Let A,D ∈ Kα with A ( D with D = AB. Let k ∈ ω. We say that B is a k/c-nugget over
A if A ∩B = ∅, δ(B/A) = k/c and δ(B′/A) > k/c for all A ( AB′ ( AB.

Definition 5.7. Let A ≤ M be finite. We say that a basic type p ∈ S(A) is nugget-like over A, if given B
where B realizes the quantifier free type of p over A, then B is a k/c-nugget over A for some k ∈ ω.

Lemma 5.8. Let A ≤ M be finite and let p ∈ S(A) be nugget-like. Let A ⊆ X with X closed. For any
b |= p, either b ∩X = ∅ or b ⊆ X .

Proof. Assume that b∩X 6= ∅. Let b
′

= b∩X assume that b
′ 6= b. Then as δ(b

′
/A) > δ(b/A), it follows that

there is some minimal pair (Ab
′
, D) with D ⊆ Ab but D * X. But this contradicts that X is closed. Hence

b ⊆ X.

We now explore how the behavior of the d function interacts with nugget-like types. The following results
are well known (see e.g. Theorem 3.28 of [3] or Lemma 3.13 of [10] and Lemma 2.6 of [2]).

Lemma 5.9. 1. Suppose B is finite and X ⊆ Y . Then d(B/X) ≥ d(B/Y ).

2. Let A ≤ M be finite and let p ∈ S(A). Suppose that for some k ∈ ω, d(p/A) = k/c. Let A ⊆ X ≤M.
Suppose that q ∈ S(X) extends p. If d(q/X) < d(p/A), then q is a forking extension of p.

We now obtain the following fact about the forking of nugget-like types:

Lemma 5.10. Let A ≤ M be finite and let p ∈ S(A) is nugget-like. Let A ⊆ Y ⊆M with Y closed. Let q
be an extension of p to Y . Now q is a forking extension of p if and only if d(q/Y ) < d(p/A) or given b |= q,
b ⊆ Y .
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Proof. If d(q/Y ) < d(p/A), then Lemma 5.9 tells us that q is a forking extension of p. Further Y is
algebraically closed. So if for any b |= q, b ⊆ Y , it follows that b is an algebraic type over Y . Since p is not
an algebraic type over A, it follows that q is a forking extension of p.

For the converse assume that q is a forking extension of p and that d(q/Y ) = d(p/A). As q is a forking
extension of p, it follows from (8) of Theorem 3.6 that icl(bA)∩ icl(Y ) ) icl(A). But icl(A) = A, icl(Y ) = Y
and as b realizes p over A, icl(bA) = bA. Thus b ∩ Y 6= ∅. Now by Lemma 5.8, b ⊆ Y .

The following theorem allows us to identify certain regular types. Further it establishes that 0-nuggets
are, in some sense, orthogonal to almost all other types.

Theorem 5.11. Let A ≤ M be finite and let p ∈ S(A) be nugget-like. Now if d(p/A) = 0 or d(p/A) = 1/c,
then p is regular. Further if d(p/A) = 0, then p is orthogonal to any other nugget-like type over A.

Proof. Under the given conditions p is clearly non-algebraic and stationary. We directly establish that it will
be orthogonal to any forking extension of itself. Let A ⊆ X ⊆M with X closed. Since Sα is ω-stable and
has finite closures we may as well assume that X is finite, i.e. if q ∈ S(X) with q ⊇ p a forking extension,
there is some finite closed X0 ⊆ X such that q �X0

is a forking extension. Let b |= p. We have that b |̂
A
X.

As Ab, X are closed and Ab∩X = A, from an application of (8) of Theorem 3.6, we obtain that Xb is closed.
First assume that d(p/A) = 0. Let p′ be a forking extension of p to X and letf |= p′. It follows easily

from Lemma 5.9, that d(f/A) ≥ d(f/X). As d(f/A) = 0 and d(f/X) ≥ 0, it now follows that d(f/X) = 0.
Thus by Lemma 5.10, we have that f ⊆ X and hence b |̂

X
f as b |̂

A
X.

So assume that d(p/A) = 1/c. Let p′, f be as above. By Lemma 5.10, d(p′/X) = 0 or f ⊆ X. As above
f ⊆ X yields that b |̂

X
f . So assume that f * X and note that by Lemma 5.8 we have that f ∩X = ∅.

Now by (8) of Theorem 3.6 it suffice to show that Xb ∩ acl(Xf) = X to establish that b |̂
X
f . Consider

d(acl(Xf) b/X). On the one hand we have that d(acl(Xf) b/X) ≥ d(b/X) = 1/c (see Remark 3.5). On the
other hand d(acl(Xf) b/X) = d(b/acl(Xf)) + d(acl(Xf)/X). As d(acl(Xf)/X) = d(f/X) = 0, we obtain
that d(b/acl(Xf)) ≥ 1/c. In particular b * acl(Xf). But then by Lemma 5.8, b ∩ acl(Xf) = ∅ and thus
Xb ∩ acl(Xf) = ∅ as required.

For the second half of the claim, assume that d(p/A) = 0. Let q ∈ S(A) be nugget-like and distinct from
p. Now d(p/A) = d(p|X/X) and d(q/A) = d(q|X/X). Let f |= q|X . Note that f |̂

A
X implies that Xf

is closed. Now using Lemma 5.8, we can easily show that bX ∩ fX 6= X, then b = f . But this contradicts
p 6= q. Thus it follows that bX ∩ fX = X. Further 0 = d(b/X) ≥ d(b/Xf) ≥ 0. Again by (8) of Theorem
3.6, we obtain that b |̂

X
f and thus p, q are orthogonal.

The following theorem shows that while there are many regular types with d(p/A) = 1/c, all such types
are non-orthogonal. Thus up to non-orthogonality, there is only one regular type with d(p/A) = 1/c. This
is in contrast to distinct 0-nuggets, any two of which are orthogonal to each other. We also show that the
number of independent realizations of a 1/c nugget determines the dimension of a model.

Theorem 5.12. Let A be closed and finite and let p, q ∈ S(A) be distinct basic types and satisfy d(p/A) =
d(q/A) = 1/c. Then p, q are non-orthogonal. Hence any two regular types over p′, q′ ∈ S(X) where X is
closed and d(p′/X) = d(q′/X) = 1/c are non-orthogonal. Further if we take A = ∅ and let M 4M. The
dimension of M is determined by the number of independent realizations of p in M. Thus a single regular
type determines the dimension of M.

Proof. Let A be as given. Consider A as a finite structure that lives in Kα. Now consider the finite structures
AB,AC where B,C realize the quantifier free types of p, q respectively. Consider D, the free join of AB,AC
over A. Apply Lemma 3.9 to obtain a finite G with δ(G/D) = −1/c and A,AB,AC ≤ G. Let f be a strong
embedding of G into M where f is the identity on A. From (6) of Theorem 3.6 and the transitivity of ≤ it
follows that f(B) |= p and f(C) |= q. Now from (8) of Theorem 3.6, it follows that f(B) ��|̂ A f(C) and thus
p 6⊥ q. Now given p′, q′ ∈ S(X), there exists a finite closed set, which by an abuse of notation we call A,
such that p′, q′ are based and stationary over A. Since regularity is parallelism invariant both p|A and q|A
are regular. Arguing as above we see that p′|A 6⊥ q′|A and thus they are non-orthogonal.
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Let M 4M and assume that A = ∅. Given n ∈ ω, consider the finite structure Cn that is the free join of
n-copies of the quantifier free type of p over ∅. If dim(M) ≥ n/c, by Lemma 4.6, there is a strong embedding
of Cn into M. It is easily checked that the strong embedding witnesses n-independent realizations of p. The
rest follows easily.

The following shows that 1/c nuggets are not locally modular.

Theorem 5.13. Let A ≤ M be finite and let p ∈ S(A) be a nugget-like with d(p/A) = 1/c. Then p is not
locally modular, in particular it is non-trivial.

Proof. Recall that given a regular type p, the realizations of p form a pregeometry with respect to forking
closure. In order to simplify the presentation, we will let A = ∅. We let pM denote the realizations of p in M,
clp denote the forking closure (or p-closure) of pM and dimp (p-dimension) denote the associated dimension.

We begin with a proof that p is non-trivial. Let B1, B2, B3 be three finite structures that has the same
quantifier free type as p and are disjoint over ∅. Consider C = ⊕Bi, the free join of the Bi over ∅. Using
Lemma 3.9 we obtain a finite structure D ∈ Kα with δ(D) = 2/c, Bi ≤ C and Bi ⊕ Bj ≤ C for any i 6= j.
Note that C � D as δ(C) > δ(D). Let g be a strong embedding of C into M. An argument similar to that
found in Theorem 5.12 shows that g(B1), g(B2), g(B3) are pairwise independent but dependent realizations
of p and thus p is non-trivial.

We will now establish that p is not modular. To show that p is not locally modular, we can simply choose
a realization h of p independent from the configuration used in the following argument and relativize the
argument over h. Fix realizations a, b, c |= p such that they are pairwise independent but are dependent. As
Sα is stable we can find b′ , c′ |= p such that b′ c′ ≡a b c and b′ c′ |̂

a
b c. Let X = clp(c′ b), Y = clp(c b′). Let

Z = clp(X ∪ Y ). We will show that dimp(clp(Z)) + dimp(X ∩ Y ) < dimp(X) + dimp(Y ). As dimp(X) = 2 =
dimp(Y ) and dimp(Z) = 3, it suffices to show that X ∩ Y ∩ pM is empty.

Suppose to the contrary that there is some e ∈ X ∩ Y ∩ pM. We obtain the following configuration:

a

b′b

c c′

e

with every single (labeled) point having p-dimension 1, any three (labeled) colinear points (as found in the
configuration) having p-dimension 2 and any three (labeled) non-colinear points having p-dimension 3.

Let C∗ = acl(a b cb′ c′ e). We will obtain a contradiction by estimating d(C∗) in two different ways.
On the one hand, as {a, b, b′} is independent and acl(a b b′) ⊆ C∗, it follows that d(C∗) ≥ 3/c (recall that
d(C∗/acl(a b b′)) ≥ 0). On the other hand acl(C1C2C3C4) = C∗ where C1 = acl(c e b′), C2 = acl(b e c′),
C3 = acl(a b c) and C4 = acl(a b′ c′). We estimate d(C1C2C3C4) using flatness (see (9) of Theorem 3.6).

We begin by showing d(C1) = 2/c. Note that as b |̂ c′, by (8) of Theorem 3.6 we obtain that b c′ is

closed. As e ��|̂ c′ b another application of (8) of Theorem 3.6 tells us that e ∩ b c′ is non-empty or that
d(e/∅) > d(e/b c′). An application of Lemma 5.8 easily shows that e ∩ b c′ is empty and hence d(e/∅) >
d(e/b c′). But as d(e/∅) = d(e) = 1/c we obtain that d(e/b c′) = 0. But then d(C1) = d(e b c′) = d(b c′) = 2/c
as b c′ is closed. Similar arguments show that d(Ci) = 2/c for i = 2, 3, 4.

We now claim that d(Ci ∩ Cj) = 1/c for each 1 ≤ i < j ≤ 4. Fix 1 ≤ i < j ≤ 4. Note that as Ci ∩ Cj
contains a realization of p, and hence d(Ci∩Cj) ≥ 1/c. Further Ci∪Cj contains three independent realizations
of p and hence d(CiCj) ≥ 3/c. Using flatness on I ′ = {i, j}, we obtain that d(CiCj) ≤ d(Ci) + d(Cj) −
d(Ci ∩Cj) and the claim follows. A similar argument shows that d(Ci ∩Cj ∩Ck) = 0 for 1 ≤ i < j < k ≤ 4.
Now as C1 ∩C2 ∩C3 ∩C4 ⊆ C1 ∩C2 ∩C3 and d(C1 ∩C2 ∩C3) = 0, it follows that d(C1 ∩C2 ∩C3 ∩C4) = 0.

Hence we obtain that 3/c ≤ d(C1C2C3C4) ≤ 4(2/c) − 6(1/c) − 4(0) + 0 = 2/c, a contradiction which
shows that X ∩ Y ∩ pM is empty. Thus p is not modular.
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Remark 5.14. We sketch an alternate proof of Theorem 5.13 that uses only the non-triviality of p: Well
known results of Hrushovski in [6] state that any stable theory with a non-trivial locally modular regular
type interprets a group. As these structures do not interpret groups (see [11] by Wagner) the result now
follows.

The following result shows that a broad class of types cannot be regular types and justifies the choice to
study types p ∈ S(A) with d(p/A) = 0, 1/c in our study of regular types.

Theorem 5.15. Let A be finite and closed in M. Let p ∈ S(A) be a basic type such that d(p/A) ≥ 2/c.
Then p is not regular.

Proof. Recall that a regular type has weight 1. We establish the above result by showing that p has pre-
weight at least 2 and hence weight at least 2. Our strategy is similar to the one used in Theorem 5.12: we
consider A as living inside of Kα. We then construct a finite structure G over the finite structure A that we
then embed strongly into M over A using saturation. Finally we argue that the strong embedding witnesses
the fact that the pre-weight of p is at least 2.

Consider A as a finite structure that lives in Kα. By Lemma 5.5 we may construct D ∈ Kα such that the
D = AC, A∩C = ∅ (as sets) and A ≤ D with δ(D/A) = δ(C/A) = 1/c. Let AB be such that B realizes the
quantifier free type of p over A. Consider the finite structures Fi, i = 1, 2 where each Fi is the free join of AB
and an isomorphic copy of D over A and F1 ∩ F2 = AB. We label the isomorphic copies of D as AC1, AC2

and thus Fi = ABCi, the free join of AB,ACi over A. Apply Theorem 3.8 to obtain Gi for i = 1, 2 such that
(Fi, Gi) is an essential minimal pair and δ(Gi/Fi) = −1/c. It is easily verified that A,AB,ACi ≤ Gi. Let
G be the free join of G1, G2 over AB. Note that G ∈ KL and that we may now regard the finite structures
A,AB,AC1 etc. as substructures of G.

We claim that G ∈ Kα, A,AB,AC1, AC2, AC1C2 ≤ G but F1F2, the free join of ABC1, ABC2 over
AB is not strong in G. Using Remark 2.4 and the transitivity of ≤, we obtain that it suffices to show that
AB,AC1C2 ≤ G along with F1F2 � G to obtain the claim.

First, as AB ≤ Gi and G is the free join of G1, G2 over AB, we obtain AB ≤ G by an application
of (2) of Fact 2.18. We now show that AC1C2 ≤ G. Let AC1C2 ⊆ G′ ⊆ G and let B′ = B ∩G′,
G′i = Gi − ACi. Now δ(G′/AC1C2) = δ((G′1 − B′)(G′2 − B′)/AC1C2B

′) + δ(B′/AC1C2) using (3) of
Fact 2.18. Further, since AB,AC1C2 is freely joined over A δ(B′/AC1C2) = δ(B′/A) follows from (1) of
Fact 2.18. Arguing similarly we obtain that δ(G′i − B′/AC1C2B

′) = δ(G′i/AB
′Ci). Thus it follows that

δ(G′/AC1C2) = δ(G′1/AC1B
′) + δ(G′2/AC2B

′) + δ(B′/A). Now as A ≤ AB, it follows that δ(B′/A) ≥ 0.
The claim now follows by considering the cases B′ 6= B and B′ = B using that fact that (ABCi, Gi) forms
an essential minimal pair. Finally, and easy calculation shows that δ(G/F1F2) = −2/c.

Arguing as we did in Theorem 5.12, we easily obtain that a strong embedding of G into M over A
witnesses that the pre-weight of p is at least 2. We leave the details to the reader.

6 A pseudofinite ω-stable theory with a non-locally modular reg-
ular type

In this section we draw on some known results to prove that there are pseudofinite ω-stable theories with
non-locally modular regular types. This answers a question of Pillay’s in [9] regarding whether pseudofinite
stable theories always have locally modular regular types. We assume that the reader is familiar with basic
facts about pseudofinite theories.

Theorem 6.1. There is a pseudofinite ω-stable theory with a non-locally modular regular type.

Proof. Consider the case where L = {E} contains only one relation symbol (of arity at least 2) and let
α ∈ (0, 1) be rational. We claim that Sα has the required properties.

Let {αn} be an increasing sequence of irrationals in (0, 1) that converge to α. By the results of [1],
it follows that Th(Mαn) can be obtained as a almost sure theory with respect to a certain probability
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measure. Thus, in particular, each theory Th(Mαn) is pseudofinite. Now by Theorem 4.2 of [4], it follows
that Sα = Th(ΠUMαn) where U is a non-principal ultrafilter on ω. Since taking the ultraproduct of
structures with pseudofinite theories results in a structure with a pseudofinite theory, it follows that Sα is
pseudofinite. Further as we have shown in Theorem 5.13 that 1/c-nuggets are non-locally modular and the
result follows.
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