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LOCAL KEISLER MEASURES AND NIP FORMULAS

K. GANNON

Abstract. We study generically stable measures in the local, NIP context. We show
that in this setting, a measure is generically stable if and only if it admits a natural finite
approximation.

1. Introduction

The connection between finitely additive probability measures and NIP theories was first
noticed by Keisler in his seminal paper [8]. Around 20 years later, the work of Hrushovski,
Peterzil, Pillay, and Simon greatly expanded this connection in [5], [6], and [7]. In particular,
they introduce the notion of generically stable measures. These measures exhibit properties
of measures in stable theories. One of the most important properties of generically stable
measures is that they admit a particular kind of approximation. The following is weaker
version of the approximation theorem proven in [7],

Theorem ([7]). Assume that T is an NIP theory. Let U be a monster model of T , M be
a small elementary substructure of U , and µ be a finitely additive measure on the Boolean
algebra of definable sets with parameters from U (in free variables x). Then, µ is generically
stable over M if and only if µ is finitely approximable over M , i.e. for every partitioned
formula ϕ(x; y), and for every ǫ > 0, there exists a sequence of points a1, ..., an in Mx such
that for any c ∈ Uy,

|µ(ϕ(x; c))− Av(a)(ϕ(x; c))| < ǫ.

The purpose of this paper is to prove a local version of the theorem above. We prove the
following,

Theorem (Main Theorem). Let T be a first order theory. Let U be a monster model of T ,
M be a small elementary substructure of U , and ϕ(x; y) an NIP formula. Let µ be a finitely
additive measure on the collection of ϕ-definable sets with parameters from U . Then µ is
generically stable over M (as in Definition 4.10) if and only if µ is finitely approximable
over M (as in Definition 4.11).

The proof of our Main Theorem involves translating the concept of generic stability into the
framework of functional analysis. From this vantage point, we can apply an important result
of Bourgain, Fremlin, and Talagrand [2], namely Theorem 2.5. The connection between NIP
formulas, local types, and Theorem 2.5 was first noticed by Simon in [13] and further work
has been done by Khanaki and Pillay in [9] and [10]. We can further extend this connection
to local measures via Ben Yaacov’s work on continuous VC classes [1].
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2 K. GANNON

This paper is organized as follows: In section 2, we fix some model theoretic conventions.
We will also provide all necessary functional analysis background.

In section 3, we connect NIP formulas, continuous VC classes, and the important result
of Bourgain, Fremlin, and Talagrand mentioned earlier in the introduction.

In section 4, we begin by defining some important properties for local measures. We then
translate these properties into the language of functional analysis. Using the theorems from
functional analysis outlined in section 2 and the connection established in section 3, we will
prove our Main Theorem.

Acknowledgments. I would first and foremost like to thank my advisor Sergei Starchenko
for many helpful and indispensable discussions. I would also like to thank Elisabeth Bous-
caren, Itäı Ben Yaacov, and Artem Chernikov for fruitful discussions during my time in Paris
and the Chateaubraind Fellowship for making this travel possible. Finally, I thank Gabriel
Conant and Jinhe Ye for many editorial suggestions and corrections.

2. Notation and Preliminaries

2.1. Model Theory Conventions. Our notation for the most part is standard. We refer
the reader to [12] for a thorough introduction to NIP theories and formulas.

Throughout this paper we fix T a first order theory in a countable1 language L, U a
monster model of T , and M a small elementary substructure of U . The letters x and y
will denote tuples of variables. We let l(x) denote the length of a tuple. We let ϕ(x; y)
be a partitioned formula (without parameters) and with object variables x and parameters
variables y. The formula ϕ∗(x; y) will denote the exact same formula as ϕ(x; y), but with
the roles exchanged for parameter and variable tuples.

We recall that a formula ϕ(x; y) is IP if for every natural number n, there exists A ⊂ U l(x)

such that |A| ≥ n for every K ⊆ A there exists some bK in U l(y), so that {c ∈ A : U |=
ϕ(c, bK)} = K. If ϕ(x; y) is not IP, then we say that ϕ(x; y) is NIP. We now recall two basic
facts whose proofs can be found in [12]. First, if ϕ(x; y) is NIP, then ϕ∗(x; y) is NIP. Second,
any Boolean combination of NIP formulas is also NIP.

If B ⊆ U , we let Sx(B) denote the space of types in variable x with parameters from
B. Moreover, we denote the space of ϕ-types in object variable x with parameters from B
as Sϕ(B). If b ∈ Un, we let tp(b/B) denote the type of b over B. We will routinely write
U l(x) as Ux or even simply as U when l(x) is clear. We let Defx(U) be the Boolean algebra
of all definable subsets of Ux and let Defϕ(U) be the subalgebra of Defx(U) generated by
{ϕ(x; b) : b ∈ Uy}.

A formula is an L-formula and ϕ-formula is a Boolean combination of elements in {ϕ(x; b) :
b ∈ Uy}. We will abuse notation and routinely identify definable sets with the formulas which
define them. We let Mx(U) be the collection of finitely additive probability measures on
Defx(U) and Mϕ(U) be the collection of finitely additive probability measures on Defϕ(U).

If a = a1, ..., an is a sequence of points in Ux, we let Av(a) be the measure on Defx(U)
where for every formula, ψ(x),

Av(a)(ψ(x)) =
|{i : U |= ψ(ai)}|

n
.

Finally, we let Aut(U/M) denote the collection of automorphisms of U which fixM pointwise.

1For uncountable theories, we simply take the reduct to a countable language containing all the formulas
we are working with.
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2.2. Functional Analysis. We recall some definitions and theorems from functional anal-
ysis. We refer the reader to [3] as a standard reference on the subject.

Let X be a set, and let RX denote the collection of all functions from X to R. RX is a
topological space with the product topology. If A ⊆ RX , we let cl(A) be the topological
closure of A in RX .

Let (fi)i∈N be a sequence in RX . We recall two different notions of convergence:

(1) (fi)i∈N converges pointwise to a function f , written fi → f , if for every b ∈ X and for
every ǫ > 0 there is some natural number N where for any n > N , |fn(b)− f(b)| < ǫ.

(2) (fi)i∈N converges uniformly to a function f , written fi →u f , if for every ǫ > 0 there
is some natural number N where for any n > N , supb∈X |fn(b)− f(b)| < ǫ.

Assume that X is a topological space and let C(X) denote the space of continuous from
X to R. If X is a compact Hausdorff space, then C(X) is a Banach space with the uniform
norm, || · ||∞, where ||f ||∞ = supx∈X |f(x)|.

Let Y be a real Banach space, let y ∈ Y , and let (yi)i∈N be a sequence in Y . We say
that (yi)i∈N converges weakly to y, written yi →w y, if for all continuous linear functionals
G : Y → R, we have that limi∈NG(yi) = G(y).

We note if X is a compact Hausdorff space, such as Sy(M), then for any sequence of
functions (fi)i∈N in C(X), one may determine whether this sequence converges pointwise,
weakly, or uniformly. This is clear since C(X) is a Banach space and C(X) ⊂ RX . After the
following definition, we will state some theorems which connect these notions of convergence.

Definition 2.1 (Convex Combination). Let Y be a vector space and A ⊆ Y . We let conv(A)
be the convex hull of A, and we let convQ(A) denote the collection of all rational convex
combinations of elements from A, i.e.,

convQ(A) =

{
n∑

i=1

riai : ai ∈ A ; n ∈ N ; ri ∈ Q+ ;
n∑

i=1

ri = 1

}

.

We now recall some theorems from functional analysis. Our first theorem is a trivial
consequence of Mazur’s Lemma [4] and connects the notions of uniform convergence and
weak convergence. We will refer to the following theorem simply as Mazur’s Lemma.

Lemma 2.2 (Mazur’s Lemma [4]). Let (Y, || · ||) be a Banach space, y ∈ Y , (ai)i∈N be a
sequence of elements in Y , and A = {ai : i ∈ N}. If ai →w y, then there is a sequence of
zi ∈ convQ(A) such that limi→∞ ||zi − y|| = 0.

In particular, if X is a compact Hausdorff space, (fi)i∈N is a sequence in C(X), and
fi →w g, then there exists hi ∈ convQ({fi : i ≤ N}) such that hi →u g.

The following theorem is an application of the the dominated convergence theorem and the
Riesz representation theorem. This theorem connects the notions of pointwise convergence
and weak convergence.

Theorem 2.3 ([11]). Let K be a compact Hausdorff space, f ∈ C(K), and (fi)i∈N be a
sequence in C(K). Then the following are equivalent:

(i) fi →w f .
(ii) fi → f and supi∈N ||fi||∞ <∞.

The next theorem is the result by Bourgain, Fremlin, and Talagrand [2] which we alluded
to in the introduction. In fact, a much more general statement is proven in [2] than the one
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we provide. The connection between this theorem and NIP formulas is well known and has
been expanded upon in [13], [9], and [10]. This theorem is slightly more technical than the
last two, but essentially it allows one to find pointwise convergent sequences under particular
tameness conditions. Before we can state the theorem, we define the tameness condition.

Definition 2.4 (Sequential Independence). Let X ⊂ RY . Then we say that X is sequentially
independent if there exists a sequence (fn)n∈N of elements in X, an r ∈ R, and an ǫ > 0 such
that for every I ⊆ N, there exists some bI in Y such that,

{n ∈ N : fn(bI) ≤ r} = I and {n ∈ N : fn(bI) ≥ r + ǫ} = N\I.

If X is not sequentially independent, we say that X is sequentially dependent.

Theorem 2.5 ([2]). Let X be a compact Hausdorff space, A ⊆ C(X), and |A| ≤ ℵ0. Assume
that supf∈A ||f ||∞ <∞. Then the following are equivalent:

(i) A is sequentially dependent.
(ii) for each f ∈ RX , if f ∈ cl(A), then there exists a sequence of elements (fi)i∈N from A

such that fi → f .

2.3. Model Theory and Functions. In this subsection, we briefly discuss special types
of functions. We recall that U is a fixed monster model of T and M is a small elementary
substructure of U .

Definition 2.6. If ϕ(x; y) is a partitioned formula and a is in Mx, we define the map
F ϕ
a : Sy(M) → {0, 1} ⊂ R via,

F ϕ
a (p) =

{

1 ϕ(a, y) ∈ p,

0 otherwise.

Moreover, we let Fϕ
M = {F ϕ

a : a ∈M}.

Remark 2.7. It is clear that for each a in Mx the map F ϕ
a is continuous. We will always

view F ϕ
a as a map from Sy(M) to R. We let conv(Fϕ

M) be the convex hull of Fϕ
M in C(Sy(M)).

Definition 2.8 (Representative Sequence). Let f ∈ convQ(F
ϕ
M). A representative sequence

for f is a sequence of points a1, ..., am ∈ Mx so that for every b ∈ Uy, Av(a)(ϕ(x; b)) =
f(tp(b/M)).

Remark 2.9. Every element f in convQ(F
ϕ
M) has many representative sequences. If f ∈

convQ(F
ϕ
M), then f =

∑n
i=1 riF

ϕ
ci
where each ci is in M

x, ri ∈ Q+, and
∑n

i=1 ri = 1. Let m
be the smallest number so that for every i ≤ n, m · ri ∈ N. Let

ai = ci, ..., ci
︸ ︷︷ ︸

m·ri times

Then, the concatenation of the ai’s is a representative sequence for f .

Finally, we end the introduction with an important fact about continuous functions on
Stone spaces. This result is folklore and we provide a proof for the sake completeness.

Fact 2.10. Let S be a totally disconnected compact Hausdorff space. Then, a map f :
S → [0, 1] is continuous if and only if for every ǫ > 0, there exists a collection of clopen
sets P = {C1, ..., Cm} such that P forms a partition of S and for each i if b, b′ ∈ Ci, then
|f(b)− f(b′)| < ǫ.
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Proof. First, we prove the forward direction. Assume that f : S → [0, 1] is continuous. Let
B = {Bǫi : i ≤ n} be a finite collection of open intervals of length ǫ which cover [0, 1]. Then,
f−1(Bǫi) = Ui. Then, Ui =

⋃

j∈Ji
Cij where each Cij is clopen. Now,

n⋃

i=1

f−1(Bǫi) =
n⋃

i=1

⋃

j∈Ji

Cij

is an open cover of S. So,
⋃m

k=1Ck for some k’s in {ij : i ≤ n, j ∈ Ji} is a finite subcover.
If b, b′ ∈ Ck, then f(b), f(b′) ∈ Bǫi and so |f(b) − f(b′)| < ǫ. Choosing the atoms of the
Boolean algebra generated by {Ck : k ≤ m} gives us a partition.

Now, the other direction. We need to show that f is continuous. Let Bǫ be an open
interval of length ǫ. We want to show that f−1(Bǫ) is an open set. If f−1(Bǫ) = ∅, then
we are finished. Assume that p ∈ f−1(Bǫ). Notice that f(p) ∈ Bǫ. Choose δ such that
(f(p) − δ, f(p) + δ) ⊂ Bǫ. Let P = {C1, ..., Cm} form a partition for δ and assume that
p ∈ Cp. Then, f(Cp) ⊆ (f(p)− δ, f(p) + δ) and so Cp ⊂ f−1(Bǫ). Repeating this process for
each p ∈ f−1(Bǫ), we conclude that f−1(Bǫ) =

⋃

p∈Bǫ
Cp. Therefore, f

−1(Bǫ) is open. �

3. Dependence

The purpose of this section is to connect the notions of VC-dimension, NIP formulas, and
sequential dependence. In particular, we show that if ϕ(x; y) is NIP, then conv(Fϕ

M), as a
subset of RSy(M), is sequentially dependent. This result, Theorem 3.14, follows implicitly by
results in [1]. This section gives a direct proof of this theorem. We begin by fixing some
notation and recalling a quick fact about NIP formulas.

Definition 3.1. Let ϕ(x; y) be a partitioned formula. Let Fϕ be the family of definable
subsets of Ux of the form {ϕ(x; b) : b ∈ Uy}. Likewise, we let Fϕ∗ = {ϕ(a, y) : a ∈ Ux}.

3.1. VC Theory. We now continue by recalling some basic VC theory. The purpose of this
subsection is to clearly state the VC theorem.

Definition 3.2 (VC-Dimension). Let X be a set and let F be a family of subsets of X .
Then, the VC-dimension of F is the largest n such that there exists A ⊂ X , |A| = n, and,

{K ⊂ A : ∃F ∈ F so that F ∩ A = K} = P(A).

We denote the VC-dimension ofF as dimV C(F). If no such n exists, then we say dimV C(F) =
∞.

Fact 3.3. If ϕ(x; y) is NIP then Fϕ and Fϕ∗ have finite VC-dimension.

Definition 3.4 (ǫ-Approximations). Let X be a set, F be a family of subsets of X , and
µ be a measure on P(X). Then, we say that a sequence of elements a1, ..., an in X is a
ǫ-approximation for µ over F if for every F ∈ F , |µ(F )−Av(ā)(F )| < ǫ.

Now, we may state the VC Theorem.

Theorem 3.5 ([14]). Let X be a set and F a family of subsets of X. Assume that F has
finite VC-dimension. Let µ be a probability measure concentrating on a finite subset of X,
i.e. µ(A) = 1 for some finite set A. Then, for every ǫ > 0, there exists some constant Cǫ,d,
depending only on ǫ and d = dimV C(F), and a sequence of points c1, ..., cm in X such that
m ≤ Cd,ǫ and c1, ..., cm is an ǫ-approximation of µ over F .
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Remark 3.6. We notice that if F is a family of subsets of X with VC-dimension d, then for
every ǫ > 0 and for every probability measure µ concentrating on a finite set, there exists
some Kd,ǫ depending only of d and ǫ and a sequence of points a1, ..., am in X where m = Kd,ǫ

such that a1, ..., am is an ǫ-approximation of µ over F . In other words, for any measure
concentrating on a finite set, we can find an ǫ-approximation of exactly length Kd,ǫ, e.g.
we may take Kd,ǫ = Cd,ǫ! since one can just concatenate sequences of length less than Cd,ǫ

with themselves many times.

3.2. Continuous VC Classes. We will explain dependence in the continuous context and
explain how this relates to sequential dependence.

Definition 3.7 (Shattering). Let X, Y be sets, f : X ×Y → [0, 1], r ∈ (0, 1) and ǫ > 0. Let
A ⊂ X . We say that f (r, ǫ)-shatters A if for every K ⊆ A, there exists some bK in Y so
that

{a ∈ X : f(a, bK) ≤ r} ∩ A = K,

and,
{a ∈ X : f(a, bK) ≥ r + ǫ} ∩ A = A\K.

Moreover, we say that B witnesses the (r, ǫ)-shattering of A if for each K ⊆ A, B contains
bK as above.

The following definition of dependence is equivalent to the one given in [1].

Definition 3.8 (Dependence). Let X, Y be sets and let f : X × Y → [0, 1]. We say that f
is (r, ǫ)-independent if every n ∈ N, there exists A ⊂ X where |A| > n and f (r, ǫ)-shatters
A. We say that f is independent if there exists some r ∈ (0, 1) and ǫ > 0 so that f is
(r, ǫ)-independent. Finally, we say that f is dependent if ϕ is not independent.

Fact 3.9. If f : X × Y → [0, 1] is dependent, then X = {f(a, y) : a ∈ X} ⊂ RY is
sequentially dependent.

Proof. This follows directly from the definitions. �

3.3. Space of Dirac Measures. We prove the theorem advertised in the introduction of
this section, namely Theorem 3.14. We begin by discussing certain kinds of measures.

We recall that if X is a set and a ∈ X , then a Dirac measure δa on P(X) is a measure
where for any A in P(X), we have that δa(A) = 1 if a ∈ A and δa(A) = 0 if a 6∈ A.

Definition 3.10 (Convex Hull of Dirac Measures). Let X be a set. Let δ(X) be the the
collection of Dirac measures over X . Then, conv(δ(X)) is the convex hull of Dirac measures
over X , i.e.

conv(δ(X)) =

{
n∑

i=1

riδxi
: n ∈ N, xi ∈ X, ri ∈ R+,

n∑

i=1

ri = 1

}

.

We will write conv(δ(X)) simply as conv(X).

Definition 3.11. Let f : X × Y → {0, 1}. Then, we define the map Ψf : conv(X) ×
conv(Y ) → [0, 1] via

Ψf(µ, ν) =

∫

f(x, y)dµdν =
n∑

i=1

m∑

j=1

risjf(ai, bj),

where µ =
∑n

i=1 riδai and ν =
∑m

j=1 sjδbj .
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Theorem 3.12. Assume that ϕ(x; y) is an NIP formula. Consider f : Ux × Uy → {0, 1}
via,

f(a, b) =

{

1 U |= ϕ(a, b),

0 otherwise.

Then the map Ψf : conv(Ux)× conv(Uy) → [0, 1] is dependent.

Proof. Assume that the map Ψf is independent. We will find a Boolean combination of ϕ
which is not NIP. Since Ψf is independent, Ψf is (r0, ǫ0)-independent for some r0 in (0, 1)
and ǫ0 > 0. Let r = r0 +

ǫ0
3
, ǫ = ǫ0

3
, and δ = ǫ

6
= ǫ0

18
. Then Ψf is (r, ǫ)-independent because

[r, r + ǫ] ⊂ [r0, r0 + ǫ0]. Now, d1 = dimV C(Fϕ) and d2 = dimV C(Fϕ∗) where d1, d2 < ∞
since ϕ(x; y) is NIP. Let n⋆ = Kδ,d1 and let m⋆ = Kδ,d2 described in Remark 3.6. Choose the
smallest w ∈ {1, 2, ..., n⋆m⋆} such that w

n⋆m⋆
≥ r. Let n⋆ ×m⋆ = {(i, j) : i ≤ n⋆, j ≤ m⋆}

and let W = [n⋆ ×m⋆]
w, i.e. the subsets of n⋆ ×m⋆ of size |w|. Now, consider the formula:

θ(x1, ..., xn⋆
, y1, ..., ym⋆

) ≡ ¬
∨

α∈W

∧

(i,j)∈α

ϕ(xi, yj)

Notice that θ(x, y) takes in two sequences of elements and decides whether ϕ(x; y) holds on
a certain proportion of pairs of elements. In other words, if a1, ..., an⋆

is a sequence in Ux and
b1, ..., bm⋆

is a sequence in Uy, then θ(a, b) determines whether Ψf(Av(a),Av(b)) is greater
than r.

We will now show that θ is not NIP. Assume that Ψf (r0, ǫ0)-shatters A. Then, for each
K ⊆ A, there exists νK in conv(Uy) so that,

{µ ∈ conv(Ux) : Ψf (µ, νK) ≤ r} ∩ A = K,

and,

{µ ∈ conv(Ux) : ΨF (µ, νK) ≥ r + ǫ} ∩A = A\K.

Then, for each µ ∈ A, let aµ1 , ..., a
µ
n⋆

be a δ-approximation for that particular µ over Fϕ

of length exactly n⋆. Moreover, for each K ⊂ A, let bK1 , ..., b
K
m⋆

be a δ-approximation for

νK over Fϕ∗ of length exactly m⋆. Let A⋆ = {(aµ1 , ..., a
µ
n⋆
) : µ ∈ A} ⊂ U l(x)·n⋆ and B⋆ =

{(bK1 , ..., b
K
m⋆

) : K ⊂ A} ⊂ U l(y)·m⋆ . Then

|Ψf(µ, νK)−Ψf(Av(aµ),Av(bK))| < 2δ =
ǫ

3
.

Now, if (aµ1 , ..., a
µ
n⋆
) is in A⋆ and (bK1 , ..., b

K
m⋆

) is in B⋆, then by a standard computation we
notice that,

U |= θ(aµ, bK) ⇐⇒ Ψf (Av(aµ), Av(bK)) ≤ r ⇐⇒ Ψf(µ, νk) ≤ r0,

as well as,

U |= ¬θ(aµ, bK) ⇐⇒ Ψf(Av(aµ), Av(bK)) ≥ r + ǫ ⇐⇒ Ψf (µ, νk) ≥ r0 + ǫ.

We conclude that θ is not NIP. However, by the fact stated in the introduction, ϕ is also not
NIP. Therefore, we have a contradiction. �

Recall that Fϕ
M = {F ϕ

a : a ∈M} as defined in Definition 2.6.

Corollary 3.13. The map Eval : conv(Fϕ
M) × Sy(M) → [0, 1] where Eval(f, p) = f(p) is

dependent.
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Proof. Assume not. Then Eval is (r, ǫ)-independent for some r and ǫ. Assume that A ⊆
conv(Fϕ

M) is (r, ǫ)-shattered. Then, for each subset K of A, there exists pK in Sy(M) where
{f ∈ conv(Fϕ

M) : f(pK) ≤ r} ∩ A = K and {f ∈ conv(Fϕ
M) : f(pK) ≥ r + ǫ} ∩ A = A\K.

Since f is in conv(Fϕ
M), we note that f =

∑n

i=1 riF
ϕ
ai

for some ai in Mx and ri > 0. Let
µf =

∑n

i=1 riδai . For each K ⊂ A, we let bK ∈ Uy be a realization of pK . Let A⋆ = {µf :
f ∈ A} ⊂ conv(Ux). Then, for any µf ∈ A⋆, we have,

Ψf(µf , δbK ) = Eval(f, tp(bK/M)) = Eval(f, pK).

Therefore if Eval is independent then so is the map Φf . Since ϕ(x; y) is NIP, this contradicts
Theorem 3.12. �

Theorem 3.14. Assume that ϕ(x; y) is an NIP formula. Then conv(Fϕ
M) ⊆ RSy(M) is

sequentially dependent.

Proof. This follows directly from Corollary 3.13 and Fact 3.9. �

4. Local Keisler Measures

We recall that U is a monster model of T , M is a small elementary substructure of U , and
ϕ(x; y) is a partitioned L-formula. We do not require ϕ(x; y) to be NIP unless explicitly
stated otherwise. In the first subsection, we define the weak notion of ϕ-generic stability
(Definition 4.3). Assuming that ϕ(x; y) is NIP, we will show that if µ is in Mϕ(U) and µ is
ϕ-generically stable over some M where M is countable, then for every ǫ > 0, there exists a
sequence of points a1, ..., an of elements inMx such that this sequance is an ǫ-approximation
for µ over Fϕ (Theorem 4.8). In the second subsection, we will then use Theorem 4.8 to
prove our main result described in the introduction. Some of the proofs in this section are
standard but are provided for the sake of completeness. We begin with some definitions.

4.1. Basic properties of Local Keisler Measures.

Definition 4.1. Let µ ∈ Mϕ(U).

(i) µ isM-invariant if for every ϕ-formula ψ(x; b) and every automorphism σ ∈ Aut(U/M),
we have µ(ψ(x; b)) = µ(ψ(x; σ(b))).

(ii) µ is ϕ-invariant over M if for every b, c ∈ Uy such that tp(b/M) = tp(c/M), we have
that µ(ϕ(x; b)) = µ(ϕ(x; c)).

Since M is assumed to be small, the collection of measures which are ϕ-invariant over
M contains the collection of M-invariant measures. Notice that ϕ-invariance only mentions
instances of ϕ and does not mention Boolean combinations of ϕ. Our next definition connects
ϕ-invariant measures over M to functions from Sy(M) to R.

Definition 4.2. Assume that µ ∈ Mϕ(U) and µ is ϕ-invariant over M . Then, we define the
function F ϕ

µ : Sy(M) → [0, 1] via F ϕ
µ (p) = µ(ϕ(x; b)) where b |= p.

Definition 4.2 allows us to transfer problems involving finitely additive measures to ques-
tions involving functions. We will soon see that special kinds of measures correspond to
special kinds of functions. Let us now describe these special measures.

Definition 4.3 (Properties of Measures). Let µ ∈ Mϕ(U).

(i) We say that µ is ϕ-definable overM if for every ǫ > 0 there exist L-formulas ψ1(y), ..., ψn(y)
with parameters only from M , such that:
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(a) The collection {ψi(y) : i ≤ m} forms a partition of Uy.
(b) If U |= ψi(e) ∧ ψi(c), then |µ(ϕ(x; e))− µ(ϕ(x; c))| < ǫ.

(ii) We say that µ is finitely satisfiable over M if for every ϕ-formula ψ(x) such that
µ(ψ(x)) > 0, there exists some a in Mx such that U |= ψ(a).

(iii) We say that µ is ϕ-generically stable over M if µ is both ϕ-definable and finitely
satisfiable over M .

We now connect the kinds of measures defined above with functions from Sy(M) to R.

Proposition 4.4. Let µ ∈ Mϕ(U). Then µ is ϕ-definable over M if and only if µ is ϕ-
invariant and the map F ϕ

µ : Sy(M) → [0, 1] is continuous.

Proof. This follows from Fact 2.10 and the assumption that M is small. �

Proposition 4.5. If µ ∈ Mϕ(U) and µ is finitely satisfiable over M , then µ is M-invariant,
and in partiuclar, µ is ϕ-invariant.

Proof. The proof is identical to the standard Keisler measure statement [12], but we provide
it for the sake of clarity. Assume that ψ(x; b) is a ϕ-formula, σ ∈ Aut(U/M) and µ(ψ(x; b)) >
µ(ψ(x; σ(b))). Then, µ(ψ(x; b)∧¬ψ(x; σ(b)) > 0. Since µ is finitely satisfiable over M , there
exists some a in Mx such that U |= ψ(a, b) ∧¬ψ(a, σ(b)). Then, tp(b/M) 6= tp(σ(b)/M) and
we have a contradiction. �

Recall that if A ⊂ RX , then cl(A) is the topological closure of A in RX . We will now
connect this closure property with finite satisfiability.

Proposition 4.6. Let µ ∈ Mϕ(U) and assume that µ is finitely satisfiable over M . Let
X = Sy(M). Then F ϕ

µ ∈ cl(convQ(F
ϕ
M)) ⊂ RX .

Proof. By Fact 4.5, the map F ϕ
µ is well defined. Let U be some open subset of RX containing

F ϕ
µ . Without loss of generality,

U =

n⋂

i=1

{f ∈ RX : ri < f(qi) < si}.

Choose some bi |= qi for each qi. Then, we have that ri < µ(ϕ(x; bi)) < si. We notice that
ϕ(x; b1), ..., ϕ(x; bn) generate a finite Boolean algebra. Let θ1(x), ..., θm(x) be the atoms of
this Boolean algebra. If µ(θi(x)) > 0 then by finite satisfiability we can find ai in M

x such
that U |= θi(ai). Define

f(y) =
∑

{i:µ(θi(x))>0}

µ(θi(x))F
ϕ
ai
(y).

Then, f ∈ conv(Fϕ
M) ∩ U . Since convQ(F

ϕ
M) is a dense subset of conv(Fϕ

M) with the induced
topology from RX , there exists some g ∈ convQ(F

ϕ
M) ∩ U . �

Lemma 4.7. Assume that ϕ(x; y) is NIP. Let µ ∈ Mϕ(U). Assume that µ is finitely
satisfiable over M and |M | = ℵ0. Then there exists some sequence (fi)i∈N of elements
in convQ(F

ϕ
M) such that fi → F ϕ

µ .

Proof. By Proposition 4.6, F ϕ
µ is in cl(convQ(F

ϕ
M)). Since ϕ(x; y) is NIP, Theorem 3.14 holds.

Since | convQ(F
ϕ
M)| = ℵ0, statement (i) of Theorem 2.5 is satisfied. Therefore statement (ii)

of Theorem 2.5 holds, so there exists a sequence of elements fi ∈ conv(Fϕ
M) such that

fi → F ϕ
µ . �



10 K. GANNON

We now prove the main theorem of this section.

Theorem 4.8. Assume that ϕ(x; y) is NIP. Let µ ∈ Mϕ(U). Assume that µ is ϕ-generically
stable over M and |M | = ℵ0. Then for every ǫ > 0, there exists a sequence a1, ..., an of
elements in Mx such that,

|µ(ϕ(x; b))− Av(a)(ϕ(x; b))| < ǫ.

Proof. Fix ǫ. By Lemma 4.7, there exists a sequence (fi)i∈N of elements in convQ(F
ϕ
M) such

that fi → F ϕ
µ . By Fact 4.4, we know that F ϕ

µ is continuous. Since each fi is also continuous,
we may apply Theorem 2.3. Therefore, fi →w F ϕ

µ . By Mazur’s Lemma, there exists a
sequence gi ∈ convQ(F

ϕ
M) such that gi →u F

ϕ
µ . Choose gn such that

sup
q∈Sy(M)

|F ϕ
µ (q)− gn(q)| < ǫ.

Notice that gn =
∑n

i=1 riF
ϕ
ci
and let a1, ..., an be a representative sequence for gn. Then for

each b ∈ Uy,

|µ(ϕ(x; b))−Av(a)(ϕ(x; b))| = |F ϕ
µ (tp(b/M))− gn(tp(b/M))|.

Since M is small, we may conclude that

sup
b∈U

|µ(ϕ(x; b))− Av(ā)(ϕ(x; b))| = sup
q∈Sy(M)

|F ϕ
µ (q)− gn(q)| < ǫ.

�

4.2. Main Result. The purpose of this section is to prove our Main Theorem as described in
the introduction. We again do not require ϕ(x; y) to be NIP in this section unless explicitly
stated. We will see that if we strengthen our definition of ϕ-definability and in turn our
definition of ϕ-generic stability, we can prove our main result. We begin this section by
considering different families of ϕ-definable sets.

Definition 4.9. For a fixed partitioned L-formula ϕ(x; y), we define ∆ϕ as the Boolean
algebra of partitioned formulas generated by {ϕ(x; yi) : i ∈ N, l(yi) = l(y)}. If θ(x; y)
is an element of ∆ϕ, we let Defθ(U) be the Boolean subalgebra of Defx(U) generated by

{θ(x; b) : b ∈ Uy}. Moreover, we let Iθ denote the obvious restriction map from Mϕ(U) to
Mθ(U). For notational purposes, if µ ∈ Mϕ(U) and θ(x; y) is in ∆ϕ, then we write Iθ(µ)
simply as µθ.

For example, the formulas ϕ(x; y1) ∧ ϕ(x; y2), ϕ(x; y1)△ϕ(x; y2), and
∨14

i=1 ϕ(x; yi) are all
elements of ∆ϕ.

We now give the definition generic stability and finite approximability as well as some
relations between the properties we have already defined.

Definition 4.10. Let µ ∈ Mϕ(U). Then µ is definable over M if for every θ(x; y) in ∆ϕ and
ǫ > 0 there exist L-formulas ρ1(y),...,ρm(y) with parameters only from M , such that:

(i) The collection {ρi(y) : i ≤ m} forms a partition of Uy.
(ii) if U |= ρi(e) ∧ ρi(c), then |µ(θ(x; e))− µ(θ(x; c))| < ǫ.

We say that µ is generically stable over M if µ is definable and finitely satisfiable over M .

Definition 4.11. Let µ ∈ Mϕ(U). Then, µ is finitely approximable if for every θ(x; y) in
∆ϕ and for every ǫ > 0, there exists a sequence a1, ..., an in Mx such that for any b ∈ Uy

|µ(θ(x; b))− Av(a)(θ(x; b))| < ǫ.
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Proposition 4.12 (Basic Properties). Let µ ∈ Mϕ(U).

(i) µ is M-invariant if and only if for every θ(x; y) in ∆ϕ, µθ is θ-invariant over M .
(ii) µ is definable over M if and only if for every θ(x; y) in ∆ϕ, the measure µθ ∈ Mθ(U)

is θ-definable over M .
(iii) µ is definable over M if and only if µ is M-invariant and for every θ(x; y) in ∆ϕ the

map F θ
µθ

: Sy(M) → [0, 1] is continuous.
(iv) µ is generically stable over M if and only if for each θ(x; y) ∈ ∆ϕ, the measure µθ ∈

Mθ(U) is generically stable over M .
(v) If µ is finitely approximable over M , then µ is generically stable over M .

Proof. (ii) and (iv) follow directly from the definitions. (i) follows from the fact that M
is small. (iii) follows from Proposition 4.4 and (ii). The proof of (v) is identical to the
general Keisler measure case [12]. However, for clarity, we present the proof here. Assume
that µ is finitely approximable over M . We first show that µ is finitely satisfiable over
M . Assume that µ(θ(x; b)) > δ > 0. Then, there exists some a1, ..., an in Mx such that
|µ(θ(x; b)) − Av(a)(θ(x; b))| < δ

2
. Therefore, Av(a)(θ(x; b)) > 0 and so for some ai in our

sequence, we have that U |= θ(ai, b). Now we show that µ is definable over M . It is clear
that for every θ(x; y) in ∆ϕ the map F θ

µθ
is well-defined and a uniform limit of continuous

functions. Therefore, F θ
µθ

is continuous. By (iii), we may conclude that µ is definable over
M and hence generically stable over M . �

We now present some properties for measures which are well known for types [12]. These
properties will allow us to reduce our main result to the countable case and so we may apply
Theorem 4.8.

Proposition 4.13. Let µ ∈ Mϕ(U). Assume that µ is finitely satisfiable over N and µ is
M-invariant for M ≺ N . Then, µ is finitely satisfiable over M .

Proof. Let ψ(x; b) be a ϕ-formula and assume that µ(ψ(x; b)) > 0. Let N1 realize a coheir
of tp(N/M) over Mb. Let σ ∈ Aut(U/M) such that σ : N → N1. Then, µ(ψ(x; σ−1(b))) =
µ(ψ(x; b)) because µ is M−invariant. By finite satisfiability over N , there exists a ∈ N
such that U |= ψ(a, σ−1(b)). Then, U |= ψ(σ(a), b) where σ(a) ∈ N1. Therefore, N1 ∩ {a ∈
U : U |= ψ(a; b)} is non-empty. By the coheir hypothesis, M ∩ {a ∈ U : U |= ψ(a; b)} is
non-empty. Therefore, µ is finitely satisfiable over M . �

Proposition 4.14. Let µ ∈ Mϕ(U). If µ is generically stable over M , then there exists
M0 ≺ M such that |M0| = ℵ0 and µ is generically stable over M0.

Proof. Assume that µ is generically stable over M . Then, for each θ(x; y) in ∆ϕ and for each
ǫn = 1

n
, we can find Pθ

n = {ψ1(y), ..., ψn(y)} a partition of Uy as in Definition 4.10. Let C be
the collection of parameters used in each formula from each partition. Find M0 ≺ M such
that C ⊂ M0 and |M0| = ℵ0. Then µ is definable over M0, and in particular, M0-invariant.
By Proposition 4.13, we conclude that µ is finitely satisfiable over M0. �

We now essentially reduce our main result to Theorem 4.8.

Lemma 4.15. Assume that ϕ(x; y) is NIP. Let µ ∈ Mϕ(U). If µ is generically stable over
M , then there exists a sequence a1, ..., an in Mx such that for any b ∈ Uy,

|µ(ϕ(x; b))− Av(a)(ϕ(x; b))| < ǫ.
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Proof. By Theorem 4.14, µ is generically stable over someM0 whereM0 ≺M and |M0| = ℵ0.
Then, we may apply Theorem 4.8 to µ and M0. Since M0 ⊆M , we are done. �

Theorem 4.16. Assume that ϕ(x; y) is NIP. Let µ ∈ Mϕ(U). Then µ is generically stable
over M if and only if µ is finitely approximable over M .

Proof. By (v) of Proposition 4.12, if µ is finitely approximable over M , then µ is generically
stable over M . We only need to show the other direction. Assume µ is generically stable
over M . By (iv) of Proposition 4.12, for any θ(x; y) in ∆ϕ, µθ is generically stable over M .

By construction, µ(θ(x; b)) = µθ(θ(x; b)) for every b ∈ Uy. By Lemma 4.15, for every ǫ > 0
there are a1, ..., an in Mx so that for every b ∈ Uy,

|µθ(θ(x; b))−Av(a)(θ(x; b))| < ǫ.

Since µ(θ(x; b)) = µθ(θ(x; b)), we conclude that µ is finitely approximable over M . �
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