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MULTIPLE CHOICES IMPLY THE INGLETON AND

KREIN-MILMAN AXIOMS

MARIANNE MORILLON

Abstract. In set theory without the Axiom of Choice, we con-
sider Ingleton’s axiom which is the counterpart in ultrametric anal-
ysis of the Hahn-Banach axiom. We show that in ZFA, set theory
without the Axiom of Choice weakened to allow “atoms”, Ingleton’s
axiom does not imply the Axiom of Choice (this solves in ZFA a
question raised by van Rooij, [20]). We also prove that in ZFA, the
“multiple Choice” axiom implies the Krein-Milman axiom. We de-
duce that, in ZFA, the conjunction of the Hahn-Banach, Ingleton
and Krein-Milman axioms does not imply the Axiom of Choice.

1. Introduction

We denote by ZFA (see [10, p. 44]) the set theory ZF with the axiom
of extensionality weakened to allow the existence of atoms. We denote
by MC (“Multiple Choice”) the following consequence of the Axiom
of Choice AC (see [10, p. 133] and form 67 of [7, p. 35]): “For every
infinite family (Xi)i∈I of nonempty sets, there exists a family (Fi)i∈I of
nonempty finite sets such that for each i ∈ I, Fi ⊆ Xi.”

It is known that MC is equivalent to AC in ZF (see [10, Theorem 9.1
p. 133]), but MC does not imply AC in ZFA (see [10, Theorem 9.2
p. 134]). Given a prime number p ≥ 2, we also consider the following
refined statement for each prime number p ≥ 2, where for every finite
set F , we denote by #F the cardinal of F :
MC(p): “For every family (Ai)i∈I of nonempty sets, there exists a
family (Bi)i∈I of finite sets such that for every i ∈ I, Bi ⊆ Ai and #Bi

is not a multiple of p.”
The conjunction of all statements MC(p) for all prime numbers p is

denoted by form 218 in [7, p. 52]). Levy (1962) built a model N 6 of
ZFA (see [7, p. 185], [12]) satisfying MC(p) for every prime number
p ≥ 2 (and thus satisfying also MC), in which there exists a sequence
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(Fn)n∈N of finite sets such that for every n ∈ N, #Fn = n + 1 and∏
n∈N Fn = ∅: such a model does not satisfy AC (and more precisely,

this model does not satisfy the “countable Axiom of Choice for finite
sets”). It follows that in ZFA, the conjunction of statements MC(p)
for all prime numbers p does not imply AC.

Consider the well-known Hahn-Banach statement HB (form 52 of
[7]):
HB: Given a real vector space E and a sublinear functional p : E → R,
there exists a linear functional f : E → R such that f ≤ p.

It is known (see [14, Corollary 1]) that in ZFA, MC implies Rado’s
selection Lemma RL (form 99 of [7]), and that RL implies HB (see
[14, Theorem 1]), thus MC implies HB.

Given a spherically complete ultrametric valued field (F, |.|) (see Sec-
tion 2.5), Ingleton proved in set theory (ZF+AC) (see [9]), for each
ultrametric normed space over a “spherically complete” ultrametric val-
ued field (F, |.|), a “Hahn-Banach”-type result which we denote by I(F,|.|).
A.C.M. van Rooij ([20]) showed that for each ultrametric valued field
(F, |.|) such that the large ball {x ∈ F : |x| ≤ 1} of F is compact (whence
(F, |.|) is spherically complete), BPI implies I(F,|.|). He asked whether
the “full Ingleton theorem” (i.e. the conjunction of all statements IF,|.|

for all spherically complete ultrametric valued fields (F, |.|)) implies
AC. We shall show that in set theory ZFA (set theory without choice
weakened to allow “atoms”), the “full Ingleton theorem” does not imply
AC. More precisely, for every prime number p ≥ 2, MC(p) implies the
statement I(F,|.|) for each spherically complete ultrametric valued field
(F, |.|) with null characteristic such that the restriction of the absolute
value on Q is equivalent to the p-adic absolute value, and also for each
spherically complete ultrametric valued field (F, |.|) with characteristic
p (see Corollary 2-(2) in Section 3). In ZFA, MC implies the state-
ment I(F,|.|) for each spherically complete ultrametric valued field (F, |.|)
with null characteristic such that the restriction of the absolute value
on Q is trivial (see Corollary 2-(1) in Section 3). Since Levy’s above
model of ZFA satisfies MC(p) for every prime number p ≥ 2 (and thus
it also satisfies MC), it follows that in ZFA, the “full Ingleton axiom”
does not imply AC.

In Section 4, we prove (see Theorem 2) that in ZFA, MC implies
the Krein-Milman statement (form 65 of [7]):
KM: Given a Hausdorff locally convex topological real vector space

E, every nonempty compact convex subset of E has an extreme point.
We shall use “trees” of “facets” of a nonempty convex compact subset of
a topological real vector space. We deduce that MC ⇒ (HB+KM).
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This generalizes Pincus’s following result ([17]): the model N2 (de-
scribed in [7, p. 178]) of ZFA+¬AC+MC satisfies (KM+HB). It
follows that the conjunction of statements MC(p) for every prime num-
ber p ≥ 2 implies Rado’s lemma (and hence HB), the “full Ingleton
axiom” and also the Krein-Milman axiom. In particular, Levy’s model
N 6 of ZFA+¬AC satisfies all these statements.

The paper is organized as follows: in Section 2, we sketch basic
results about ultrametric valued fields, in Section 3 we prove in ZFA

that the conjunction of the statements MC(p) for all prime numbers p
implies the “full Ingleton Theorem”, and in the last Section 4, we prove
in ZFA that MC implies the “Krein-Milman” statement.

2. Preliminaries on ultrametric valued fields

2.1. Valued fields. An absolute value on a (commutative) field F is
a mapping |.| : F → R+ satisfying the following three properties for
every λ, µ ∈ F: |λ| = 0 ⇔ λ = 0; |λµ| = |λ||µ| and |λ+ µ| ≤ |λ|+ |µ|.
Each valued field (F, |.|) gives rise to a metric d|.| : F×F → R+ defined
by d(x, y) = |x − y| for every x, y ∈ F. An absolute value |.| on F is
said to be ultrametric if the associated metric d|.| is ultrametric (i.e.
∀x, y, z ∈ F d(x, z) ≤ max(d(x, y), d(y, z))), equivalently if for every λ,
µ ∈ F, |λ+ µ| ≤ max(|λ|, |µ|).

Example 1 (The trivial absolute value on a field). For each commutative
field F, the mapping |.|triv : F → R+ associating to each λ ∈ F the real
number 0 if λ = 0 and 1 otherwise is an absolute value, called the trivial
absolute value on F. The associated metric is the discrete distance ddisc
on F, satisfying ddisc(x, y) = 0 if x = y and 1 otherwise.

Remark 1. Notice that if |.| is an absolute value on a field F, then
|1F| = 1. If F is a finite field with m elements, then for every x ∈ F\{0},
xm−1 = 1 thus |x|m−1 = 1 so |x| = 1; it follows that the trivial absolute
value is the only absolute value on F.

2.2. Ultrametric valued fields. Given a non-empty set X and a
semi-metric d : X × X → R+, a large ball of the semi-metric space
(X, d) is a ball with “large inequalities” i.e. a subset of X of the form
B(a, r) := {x ∈ X : d(x, a) ≤ r} where a ∈ X and r ∈ R+. Given a
ultrametric valued field (F, |.|), the large ball BF(0, 1) is a subring of
F, and the “strict ball” MF := {x ∈ F : |x| < 1} is the unique maximal
ideal of the ring BF(0, 1) (MF is the set of non-invertible elements of
the ring BF(0, 1)). The field BF(0, 1)/MF is the residue class field of
the valued field F. The mapping |.|↾F\{0} : F\{0} → R∗

+ is a group
morphism w.r.t. the multiplicative laws, thus the set V(F,|.|) := {|x| :
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x ∈ F\{0}} is a subgroup of the multiplicative group R∗
+, which is

called the value group of the absolute value |.|. The value group V(F,|.|)

of a ultrametric absolute value |.| on a valued field F is either discrete
or dense in R∗

+.

Example 2 (The trivial absolute value on a field). For each commutative
field F endowed with the trivial absolute value |.|triv : F → R+, then
BF(0, 1) = F, and the maximal ideal MF is the null ideal {0}, thus
the residue class field of F is F. The group of values VF is the trivial
subgroup {1} of R∗

+.

Example 3. Given a ultrametric valued field (F, |.|) such that V(F,|.|)

is discrete and VF 6= {1}, then s := max{|x| : x ∈ MF} ∈]0, 1[, and
V(F,|.|) = {sn : n ∈ Z}.

2.3. Cauchy-complete semi-metric spaces. Given a semi-metric
space (X, d), a filter F on X is Cauchy if for every real number ε > 0,
there exists F ∈ F such that the d-diameter supx,y∈F d(x, y) of F is
< ε. A semi-metric space (X, d) is Cauchy complete if every Cauchy
filter of this semi-metric space has a non-empty intersection.

Example 4. (1) The field R of real numbers endowed with the usual
absolute value is Cauchy complete. For every set X, denoting by
B(X,R) the vector space of bounded functions f : X → R, then
the normed vector space B(X,R) endowed with the uniform
norm is Cauchy-complete.

(2) Every set X endowed with the discrete distance ddisc is Cauchy-
complete since, for every real number ε ∈]0, 1[, non-empty ε-
small subsets of X are singletons. In particular, every val-
ued field endowed with the trivial absolute value is Cauchy-
complete.

Remark 2. Say that a semi-metric space (X, d) is sequentially complete
if every d-Cauchy sequence of X converges to a point of X. There are
models of ZF (for example the “basic Cohen model” described in [10,
Section 5.3]) in which there exists a dense (hence infinite) subset D
of R which is Dedekind-finite (i.e. which does not contain any subset
equipotent with N). Such a set D endowed with the usual distance of
R is a metric space which is “sequentially complete” (because for each
sequence (xn)n∈N of D, the set {xn : n ∈ N} is finite thus each Cauchy-
sequence of (D, d) is stationnary) but the metric subspace (D, d) of R
is not Cauchy-complete since D is not closed in R.
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A Cauchy-completion of a semi-metric space (X, d) is a Cauchy com-

plete metric space (X̂, d̂) together with an isometry j : (X, d) → (X̂, d̂)

such that j[X ] is dense in X̂.

Proposition 1. For every semi-metric space (X, d), the mapping j :
X → B(X,R) associating to each a ∈ X the mapping fa = (d(x, a))x∈X
is isometric, the closed subspace j[X ] of B(X,R) is Cauchy-complete,

and (j, j[X ]) is a Cauchy-completion of (X, d).

Given a valued field (F, |.|), the laws + and . of the field F are

uniquely extendable into continuous laws on the Cauchy-completion F̂
of the metric space (F, d|.|) (the law + is uniformly continuous and the

law . is uniformly continuous on BF(0, 1)× BF(0, 1)). The structure F̂
endowed with these extended laws is a valued field.

2.4. Non trivial absolute values on Q.

2.4.1. Archimedean absolute values on Q. An absolute value on a field
F is archimedean if sup{|n.1F| : n ∈ N} = +∞. Given a field F, an
absolute value on F is non archimedean if and only if it is ultrametric
(see [19, Theorem 1.1 p. 2]).

Example 5. (1) The mapping |.|Q : Q → R+ associating to each
rational number x le number max(x,−x) is an archimedean
absolute value on the field Q of rational numbers.

(2) Denoting by R the ordered field of real numbers, i.e. the
Cauchy-completion of the valued field (Q, |.|Q), the “usual” ab-
solute value |.|R : R → R+ which associates to each x ∈ R the
real number max(x,−x) is archimedean.

(3) Denoting by C the field of complex numbers, the “modulus func-
tion” |.|C : C → R+ is an archimedean absolute value on C.

(4) Given any subfield F of C, the restriction of the “modulus func-
tion” |.|F := |.|C↾F : F → R+ is an archimedean absolute value
on F.

Remark 3. Notice that, given a subfield F of C, for each real number
τ ∈]0, 1], the function |.|C

τ

↾F is also an archimedean absolute value on

F. Given a ultrametric field (F, |.|), for each real number τ > 0, the
function |.|τ is also a ultrametric absolute value on F which is equivalent
to the initial absolute value |.|.

2.4.2. p-adic absolute values on Q. We denote by PRIME the set of
prime natural numbers. For each p ∈ PRIME, we denote by vp :
Q → Z ∪ {+∞} the p-adic valuation on Q, such that vp(0) = +∞,
vp(1) = vp(−1) = 0, and for all x ∈ Q\{0, 1,−1}, vp(x) is the exponent
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α of p in the prime decomposition x = ±pα
∏

q∈PRIME;q 6=p q
αq of x in

prime numbers. For each prime natural number p, we denote by Fp =
{0, 1, . . . , p− 1} the finite field with p elements.

Proposition 2 ([5, Prop. 2.4.3 p. 40]). (1) The mapping x 7→ |x|p :=
p−vp(x) is a ultrametric absolute value on the field Q of rational
numbers.

(2) The group of values of of the valued field (Q, |.|p) is {pn : n ∈ Z};
(3) The subring B(0, 1) of (Q, |.|p) is the subset {m

n
: m ∈ Z;n ∈

N∗ s.t. p ∤ n} and thus Z is a subring of B(0, 1).
(4) The maximal ideal M(Q,|.|p) is pB(0, 1).
(5) The cosets of the ring B(0, 1) modulo the maximal ideal pB(0, 1)

are the sets i+pB(0, 1) where i ∈ {0, . . . , p−1}, and the residue
class field is the finite field Fp.

Proof. (1) and (2) are trivial. See the proofs of (3) and (4) in [5,
Prop. 2.4.3-(i) and (ii) p. 40]. (5) We first notice that if i, j ∈ {0, . . . , p−
1}, then the sum of the two classes i+ pB(0, 1) and j + pB(0, 1) is the
class r + pB(0, 1) where r is the remainder in the euclidean division
of (i + j) by p: indeed, let q ∈ N such that i + j = qp + r where
r ∈ {0, . . . , p − 1}; then |i + j − r|p = |qp|p which is 0 if q = 0 and
p−α where α ∈ N∗ else, thus |i + j − r|p < 1 so (i + j) + pB(0, 1) =
r + pB(0, 1). Let x ∈ Q such that |x|p = 1. Let us show that there
exists i ∈ {1, . . . , p− 1} such that |x− i|p < 1. It is sufficient to prove
this if x = 1

n
where n ∈ N∗ with |n|p = 1 i.e. p does not divide n. Since

p ∤ n, n+ pZ is invertible in Z/pZ, thus let i ∈ {1, . . . , p− 1} such that
p/(ni− 1); then |ni− 1|p < 1 i.e. |n|p|i−

1
n
|p < 1 i.e. |i− 1

n
|p < 1 thus

1
n
− i ∈ pB(0, 1). �

Proposition 3 ([5, Lemma 3.2.3 p. 51]). (1) The valued field (Q, |.|p)
is not complete.

(2) Denoting by Qp the Cauchy-completion of the valued field (Q, |.|p),
the extended absolute value |.|p : Qp → R+ is also ultramet-
ric and has the same group of values as (Q, |.|p). Moreover,
pBQp

(0, 1) is still a maximal ideal of the subring BQp
(0, 1) of

Qp and the quotient field BQp
(0, 1)/pBQp

(0, 1) is still the finite
field Fp.

Theorem (Ostrowski’s theorem, [19, Th. 1.2 p. 3]). Every non trivial
absolute value on Q is of the form |.|τR where τ is some real number
such that 0 < τ < 1, or of the form |.|τp for some prime number p and
τ > 0.
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2.5. Spherically complete ultrametric spaces. A ultrametric semi-
metric space is spherically complete if every chain of large balls of this
semi-metric space has a non-empty intersection.

Example 6. Each nonempty set X endowed with the discrete metric
ddisc is spherically complete, because large balls of the metric space
(X, ddisc) are singletons of X or the whole set X.

Proposition 4. Every spherically complete ultrametric space is Cauchy-
complete.

Proof. Assume that (X, d) is a ultrametric metric space which is spheri-
cally complete and that F is a Cauchy filter of the metric space (X, d).
Consider the set C of large balls which belong to F . For every B1,
B2 ∈ C, B1 ∩ B2 ∈ F thus B1 ∩ B2 6= ∅; since d is ultrametric, it
follows that B1 ⊆ B2 or B2 ⊆ B1. Thus C is a chain of large balls.
Notice that for every F ∈ F with diameter dF , for every x ∈ F ,
F ⊆ B(x, dF ), thus, for every x, y ∈ F , B(x, dF ) = B(y, dF ). Since
(X, d) is spherically complete, the set ∩C is nonempty. Since F is a
Cauchy-filter, C contains balls of diameter ε for every ε > 0, thus ∩C is
a singleton {a}. We now show that for every ε > 0 and every F ∈ F ,
B(a, ε) ∩ F 6= ∅ (whence it will follow that a ∈ F ). It is sufficient to
prove that for every ε > 0 and every F ∈ F such that diam(F ) < ε/2,
B(a, ε) ∩ F 6= ∅. Given some F ∈ F such that diam(F ) < ε/2, then,
for every x ∈ F , F ⊆ B(x, ε/2), thus B(x, ε/2) ∈ C, so a ∈ B(x, ε/2)
whence B(a, ε/2) ∩ F 6= ∅. �

Remark 4. For each prime number p, the valued field (Q, |.|p) is not
complete hence not spherically complete,

2.6. For each prime number p, Qp is locally compact hence

spherically complete.

2.6.1. The topological ring Zp. Let p be a prime number. For each natu-
ral number n, we endow the finite ring Z/pnZ with the discrete topology
and we endow the product ring A :=

∏
n∈N∗ Z/pnZ with the product

topology: thus the topological ring A is compact and metrizable (by
the usual metrics on the product of metric spaces A). We denote by
Zp (see [1, Prop. 1.2.1 p. 18]) the closed subring {x = (xn)n∈N∗ ∈ A :
∀n ∈ N∗ pn | (xn+1 − xn)} of A. It follows that (Zp,+,×) is a com-
mutative compact topological ring. The topological subspace Zp of A
is also metrizable. The unit of Zp is the constant sequence (1). Let
can : Z → Zp be the canonical injection. If a ∈ N, if a =

∑
k akp

k is the
p-ary expansion of a (where each ak ∈ {0, . . . , p−1}, then can(a) is the
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element x = (xn)n∈N∗ of Zp such that for each n ≥ 1, xn =
∑

0≤k<n akp
k.

It follows that can : Z → Zp is dense (see [1, Prop. 1.2.3 p. 19].

Proposition 5 ([1, Prop. 1.4.5. p. 23]). An element x = (xn)n∈N∗ is
invertible in Zp if and only if x1 6= 0 in Z/pZ.

2.6.2. The topological ring Zp and the large ball B(0, 1) of Qp are iso-
morphic.

Proposition 6. The topological ring Zp and the large unit ball B(0, 1)
of Qp are isomorphic. It follows that the large ball B(0, 1) of Qp is
compact.

Proof. For each x = (xn)n∈N∗ ∈ Zp, considering each xn ∈ Z/pnZ as an
element of {0, . . . , pn − 1} ⊆ Z, the sequence (xn)n≥1 of Q is a Cauchy
sequence for the metric dp on Q, thus it converges to a unique element
of BQp

(0, 1). Let f : Zp → BQp
(0, 1) be the mapping associating to each

x = (xn)n∈N∗ ∈ Zp its limit in BQp
(0, 1). Then f is a morphism of rings,

and f is one-to-one. Moreover, the mapping f is onto: since f [Zp] is a
compact (hence closed) subset of B(0, 1), it is sufficient to prove that
(Q ∩ BQp

(0, 1)) ⊆ f [Zp], or, equivalently, that for each n ∈ N∗ such
that p ∤ n, 1

n
∈ f [Zp]: given n ∈ N∗ such that p ∤ n, consider the p-ary

expansion n =
∑

k akp
k where each ak ∈ {0, . . . , p − 1}, then a0 6= 0

thus can(n) = (a0, a0 + pa1, . . . ) is invertible in Zp, so 1
n
∈ f [Zp]. �

Corollary 1. The Cauchy completion Qp of (Q, |.|p) is spherically com-
plete.

Proof. Using the previous Proposition, every large ball of Qp is compact
whence the metric space (Q, |.|p) is Cauchy-complete. �

Remark 5. Since the field Q is countable, Q has a unique countable
algebraic closure Qac. For each prime number p, there exists a unique
absolute value on Qac extending |.|p (using [1, Prop. 2.6.1 p. 63]). The
Cauchy-completion of the valued field (Qac, |.|p) is still algebraically
closed and is denoted by Cp: thus Cp is a separable complete valued
field (so it contains Qp) which is algebraically closed (thus contains
an algebraic closure of Qp). The valued field Cp is complete but not
spherically complete (see [18, Section 3.4]), hence not locally compact.
Notice that there are models of ZFA (see [11]) and of ZF (see [6])
in which Q has a (non well orderable hence non countable) algebraic
closure L without any non trivial absolute value on L.

2.7. Semi-normed vector spaces over a valued field. Given a
vector space E over a valued field (F, |.|), a semi-norm on E is a
mapping N : E → R+ satisfying for every x, y ∈ E and λ ∈ F the
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properties N(λ.x) = |λ|N(x) and N(x + y) ≤ N(x) + N(y). For a
ultrametric valued field (F, |.|), the semi-norm N is ultrametric if the
semi-metric associated to N is ultrametric, equivalently if for every
x, y ∈ E, N(x+ y) ≤ max(N(x), N(y)).

3. In ZFA, ∀PRIMEp MC(p) implies the whole Ingleton

statement

3.1. The Hahn-Banach axiom and the Ingleton axiom.

3.1.1. AC implies the Hahn-Banach statement. The following state-
ment is a consequence of AC:
HB: (Hahn-Banach statement) Given a R-vector space E, a semi-
norm N : E → R+, a vector subspace V of E and a linear form
f : V → R such that for every x ∈ V , |f(x)|R ≤ N(x), there exists

a linear form f̃ : E → R extending f such that for every x ∈ E,
|f̃(x)|R ≤ N(x).

The usual proof of HB can be obtained by transfinitely iterating
the following Lemma (for example using Zorn’s lemma or a transfinite
recursion on ordinals and the Axiom of Choice).

Lemma 1 (Hahn-Banach, 1932, “one step”). Let E be a R-vector space,
let N : E → R+ be a semi-norm on E, let V be a vector subspace of E
and let f : V → R be a linear form such that |f |R ≤ N↾V . For every

a ∈ E\V , there exists a linear form f̃ : V +R.a → R extending f such

that |f̃ |R ≤ N↾V+R.a.

Remark 6. In set-theory without the axiom of choice ZFA:

(1) AC ⇒ BPI ⇒ RL ⇒ HB: see Jech’s book [10] or Howard
and Rubin’s book [7].

(2) The implications AC ⇒ BPI and RL ⇒ HB are not reversible
in ZF: see [10] or [7] for the first implication and [14, Remark 9]
for the second one. It is known that RL does not imply BPI

in ZFA ([8]) but the question “Does RL imply BPI?” is open
in ZF.

(3) HB ⇒ “The Hausdorff-Banach-Tarski” paradox (see [16]). In
set theory ZFA, this implication is not reversible since the state-
ment “R is well orderable” implies the Hausdorff-Banach-Tarski
paradox but does not imply HB.

3.1.2. AC implies Ingleton’s statement. The following “one-step” result
is the ultrametric counterpart of Lemma 1:
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Lemma 2 (Ingleton, 1952, “one step”). Let E be a vector space over
a spherically complete ultrametric valued field (F, |.|), let N : E → R+

be a ultrametric semi-norm, let V be a vector subspace of E and let
f : V → F be a linear form such that |f | ≤ N↾V . If a ∈ E\V , then

there exists a linear form f̃ : V + F.a → F extending f such that
|f̃ | ≤ N↾V+F.a.

Remark 7. Notice that both one-step Lemmas 1 and 2 extend to a
“finite number of steps”.

For each spherically complete ultrametric valued field (F, |.|), the
Axiom of Choice implies the following statement (see [9]):
I(F,|.|) (Ingleton’s statement): “Let E be a F-vector space, let N : E →
R+ be a ultrametric semi-norm, let V be a vector subspace of E and let
f : V → F be a linear form such that |f | ≤ N↾V . Then there exists a

linear form f̃ : E → F extending f such that |f̃ | ≤ N .”

We shall show that in set theory ZFA, the “full Ingleton theorem”
+ HB does not imply AC (unless ZFA is inconsistent). This answers
in ZFA a question raised by van Rooij (see [20]).

3.2. A model of ZFA+¬AC with “multiple choices”. Levy (1962)
built a model N 6 of ZFA (see [7, p. 185], [12]) in which there exists a
sequence (Fn)n∈N of finite sets such that for every n ∈ N, #Fn = n+ 1
and

∏
n∈N Fn = ∅: such a model does not satisfy AC. However, Levy

showed that this model satisfies the following “Multiple Choice” axiom:
MC: (“Multiple Choice”) “For every family (Ai)i∈I of non-empty sets,
there exists a family (Bi)i∈I of non-empty finite sets such that for every
i ∈ I, Bi ⊆ Ai.”
and also the following refined statement for each prime number p ≥ 2:
MC(p): “For every family (Ai)i∈I of nonempty sets, there exists a
family (Bi)i∈I of finite sets such that for every i ∈ I, Bi ⊆ Ai and #Bi

is not a multiple of p.”

Remark 8. In set-theory ZFA, AC ⇒ ∀PRIMEp MC(p) ⇒ MC and
none of these implications is reversible. In set-theory ZF (without
atoms), MC implies AC.

3.3. ∀PRIMEp MC(p) implies the “Full Ingleton” statement. Given
a valued field (F, |.|), a F-vector space E endowed with a F-semi-
norm N , a finite linear extender on E is a mapping associating to
each ordered pair (V, f) where V is a proper vector subspace of E and
f : V → F is a linear form such that |f | ≤ N↾V , an ordered pair (V ′, f ′)
such that V ′ is a vector subspace of E strictly including V such that
the F-vector space V ′/V is finitely generated, and a linear mapping
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f ′ : V ′ → F extending f with |f ′| ≤ N↾V ′ . We shall prove in ZFA the
following result:

Theorem 1. Let (F, |.|) be a spherically complete ultrametric valued
field or the usual valued field R. Let E be a F-vector space endowed
with a semi-norm N which is assumed to be ultrametric if F 6= R.

(1) If F is the archimedean field R or if F has characteristic zero
and if |.|↾Q is the trivial absolute value, then MC implies a finite
linear extender on E.

(2) In the other cases, there exists a prime number p such that the
field F has characteristic p or such that the ultrametric valued
field (F, |.|) has characteristic zero and |.|↾Q is equivalent to |.|p;
in these cases, MC(p) implies a finite linear extender on E.

Proof. (1) With MC, let Φ be a mapping associating to each non-empty
subset X of E∪FE a finite non-empty subset of X. Given a proper vec-
tor subspace V of E and a linear form f : V → F satisfying |f | ≤ N↾V ,
let F := Φ(E\V ) and let VF := span(V ∪ F ). Using Hahn-Banach’s
one-step Lemma 1 (for F = R) or Ingleton’s one-step Lemma 2 (oth-
erwise), the set G of linear forms g : VF → F extending f such that

|g| ≤ N↾VF
is non-empty. Let G := Φ(G). Consider the linear form f̃ :=

1
#G

∑
g∈G g on VF : then f̃ extends f . If F = R, then |#G|R = #G thus

|f̃(x)|R = 1
#G

|
∑

g∈G g(x)|R ≤ 1
#G

∑
g∈G |g(x)|R ≤ N↾VF

(x). If F has

characteristic zero and the restriction |.|↾Q is the trivial absolute value,

then |#G| = 1 thus for every x ∈ VF , |f̃(x)| = 1
|#G|

|
∑

g∈G g(x)| =

|
∑

g∈G g(x)| ≤ maxg∈G |g(x)| ≤ N(x) whence |f̃ | ≤ N↾VF
.

(2) If the characteristic of the field F is zero, then F extends the field
Q of rational numbers. Since |.|↾Q is non-trivial, Ostrowski’s theorem
implies that the absolute value induced by |.| on Q is equivalent to the
p-adic absolute value for some prime number p. With MC(p), let Φp

be a mapping associating to each non-empty subset X of FE a finite
subset G of X such that p does not divide #G. Let G := Φp(G): then
G is a finite subset of G such that p does not divide #G. Let n := #G.
Then |n| = 1: in the first subcase, n ∈ Fp\{0} ⊆ F thus |n| = 1; in the
second subcase, |n|p = 1 because p does not divide n, thus |n| = 1.

Now we consider the linear form f̃ := 1
n

∑
g∈G g: this linear form ex-

tends f , and for every x ∈ VF , |f̃(x)| = 1
|n|
|
∑

g∈G g(x)| = |
∑

g∈G g(x)| ≤

maxg∈G(|g(x)|) ≤ N(x), whence |f̃ | ≤ N↾VF
. �

Corollary 2. (1) MC implies HB and I(F,|.|) for every spherically
complete ultrametric field (F, |.|) with zero characteristic such
that |.|↾Q is trivial.
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(2) For every prime number p, MC(p) implies I(F,|.|) for every spher-
ically complete ultrametric field with characteristic p or with
zero characteristic such that |.|↾Q is equivalent with the absolute
value |.|p of Q.

Proof. Proof by transfinite recursion using Theorem 1. �

Remark 9. The implication MC ⇒ HB was already proved in [14]
(MC implies Rado’s Lemma which implies HB). The implication
MC ⇒ I(F,|.|) was proved for every spherically complete ultrametric
field (F, |.|) with null characteristic such that |.|↾Q is trivial (see [15,
Proposition 4.4]).

It follows that the “full Ingleton theorem” follows from ∀PRIMEp MC(p)
in set theory ZFA, thus in ZFA, the full Ingleton statement does not
imply AC.

3.4. Some questions.

(1) Are there links in set-theory without choice between the state-
ments IF obtained for various spherically complete ultrametric
valued fields F?

(2) Given a prime number p:
-Denoting by Fp the finite field with p elements, does IFp

implies IF for every spherically complete ultrametric valued field
with characteristic p?

-Does IQp
imply I(F,|.|) for every spherically complete ultra-

metric valued field (F, |.|) with null characteristic such that |.|↾Q
is equivalent to |.|p?

(3) Does the conjunction of the statements IQp
for p prime number

imply I(Q,|.|triv) or HB?
(4) Given two different prime numbers p and q, are the statements

IQp
and IQq

equivalent?

Remark 10. For each ultrametric spherically complete valued field (F, |.|),
the statement I(F,|.|) is equivalent to the following one (see [15]):
“For every vector subspace F of an ultrametric semi-normed F-vector
space (E,N), there exists an isometric linear extender T : BL(F,F) →
BL(E,F).” Here, given a vector subspace V of E, BL(V,F) denotes
the set of linear bounded mappings from V to F.

4. In ZFA, MC implies the Krein-Milman statement KM

4.1. Facets of subsets of a real vector space. Given a real vector
space E, and two elements a, b ∈ E, we denote by [a, b] the segment
subset {t.a+(1−t).b : t ∈ [0, 1]} of E; if a = b, then [a, b] is a singleton,
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else the segment [a, b] is infinite (it is equipotent with [0, 1]) and we
denote by ]a, b[ the strict segment ]a, b[:= {t.a+ (1− t).b : t ∈]0, 1[}. A
subset C of E is convex if for every a, b ∈ C, [a, b] ⊆ C. In particular,
every segment is convex. Say that an element e of a convex subset C
of E is an extreme point of C is C\{e} is convex: this means that for
every distinct elements a, b of C, if e ∈ [a, b] then e = a = b. Say that
a subset F of a subset X of E is a facet of X if F is nonempty, and
if for every distinct elements a, b in X, if [a, b] ⊆ X and ]a, b[ meets F
then [a, b] ⊆ F .

Remark 11. A facet of a convex subset X may be not convex: for
example {0, 1} is a non-convex facet of the subset [0, 1] of the one-
dimensional vector space R.

Remark 12. Given an element e of a convex subset C of E, e is an
extreme point of C if and only if {e} is a facet of C.

Remark 13. Given a subset X of a real vector space E,

(1) Every facet of a facet of X is a facet of X;
(2) A nonempty set which is an intersection of facets of X is a facet

of X;
(3) A union of a nonempty set of facets of X is a facet of X;
(4) if X is nonempty then X is a facet of X.

Given a subset X of a real vector space E, a mapping f : X →
R is said to be convex if for every a, b ∈ X and every s ∈ [0, 1], if
s.a+ (1− s).b ∈ X then f(s.a+ (1− s).b) ≤ sf(a) + (1− s)f(b). The
mapping f : X → R is said to be concave if −f is convex.

Lemma 3. Given a real vector space E, a subset X of E and a convex
mapping f : X → R which is upper bounded and attains its least upper
bound M , then the subset F := {x ∈ X : f(x) = M} is a facet of X.

Proof. Assume that there are two distinct elements a, b ∈ X such that
]a, b[ meets F and [a, b] ⊆ X. Let us show that [a, b] ⊆ F . Since ]a, b[
meets F , let u ∈]a, b[ such that f(u) = M : then there exists some real
number s such that 0 < s < 1 and u = s.a + (1 − s).b. By convexity
of f , M = f(s.a + (1 − s).b) ≤ sf(a) + (1 − s)f(b); if f(a) < M or
f(b) < M , then sf(a) + (1− s)f(b) < M which is contradictory. Thus
f(a) = f(b) = M . Now if x ∈]a, b[ and x 6= u, then u ∈]a, x[ or u ∈]x, b[
whence f(x) = M by convexity of f . Thus [a, b] ⊆ F . �

Given a set X, a set C of subsets of X is said to satisfy the finite in-
tersection property if every finite nonempty subset of C has a nonempty
intersection. A subset X of a real linear topological vector space E is
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convex-compact (see [13, p. 135]) if for every family C of closed convex
subsets of E such that {C ∩X : C ∈ C} satisfies the finite intersection
property, ∩C ∩X is nonempty.

Lemma 4. Given a real topological vector space E, a convex-compact
subset X of E and a continuous concave mapping f : E → R which
is not constant on X, then f is upper bounded on X and attains its
supremum M on X; moreover, if f is linear, then the closed subset
{x ∈ X : f(x) = M} of X is a facet of X.

Proof. For every real number λ ∈ f [X ], let Cλ := {x ∈ E : f(x) ≥ λ};
since f is continuous and concave, Cλ is a closed convex subset of E;
moreover, since λ ∈ f [X ], X ∩ Cλ 6= ∅. Let C := {Cλ : λ ∈ f [X ]}.
Then {C ∩ X : C ∈ C} satisfies the finite intersection property, thus
F := ∩C ∩ X = {x ∈ X : f(x) = M} is nonempty; let x0 ∈ F : then
M := f(x0) = supX f . Moreover, if f is linear, then f is convex, thus
Lemma 3 implies that the closed subset F of X is a facet of X. �

Remark 14. The statement HB is equivalent to the following state-
ment:

Given a real Hausdorff locally convex topological vector space E, for
every non null element x ∈ E, there exists a continuous linear func-
tional f : E → R such that f(x) = 1.

Proof. ⇒ Given some real Hausdorff locally convex topological vector
space E and some non-null element x of E, consider some convex open
neighbourhood V of 0E such that x /∈ V . Then, Theorem 2 of [3] implies
the existence of a linear functional f : E → R such that supV f < f(x).
Since f : E → R is linear and bounded on a neighbourhood of 0E, f is
continuous. For the converse statement, see [4, Lemma 5]. �

Remark 15. It follows that given a subset K of a real locally convex
Hausdorff topological vector space E, if K is convex-compact in E,
then HB implies that closed minimal facets of K are singletons of K.

Proof. Given a closed facet F of K which is not a singleton, consider
with HB some continuous linear functional f : E → R which is not
constant on F ; then, the closed subset F of K is convex-compact, thus
f attains its upper bound M on F ; using Lemma 4, the set {x ∈ F :
f(x) = M} is a proper facet of the set F , thus the facet F of K is not
minimal. �

4.2. Trees of subsets of a set.
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4.2.1. Trees. A tree is a partially ordered set (T,�) with a smallest
element r (called the root of the tree) such that for every x ∈ T , the
interval {y ∈ T : y � x} is well ordered. Thus a tree is a well founded
partially ordered set (T,�) such that for every x ∈ T , the interval
{y ∈ T : y � x} is linearly ordered.

Remark 16. Given an element x of a tree (T,�), the set {y ∈ T : y � x}
is the smallest chain of T containing x and the root of T .

Given an element x of a tree (T,�), we denote by x+ the set of
elements y ∈ T which cover x i.e. such that x ≺ y (where ≺ is the
strict-order associated to �) and the interval ]x, y[ is empty; elements
of x+ are called successors of x. Given elements x, y ∈ T , if y is a
successor of x, then x is said to be a predecessor of y. Every element
of X has at most one predecessor in the tree T . A leaf of the tree
(T,�) is a maximal element of the poset (T,�). Thus an element x of
a tree T is a leaf of T if x has no successor in T . A branch of the tree
(T,�) is a maximal chain of the poset (T,�): every branch has a first
element which is the root of the tree. Leaves of a tree correspond to
greatest elements of branches of this tree. A subtree of a tree (T,�) is a
nonempty initial section of the poset (T,�) i.e. a subset of T containing
the root of T and such that for each x ∈ S, {y ∈ T : y � x} ⊆ S. Of
course, each subtree of a tree (T,�) is a tree for the order induced by
� on the subtree.

Remark 17. In ZFA, the Axiom of Choice implies that every tree has
a branch. The converse implication is also true since the existence of
a branch in every tree implies the statement ∀κDCκ (form 1F in [7,
p. 12]) which in turn implies AC ([10, Th. 8.2. p. 121]).

Given a tree (T,�) with root r, since the poset (T,�) is well-founded,
we may consider the “rank function” rk associating to each x ∈ T
the ordinal such that rk(r) = 0 and, for each x ∈ T\{r}, rk(x) =
sup{rk(y) + 1 : y ≺ x}. An element y ∈ T has a predecessor if and
only if the ordinal rk(y) is a successor ordinal. Denoting by On the
collection of ordinals, we consider the family (Lα)α∈On of level sets of
the tree T , where for each ordinal α, Lα is the set of elements of T
with rank α. Thus L0 = {r} where r is the root of the tree T . For
each ordinal α, we denote by Tα the set {x ∈ T : rk(x) < α}. Thus
T0 = ∅, and for each ordinal α ≥ 1, Tα is a subtree of T . Moreover,
for each ordinal α, Tα+1 = Tα ∪ Lα, and for each limit ordinal α > 0,
Tα = ∪β∈αTβ .

Notice that for every ordinal α, if Lα = ∅, then for every β ≥ α,
Lβ = ∅ and Tβ = Tα. Since T is a set, the axiom schema of replacement
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implies that there exists an ordinal α such that Tα+1 = Tα (whence
Lα = ∅). The first ordinal α such that Lα is empty is called the rank
of the tree T .

4.2.2. Trees of subsets of a set X. Given a set X, a tree of subsets of
X is a subset T of the poset (P(X)\{∅}),⊇), with smallest element
X, such that the induced poset on T is a tree, and such that for every
x ∈ T , successors of x are pairwise disjoint subsets of X. It follows
that for every x, y ∈ T , if x and y are not comparable for the inclusion
relation then x ∩ y = ∅.

Remark 18. Given a tree T of subsets of a set X with rank α, and
denoting for each β ∈ α by Lβ the level set {x ∈ T : rk(x) = β}, and
by Fβ the subset ∪Lβ of X, then the family (Fβ)β∈α is descending i.e.
for every s, t ∈ α such that s ∈ t, Ft ⊆ Fs.

Proof. Given b ∈ Ft, there exists y ∈ Lt such that b ∈ y. Let x be the
element of Ls such that x � y; then y ⊆ x thus b ∈ x ⊆ Fs. �

Lemma 5. If T is a tree of nonempty closed subsets of a compact
topological space X, and if each level of T is finite, then T has at least
one branch.

Proof. Let α be the rank of the tree T . For each β < α, let Fβ be the
(nonempty) closed subset ∪Lβ. Then the family (Fβ)β∈α is decreasing
thus the set ∩β<αFβ is nonempty: let x ∈ ∩β<αFβ; let b := {F ∈ T :
x ∈ F}; since elements of T are pairwise disjoint, b is a branch of T . �

4.2.3. Extending branches of a tree of subsets. Given a set X and a
tree T of subsets of X, given a branch b of T with no leaf, if ∩b 6= ∅,
and if F is a set of pairwise disjoint nonempty subsets of ∩b, then b∪F
is a tree of subsets of X: we call it the tree obtained by extending the
branch b with successors in F . Given a nonempty set B of branches
of T , if for each b ∈ B, Fb is a nonempty set of nonempty pairwise
disjoint subsets of ∩b, then ∪B∪∪b∈BFb is a tree of subsets of X which
is called the tree obtained from the subtree ∪B by extending each b ∈ B
by the set of successors Fb.

4.2.4. Dynasties of trees of subsets. A dynasty of trees of subsets of X
is a collection (Tα)α∈On of trees of subsets of X, such for each α ∈ On,
there exists a set B of branches of the tree S := ∪β<αTβ such that
either Tα is the subtree ∪B of S, or Tα is obtained from the tree ∪B
by extending each branch b ∈ B by a nonempty set of successors.
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4.3. The axiom of “Multiple Choices” MC implies the Krein-

Milman axiom.

Lemma 6. Given a real vector space E and a nonempty subset X of E,
there is a mapping associating to each nonempty finite set F of convex
facets of X a nonempty finite set G of pairwise disjoint convex facets
of X such that for each y ∈ G, there exists x ∈ F such that y ⊆ x.

Proof. Let F the set of convex facets of X. Given a nonempty finite
subset F of F , let F1 be the set of maximal subsets J of F such that
∩J is nonempty; then G := {∩J : J ∈ F1} is a set of convex facets of
X such that for each C ∈ G, there exists C ′ ∈ F satisfying C ⊆ C ′;
elements of G are pairwise disjoint because elements of F1 are maximal
subsets of F with nonempty intersection. �

Theorem 2. In ZFA, MC implies KM.

Proof. Let E be a real locally convex Hausdorff topological vector space
and let K be a nonempty convex compact subset of E. Using MC,
let Φ be a mapping associating to each nonempty set A of subsets
of K a nonempty finite subset of A. We shall build by recursion a
dynasty (Tα)α∈On of trees of closed convex facets of K, such that for
each α ∈ On, the tree Tα has finite levels. The tree T0 is the singleton
{K} (here K is a facet of K). Given an ordinal α > 0 such that the
family (Tβ)β∈α has been defined, and denoting by S the tree ∪β<αTβ,
Lemma 5 implies that the set of branches of the tree S is nonempty
(because S is a tree of closed subsets of a compact space and each level
of S is finite). Using Φ, we consider a nonempty finite set B of branches
of S, and we distinguish two cases according to whether there exists
b ∈ B such that ∩b is a minimal facet of K or not. In the first case
and if there exists b ∈ B such that b has a leaf, then Tα := ∪{b ∈ B :
b has a leaf in S}. If no branch b ∈ B has a leaf, then, for each b ∈ B,
Fb := ∩b is a minimal facet of K and we define Tα = B[(Fb)b∈B]. In
the second case, we consider, with Φ and Lemma 6, for each b ∈ B, a
nonempty finite set Fb of pairwise disjoint convex proper facets of ∩b,
and we define the tree Tα = B[(Fb)b∈B] obtained from the subtree ∪B
by extending each b ∈ B by the set Fb of successors. Using the axiom
schema of replacement, there exists an ordinal α such that Tα = Tα+1,
thus Tα has a leaf which is a closed minimal convex facet of K: this
facet corresponds to an extreme point of K. �

Corollary 3. In ZFA, MC implies that every compact convex subset
of a real Hausdorff locally convex topological vector space is the closed
convex hull of the set of its extreme points.
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Proof. Given a nonempty compact convex subset K of a real Hausdorff
locally convex topological vector space E, MC implies that the set X
of extreme points of K is nonempty (see Theorem 2); then using HB

(which is a consequence of MC), it follows that K is the closed convex
hull of X. �

Remark 19. Consider the following statement VKM: “Every nonempty
convex-compact convex subset of a real locally convex topological vec-
tor space has an extreme point.” (form 286 in [7]). It is known that
HB + VKM implies AC ([2]), thus ∀PRIMEp MCp does not imply
VKM. Also notice that VKM implies ∀κAC

κ (see [4]). However, it
is an open question whether VKM implies AC.
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