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FACTORIALS OF INFINITE CARDINALS IN ZF

GUOZHEN SHEN AND JIACHEN YUAN

Abstract. For a set x, let S(x) be the set of all permutations of x.
We study several aspects of this notion in ZF. The main results are as
follows:
(1) ZF proves that for all sets x, if S(x) is Dedekind infinite, then there

are no finite-to-one maps from S(x) into Sfin(x), where Sfin(x) is
the set of all permutations of x which move only finitely many
elements.

(2) ZF proves that for all sets x, the cardinality of S(x) is strictly
greater than that of [x]2.

(3) It is consistent with ZF that there exists an infinite set x such that
the cardinality of S(x) is strictly less than that of [x]3.

(4) It is consistent with ZF that there exists an infinite set x such that
there is a finite-to-one map from S(x) into x.

1. Introduction

In [3], Dawson and Howard defined a!, the factorial of a cardinal a, as the

cardinality of the set of all permutations of a set which is of cardinality a.

In ZFC, a! = 2a for all infinite cardinals a. However, Dawson and Howard

proved that, without AC (i.e., the axiom of choice), we cannot conclude any

relationship between a! and 2a for an arbitrary infinite cardinal a. On the

other hand, they proved in ZF that for all cardinals a > 3, a < a!. Recently,

in [20], Sonpanow and Vejjajiva generalized this result by proving in ZF that

for all infinite cardinals a and all natural numbers n, an < a!.

In [6], Forster proved in ZF that for all infinite sets x, there are no finite-

to-one maps from ℘(x) into x, where ℘(x) is the power set of x. In [19],

Sonpanow and Vejjajiva gave a condition that makes Forster’s theorem,

with ℘(x) replaced by S(x), provable in ZF: They showed in ZF that for all

infinite sets x, if there exists a permutation f of x without fixed points such

that f ◦ f = idx, where idx is the identity permutation of x, then there are

no finite-to-one maps from S(x) into x.

In this paper, we thoroughly investigate the properties of a! for infinite

cardinals a. Our first main result is a common generalization of the results

mentioned above: We prove in ZF that for all sets x, if S(x) is Dedekind
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infinite, then there are no finite-to-one maps from S(x) into Sfin(x). Actually,

we prove a more general result: We say that a set x is power Dedekind finite

if the power set of x is Dedekind finite. For a set x, let Spdfin(x) be the

set of all permutations of x which move only power Dedekind finitely many

elements. We prove in ZF that for all sets x, if S(x) is Dedekind infinite,

then there are no Dedekind finite to one maps from S(x) into Spdfin(x).

Many statements concerning S(x), including Sonpanow and Vejjajiva’s

two results stated above, can be deduced as corollaries of this theorem.

Among these corollaries, we shall mention the following generalization of

Dawson and Howard’s result: For all cardinals a, [a]2 < a!. On the other

hand, a Shelah-type permutation model is constructed in order to show

that the following statement is consistent with ZF: There exists a Dedekind

infinite set x such that the cardinality of S(x) is strictly less than that of [x]3

and such that there is a surjection from x onto S(x).

Finally, we construct a new permutation model in which there is an

infinite set x such that there exists a finite-to-one map from S(x) into x.

This result shows that Forster’s theorem, with ℘(x) replaced by S(x), cannot

be proved in ZF. Our results also settle several open problems from [22].

2. Preliminaries

Throughout this paper, we shall work in ZF (i.e., the Zermelo-Fraenkel

set theory without the axiom of choice). In this section, we indicate briefly

our use of some terminology and notation. The cardinal of x, which we

shall denote by |x|, is the least ordinal α equinumerous to x, if x is well-

orderable, and the set of all sets y of least rank which are equinumerous

to x, otherwise (cf. [16, III.2.2]). We shall use lower case German letters a,

b, c, d for cardinals. For a function f , we use dom(f) for the domain of f ,

ran(f) for the range of f , f [x] for the image of x under f , f−1[x] for the

inverse image of x under f , and f ↾ x for the restriction of f to x.

We write x 4 y to express that there is an injection from x into y, and

x 4∗ y to express that there is a surjection from a subset of y onto x. For

all cardinals a, b, a 6 b (a 6∗ b) means that there are sets x, y such that

|x| = a, |y| = b, and x 4 y (x 4∗ y). We use a 
 b (a 
∗ b) to denote

the negation of a 6 b (a 6∗ b). If f is an injection from x into y and g

is an injection from y into z, then g ◦ f , the composition of g and f , is an

injection from x into z. Hence, if a 6 b and b 6 c then a 6 c. It is the

same case when we replace 6 by 6∗. It is also easily verifiable that for all

cardinals a, b, if a 6 b then a 6∗ b, and if a 6∗ b then 2a 6 2b.
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We shall frequently use expressions like “from ... one can explicitly define

...” in our formulations, for which we make the following convention. Let

ϕ(p1, . . . , pm, x0, . . . , xn) and ψ(p1, . . . , pm, x0, . . . , xn, y) be formulas of set

theory with no free variables other than indicated. When we say that from

x0, . . . , xn such that ϕ(p1, . . . , pm, x0, . . . , xn), one can explicitly define a y

such that ψ(p1, . . . , pm, x0, . . . , xn, y), we mean the following:

There exists a class function G without free variables such

that if ϕ(p1, . . . , pm, x0, . . . , xn), then (x0, . . . , xn) is in the

domain of G and ψ(p1, . . . , pm, x0, . . . , xn, G(x0, . . . , xn)).

For example, according to this convention, the second part of Theorem 2.1

states that there exists a class function G without free variables such that

if f is an injection from x into y and g is an injection from y into x, then

G(f, g) is defined and is a bijection from x onto y.

Theorem 2.1 (Cantor-Bernstein). If a 6 b and b 6 a then we have a = b.

Moreover, from an injection f : x→ y and an injection g : y → x, one can

explicitly define a bijection h : x։ y.

Proof. Cf. [16, III.2.8]. �

For all cardinals a, b, a < b means that a 6 b but not b 6 a. By

Theorem 2.1, if a < b and b 6 c, or if a 6 b and b < c, then a < c.

2.1. Dedekind finiteness and power Dedekind finiteness. It is well-

known that, if ZF is consistent, we cannot prove in ZF that every infinite

set includes a denumerable subset, and we cannot even prove in ZF that the

power set of an infinite set includes a denumerable subset. This suggests us

to introduce the following definition.

Definition 2.2. A set x is Dedekind infinite (power Dedekind infinite) if

ω 4 x (ω 4 ℘(x)); otherwise x is Dedekind finite (power Dedekind finite). A

cardinal a is Dedekind infinite (power Dedekind infinite) if ℵ0 6 a (ℵ0 6 2a);

otherwise a is Dedekind finite (power Dedekind finite).

Remark. The name “power Dedekind finite” was first introduced by Blass

in a manuscript which is not intended for publication (cf. [2]). This notion

was called “III-finite” by Levy in [15], “weakly Dedekind finite” by Degen in

[4], and “C-finite” by Herrlich in [12]. In [25], Truss denoted the class of all

power Dedekind finite cardinals by ∆4.

It is obvious that all Dedekind infinite cardinals are power Dedekind

infinite, and all power Dedekind infinite cardinals are infinite. The following

result about Dedekind infinite cardinals is useful.
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Theorem 2.3 (Dedekind). For all cardinals a, if there are sets x, y such

that |y| = |x| = a and y is a proper subset of x, then a is Dedekind infinite.

Proof. Cf. [16, III.1.20]. �

For power Dedekind infinite cardinals, we have the following theorem.

Theorem 2.4 (Kuratowski). For every cardinal a, a is power Dedekind

infinite iff ℵ0 6
∗ a iff 2ℵ0 6 2a.

Proof. Cf. [23, pp. 94–95] or [8, Proposition 5.4]. �

Using Kuratowski’s theorem, one can easily prove that the class of all

power Dedekind finite sets is closed under unions (cf. [25, Theorem 1]).

Definition 2.5. A function f is a finite (Dedekind finite; power Dedekind

finite) to one map if for all z ∈ ran(f), f−1[{z}] is finite (Dedekind finite;

power Dedekind finite). We write x 4fto y (x 4dfto y; x 4pdfto y) to express

that there is a finite (Dedekind finite; power Dedekind finite) to one map

from x into y, and a 6fto b (a 6dfto b; a 6pdfto b) to express that there are

sets x, y such that |x| = a, |y| = b, and x 4fto y (x 4dfto y; x 4pdfto y).

We use a 
fto b (a 
dfto b; a 
pdfto b) to denote the negation of a 6fto b

(a 6dfto b; a 6pdfto b).

All injections are finite-to-one maps, and hence if a 6 b then a 6fto b.

It is also obvious that if a 6fto b then a 6pdfto b, and if a 6pdfto b then

a 6dfto b. If f is a finite-to-one map from x into y and g is a finite-to-one

map from y into z, then g ◦ f is a finite-to-one map from x into z. Hence,

if a 6fto b and b 6fto c then a 6fto c. The following three facts are Fact 2.8

and Corollaries 2.9 & 2.11 of [18], respectively.

Fact 2.6. If f is a Dedekind finite (power Dedekind finite) to one map from

x into y, and g is a Dedekind finite (power Dedekind finite) to one map from

y into z, then g ◦ f is a Dedekind finite (power Dedekind finite) to one map

from x into z. Hence, if a 6dfto b and b 6dfto c then a 6dfto c (if a 6pdfto b

and b 6pdfto c then a 6pdfto c).

Fact 2.7. If a is Dedekind infinite (power Dedekind infinite) and a 6dfto b

(a 6pdfto b) then also b is Dedekind infinite (power Dedekind infinite).

Fact 2.8. If an is Dedekind infinite (power Dedekind infinite) then also a

is Dedekind infinite (power Dedekind infinite).



FACTORIALS OF INFINITE CARDINALS 5

2.2. Some special cardinals. For a permutation f of x, we write mov(f)

for the set {z ∈ x | f(z) 6= z} (i.e., the elements of x moved by f).

Definition 2.9. Let x be an arbitrary set and let a = |x|.

(1) S(x) = {f | f is a permutation of x}; a! = | S(x)|.

(2) Spdfin(x) = {f ∈ S(x) | mov(f) is power Dedekind finite};

Spdfin(a) = | Spdfin(x)|.

(3) Sfin(x) = {f ∈ S(x) | mov(f) is finite}; Sfin(a) = | Sfin(x)|.

(4) pdfin(x) = {y ⊆ x | y is power Dedekind finite};

pdfin(a) = | pdfin(x)|.

(5) fin(x) = {y ⊆ x | y is finite}; fin(a) = | fin(x)|.

(6) seq(x) = {f | f is a function from some n ∈ ω into x};

seq(a) = | seq(x)|.

(7) seq1-1(x) = {f | f is an injection from some n ∈ ω into x};

seq1-1(a) = | seq1-1(x)|.

Below we list some basic properties of these cardinals. We first note that

Sfin(a) 6 Spdfin(a) 6 a! 6 aa and that fin(a) 6∗ seq1-1(a) 6 seq(a). The next

two facts are Facts 2.13 & 2.14 of [18], respectively.

Fact 2.10. For all infinite cardinals a, both fin(a) and 2a are power Dedekind

infinite.

Fact 2.11. If seq1-1(a) is Dedekind infinite then also a is Dedekind infinite.

Fact 2.12. For every infinite cardinal a, both Sfin(a) and a! are power

Dedekind infinite.

Proof. Let x be an arbitrary infinite set. Let f be the function on Sfin(x)

such that for all t ∈ Sfin(x), f(t) = 0, if t = idx, and f(t) = |mov(t)| − 1,

otherwise. Since f is a surjection from Sfin(x) onto ω, both Sfin(x) and S(x)

are power Dedekind infinite sets. �

Fact 2.13. For all power Dedekind finite cardinals a, a! is Dedekind finite.

Proof. By Fact 2.8, a2 is power Dedekind finite. Since a! 6 aa 6 (2a)a = 2a
2
,

a! is Dedekind finite. �

Fact 2.14. For all cardinals a, Sfin(a) 6fto fin(a).

Proof. For any set x, the function g defined on Sfin(x) given by g(t) = mov(t)

is a finite-to-one map from Sfin(x) into fin(x). �

Fact 2.15. For every set x, the function f defined on Spdfin(x) given by

f(t) = mov(t) is a Dedekind finite to one map from Spdfin(x) into pdfin(x).

Hence for all cardinals a, Spdfin(a) 6dfto pdfin(a).
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Proof. Take an arbitrary y ∈ pdfin(x) and let u = {t ∈ S(x) | mov(t) = y}.

It suffices to show that u is Dedekind finite. By Fact 2.13, S(y) is Dedekind

finite. Since the function g defined on u given by g(t) = t ↾ y is an injection

from u into S(y), u is also Dedekind finite. �

Fact 2.16. For all cardinals a, ℵ0 · a 6 seq(a). Hence for all non-zero

cardinals a, seq(a) is Dedekind infinite.

Proof. For any set x, the function g on ω×x given by g(n, z) = (n+1)×{z}

is an injection from ω × x into seq(x). �

Fact 2.17. For all Dedekind finite cardinals a, seq(a) 6dfto ℵ0.

Proof. For every Dedekind finite set x, by Fact 2.8, xn is Dedekind finite

for any n ∈ ω, and hence the function f on seq(x) given by f(t) = dom(t)

is a Dedekind finite to one map from seq(x) into ω. �

Lemma 2.18. For all non-zero cardinals a, seq(seq(a)) = seq(a).

Proof. Cf. [5, Lemma 2]. �

Lemma 2.19. For any a 6= 0, seq(a) = seq1-1(a+ ℵ0) = ℵ0 · seq1-1(a).

Proof. Let x be a set disjoint from ω such that |x| = a. Let f be the function

on seq(x) such that for all t ∈ seq(x), f(t) is the function defined on dom(t)

given by

f(t)(n) =

{

t(n), if for all k < n, t(k) 6= t(n);

max{k < n | t(k) = t(n)}, otherwise.

Clearly, for all t ∈ seq(x), f(t) ∈ seq1-1(x∪ω). Moreover, f is injective, since

for all t ∈ seq(x), t is recursively determined by f(t) in the following way:

dom(t) = dom(f(t)), and for all n ∈ dom(t), t(n) = f(t)(n), if f(t)(n) ∈ x,

and t(n) = t(f(t)(n)), if f(t)(n) ∈ ω. Hence seq(a) 6 seq1-1(a+ ℵ0).

Obviously, seq(ℵ0) = ℵ0, and hence there exists an injection p from

seq(ω)× seq(ω)× seq(ω) into ω. Let g and h be functions on seq1-1(x ∪ ω)

such that for all t ∈ seq1-1(x∪ω), g(t) is the enumerating function of t−1[x]

and h(t) is the enumerating function of t−1[ω]. Then it is easy to verify that

the function u defined on seq1-1(x ∪ ω) given by

u(t) =
(

p
(

t ◦ (h(t)), g(t), h(t)
)

, t ◦ (g(t))
)

is an injection from seq1-1(x ∪ ω) into ω × seq1-1(x), which implies that

seq1-1(a + ℵ0) 6 ℵ0 · seq1-1(a). Finally, by Fact 2.16 and Lemma 2.18, we

have that ℵ0 · seq
1-1(a) 6 ℵ0 · seq(a) 6 seq(seq(a)) = seq(a). �
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Corollary 2.20. For all cardinals a, seq(a) = seq1-1(a) iff either a = 0 or

a is Dedekind infinite.

Proof. If seq(a) = seq1-1(a) and a 6= 0, then, by Fact 2.16, seq1-1(a) is

Dedekind infinite, and therefore, by Fact 2.11, a is also Dedekind infinite.

For the other direction, since seq(0) = seq1-1(0), assume that a is Dedekind

infinite. Let x be a set disjoint from ω such that |x| = a, and let f be an

injection from ω into x. Let g be the function on x ∪ ω such that for all

z ∈ x \ ran(f), g(z) = z, and such that for all n ∈ ω, g(f(n)) = f(2n) and

g(n) = f(2n+ 1). Since g is a bijection from x ∪ ω onto x, a+ ℵ0 = a and

therefore, by Lemma 2.19, seq(a) = seq1-1(a+ ℵ0) = seq1-1(a). �

2.3. Some notation on permutations. For a permutation f of x, we

define f (n) by recursion on n as follows: f (0) = idx; f
(n+1) = f ◦ f (n). Let

f ∈ S(x) and let z ∈ x. The orbit of z under f , which we shall denote by

orb(f, z), is the countable set {v ∈ x | ∃n ∈ ω(v = f (n)(z) or z = f (n)(v))}.

An orbit orb(f, z) is said to be trivial if f(z) = z; otherwise it is non-trivial.

Clearly, orb(f, z) is trivial if and only if orb(f, z) = {z}. It is also obvious

that the orbits of f form a partition of x and the non-trivial orbits of f

form a partition of mov(f).

Fact 2.21. Let x be a set and let a = |x|. For a permutation f of x, let b

be the cardinality of the set of all non-trivial orbits of f . Then 2b 6 a!.

Proof. Let y = {orb(f, z) | z ∈ mov(f)}. Then b = |y|. Let g be the function

on ℘(y) such that for all u ⊆ y, g(u) is the permutation of x given by

g(u)(z) =

{

f(z), if z ∈
⋃

u;

z, otherwise.

It is easily verifiable that g is an injection from ℘(y) into S(x). �

Let f ∈ S(x) be such that all orbits of f are finite and let y ⊆ x.

The permutation of y induced by f , which we shall denote by f ⊲ y, is

defined as follows: For all z ∈ y, (f ⊲ y)(z) = f (n+1)(z), where n is the

least natural number such that f (n+1)(z) ∈ y. Note that for every z ∈ y,

orb(f ⊲ y, z) = orb(f, z) ∩ y. Note also that all orbits of a permutation in

Spdfin(x) are finite.

For t ∈ seq1-1(x), we use (t(0); . . . ; t(n − 1))x, where n = dom(t), to

denote the permutation of x which moves t(0) to t(1), t(1) to t(2), . . . ,

t(n− 2) to t(n− 1), and t(n− 1) to t(0), and fixes all other elements of x.

In particular, for two distinct elements z, v of x, (z; v)x is the transposition

that interchanges z and v.
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Fact 2.22. For all cardinals a, seq1-1(a) 6fto Sfin(a) and seq(a) 6 ℵ0·Sfin(a).

Proof. If a = 0 then Sfin(a) = seq1-1(a) = seq(a) = 1. Otherwise, let x be

a set such that |x| = a and let z ∈ x. Let f be the function on seq1-1(x)

such that for all t ∈ seq1-1(x), f(t) = (t(0); . . . ; t(n− 1))x, if z ∈ ran(t), and

f(t) = (t(0); . . . ; t(n − 1); z)x, otherwise, where n = dom(t). Then f is a

finite-to-one map from seq1-1(x) into Sfin(x), and hence seq1-1(a) 6fto Sfin(a).

Let g be the function defined on seq1-1(x) given by

g(t) =

{

(t−1(z), f(t)), if z ∈ ran(t);

(dom(t) + 1, f(t)), otherwise.

Then it is easily verifiable that g an injection from seq1-1(x) into ω×Sfin(x),

which implies that seq1-1(a) 6 ℵ0 ·Sfin(a). Now, by Lemma 2.19, we get that

seq(a) = ℵ0 · seq1-1(a) 6 ℵ0 · Sfin(a). �

3. Permutations that move power Dedekind finitely many

elements

In this section, we prove our first main result that for all cardinals a, if

a! is Dedekind infinite, then a! 
dfto Spdfin(a). Our proof is based on ideas

in [18], which are originally from [21]. The strategy is as follows:

Assume towards a contradiction that there exists a set x such that there

is a Dedekind finite to one map from S(x) into Spdfin(x) and such that there

is an injection h from ω into S(x). We first prove a kind of Cantor’s theorem

for S(x), and then, by transfinitely iterating this theorem, we extend h to

an injection H from Ord (i.e., the proper class of all ordinals) into S(x),

which is a contradiction.

Theorem 3.1. From functions f : x → S(x) and g : ran(f) → S(x) such

that for all t ∈ ran(f), ∅ 6= mov(g(t)) ⊆ f−1[{t}], one can explicitly define

a u ∈ S(x) \ ran(f).

Proof. We use Cantor’s diagonal construction: Let u be the permutation of

dom(f) such that for all t ∈ ran(f) and all z ∈ f−1[{t}],

u(z) =

{

z, if t ↾ f−1[{t}] = g(t) ↾ f−1[{t}];

g(t)(z), otherwise.

For all t ∈ ran(f), u ↾ f−1[{t}] 6= t ↾ f−1[{t}], and hence u /∈ ran(f). �

Lemma 3.2. From an infinite ordinal α, one can explicitly define an injec-

tion f : fin(α) → α.

Proof. Cf. [8, Theorem 5.19]. �
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Lemma 3.3. From a finite-to-one map f : α → x, where α is an infinite

ordinal, one can explicitly define an injection g : α→ x.

Proof. Cf. [18, Lemma 3.3]. �

In [26, Theorem 2.2], Vejjajiva and Panasawatwong proved a lemma

which states that from a set x and an injection f : α → pdfin(x), where α

is an infinite ordinal, one can explicitly define a surjection g : x ։ α. This

lemma was originally proved by Halbeisen and Shelah (cf. [10, Theorem 3])

for fin(x). The key step of our proof is a corresponding lemma for Spdfin(x):

Lemma 3.4. From an injection f : α → Spdfin(x), where α is an infinite

ordinal, one can explicitly define a pair of functions (g, h) such that g is

a surjection from x onto α, h is a function from α into S(x), and for all

β < α, ∅ 6= mov(h(β)) ⊆ g−1[{β}].

Proof. Let α be an infinite ordinal and let f be an injection from α into

Spdfin(x). Since α = dom(f) and x = dom(f(0)), it suffices to explicitly

define such a pair (g, h) from α, x, f .

Let Φ be the function defined on α given by Φ(β) = mov(f(β)). Then

by Facts 2.6 & 2.15, Φ is a Dedekind finite to one map from α into pdfin(x).

Since all Dedekind finite subsets of α are finite, Φ is finite-to-one.

Let ∼ be the equivalence relation on x such that for all z, v ∈ x,

z ∼ v if and only if ∀β < α
(

z ∈ Φ(β) ↔ v ∈ Φ(β)
)

.

Let Π = {[z]∼ | z ∈
⋃

β<αΦ(β)}, where [z]∼ is the equivalence class of z

with respect to the equivalence relation ∼.

Claim. We can explicitly define a bijection Ω : α։ Π.

Proof of Claim. For each z ∈
⋃

β<αΦ(β), let ηz = min{β < α | z ∈ Φ(β)}.

Let Ψ be the function defined on
⋃

β<αΦ(β) given by

Ψ(z) =
{

γ < α
∣

∣ z ∈ Φ(γ) ∧ ∀β < γ
(

Φ(ηz) ∩ Φ(β) 6= Φ(ηz) ∩ Φ(γ)
)}

.

Note that for all z ∈
⋃

β<αΦ(β), ηz = minΨ(z). For every z ∈
⋃

β<αΦ(β),

since the function that maps each γ ∈ Ψ(z) to Φ(ηz) ∩ Φ(γ) is an injection

from Ψ(z) into ℘(Φ(ηz)) and Φ(ηz) is power Dedekind finite, Ψ(z) is a finite

subset of α. We claim that for all z, v ∈
⋃

β<αΦ(β),

(3.1) z ∼ v if and only if Ψ(z) = Ψ(v).

In fact, obviously, if z ∼ v then ηz = ηv and Ψ(z) = Ψ(v). For the other

direction, assume that Ψ(z) = Ψ(v). Then ηz = minΨ(z) = minΨ(v) = ηv.

Take an arbitrary β < α. Let γ = min{δ < α | Φ(ηz)∩Φ(δ) = Φ(ηz)∩Φ(β)}.
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If z ∈ Φ(β), then z ∈ Φ(γ) and hence γ ∈ Ψ(z) = Ψ(v), which implies that

v ∈ Φ(γ) and v ∈ Φ(β). Similarly, if v ∈ Φ(β) then z ∈ Φ(β). Hence z ∼ v.

Now, by (3.1), the function Λ = {([z]∼,Ψ(z)) | z ∈
⋃

β<αΦ(β)} is an

injection from Π into fin(α). By Lemma 3.2, we can explicitly define an

injection p : fin(α) → α. Let r be the well-ordering of Π induced by p ◦ Λ;

that is, r = {(c, d) | c, d ∈ Π and p(Λ(c)) ∈ p(Λ(d))}. Let θ be the order

type of 〈Π, r〉, and let Θ be the unique isomorphism of 〈θ,∈〉 onto 〈Π, r〉.

Then p ◦ Λ ◦Θ is an injection from θ into α.

Let Ξ be the function on α given by Ξ(β) = {δ < θ | Θ(δ) ⊆ Φ(β)}.

For every β < α, since Φ(β) is power Dedekind finite, Ξ(β) ∈ fin(θ). Since

Φ(β) =
⋃

δ∈Ξ(β) Θ(δ) for any β < α and Φ is finite-to-one, Ξ is a finite-to-one

map from α into fin(θ). Then by Lemma 3.3, we can explicitly define an

injection t : α→ fin(θ). By Lemma 3.2, we can explicitly define an injection

q : fin(θ) → θ. Then q ◦ t is an injection from α into θ.

Therefore, by Theorem 2.1, we can explicitly define a bijection u : α։ θ.

Now the function Ω = Θ ◦ u is a bijection from α onto Π. �

Now we turn back to the construction of (g, h). For each γ < α, let

ξγ = min{β < α | Ω(γ) ⊆ Φ(β)}, and let

ζγ = min
{

δ < α
∣

∣ Ω(δ) ⊆ Φ(ξγ) ∧ ∃z ∈ Ω(γ)
(

f(ξγ)(z) ∈ Ω(δ)
)}

.

Then we have

(3.2) ∀γ < α
(

mov
(

f(ξγ)⊲ (Ω(γ) ∪ Ω(ζγ))
)

6= ∅
)

.

We define by recursion a function F on an initial segment of Ord as follows:

F (β) = min
{

γ < α
∣

∣ {γ, ζγ} ∩
⋃

δ<β

{F (δ), ζF (δ)} = ∅
}

,

as long as such a γ < α exists. Clearly, F is an injection from some ordinal

into α. Let A = ran(F ) and let B =
⋃

γ∈A{γ, ζγ}. Then we have

(3.3) ∀γ, δ ∈ A
(

γ 6= δ → {γ, ζγ} ∩ {δ, ζδ} = ∅
)

.

There cannot be a γ ∈ α \ B such that ζγ /∈ B, since otherwise the least

such γ would be in the range of F , which is a contradiction. Therefore

(3.4) ∀γ ∈ α \B
(

ζγ ∈ B
)

.

Let ≍ be the irreflexive and symmetric relation on α \ B such that for

all γ, δ ∈ α \B, γ ≍ δ if and only if

γ 6= δ ∧ ζγ = ζδ ∧ ∃z ∈ Ω(γ)∃v ∈ Ω(δ)
(

f(ξγ)(z) = f(ξδ)(v) ∈ Ω(ζγ)
)

.

Let Γ be the function defined on {(γ, δ) | γ, δ ∈ α \B and γ ≍ δ} given by

Γ(γ, δ) =
{

(z, v) ∈ Ω(γ)× Ω(δ)
∣

∣ f(ξγ)(z) = f(ξδ)(v) ∈ Ω(ζγ)
}

.
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Note that for all γ, δ ∈ α \B, if γ ≍ δ then Γ(γ, δ) is a non-empty injection

from a subset of Ω(γ) into Ω(δ) and the inverse of Γ(γ, δ) is Γ(δ, γ). We

define, by mutual recursion, two functions G and H on an initial segment

of Ord as follows:

G(β) = min
{

γ ∈ α \B
∣

∣ ∃δ ∈ α \B
(

γ ≍ δ ∧ {γ, δ} ∩ (G[β] ∪H [β]) = ∅
)}

;

H(β) = min
{

δ ∈ α \B
∣

∣ G(β) ≍ δ ∧ {G(β), δ} ∩ (G[β] ∪H [β]) = ∅
}

,

as long as

∃γ ∈ α \B∃δ ∈ α \B
(

γ ≍ δ ∧ {γ, δ} ∩ (G[β] ∪H [β]) = ∅
)

.

Clearly, G and H are injections from some ordinal into α \ B such that

ran(G) ∩ ran(H) = ∅. Let C = ran(G) and let D = ran(G) ∪ ran(H). For

each γ ∈ C, let ργ = H(G−1(γ)). Then we have that D =
⋃

γ∈C{γ, ργ} and

(3.5) ∀γ ∈ C
(

γ ≍ ργ ∧ ∀δ ∈ C
(

γ 6= δ → {γ, ργ} ∩ {δ, ρδ} = ∅
))

.

There cannot be a γ ∈ α\(B∪D) such that γ ≍ δ for some δ ∈ α\(B∪D),

since otherwise the least such γ would be in the range of G, which is a

contradiction. Therefore

(3.6) ∀γ, δ ∈ α \ (B ∪D)
(

¬ γ ≍ δ
)

.

Now, in view of (3.3), (3.5), and (3.4), we define a function ∆ on α by

setting, for β < α,

∆(β) =



















β, if β ∈ A ∪ C;

the unique γ ∈ A such that β = ζγ, if β ∈ B \ A;

the unique γ ∈ C such that β = ργ , if β ∈ D \ C;

the unique γ ∈ A such that ζβ ∈ {γ, ζγ}, if β /∈ B ∪D.

We claim that

(3.7) ∆ is a finite-to-one map from α into A ∪ C.

Clearly, it suffices to show that for all γ ∈ A, {β ∈ α\(B∪D) | ζβ ∈ {γ, ζγ}}

is finite. For this purpose, in turn, it suffices to show that for all δ ∈ B,

{β ∈ α \ (B ∪ D) | ζβ = δ} is finite. Take an arbitrary δ ∈ B, and let

u = {β ∈ α \ (B ∪D) | ζβ = δ}. Let t be the function defined on u given by

t(β) =
{

w ∈ Ω(δ)
∣

∣ ∃z ∈ Ω(β)
(

f(ξβ)(z) = w
)}

.

Then for all β ∈ u, by the definition of ζβ, t(β) is a non-void subset of Ω(δ).

We show that

(3.8) ∀β, γ ∈ u
(

β 6= γ → t(β) ∩ t(γ) = ∅
)

.

Assume towards a contradiction that for two distinct elements β, γ of u,

t(β)∩ t(γ) 6= ∅. Let w ∈ t(β)∩ t(γ). Then we have ∃z ∈ Ω(β)(f(ξβ)(z) = w)



12 G. SHEN AND J. YUAN

and ∃v ∈ Ω(γ)(f(ξγ)(v) = w), and therefore β ≍ γ, contradicting (3.6).

Thus (3.8) is proved, and therefore t is an injection from u into ℘(Ω(δ)).

Since Ω(δ) is power Dedekind finite, we get that u is a finite subset of α,

and thus (3.7) is proved.

By (3.7) and Lemma 3.3, we can explicitly define an injection q from α

into A ∪ C. Let p be the function defined on α given by

p(β) =

{

Ω(q(β)) ∪ Ω(ζq(β)), if q(β) ∈ A;

Ω(q(β)) ∪ Ω(ρq(β)), if q(β) ∈ C.

Then for all β < α, p(β) is a non-void subset of x and, by (3.3) and (3.5),

∀β, γ < α
(

β 6= γ → p(β) ∩ p(γ) = ∅
)

.

Now we define functions g and h as follows: Define g to be the function

on x such that for all z ∈ x,

g(z) =

{

the unique β < α such that z ∈ p(β), if z ∈
⋃

ran(p);

0, otherwise.

Then g is a surjection from x onto α such that for all β < α, p(β) ⊆ g−1[{β}].

Define h to be the function on α such that for all β < α, if q(β) ∈ A, then

h(β) is the permutation of x given by

h(β)(z) =

{

(f(ξq(β))⊲ p(β))(z), if z ∈ p(β);

z, otherwise,

and if q(β) ∈ C, then h(β) is the permutation of x given by

h(β)(z) =











Γ(q(β), ρq(β))(z), if z ∈ dom(Γ(q(β), ρq(β)));

Γ(ρq(β), q(β))(z), if z ∈ ran(Γ(q(β), ρq(β)));

z, otherwise.

Then for all β < α such that q(β) ∈ A, by (3.2),

∅ 6= mov(h(β)) ⊆ p(β) ⊆ g−1[{β}].

On the other hand, for all β < α such that q(β) ∈ C, by (3.5), q(β) ≍ ρq(β),

and hence, by the definition of Γ, Γ(q(β), ρq(β)) is a non-empty injection

from a subset of Ω(q(β)) into Ω(ρq(β)) and the inverse of Γ(q(β), ρq(β)) is

Γ(ρq(β), q(β)), which implies that

∅ 6= mov(h(β)) ⊆ p(β) ⊆ g−1[{β}].

To sum up, h is a function from α into S(x) such that for all β < α,

∅ 6= mov(h(β)) ⊆ g−1[{β}], which completes the proof. �

Now we are ready to prove our first main theorem.
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Theorem 3.5. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto Spdfin(a), and hence Spdfin(a) < a!.

Proof. Assume towards a contradiction that there exists a cardinal a such

that a! is Dedekind infinite and such that a! 6dfto Spdfin(a). Let x be a set

such that |x| = a. Let h be an injection from ω into S(x), and let Φ be a

Dedekind finite to one map from S(x) into Spdfin(x). In what follows, we

get a contradiction by constructing by recursion an injection H from the

proper class Ord into the set S(x).

For n ∈ ω, we set H(n) = h(n). Now, we assume that α is an infinite

ordinal and that H ↾ α is an injection from α into S(x). By Fact 2.6,

Φ ◦ (H ↾ α) is a Dedekind finite to one map from α into Spdfin(x). Since all

Dedekind finite subsets of α are finite, Φ ◦ (H ↾ α) is finite-to-one. Then by

Lemma 3.3, Φ ◦ (H ↾ α) explicitly provides an injection f : α → Spdfin(x).

By Lemma 3.4, from f , we can explicitly define a pair of functions (g, p)

such that g is a surjection from x onto α, p is a function from α into S(x),

and for all β < α, ∅ 6= mov(p(β)) ⊆ g−1[{β}]. Therefore, (H ↾ α) ◦ g is

a surjection from x onto H [α], and p ◦ (H ↾ α)−1 is a function from H [α]

into S(x) such that for all t ∈ H [α],

∅ 6= mov
((

p ◦ (H ↾ α)−1
)

(t)
)

⊆
(

(H ↾ α) ◦ g
)−1

[{t}].

Therefore, by Theorem 3.1, we can explicitly define an H(α) ∈ S(x) \H [α]

from H ↾ α (and Φ). �

Corollary 3.6. For all sets x, if Spdfin(x) 6= S(x) then | Spdfin(x)| < | S(x)|.

Proof. Let x be a set such that Spdfin(x) is a proper subset of S(x). Assume

towards a contradiction that | Spdfin(x)| = | S(x)|. Then by Theorem 2.3,

S(x) is Dedekind infinite, and hence, by Theorem 3.5, | Spdfin(x)| < | S(x)|,

which is a contradiction. �

In fact, even without assuming | Spdfin(x)| = | S(x)|, Spdfin(x) 6= S(x)

implies that S(x) is Dedekind infinite, as shown in the following theorem,

which is a kind of Kuratowski’s theorem for S(x).

Theorem 3.7. For all sets x, S(x) is Dedekind infinite iff Spdfin(x) 6= S(x)

(i.e., there exists a permutation of x which moves power Dedekind infinitely

many elements) iff ℘(ω) 4 S(x).

Proof. Suppose that S(x) is Dedekind infinite. Assume towards a contra-

diction that Spdfin(x) = S(x). Let f be an injection from ω into Spdfin(x).

By Lemma 3.4, there are functions g and h such that g is a surjection
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from x onto ω, h is a function from ω into S(x), and for all n ∈ ω,

∅ 6= mov(h(n)) ⊆ g−1[{n}]. Then the permutation u of x given by

u(z) = h(g(z))(z)

moves power Dedekind infinitely many elements, which is a contradiction.

Therefore, if S(x) is Dedekind infinite, then Spdfin(x) 6= S(x).

Now we suppose that there is a permutation t of x which moves power

Dedekind infinitely many elements. If there exists a z ∈ x such that orb(t, z)

is denumerable, then x is Dedekind infinite, and hence ℘(ω) ≈ S(ω) 4 S(x).

Otherwise, all orbits of t are finite. Let y = {orb(t, z) | z ∈ mov(t)}. Since

the function q defined on mov(t) given by q(z) = orb(t, z) is a finite-to-one

map from mov(t) into y and mov(t) is power Dedekind infinite, by Fact 2.7,

y is also power Dedekind infinite. Thus, by Theorem 2.4 and Fact 2.21,

℘(ω) 4 ℘(y) 4 S(x). Therefore Spdfin(x) 6= S(x) implies that ℘(ω) 4 S(x),

which completes the proof. �

3.1. Some further results. Next, we develop some further properties

of Spdfin(a). By Theorem 3.7, for all cardinals a, if a! is Dedekind infinite,

then 2ℵ0 6 a!. The following theorem is a generalization of this result.

Theorem 3.8. For all cardinals a, if a! is Dedekind infinite, then we have

2ℵ0 · Spdfin(a) 6 a!.

Proof. Let x be a set such that |x| = a. Since S(x) is Dedekind infinite,

by Theorem 3.7, there exists a permutation f of x which moves power

Dedekind infinitely many elements. We claim that there is a permutation g

of x which has power Dedekind infinitely many non-trivial orbits. In fact,

if all orbits of f are finite, then, since the function q defined on mov(f)

given by q(z) = orb(f, z) is finite-to-one and mov(f) is power Dedekind

infinite, by Fact 2.7, {orb(f, z) | z ∈ mov(f)} is power Dedekind infinite,

and hence it suffices to take g = f . Otherwise, there exists a z ∈ x such

that orb(f, z) is denumerable, and therefore x is Dedekind infinite. Hence,

if p is an injection from ω into x, it suffices to take g to be the permutation

of x which interchanges p(2n) and p(2n + 1) for all n ∈ ω and which fixes

all other elements of x.

Let y be the set of all non-trivial orbits of g. Clearly, for all u ⊆ y,

g ↾
⋃

u is a permutation of
⋃

u without fixed points. Since y is power

Dedekind infinite, by Theorem 2.4, there is a surjection h : y ։ ω × ω × ω.

For each t ∈ Spdfin(x), let

mt = min
{

n ∈ ω
∣

∣ h
[

{w ∈ y | mov(t) ∩ w 6= ∅}
]

∩
(

ω × {n} × ω
)

= ∅
}

.
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Such an n ∈ ω exists, since {w ∈ y | mov(t) ∩ w 6= ∅} is power Dedekind

finite and its image under h is finite.

Now, let Φ be the function on ℘(ω) × Spdfin(x) such that for all a ⊆ ω

and all t ∈ Spdfin(x), Φ(a, t) is the permutation of x given by

Φ(a, t)(z) =











t(z), if z ∈ mov(t);

g(z), if z ∈
⋃

h−1[a× {mt} × ω];

z, otherwise.

Note that for all a ⊆ ω and all t ∈ Spdfin(x), mov(Φ(a, t)) is the union of

mov(t) and
⋃

h−1[a× {mt} × ω]. Hence, for all a ⊆ ω and all t ∈ Spdfin(x),

if Φ(a, t) ∈ Spdfin(x) then a = ∅ and t = Φ(a, t), and otherwise

a =
{

i ∈ ω
∣

∣

⋃

h−1[{i} × {k} × ω] ⊆ mov(Φ(a, t))
}

and t is the permutation of x given by

t(z) =

{

Φ(a, t)(z), if z ∈ mov(Φ(a, t)) \
⋃

h−1[ω × {k} × ω];

z, otherwise,

where k is the unique n ∈ ω such that the intersection of mov(Φ(a, t)) and
⋃

h−1[ω × {n} × ω] is power Dedekind infinite. Therefore, Φ is an injection

from ℘(ω)× Spdfin(x) into S(x), and hence 2ℵ0 · Spdfin(a) 6 a!. �

Corollary 3.9. For all cardinals a, if a! is Dedekind infinite, then we have

2ℵ0 · seq(a) 6 a!.

Proof. For all cardinals a, if a! is Dedekind infinite, then, by Fact 2.22 and

Theorem 3.8, 2ℵ0 · seq(a) 6 2ℵ0 · Sfin(a) 6 2ℵ0 · Spdfin(a) 6 a!. �

Lemma 3.10. From two permutations f , g ∈ Spdfin(x), one can explicitly

define a permutation h ∈ Spdfin(x) such that mov(h) = mov(f) ∪mov(g).

Proof. Let f , g ∈ Spdfin(x). Let y = mov(f) ∩mov(g), let

u =
{

z ∈ mov(g) \ y
∣

∣ orb(g, z) \ y = {z}
}

,

and let w = mov(g) \ (y ∪ u). Then for all z ∈ w, orb(g, z) \ y ⊆ w, and

thus orb(g ⊲w, z) = orb(g, z)∩w = orb(g, z) \ y 6= {z}, which implies that

z ∈ mov(g ⊲ w). Hence mov(g ⊲ w) = w. Note also that for all z ∈ u,

g(z) ∈ y. Now define h to be the permutation of x given by

h(z) =



























f(z), if z ∈ mov(f) \ g[u];

g−1(z), if z ∈ g[u];

f(g(z)), if z ∈ u;

(g ⊲ w)(z), if z ∈ w;

z, otherwise.

Clearly, mov(h) = mov(f) ∪mov(g), and therefore h ∈ Spdfin(x). �
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Lemma 3.11. For all cardinals a, seq1-1(Spdfin(a)) 6dfto Spdfin(a).

Proof. Let x be a set such that |x| = a. By Lemma 3.10, there exists a

class function G such that for all f , g ∈ Spdfin(x), G(f, g) is defined and

is a permutation in Spdfin(x) such that mov(G(f, g)) = mov(f) ∪ mov(g).

We define by recursion a function Φ from seq1-1(Spdfin(x)) into Spdfin(x) as

follows: Take Φ(∅) = idx; for all n ∈ ω and all t ∈ seq1-1(Spdfin(x)) with

domain n + 1, we set Φ(t) = G(Φ(t ↾ n), t(n)). A routine induction shows

that for all t ∈ seq1-1(Spdfin(x)),

(3.9) mov(Φ(t)) =
⋃

i∈dom(t)

mov(t(i)).

Now we show that Φ is a Dedekind finite to one map, and thus complete

the proof. Take an arbitrary h ∈ Spdfin(x) and let y = mov(h) ∈ pdfin(x).

It suffices to show that u = {t ∈ seq1-1(Spdfin(x)) | Φ(t) = h} is Dedekind

finite. By (3.9), for all t ∈ u and all i ∈ dom(t), mov(t(i)) ⊆ y, and hence

t(i) ↾ y is a permutation of y. Let Ψ be the function on u such that for all

t ∈ u, Ψ(t) is the function defined on dom(t) given by Ψ(t)(i) = t(i) ↾ y.

Clearly, Ψ is an injection from u into seq1-1(S(y)). Since y ∈ pdfin(x), by

Fact 2.13, S(y) is Dedekind finite, and hence, by Fact 2.11, seq1-1(S(y)) is

Dedekind finite, which implies that u is also Dedekind finite. �

Corollary 3.12. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto seq
1-1(Spdfin(a)).

Proof. This corollary follows from Lemma 3.11 and Theorem 3.5. �

Theorem 3.13. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto seq(Spdfin(a)).

Proof. Assume towards a contradiction that there exists a cardinal a such

that a! is Dedekind infinite and such that a! 6dfto seq(Spdfin(a)). If Spdfin(a) is

Dedekind infinite, then, by Corollary 2.20, seq(Spdfin(a)) = seq1-1(Spdfin(a)),

and thus a! 6dfto seq1-1(Spdfin(a)), contradicting Corollary 3.12. Otherwise,

by Theorem 3.7 and Fact 2.17, ℵ0! = 2ℵ0 6 a! 6dfto seq(Spdfin(a)) 6dfto ℵ0,

which is also a contradiction. �

Corollary 3.14. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto ℵ0 · Spdfin(a), and hence ℵ0 · Spdfin(a) < a!.

Proof. For all cardinals a, if a! is Dedekind infinite, then, by Fact 2.16

and Theorem 3.13, a! 
dfto ℵ0 · Spdfin(a), and therefore, by Theorem 3.8,

ℵ0 · Spdfin(a) < a!. �
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Corollary 3.15. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto seq(a), and hence seq(a) < a!.

Proof. This corollary follows from Fact 2.22 and Corollary 3.14. �

Corollary 3.16. For all non-zero cardinals a, a! 6= seq(a).

Proof. For any non-zero cardinal a, if a! = seq(a), then, by Fact 2.16, a! is

Dedekind infinite, contradicting Corollary 3.15. �

We shall see in the next section that it is consistent with ZF that there

exists an infinite cardinal a such that a! < seq1-1(a) < seq(a).

Corollary 3.17. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto ℵ0 · a, and hence ℵ0 · a < a!.

Proof. This corollary follows from Fact 2.16 and Corollary 3.15. �

Corollary 3.18. For all cardinals a, a! 6= ℵ0 · a.

Proof. For every cardinal a, if a! = ℵ0 · a, then a! is Dedekind infinite,

contradicting Corollary 3.17. �

3.2. Permutations that move finitely many elements. Now, we focus

our attention on cardinals bounded by Sfin(a). The next theorem follows

immediately from Theorem 3.5.

Theorem 3.19. For all cardinals a, if a! is Dedekind infinite, then we have

a! 
dfto Sfin(a), and hence Sfin(a) < a!.

Corollary 3.20. For all sets x, if Sfin(x) 6= S(x) then | Sfin(x)| < | S(x)|.

Proof. Let x be a set such that Sfin(x) is a proper subset of S(x). Assume

towards a contradiction that | Sfin(x)| = | S(x)|. Therefore, by Theorem 2.3,

S(x) is Dedekind infinite, and hence, by Theorem 3.19, | Sfin(x)| < | S(x)|,

which is a contradiction. �

Let x be an arbitrary set and let a = |x|. For any n ∈ ω, let Sn(x) denote

the set of all permutations of x which move at most n elements of x, and

let Sn(a) denote the cardinal of Sn(x).

Corollary 3.21. For all n ∈ ω \ {0} and all cardinals a > n, Sn(a) < a!.

Proof. Since a > n, Sn(a) 6 Sn(a) + 1 6 Sfin(a) 6 a!. Assume towards a

contradiction that Sn(a) = a!. By Theorem 2.3, a! is Dedekind infinite, and

hence, by Theorem 3.19, Sn(a) 6 Sfin(a) < a!, which is a contradiction. �
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Let x be an arbitrary set and let a = |x|. For any n ∈ ω, let [x]n denote

the set of all n-element subsets of x, and let [a]n denote the cardinal of [x]n.

Fact 3.22. For all cardinals a, [a]2 + 1 = S2(a).

Proof. For any set x, the function g defined on S2(x) given by g(t) = mov(t)

is a bijection from S2(x) onto [x]2 ∪ {∅}. �

Corollary 3.23. For all cardinals a, [a]2 < a!.

Proof. By Fact 3.22, if a 6 2 then [a]2 < [a]2 + 1 = S2(a) 6 a!, and if a > 2

then, by Corollary 3.21, [a]2 6 [a]2 + 1 = S2(a) < a!. �

In the next section, it will be shown that the following statement is

consistent with ZF: There exists a Dedekind infinite cardinal a such that

a! < [a]3, [a]3 
dfto a!, and a! 6∗ a.

Lemma 3.24. For all cardinals a,
[

[a]2
]2

+ 1 6 S5(a).

Proof. For a < 8, an easy calculation shows that
[

[a]2
]2

+ 1 6 S5(a). Now

assume that a > 8 and let x be a set such that |x| = a. Let zi, vi (i < 4)

be eight distinct elements of x. Let f be the function on
[

[x]2
]2

∪ {∅} such

that f(∅) = idx and such that for any four distinct elements a, b, c, d of x,

f
(

{

{a, b}, {c, d}
}

)

=
(

a; b
)

x
◦
(

c; d
)

x

and

f
(

{

{a, b}, {a, c}
}

)

=
(

a; zk; vk
)

x
◦
(

b; c
)

x

where k < 4 is the least natural number such that {a, b, c} ∩ {zk, vk} = ∅.

Then it is easy to verify that f is an injection from
[

[x]2
]2
∪{∅} into S5(x),

and hence
[

[a]2
]2

+ 1 6 S5(a). �

Corollary 3.25. For all cardinals a,
[

[a]2
]2
< a!.

Proof. By Lemma 3.24, if a 6 5 then
[

[a]2
]2
<

[

[a]2
]2
+1 6 S5(a) 6 a!, and

if a > 5 then, by Corollary 3.21,
[

[a]2
]2

6
[

[a]2
]2

+ 1 6 S5(a) < a!. �

It will be shown in the next section that
[

[

[a]2
]2
]2

6 a! for an arbitrary

infinite cardinal a cannot be proved in ZF.

Let x be an arbitrary set and let a = |x|. Recall that for every n ∈ ω,

xn is the set of all functions from n into x, and an is the cardinal of xn.

Lemma 3.26. For all n ∈ ω and all cardinals a > 2n(n+1), an 6 S2n+1(a).

Moreover, from an n ∈ ω \{0}, a set x, and an injection f : 2n(n+1) → x,

one can explicitly define an injection g : xn → S2n+1(x) \ S2n(x).
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Proof. Let n be a non-zero natural number, and let f be an injection from

2n(n+1) into x. Without loss of generality, assume that x∩ω = ∅. For any

i, j 6 n and k < n−1, let zi,j = f(2ni+ j) and let vi,k = f(2ni+n+k+1).

Then zi,j, vi,k (i, j 6 n, k < n− 1) are pairwise distinct elements of x. For

each t ∈ xn, let

mt = min
{

i 6 n
∣

∣ ran(t) ∩
(

{zi,j | j 6 n} ∪ {vi,k | k < n− 1}
)

= ∅
}

.

Let h be the function on xn such that for all t ∈ xn, h(t) is the function

defined on n given by

h(t)(l) =

{

t(l), if for all k < l, t(k) 6= t(l);

max{k < l | t(k) = t(l)}, otherwise.

Then as in the proof of Lemma 2.19, h is an injection from xn into the set

{u | u is an injection from n into x∪ (n− 1)}. Let Φ be the function on xn

such that for all t ∈ xn, Φ(t) is the function defined on n given by

Φ(t)(l) =

{

h(t)(l), if h(t)(l) ∈ x;

vmt,h(t)(l), if h(t)(l) ∈ n− 1.

Clearly, for all t ∈ xn, Φ(t) is an injection from n into x. Note that Φ need

not be injective.

Now, let g be the function defined on xn given by

g(t) =
(

Φ(t)(0); . . . ; Φ(t)(n− 1); zmt,0; . . . ; zmt,n

)

x
.

Clearly, for all t ∈ xn, g(t) ∈ S2n+1(x) \ S2n(x). Moreover, g is injective,

since for all t ∈ xn, t is uniquely determined by g(t) in the following way:

First, mt is the unique i 6 n such that {zi,j | j 6 n} ⊆ mov(g(t)), and

Φ(t) is the function on n such that Φ(t)(l) = (g(t))(l+1)(zmt,n) for any l < n.

Then h(t) is the function on n such that for all l < n, h(t)(l) = Φ(t)(l),

if Φ(t)(l) /∈ {vmt,k | k < n − 1}, and h(t)(l) is the unique k < n − 1 for

which Φ(t)(l) = vmt,k, otherwise. Finally, since h is injective, t is uniquely

determined by h(t), and hence by g(t). �

Corollary 3.27. For all Dedekind infinite cardinals a, seq(a) 6 Sfin(a).

Proof. Let x be a set such that |x| = a, and let f be an injection from ω

into x. By the second part of Lemma 3.26, there exists a class function G

such that for all n ∈ ω \ {0} and all injections g : 2n(n+ 1) → x, G(n, x, g)

is defined and is an injection from xn into S2n+1(x) \ S2n(x). Then

h =
{

(∅, idx)
}

∪
⋃

n∈ω\{0}

G
(

n, x, f ↾ 2n(n+ 1)
)

is an injection from seq(x) into Sfin(x), and hence seq(a) 6 Sfin(a). �
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It follows from Corollary 3.27 and Theorem 3.19 that seq(a) < a! for

any Dedekind infinite cardinal a, however, this result is a special case of

Corollary 3.15. The next result was also proved in [20, Theorem 2.3].

Corollary 3.28. For all n ∈ ω and all infinite cardinals a, an < a!.

Proof. By Lemma 3.26 and Corollary 3.21, an 6 S2n+1(a) < a!. �

In [19, Theorem 3.10], Sonpanow and Vejjajiva proved that for all infinite

sets x, if x is almost even in the sense that there exists a permutation f of x

without fixed points such that f ◦ f = idx, then there are no finite-to-one

maps from S(x) into x. This result is a special case of the next corollary.

Corollary 3.29. For all infinite sets x, if there exists a permutation of x

without fixed points, then for any n ∈ ω, there are no power Dedekind finite

to one maps from S(x) into xn.

Proof. Assume towards a contradiction that there exists an infinite set x

such that mov(f) = x for some f ∈ S(x) and such that S(x) 4pdfto x
n for

some n ∈ ω. By Fact 2.12, S(x) is power Dedekind infinite, and therefore,

by Fact 2.7, xn is power Dedekind infinite, which implies that, by Fact 2.8,

x is power Dedekind infinite. Then, since mov(f) = x, f ∈ S(x) \ Spdfin(x),

and hence, by Theorem 3.7, S(x) is Dedekind infinite. Now, we have that

S(x) 4pdfto x
n ⊆ seq(x), contradicting Corollary 3.15. �

Now it is natural to ask whether we can prove in ZF that for all infinite

cardinals a, a! 
fto a. It turns out that the answer is no, and this is one

of the main results of the present paper. At present, we only discuss the

relationship between a! 6fto a and a! < ℵ0 · a. Note that, by Corollary 3.18,

a! 6= ℵ0 · a for any cardinal a.

Lemma 3.30. For all cardinals a, if a! < ℵ0 · a then a! 6fto a.

Proof. Let x be an arbitrary set. If there is an injection f : S(x) → ω × x,

then for all z ∈ x, f−1[ω × {z}] is finite, since otherwise S(x) would be

Dedekind infinite, contradicting Corollary 3.17. Hence the function that

maps each t ∈ S(x) to the second component of f(t) is a finite-to-one map

from S(x) into x, and therefore S(x) 4fto x. �

Lemma 3.31. All infinite subsets of ℘(ω) are power Dedekind infinite.

Proof. Cf. [2, Lemma 5]. �

As a consequence of this lemma, we get that for all subsets x of ℘(ω),

pdfin(x) = fin(x) and Spdfin(x) = Sfin(x).
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Theorem 3.32. For all cardinals a 6 2ℵ0, a! < ℵ0 · a iff a! 6fto a.

Proof. Assume that a 6 2ℵ0 and let x be a subset of ℘(ω) such that |x| = a.

By Lemma 3.30, a! < ℵ0 · a implies that a! 6fto a. For the other direction,

assume that there is a finite-to-one map f : S(x) → x. By Corollary 3.17,

S(x) is Dedekind finite, and hence, by Theorem 3.7, Spdfin(x) = S(x), which

implies that, by Lemma 3.31, Sfin(x) = S(x).

Let r be the lexicographic ordering of x; that is,

r =
{

(z, v) ∈ x× x
∣

∣ ∃n ∈ ω
(

n /∈ z ∧ n ∈ v ∧ n ∩ z = n ∩ v
)}

.

Let s be the relation on S(x) defined by

(t, u) ∈ s↔ ∃z ∈ x
(

(t(z), u(z)) ∈ r ∧ ∀v ∈ x
(

(v, z) ∈ r → t(v) = u(v)
))

.

We claim that s orders S(x). In fact, it is easy to verify that s is irreflexive

and transitive. For trichotomy, let t, u be two distinct elements of S(x).

Then {z ∈ x | t(z) 6= u(z)} is a non-void subset of mov(t) ∪mov(u). Since

Sfin(x) = S(x), mov(t) and mov(u) are finite, and thus {z ∈ x | t(z) 6= u(z)}

has a least element w with respect to r. Now, if (t(w), u(w)) ∈ r then

(t, u) ∈ s, and if (u(w), t(w)) ∈ r then (u, t) ∈ s.

Let g be the function on x such that for all z ∈ x, g(z) is the unique

isomorphism of 〈f−1[{z}], s〉 onto some natural number. Then the function

h defined on S(x) given by

h(t) =
(

g(f(t))(t), f(t)
)

is an injection from S(x) into ω × x, and hence a! 6 ℵ0 · a, which implies

that, by Corollary 3.18, a! < ℵ0 · a. �

4. Permutation models

In this section, we shall give a brief introduction to permutation models

(cf. [8, Chap. 8] or [14, Chap. 4]), and derive some consistency results from

a few well-known permutation models. Permutation models are not models

of ZF; they are models of the weaker theory ZFA (i.e., the Zermelo-Fraenkel

set theory with atoms). ZFA is characterized by the fact that it admits

objects other than sets, atoms. Atoms are objects which do not have any

elements but which are distinct from the void set; they are not sets but can

be members of sets. The development of ZFA is essentially the same as that

of ZF, and all proofs in the previous sections can be carried out in ZFA.

In ZFA, for any transitive set x, we define Vx
α by recursion on α as follows:

Vx
0 = x; Vx

α+1 = ℘(Vx
α); V

x
α =

⋃

β<αV
x
β when α is a limit ordinal. Further,

let Vx =
⋃

α∈Ord V
x
α.
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Let A be the set of atoms. The axiom of foundation of ZFA guarantees

that VA is the class of all objects. The class V∅ is a model of ZF and is

called the kernel. Note that all ordinals belong to the kernel. Now every

permutation π of A extends to an ∈-automorphism of VA by

π(x) = π[x].

A routine induction shows that for any permutation π of A and any x in

the kernel, we have π(x) = x.

Let G be a permutation group of A (i.e., a group of permutations of A).

For each x ∈ VA, let

symG(x) =
{

π ∈ G
∣

∣ π(x) = x
}

;

symG(x) is a subgroup of G. We say that a set F of subgroups of G is a

normal filter on G if for all subgroups H , K of G,

(i) G ∈ F;

(ii) if H ∈ F and H ⊆ K then K ∈ F;

(iii) if H ∈ F and K ∈ F then H ∩K ∈ F;

(iv) if π ∈ G and H ∈ F then πHπ−1 ∈ F;

(v) for each a ∈ A, symG(a) ∈ F.

Let F be a normal filter on G. We say that x ∈ VA is symmetric (with

respect to F) if symG(x) ∈ F. By (iv), for all x ∈ VA and all π ∈ G, x is

symmetric if and only if π(x) is symmetric. By (v), each a ∈ A is symmetric.

We say that x ∈ VA is hereditarily symmetric (with respect to F) if x as

well as each element of its transitive closure is symmetric. Note that for all

x ∈ VA and all π ∈ G, x is hereditarily symmetric if and only if π(x) is

hereditarily symmetric. Note also that A is hereditarily symmetric.

The permutation model V (determined by F) consists of all hereditarily

symmetric objects. Then each permutation π ∈ G, when extended to VA as

above, maps V onto itself and in fact is an ∈-automorphism of V. Now it

is easy to verify that V is a transitive model of ZFA containing A and all

elements of the kernel.

Most of the well-known permutation models are of the following simple

type: Let G be a permutation group of A. A family I of subsets of A, for

example I = fin(A), is a normal ideal if for all subsets B, C of A,

(1) ∅ ∈ I;

(2) if B ∈ I and C ⊆ B then C ∈ I;

(3) if B ∈ I and C ∈ I then B ∪ C ∈ I;

(4) if π ∈ G and B ∈ I then π[B] ∈ I;

(5) for each a ∈ A, {a} ∈ I.
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For each subset B of A, let

fixG(B) =
{

π ∈ G
∣

∣ ∀a ∈ B
(

π(a) = a
)}

;

fixG(B) is a subgroup of G. Define F to be the filter on G generated by the

subgroups {fixG(B) | B ∈ I}. F is a normal filter, and so it determines a

permutation model V; we say that V is the permutation model determined

by G and I. Note that x is symmetric (with respect to F) if and only if

there exists a B ∈ I such that

fixG(B) ⊆ symG(x);

we say that such a B ∈ I is a support of x. Note also that I ∈ V.

Although permutation models are not models of ZF, they indirectly give,

via the Jech-Sochor theorem (cf. [8, Theorem 17.2] or [14, Theorem 6.1]),

models of ZF. The Jech-Sochor theorem provides embeddings of arbitrarily

large initial segments of permutation models into ZF models. All statements

whose consistency we prove in the present paper depend only on a very

small initial segment of the permutation model, so they are preserved by

the embedding and we thus obtain their consistency with ZF.

4.1. The basic Fraenkel model. Let the set A of atoms be denumerable,

let G = S(A), and let I = fin(A). The permutation model determined by G

and I is called the basic Fraenkel model (cf. [8, pp. 195–196] or [14, §4.3]),

and is denoted by VF (F for Fraenkel).

In VF, A is amorphous (cf. [8, Lemma 8.2]); that is, A is infinite but

every infinite subset of A is co-finite. Since it is obvious that all amorphous

sets are power Dedekind finite, we have that A is power Dedekind finite,

and therefore, by Fact 2.13, S(A) is Dedekind finite.

Moreover, it is easy to verify that A is strongly amorphous, in the sense

that A is amorphous and for any partition P of A, all but finitely many

elements of P are singletons. Hence, by the following fact, Sfin(A) = S(A),

which implies that the existence of an infinite set x such that Sfin(x) = S(x)

is consistent with ZF. Therefore, in Corollary 3.20, the requirement that

Sfin(x) 6= S(x) cannot be replaced by the requirement that x is infinite.

Fact 4.1. For all strongly amorphous sets x, Sfin(x) = S(x).

Proof. Let x be a strongly amorphous set and let f be a permutation of x.

If there is a z ∈ x such that orb(f, z) is denumerable, then x is Dedekind

infinite, contradicting the assumption that x is amorphous. Hence all orbits

of f are finite. Since the orbits of f form a partition of x, all but finitely

many orbits of f are singletons, which implies that f ∈ Sfin(x). �
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Lemma 4.2. Let A be the set of atoms of VF and let a = |A|. In VF,

(i) [a]2 
fto seq(a);

(ii) seq1-1(a) 
 a!;

(iii) S3(a) 
 2a+ℵ0;

(iv) [a]3 
fto (a+ ℵ0)!;

(v) ([a]2)2 
 (a+ ℵ0)!.

Proof. (i) Assume towards a contradiction that there exists a finite-to-one

map f ∈ VF from [A]2 into seq(A). Let B ∈ fin(A) be a support of f .

Let us fix two distinct elements a, b of A \ B and consider the sequence

t = f({a, b}). If there is an n ∈ dom(t) such that t(n) ∈ A \ (B ∪ {a, b}),

then take an arbitrary c ∈ A \ (B ∪{a, b, t(n)}) and let π = (t(n); c)A. Note

that π ∈ fixG(B ∪ {a, b}) but π moves t, contradicting the assumption that

B is a support of f . Hence t ∈ seq(B ∪ {a, b}). If there is an m ∈ dom(t)

such that t(m) ∈ {a, b}, then σ = (a; b)A is a member of fixG(B) such that

σ({a, b}) = {a, b} and σ(t) 6= t, which is also a contradiction. Thus we have

(4.1) ∀a, b ∈ A \B
(

a 6= b → f({a, b}) ∈ seq(B)
)

.

Now, for any p, q ∈ [A \ B]2, since it is easy to see that there exists a

permutation τ ∈ fixG(B) such that τ(p) = q, by (4.1), we have f(p) = f(q).

Therefore, f maps all elements of [A \ B]2 to the same element of seq(B),

contradicting the fact that [A \B]2 is infinite and f is finite-to-one.

(ii) Assume towards a contradiction that there exists an injection g ∈ VF

from seq1-1(A) into S(A). Let C ∈ fin(A) be a support of g. Without loss

of generality, assume that C 6= ∅. Let us fix an arbitrary t ∈ seq1-1(C) and

consider the permutation u = g(t). If there exists a c ∈ mov(u) \ C, then

take an arbitrary d ∈ A \ (C ∪ {c, u(c)}) and let π = (c; d)A. Note that

π ∈ fixG(C ∪ {u(c)}) but π moves u, which is a contradiction. Thus we get

that for all t ∈ seq1-1(C), mov(g(t)) ⊆ C. Hence the function f defined on

seq1-1(C) given by f(t) = g(t) ↾ C is an injection from seq1-1(C) into S(C).

Thus, if we take n = |C|, then n 6= 0 and seq1-1(n) 6 n!, which is absurd.

(iii) Assume towards a contradiction that there exists an injection h ∈ VF

from S3(A) into ℘(A ∪ ω). Let D ∈ fin(A) be a support of h. Take three

distinct elements a, b, c of A \ D, let π = (a; b; c)A, and let σ = (b; a; c)A.

Then π, σ ∈ fixG(D), and hence π(h) = σ(h) = h. Since π(π) = σ(π) = π,

we get π(h(π)) = σ(h(π)) = h(π). Hence, if a ∈ h(π) then b = π(a) ∈ h(π),

and if b ∈ h(π) then a = σ(b) ∈ h(π); that is, a ∈ h(π) ↔ b ∈ h(π). Thus,

if we set τ = (a; b)A, then τ(h(π)) = h(π). Since τ ∈ fixG(D), τ(h) = h, and

hence h(π) = τ(h(π)) = h(τ(π)) = h(σ), contradicting that h is injective.
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(iv) Assume towards a contradiction that there exists a finite-to-one

map f ∈ VF from [A]3 into S(A ∪ ω). Let B ∈ fin(A) be a support of f .

Let us now fix three distinct elements a, b, c of A \ B and consider the

permutation u = f({a, b, c}). If there is a d ∈ mov(u) \ (B ∪ ω ∪ {a, b, c}),

then take an arbitrary e ∈ A \ (B ∪ {a, b, c, d, u(d)}) and let π = (d; e)A.

Note that π ∈ fixG(B ∪ {a, b, c}), π(d) 6= d, and π(u(d)) = u(d). Hence π

moves u, contradicting the assumption that B is a support of f . Therefore

mov(u) ⊆ B ∪ ω ∪ {a, b, c}. If there is a v ∈ mov(u) ∩ {a, b, c}, then, since

{a, b, c} \ {v, u(v)} 6= ∅, take a w ∈ {a, b, c} \ {v, u(v)} and let σ = (v;w)A.

Note that σ ∈ fixG(B), σ({a, b, c}) = {a, b, c}, and σ(u) 6= u, which is also

a contradiction. Therefore mov(u) ⊆ B ∪ ω. Thus we have

(4.2) ∀t ∈ [A \B]3
(

mov(f(t)) ⊆ B ∪ ω
)

.

Now, for any p, q ∈ [A \ B]3, since it is easy to see that there exists a

permutation τ ∈ fixG(B) such that τ(p) = q, by (4.2), we have f(p) = f(q).

Therefore, f maps all elements of [A\B]3 to the same element of S(A∪ω),

contradicting the fact that [A \B]3 is infinite and f is finite-to-one.

(v) Assume towards a contradiction that there exists an injection g ∈ VF

from [A]2 × [A]2 into S(A∪ω). Let C ∈ fin(A) be a support of g. Take four

distinct elements a0, a1, b0, b1 of A \ C, and let u = g({a0, a1}, {b0, b1}).

If there is a c ∈ mov(u) \ (C ∪ ω ∪ {a0, a1, b0, b1}), then take an arbitrary

d ∈ A \ (C ∪ {a0, a1, b0, b1, c, u(c)}) and let π = (c; d)A. Then we have that

π ∈ fixG(C ∪ {a0, a1, b0, b1}), π(c) 6= c, and π(u(c)) = u(c). Thus π moves u,

contradicting the assumption that C is a support of g. Therefore we have

(4.3) mov(u) ⊆ C ∪ ω ∪ {a0, a1, b0, b1}.

We claim that

(4.4) ∀i 6 1
(

u(ai) = a1−i and u(bi) = b1−i

)

.

In fact, if u(ai) /∈ {a0, a1}, then (a0; a1)A ∈ fixG(C) fixes ({a0, a1}, {b0, b1})

but moves u, contradicting the assumption that C is a support of g. Thus

we have u(ai) ∈ {a0, a1}. Moreover, u(ai) 6= ai, since otherwise, if we take

an arbitrary e ∈ A \ (C ∪ {a0, a1, b0, b1}), then, by (4.3), u(e) = e, and thus

(ai; e)A ∈ fixG(C) fixes u but moves ({a0, a1}, {b0, b1}), contradicting that g

is injective. Hence u(ai) = a1−i. Similarly u(bi) = b1−i, and (4.4) is proved.

Therefore, if we set σ = (a0; b0)A ◦ (a1; b1)A, then, by (4.4), σ(u) = u, but

σ({a0, a1}, {b0, b1}) = ({b0, b1}, {a0, a1}) 6= ({a0, a1}, {b0, b1}), contradicting

again the assumption that g is injective. �

Now we derive some consistency results from Lemma 4.2.
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Proposition 4.3. The following statements are consistent with ZF:

(i) There exists an infinite cardinal a such that a! and seq1-1(a) are

incomparable and such that a! and seq(a) are incomparable.

(ii) There exists a Dedekind infinite cardinal b such that b! and 2b are

incomparable, b! and [b]3 are incomparable, and [b]3 
fto b!.

(iii) There exists a Dedekind infinite cardinal c such that ([c]2)2 
 c!.

(iv) There exists a Dedekind infinite cardinal d such that
[

[

[d]2
]2
]2


 d!.

Proof. By the Jech-Sochor theorem, it suffices to show that there are such

cardinals in VF. Let A be the set of atoms of VF and let a = |A|.

(i) Note that seq1-1(a) 6 seq(a) and that, by Corollary 3.23, [a]2 6 a!.

By Lemma 4.2(i), [a]2 
 seq(a), and hence a! 
 seq(a) and a! 
 seq1-1(a).

By Lemma 4.2(ii), seq1-1(a) 
 a!, and thus seq(a) 
 a!, which completes

the proof of (i).

(ii) Let b = a + ℵ0. Note that b is Dedekind infinite, [b]3 6 2b, and

S3(b) 6 b!. By Lemma 4.2(iii), S3(b) 
 2b, and thus b! 
 2b and b! 
 [b]3.

By Lemma 4.2(iv), [b]3 
fto b!, and hence [b]3 
 b! and 2b 
 b!, which

completes the proof of (ii).

(iii) Let c = a+ ℵ0. By Lemma 4.2(v), ([c]2)2 
 c!.

(iv) Let d = a+ ℵ0. For any set x, since all elements of x2 are 2-element

subsets of 2 × x, we have x2 ⊆ [2 × x]2. Since it is easy to verify that

2× y 4 [y]2 for any infinite set y, we get that
(

[d]2
)2

6
[

2 · [d]2
]2

6
[

[

[d]2
]2
]2

.

Now
[

[

[d]2
]2
]2


 d! follows from (iii). �

Remark. It is provable in ZF that for all infinite cardinals a and all natural

numbers n, an 6 seq1-1(a) (cf. [17, Lemma 2.5]). Proposition 4.3(i) shows

that, in Corollary 3.28, we cannot replace an by seq1-1(a). Proposition 4.3(iii)

shows that we cannot generalize Corollary 3.23 by proving that ([a]2)2 < a!,

even for Dedekind infinite cardinals a; it also shows that, in Theorem 3.13,

we cannot conclude that seq(Spdfin(a)) < a!, since ([a]2)2 6 seq(Spdfin(a)).

Proposition 4.3(iv) is the consistency result stated after Corollary 3.25.

Proposition 4.4. The following statement is consistent with ZF: There is

a Dedekind infinite cardinal b such that seq(b) < [b]2 and [b]2 
fto seq(b).

Proof. Let A be the set of atoms of VF, let a = |A|, and let b = seq(a).

Then by Fact 2.16, b is Dedekind infinite, and by Lemma 2.18, seq(b) = b.

By Lemma 4.2(i), [a]2 
fto b, and hence [b]2 
fto b and b < [b]2. Therefore,

we get that seq(b) = b < [b]2 and [b]2 
fto b = seq(b). �
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4.2. The ordered Mostowski model. Let the set A of atoms be de-

numerable, and let <M be an ordering of A with order type that of the

rational numbers. Let G be the group of all automorphisms of 〈A,<M〉 and

let I = fin(A). The permutation model determined by G and I is called the

ordered Mostowski model (cf. [8, pp. 198–202] or [14, §4.5]), and is denoted

by VM (M for Mostowski).

Clearly, the relation <M belongs to the model VM (cf. [8, Lemma 8.10]).

In VM, A is infinite but power Dedekind finite (cf. [8, Lemma 8.13]), and

therefore, by Fact 2.13, S(A) is Dedekind finite.

Fact 4.5. Let A be the set of atoms of VM. In VM, Sfin(A) = S(A).

Proof. Let f ∈ VM be a permutation of A, and let B ∈ fin(A) be a support

of f . If there exists an a ∈ mov(f) \ B, then take a π ∈ fixG(B ∪ {f(a)})

such that π(a) 6= a. Thus π moves f , contradicting the assumption that B

is a support of f . Therefore mov(f) ⊆ B, and hence f ∈ Sfin(A). �

Lemma 4.6. For all non-zero cardinals a, if there are x, r such that |x| = a

and r is an ordering of x, then Sfin(a) 6 seq1-1(a) 6 seq(a) = ℵ0 · Sfin(a).

Moreover, if in addition a is a Dedekind finite cardinal, then we have that

Sfin(a) < seq1-1(a) < seq(a) = ℵ0 · Sfin(a).

Proof. Let a be a non-zero cardinal, let x be a set such that |x| = a, and

let r be an ordering of x. Let f be the function defined on Sfin(x) such that

for all t ∈ Sfin(x), f(t) is the unique isomorphism of 〈mov(t), r〉 onto some

natural number. Then the function g defined on Sfin(x) given by

g(t) = t ◦ (f(t))−1

is an injection from Sfin(x) into seq1-1(x), since for all t ∈ Sfin(x), f(t) is

the unique isomorphism of 〈ran(g(t)), r〉 onto some natural number, and t

is the permutation of x given by

t(z) =

{

g(t)(f(t)(z)), if z ∈ ran(g(t));

z, otherwise.

Note that g is not surjective, since every sequence of length 1 is not in

the range of g. Hence Sfin(a) 6 seq1-1(a), and therefore, by Lemma 2.19,

ℵ0 · Sfin(a) 6 ℵ0 · seq1-1(a) = seq(a), which implies that, by Fact 2.22 and

Theorem 2.1, seq(a) = ℵ0 · Sfin(a). Moreover, if a is Dedekind finite, then,

by Fact 2.11, seq1-1(a) is Dedekind finite, and thus, since g is not surjective,

Sfin(a) < seq1-1(a) follows from Theorem 2.3. Finally, since a 6= 0 and a is

Dedekind finite, by Corollary 2.20, seq1-1(a) < seq(a). �
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Proposition 4.7. The following statement is consistent with ZF: There is

an infinite cardinal a such that 2a < a! < seq1-1(a) < seq(a) = ℵ0 · a!.

Proof. Let A be the set of atoms of VM and let a = |A|. In VM, <M is an

ordering of A. Since A is power Dedekind finite, by Lemma 4.6, we have

that Sfin(a) < seq1-1(a) < seq(a) = ℵ0 · Sfin(a), and hence, by Fact 4.5,

a! < seq1-1(a) < seq(a) = ℵ0 · a!. Finally, 2a < a! was proved in [3]. �

Proposition 4.7 is the consistency result stated after Corollary 3.16. For

more cardinal relations that hold in VM, see [11, p. 249].

4.3. A Shelah-type permutation model. In [10, §1], Shelah constructed

a permutation model in which there exists an infinite cardinal a such that

seq(a) < fin(a). Later, in [11, §7.3], a similar model was constructed in order

to show that the existence of an infinite cardinal a such that a2 < [a]2 is

consistent with ZF. Recently, in [9], Halbeisen generalized these two results

by proving that the existence of an infinite cardinal a such that seq(a) < [a]2

and [a]2 
fto seq(a) is consistent with ZF. These permutation models are

called Shelah-type permutation models (cf. [8, pp. 209–211]). The atoms of

Shelah-type permutation models are always constructed by recursion, where

every atom encodes certain sets of atoms on a lower level.

Here we construct a Shelah-type permutation model in which there exists

a Dedekind infinite cardinal a such that a! < [a]3, [a]3 
dfto a!, and a! 6∗ a.

The proof of Proposition 4.4 shows that, in the basic Fraenkel model, there

already exists a Dedekind infinite cardinal b such that seq(b) < [b]2 and

[b]2 
fto seq(b). Hence, in such a case, we do not really need to construct

new models. However, for our purpose here, the proof of Proposition 4.4

does not work, because, unlike the case for seq(a), (a!)! = a! does not hold;

in fact, by Corollary 3.23, a! < (a!)! for any infinite cardinal a.

In this subsection, we shall work in ZFA+AC. For a set x, let Sctbl(x) be

the set of all permutations of x which move only countably many elements.

The atoms of this Shelah-type permutation model are constructed as follows:

(i) A0 is an arbitrary uncountable set of atoms.

(ii) G0 = S(A0).

(iii) An+1 = An ∪ {(n, u, i) | u ∈ Sctbl(An) and i < 3}.

(iv) Gn+1 is the subgroup of S(An+1) such that for all h ∈ S(An+1),

h ∈ Gn+1 if and only if there exists a g ∈ Gn such that

• g = h ↾ An;

• for all u ∈ Sctbl(An), there exists a permutation p of {0, 1, 2}

such that h(n, u, i) = (n, g ◦ u ◦ g−1, p(i)) for any i < 3.
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Let A =
⋃

n∈ω An. For each triple (n, u, i) ∈ A we assign a new atom an,u,i

and define the set of atoms by stipulating Ã = A0 ∪ {an,u,i | (n, u, i) ∈ A}.

However, for the sake of simplicity we shall work with A as the set of atoms

rather than with Ã. Now, let

G =
{

π ∈ S(A)
∣

∣ ∀n ∈ ω
(

π ↾ An ∈ Gn

)}

,

and let

I =
{

B ⊆ A
∣

∣ ∃n ∈ ω
(

B is a countable subset of An

)}

.

Obviously, G is a permutation group of A, and I is a normal ideal. The

permutation model determined by G and I is denoted by VS (S for Shelah).

We say that a subset C of A is closed if for all triples (n, u, i) ∈ C,

mov(u) ⊆ C and {(n, u, j) | j < 3} ⊆ C. The closure of a subset B of A is

the least closed set that includes B. Since we are working in ZFA+AC, it is

easy to verify that the closure of a countable subset of A is also countable,

and therefore for all B ∈ I, the closure of B belongs to I.

Lemma 4.8. For all closed subsets C of A and all m ∈ ω, every g ∈ Gm

fixing C ∩Am pointwise extends to a permutation π ∈ fixG(C).

Proof. We define hn ∈ Gm+n by recursion on n as follows: h0 = g; hn+1 is

the permutation of Am+n+1 such that hn = hn+1 ↾ Am+n and such that for

all u ∈ Sctbl(Am+n), hn+1(m+n, u, i) = (m+n, hn ◦u◦h
−1
n , i) for any i < 3.

Now we prove by induction on n that hn fixes C ∩Am+n pointwise. By the

assumption, h0 fixes C∩Am pointwise. Assume, as an induction hypothesis,

that hn fixes C∩Am+n pointwise. Then hn+1 fixes C∩Am+n pointwise, since

hn+1 extends hn. For any (m+ n, u, i) ∈ C, since C is closed, we have that

mov(u) ⊆ C ∩ Am+n, and therefore hn ◦ u ◦ h−1
n = u, which implies that

hn+1(m + n, u, i) = (m + n, u, i). Hence hn+1 fixes C ∩ Am+n+1 pointwise.

Let π =
⋃

n∈ω hn. Then π ∈ G extends g and fixes C pointwise. �

Lemma 4.9. For all closed subsets C of A and all n ∈ ω, if a, b are two

distinct elements of A such that a ∈ An+1 \ (An ∪ C) and b ∈ An+1 ∪ C,

then there exists a permutation π ∈ fixG(C ∪ An ∪ {b}) such that π(a) 6= a.

Proof. Let a = (n, t, j), where t ∈ Sctbl(An) and j < 3. Let l < 3 be the

least natural number such that (n, t, l) /∈ {a, b} and let p = (j; l)3. Since

a /∈ C and C is closed, (n, t, l) /∈ C. Let g be the permutation of An+1 such

that g fixes An pointwise and such that for all u ∈ Sctbl(An) and all i < 3,

g(n, u, i) = (n, u, p(i)), if u = t, and g(n, u, i) = (n, u, i), otherwise. Then

g ∈ Gn+1 fixes An+1 \ {a, (n, t, l)} pointwise. By Lemma 4.8, g extends to

some π ∈ fixG(C). Then π ∈ fixG(C ∪An∪{b}) and π(a) = (n, t, l) 6= a. �
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Lemma 4.10. In VS, S(A) = {u ∈ S(A) | mov(u) ∈ I}.

Proof. Let u ∈ VS be a permutation of A, and let B ∈ I be a support of u.

Let C be the closure of B. Then C ∈ I. Assume towards a contradiction

that there exists an a ∈ mov(u) \ C. Let b = u(a) 6= a.

If a ∈ A0 and b ∈ A0 ∪ C, then take an arbitrary c ∈ A0 \ (C ∪ {a, b})

and let g = (a; c)A0. By Lemma 4.8, g extends to some π ∈ fixG(C). Then

π(a) = c 6= a and π(b) = b. Hence π moves u, contradicting the assumption

that B is a support of u.

If there is an n ∈ ω such that a ∈ An+1 \ An and b ∈ An+1 ∪ C, then by

Lemma 4.9, there is a permutation σ ∈ fixG(C ∪ {b}) such that σ(a) 6= a.

Hence σ moves u, contradicting the assumption that B is a support of u.

Thus, b /∈ C and there exists an m ∈ ω such that b ∈ Am+1 \ Am and

a ∈ Am. Again by Lemma 4.9, there is a permutation τ ∈ fixG(C ∪ {a})

such that τ(b) 6= b. Hence τ moves u, which is also a contradiction.

Therefore, we have mov(u) ⊆ C, and hence mov(u) ∈ I. �

For all n ∈ ω, since π[An] = An for any π ∈ G, An ∈ VS, and therefore

the function that maps each n ∈ ω to An belongs to VS. For every B ∈ I,

let kB be the least n ∈ ω such that B ⊆ An. Since for all B ∈ I and all

π ∈ G, kB = kπ[B], the function that maps each B ∈ I to kB belongs to VS.

Lemma 4.11. Let A be the set of atoms of VS and let a = |A|. In VS,

(i) a is Dedekind infinite;

(ii) a! 6 [a]3 and a! 6∗ a;

(iii) [a]3 
dfto a!.

Proof. (i) Let q be an injection from ω into A0. Then ran(q) ∈ I, which

implies that q ∈ VS. Hence, in VS, A is Dedekind infinite.

(ii) Let Φ be the function defined on {u ∈ S(A) | mov(u) ∈ I} given by

Φ(u) =
{

(kmov(u), u ↾ Akmov(u)
, i)

∣

∣ i < 3
}

.

Then Φ is an injection from {u ∈ S(A) | mov(u) ∈ I} into [A]3 and the

sets in the range of Φ are pairwise disjoint. It is easy to verify that Φ ∈ VS.

In VS, by Lemma 4.10, S(A) = {u ∈ S(A) | mov(u) ∈ I}, and thus Φ is an

injection from S(A) into [A]3, which implies that a! 6 [a]3. Since the sets in

the range of Φ are pairwise disjoint, we have a! 6∗ a.

(iii) Assume towards a contradiction that there exists a function f ∈ VS

from [A]3 into S(A) such that

(4.5) in VS, f is a Dedekind finite to one map.

Let B ∈ I be a support of f , and let C be the closure of B. Then C ∈ I.
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Let us now fix three distinct elements a, b, c of A0 \ C and consider the

permutation u = f({a, b, c}). We claim that

(4.6) mov(u) ⊆ C ∪ A0.

Assume towards a contradiction that there exists a d ∈ mov(u) \ (C ∪A0).

If there is an n ∈ ω such that d ∈ An+1 \ An and u(d) ∈ An+1 ∪ C,

then by Lemma 4.9, there exists a permutation π0 ∈ fixG(C ∪ A0 ∪ {u(d)})

such that π0(d) 6= d. Hence π0 fixes {a, b, c} but moves u, contradicting the

assumption that B is a support of f .

Thus, u(d) /∈ C and there exists an m ∈ ω such that u(d) ∈ Am+1 \ Am

and d ∈ Am. By Lemma 4.9, there is a permutation π1 ∈ fixG(C ∪A0∪{d})

such that π1(u(d)) 6= u(d). Hence π1 fixes {a, b, c} but moves u, contradicting

again the assumption that B is a support of f . Thus (4.6) is proved.

If there exists an e ∈ mov(u) \ (C ∪ {a, b, c}), then u(e) ∈ mov(u),

and therefore, by (4.6), e ∈ A0 \ (C ∪ {a, b, c}) and u(e) ∈ C ∪A0. Take an

arbitrary v ∈ A0\(C∪{a, b, c, e, u(e)}) and let g0 = (e; v)A0. By Lemma 4.8,

g0 extends to a permutation σ0 ∈ fixG(C). Then σ0 ∈ fixG(C ∪ {a, b, c}),

σ0(e) = v 6= e, and σ0(u(e)) = u(e). Hence σ0 fixes {a, b, c} but moves u,

contradicting that B is a support of f . Therefore mov(u) ⊆ C ∪ {a, b, c}.

If there exists a z ∈ mov(u) ∩ {a, b, c}, then u(z) ∈ mov(u), and hence,

by (4.6), u(z) ∈ C∪A0. Take a w ∈ {a, b, c}\{z, u(z)} and let g1 = (z;w)A0 .

Again by Lemma 4.8, g1 extends to some σ1 ∈ fixG(C). Then σ1(z) = w 6= z

and σ1(u(z)) = u(z). Hence σ1({a, b, c}) = {a, b, c} but σ1(u) 6= u, which is

also a contradiction. Therefore mov(u) ⊆ C. Thus we have

(4.7) ∀t ∈ [A0 \ C]
3
(

mov(f(t)) ⊆ C
)

.

For any t0, t1 ∈ [A0 \ C]
3, it is easy to see that there exists an h ∈ G0

such that h fixes C ∩A0 pointwise and such that h[t0] = t1. By Lemma 4.8,

h extends to a permutation τ ∈ fixG(C). Then τ(f) = f and τ(t0) = t1, and

hence, by (4.7), f(t0) = f(t1). Therefore, f maps all elements of [A0 \ C]3

to the same element of S(A). Since A0 is uncountable and C is countable,

there exists an injection p from ω into A0 \ C. Then ran(p) ∈ I, which

implies that p ∈ VS. Thus, in VS, A0 \ C is Dedekind infinite, and hence

[A0 \ C]
3 is Dedekind infinite, contradicting (4.5). �

Theorem 4.12. The following statement is consistent with ZF: There exists

a Dedekind infinite cardinal a such that a! < [a]3, [a]3 
dfto a!, and a! 6∗ a.

Proof. Let A be the set of atoms of VS and let a = |A|. Then by Lemma 4.11,

a is Dedekind infinite, a! 6 [a]3, a! 6∗ a, and [a]3 
dfto a!. Since [a]3 
dfto a!,

we have that [a]3 
 a!, and therefore a! < [a]3. �
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5. A new permutation model

In this section, we construct a permutation model in which there exists an

infinite cardinal a such that a! 6fto a. By Corollary 3.17 and Corollary 3.29,

such an infinite cardinal a must be such that a! is Dedekind finite and such

that any permutation of a set of cardinality a must fix at least one point.

Also, by Fact 2.12 and Fact 2.7, such an infinite cardinal must be power

Dedekind infinite. The strategy of our construction is as follows:

We construct step-by-step an infinite lattice A with a least element such

that every initial segment determined by an element of A is finite. The per-

mutation model will then be determined by the group of all automorphisms

of A and the normal ideal fin(A). The lattice A is constructed in a way

such that it has enough automorphisms (but not too much) to guarantee

that every permutation of A which has a finite support moves only finitely

many elements. Since the function that maps each finite subset of A to its

least upper bound is a finite-to-one map from fin(A) into A, by Fact 2.14,

it holds in the permutation model that S(A) = Sfin(A) 4fto fin(A) 4fto A.

In what follows, we consider a covering condition for partially ordered

sets, and then define the notion of a building block, which will be used in

the construction of A. Finally, we prove that A has the desired properties.

5.1. A covering condition. Let 〈P,<〉 be a partially ordered set; that is,

< is irreflexive and transitive. For all a, b ∈ P , a 6 b means that a < b or

a = b, the initial segment determined by b is the set {c ∈ P | c 6 b}, and

the (closed) interval from a to b is the set [a, b] = {c ∈ P | a 6 c 6 b}.

We say that 〈P,<〉 is locally finite if for all a, b ∈ P , [a, b] is finite. Notice

that if 〈P,<〉 has a least element, then 〈P,<〉 is locally finite if and only if

every initial segment determined by an element of P is finite. For a, b ∈ P ,

we say that a is covered by b (or b covers a), denoted by a⋖ b, if a < b but

a < c < b for no c ∈ P . For b ∈ P , we write cov(b) for the set {c ∈ P | c⋖b}

(i.e., the elements of P covered by b). A saturated chain in an interval [a, b]

is a sequence t ∈ seq(P ) of length (i.e., the domain of t) n > 0 such that

t(0) = a, t(n− 1) = b, and t(i)⋖ t(i+ 1) for any i < n− 1.

For all subsets M of P , the least upper bound and the greatest lower

bound of M , if they exist, are denoted by supM and infM , respectively.

Note that if 〈P,<〉 has a least element, then the least upper bound of ∅

exists and is the least element of 〈P,<〉. We say that 〈P,<〉 is a lattice if

any two elements of P have a least upper bound and a greatest lower bound.

Note that if 〈P,<〉 is a lattice, then any non-void finite subset M of P has

a least upper bound and a greatest lower bound.
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Fact 5.1. Let 〈P,<〉 be a locally finite lattice with a least element and let

a = |P |. Then fin(a) 6fto a.

Proof. The function that maps each M ∈ fin(P ) to supM is a finite-to-one

map from fin(P ) into P , and hence fin(a) 6fto a. �

Definition 5.2. A partially ordered set 〈P,<〉 satisfies the finitary lower

covering condition if for all M ∈ fin(P ) containing at least two elements,

(5.1) ∃b ∈ P∀a ∈M(a⋖ b) → ∃c ∈ P∀a ∈M(c⋖ a).

Remark. Let 〈P,<〉 be a lattice. Then the statement that (5.1) holds for

all M ∈ [P ]2 is equivalent to the condition (ξ′) of [1, p. 14], which is in turn

equivalent to the usual lower covering condition (cf. [7, p. 213]) if 〈P,<〉 is

locally finite. Locally finite lattices satisfying the lower covering condition

are often called Birkhoff lattices.

Lemma 5.3. Let 〈P,<〉 be a locally finite partially ordered set with a least

element. If 〈P,<〉 satisfies the finitary lower covering condition, then the

Jordan-Dedekind chain condition holds in 〈P,<〉; that is, for any a, b ∈ P

such that a 6 b, all saturated chains in [a, b] have the same length.

Proof. Let o be the least element of 〈P,<〉. Clearly, it suffices to prove that

for any b ∈ P , all saturated chains in [o, b] have the same length. Now, we

prove by induction on n > 0 that for any b ∈ P , if there exists a saturated

chain in [o, b] of length n, then all saturated chains in [o, b] have length n.

The case n = 1 is obvious. For any b ∈ P , let t be a saturated chain in [o, b]

of length n+1 (where n > 0), let u be an arbitrary saturated chain in [o, b],

and let the length of u be m + 1. It suffices to show that m = n. Clearly

m 6= 0. If t(n−1) = u(m−1) then by the induction hypothesis all saturated

chains in [o, u(m−1)] have length n, and therefore m = n. Otherwise, since

b = t(n) = u(m) covers both t(n − 1) and u(m − 1), by (5.1), there exists

a c ∈ P covered by both t(n− 1) and u(m− 1). Since o 6 c, we can find a

saturated chain s in [o, c]. By the induction hypothesis, all saturated chains

in [o, t(n−1)] have length n, and therefore, since t(n−1) covers c, the length

of s is n− 1. Since u(m− 1) covers c, again by the induction hypothesis, all

saturated chains in [o, u(m− 1)] have length n, and therefore m = n. �

Let 〈P,<〉 be a locally finite partially ordered set with a least element o,

and assume that 〈P,<〉 satisfies the finitary lower covering condition. By

Lemma 5.3, for any b ∈ P , all saturated chains in the interval [o, b] have the

same length n > 0; the height of b, denoted by ht(b), is defined to be n− 1.

Notice that for all a, b ∈ P , a⋖ b if and only if a < b and ht(a) + 1 = ht(b).
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Clearly, if 〈P,<〉 is a locally finite lattice with a least element, then 〈P,<〉

satisfies the finitary lower covering condition if and only if for all b ∈ P such

that cov(b) contains at least two elements,

(5.2) ∀a ∈ cov(b)
(

inf cov(b)⋖ a
)

.

Lemma 5.4. Let 〈P,<〉 be a locally finite lattice with a least element. If

〈P,<〉 satisfies the finitary lower covering condition, then for all a, b ∈ P

such that a < b but not a 6 inf cov(b),

(i) there exists a c 6 inf cov(b) such that c⋖a and for all d 6 inf cov(b),

if d < a then d 6 c;

(ii) inf cov(a) 6 inf cov(b);

(iii) there exists a unique saturated chain in [a, b].

Proof. (i) Fix an arbitrary b ∈ P . We prove by induction on n < ht(b) that

for all a ∈ P such that a < b but not a 6 inf cov(b), if ht(a) = ht(b)−n−1,

then there exists a c 6 inf cov(b) such that c⋖ a and for all d 6 inf cov(b),

if d < a then d 6 c. If n = 0, then a⋖b and it suffices to take c = inf cov(b).

Now, let ht(a) = ht(b)−n− 2, where n+1 < ht(b). Let v ∈ P be such that

v < b and a⋖ v. By the induction hypothesis, there exists a w 6 inf cov(b)

such that w ⋖ v and for all d 6 inf cov(b), if d < v then d 6 w. Take

c = inf{a, w}. Then c 6 w 6 inf cov(b) and, by (5.1), c ⋖ a. Moreover,

for all d 6 inf cov(b), if d < a, then, since d < a 6 v, we get d 6 w, and

therefore d 6 c, which completes the proof of (i).

(ii) By (i), there exists a c 6 inf cov(b) such that c ⋖ a, and therefore,

inf cov(a) 6 c 6 inf cov(b).

(iii) Assume towards a contradiction that there are two distinct saturated

chains t, u in [a, b]. Then by Lemma 5.3, t and u have the same length n > 0.

Let m = max{i < n | t(i) 6= u(i)}. Since b = t(n−1) = u(n−1), m < n−1.

Let c = t(m+ 1) = u(m+1). Then c covers both t(m) and u(m). By (5.2),

inf cov(c) is covered by t(m) and u(m). Thus inf cov(c) = inf{t(m), u(m)},

and hence a 6 inf cov(c). If c = b or c 6 inf cov(b), then a 6 inf cov(b),

which is a contradiction. Otherwise, c < b but not c 6 inf cov(b), and thus,

by (ii), a 6 inf cov(c) 6 inf cov(b), which is also a contradiction. �

5.2. Building blocks. We define the notion of a building block as follows:

Definition 5.5. A building block is a non-void finite lattice 〈P,<〉 satisfying

the finitary lower covering condition and such that for all b ∈ P , if ht(b) = 2

then | cov(b)| = 4, and if ht(b) > 2 then

(5.3) for all c⋖ inf cov(b),
∣

∣{a ∈ cov(b) | inf cov(a) = c}
∣

∣ = 4.
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Let 〈P,<〉 be a building block, let e be the greatest element of 〈P,<〉, and

let o be the least element of 〈P,<〉. Clearly, for all b ∈ P , if ht(b) = 0 then

b = o and cov(b) = ∅, if ht(b) = 1 then cov(b) = {o}, and if ht(b) = 2 then

inf cov(b) = o. Note also that for all b ∈ P such that ht(b) > 2, | cov(b)| > 4,

and hence, by (5.2), inf cov(b) is covered by every a ∈ cov(b).

Let Q = {c ∈ P | c 6 inf cov(e)}. Note that 〈Q,<〉 is a building block.

Let a ∈ P \ (Q ∪ {e}). By Lemma 5.4(iii), there exists a unique saturated

chain in [a, e], and therefore there exists a unique c ∈ P such that a ⋖ c;

we use succ(a) to denote the unique c ∈ P such that a⋖ c. Clearly,

(5.4) succ(a) ∈ P \Q ∧ a⋖ succ(a) ∧ ∀b ∈ P
(

a < b↔ succ(a) 6 b
)

.

Let pred(a) = inf cov(succ(a)). We claim that

(5.5) pred(a) ∈ Q ∧ pred(a)⋖ a ∧ ∀d ∈ Q
(

d < a↔ d 6 pred(a)
)

.

In fact, by Lemma 5.4(ii), pred(a) ∈ Q. Since a /∈ Q, we have that a 6= o,

and hence ht(a) > 1 and ht(succ(a)) > 2, which implies that pred(a) ⋖ a.

On the other hand, by Lemma 5.4(i), there is a c ∈ Q such that c⋖ a and

for all d ∈ Q, if d < a then d 6 c. Since pred(a) ∈ Q and pred(a) ⋖ a, we

have pred(a) = c, and hence for all d ∈ Q, d < a if and only if d 6 pred(a).

Thus (5.5) is proved. By (5.5), pred(a) is the unique c ∈ Q such that c⋖ a.

Notice that if ht(a) > 2 then inf cov(a) ⋖ pred(a), and hence if ht(a) > 2

then inf cov(pred(a))⋖ inf cov(a).

Let C = {b ∈ P \Q | ht(b) = 2}, and let

D =
{

(b, c) ∈ (P \Q)× P
∣

∣ ht(b) > 2 and c⋖ inf cov(b)
}

.

For any b ∈ C, let kb = | cov(b) \Q|, and for any (b, c) ∈ D, let

lb,c =
∣

∣{a ∈ cov(b) | inf cov(a) = c} \Q
∣

∣.

Then it is easy to verify that for all b ∈ C,

(5.6) kb =

{

3, if b 6= e;

4, if b = e,

and that for all (b, c) ∈ D,

(5.7) lb,c =











3, if b 6= e and inf cov(pred(b)) = c;

4, if b 6= e and inf cov(pred(b)) 6= c;

4, if b = e.

Let σ be a function defined on C such that for all b ∈ C, σ(b) is a bijection

from cov(b) \Q onto kb, and let τ be a function defined on D such that for

all (b, c) ∈ D, τ(b, c) is a bijection from {a ∈ cov(b) | inf cov(a) = c} \ Q

onto lb,c. Such functions σ and τ exist since P is finite. Let p be a function
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on C such that for all b ∈ C, p(b) is a permutation of kb, and let q be a

function on D such that for all (b, c) ∈ D, q(b, c) is a permutation of lb,c.

Let f be an automorphism of 〈Q,<〉. We shall define an automorphism g

of 〈P,<〉 extending f as follows:

For each d ∈ Q, let g(d) = f(d). Take g(e) = e. Now, we assume that

a ∈ P \ (Q ∪ {e}) and that for all b ∈ P \ Q such that ht(b) = ht(a) + 1,

g(b) is defined and we have:

g(b) ∈ P \Q ∧ ht(g(b)) = ht(b);(5.8)

inf cov(g(b)) = f(inf cov(b));(5.9)

b 6= e→ pred(g(b)) = f(pred(b)).(5.10)

Take b = succ(a). Then by (5.4), a⋖ b ∈ P \Q, and thus ht(b) = ht(a) + 1,

which implies that g(b) is defined and (5.8)–(5.10) hold. We consider the

following two cases:

If ht(a) = 1, then ht(b) = 2 and hence b ∈ C. By (5.8), g(b) ∈ P \Q and

ht(g(b)) = ht(b) = 2, and thus g(b) ∈ C. Since g(b) = e if and only if b = e,

by (5.6), kg(b) = kb. Now we define

(5.11) g(a) =
(

σ(g(b))
)−1

(

p(b)
(

σ(b)(a)
)

)

.

Then g(a) ∈ cov(g(b)) \ Q, and thus ht(g(a)) = ht(g(b)) − 1 = 1 = ht(a).

Since cov(g(a)) = cov(a) = {o} and pred(g(a)) = pred(a) = o, we get that

(5.8)–(5.10) hold with b replaced by a. Notice that

(5.12) succ(g(a)) = g(succ(a)).

If ht(a) > 1, then ht(b) > 2. Let c = inf cov(a). Then by (5.5), we have

c ⋖ pred(a) ∈ Q, and hence c ∈ Q and (b, c) ∈ D. By (5.8), g(b) ∈ P \ Q

and ht(g(b)) = ht(b) > 2. Since f is an automorphism of 〈Q,<〉, we have

f(c)⋖ f(inf cov(b)), and thus, by (5.9), f(c)⋖ inf cov(g(b)), which implies

that (g(b), f(c)) ∈ D. Since ht(g(b)) = ht(b), g(b) = e if and only if b = e.

By (5.10) and the assumption that f is an automorphism of 〈Q,<〉, if b 6= e,

then inf cov(pred(g(b))) = f(c) if and only if f(inf cov(pred(b))) = f(c) if

and only if inf cov(pred(b)) = c. Thus by (5.7), lg(b),f(c) = lb,c. Now we define

(5.13) g(a) =
(

τ(g(b), f(c))
)−1

(

q(b, c)
(

τ(b, c)(a)
)

)

.

Then g(a) ∈ {v ∈ cov(g(b)) | inf cov(v) = f(c)} \ Q; that is, g(a) ∈ P \ Q,

g(a)⋖ g(b), and inf cov(g(a)) = f(inf cov(a)). Thus ht(g(a)) = ht(a) and

(5.14) succ(g(a)) = g(succ(a)).

Hence, by (5.9), pred(g(a)) = inf cov(g(b)) = f(inf cov(b)) = f(pred(a)),

and therefore we get that (5.8)–(5.10) hold with b replaced by a.
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Therefore, for all b ∈ P \ Q, g(b) is defined and (5.8)–(5.10) hold. Also,

by (5.12) and (5.14), for all a ∈ P \ (Q ∪ {e}),

(5.15) succ(g(a)) = g(succ(a)).

We still have to prove that g is an automorphism of 〈P,<〉. For this, we

first prove that g is injective. Since g ↾ Q = f is injective, by (5.8), it suffices

to show that g ↾ (P \ Q) is injective. We prove by induction on n < ht(e)

that for all a0, a1 ∈ P \Q such that ht(a0) = ht(e)−n, if g(a0) = g(a1) then

a0 = a1. The case n = 0 is obvious. Let n < ht(e)− 1 and let a0, a1 ∈ P \Q

be such that ht(a0) = ht(e) − n − 1 and g(a0) = g(a1). We have to prove

that a0 = a1. By (5.8), ht(a1) = ht(g(a1)) = ht(g(a0)) = ht(a0) < ht(e),

and hence a0, a1 ∈ P \ (Q ∪ {e}). Let b0 = succ(a0) and let b1 = succ(a1).

Then by (5.4), b0, b1 ∈ P \ Q and ht(b0) = ht(a0) + 1 = ht(e) − n, and

hence, by the induction hypothesis, if g(b0) = g(b1) then b0 = b1. By (5.15),

g(b0) = succ(g(a0)) = succ(g(a1)) = g(b1), and thus b0 = b1. We consider

the following two cases:

If ht(a0) = 1, then ht(a1) = 1. Since g(a0) = g(a1) and b0 = b1, by (5.11),

p(b0)(σ(b0)(a0)) = p(b1)(σ(b1)(a1)), and therefore σ(b0)(a0) = σ(b1)(a1),

which implies that a0 = a1.

If ht(a0) > 1, then we have that ht(a1) > 1. Let c0 = inf cov(a0) and let

c1 = inf cov(a1). By (5.9), f(c0) = inf cov(g(a0)) = inf cov(g(a1)) = f(c1),

and therefore c0 = c1. Since g(a0) = g(a1), b0 = b1, and c0 = c1, by (5.13),

we have that q(b0, c0)(τ(b0, c0)(a0)) = q(b1, c1)(τ(b1, c1)(a1)), and therefore

τ(b0, c0)(a0) = τ(b1, c1)(a1), which implies that a0 = a1.

Thus g is injective, and hence g is a permutation of P since P is finite.

It remains to show that for all a, b ∈ P ,

(5.16) a < b↔ g(a) < g(b).

Let a, b ∈ P . If b ∈ Q ∪ {e}, then obviously (5.16) holds. Suppose that

b ∈ P \ (Q ∪ {e}). Then by (5.8), we have g(b) ∈ P \ (Q ∪ {e}). If a ∈ Q,

then g(a) = f(a) ∈ Q, and therefore, by (5.5) and (5.10),

a < b↔ a 6 pred(b) ↔ g(a) 6 pred(g(b)) ↔ g(a) < g(b).

Thus if a ∈ Q then (5.16) holds. Also, if a = e, then (5.16) holds trivially.

Assume that a ∈ P \ (Q ∪ {e}) and that for all c ∈ P \ Q such that

ht(c) = ht(a) + 1, c < b if and only if g(c) < g(b). Then by (5.4) and the

injectivity of g, we get that succ(a) 6 b if and only if g(succ(a)) 6 g(b).

By (5.8), we have g(a) ∈ P \ (Q ∪ {e}), and therefore, by (5.4) and (5.15),

a < b↔ succ(a) 6 b↔ succ(g(a)) 6 g(b) ↔ g(a) < g(b).
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Thus (5.16) is proved. We use Φ(P,<, σ, τ, p, q, f) to denote the function g.

Hence we have proved that

(5.17) Φ(P,<, σ, τ, p, q, f) is an automorphism of 〈P,<〉 extending f .

Now, let p0 be the function on C such that for all b ∈ C, p0(b) = idkb ,

and let q0 be the function on D such that for all (b, c) ∈ D, q0(b, c) = idlb,c .

Let Ψ(P,<, σ, τ, f) = Φ(P,<, σ, τ, p0, q0, f). Hence, by (5.17), we have that

(5.18) Ψ(P,<, σ, τ, f) is an automorphism of 〈P,<〉 extending f .

Lemma 5.6. Let 〈P,<〉 be a building block, let e be the greatest element

of 〈P,<〉, and let Q = {c ∈ P | c 6 inf cov(e)}. For all a ∈ P \ (Q ∪ {e})

and all d ∈ P \ {a} such that either ht(d) > ht(a) or d ∈ Q, there exists an

automorphism g of 〈P,<〉 fixing Q ∪ {d} pointwise and such that g(a) 6= a.

Proof. Let σ and τ be functions as above. Let b0 = succ(a). We consider

the following two cases:

If ht(a) = 1, then let i = σ(b0)(a) < kb0 and let j < kb0 be the least

natural number such that (σ(b0))
−1(j) /∈ {a, d}. Let p be the function on C

such that for all b ∈ C,

p(b) =

{

(i; j)kb, if b = b0;

idkb , otherwise,

and let q be the function on D such that for all (b, c) ∈ D, q(b, c) is the

identity permutation of lb,c. Let g = Φ(P,<, σ, τ, p, q, idQ). Then by (5.17),

g is an automorphism of 〈P,<〉 fixing Q pointwise. By (5.13) and a routine

induction, we get that for all v ∈ P \ Q such that ht(v) > 1, g(v) = v.

Therefore, by (5.11), g(a) = (σ(b0))
−1(j) 6= a and for all w ∈ P \ Q such

that ht(w) = 1, if w /∈ {a, (σ(b0))−1(j)}, then g(w) = w. Hence g(d) = d.

If ht(a) > 1, then let c0 = inf cov(a), let i = τ(b0, c0)(a) < lb0,c0, and

let j < lb0,c0 be the least natural number such that (τ(b0, c0))
−1(j) /∈ {a, d}.

Let p be the function on C such that for all b ∈ C, p(b) is the identity

permutation of kb, and let q be the function onD such that for all (b, c) ∈ D,

q(b, c) =

{

(i; j)lb,c , if b = b0 and c = c0;

idlb,c , otherwise.

Let g = Φ(P,<, σ, τ, p, q, idQ). By (5.17), g is an automorphism of 〈P,<〉

fixing Q pointwise. By (5.13) and a routine induction, we get that for all

v ∈ P \ Q such that ht(v) > ht(a), g(v) = v. Therefore, again by (5.13),

g(a) = (τ(b0, c0))
−1(j) 6= a and for all w ∈ P \ Q such that ht(w) = ht(a),

if w /∈ {a, (τ(b0, c0))−1(j)}, then g(w) = w. Since d /∈ {a, (τ(b0, c0))−1(j)}

and either ht(d) > ht(a) or d ∈ Q, we have g(d) = d. �
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5.3. The permutation model. For any quintuple (x0, x1, x2, x3, x4) and

for any j < 5, let prj(x0, x1, x2, x3, x4) = xj . Let o be an arbitrary atom.

The atoms of the permutation model are constructed as follows:

(i) e0 = o, A0 = {o}, and ⋖0 = ∅.

(ii) e1 = (0, 0, ∅, o, 3), A1 = {o, e1}, and ⋖1 = {(o, e1)}.

(iii) For any n > 1, en+1 = (n, n, ∅, en−1, 3) and An+1 = An ∪
⋃

i6nBn,i,

where Bn,i is defined by recursion on i 6 n as follows:

• Bn,0 = {en+1};

• Bn,n = {(n, 0, b, o, j) | b ∈ Bn,n−1 ∧ j < 3};

• Bn,i = {(n, n − i, b, c, j) | b ∈ Bn,i−1 ∧ c ⋖n pr3 b ∧ j < Lb,c},

where 0 < i < n and

Lb,c =



















3, if b 6= en+1 and pr3 pr3 pr2 b = c;

4, if b 6= en+1 and pr3 pr3 pr2 b 6= c;

3, if b = en+1 and c = en−2;

4, if b = en+1 and c 6= en−2.

(iv) For any n > 1, ⋖n+1 is defined as follows:

⋖n+1 = ⋖n ∪
{

(en, en+1)
}

∪
{

(pr3 pr2 a, a)
∣

∣ a ∈ An+1 \ (An ∪ {en+1})
}

∪
{

(a, pr2 a)
∣

∣ a ∈ An+1 \ (An ∪ {en+1})
}

.

(v) For any n ∈ ω, <n is the transitive closure of ⋖n; that is, for all a, b,

a <n b if and only if there exists a sequence t of length m > 1 such

that t(0) = a, t(m− 1) = b, and t(j)⋖n t(j + 1) for any j < m− 1.

Such a sequence t is called a ⋖n-chain from a to b.

Let A =
⋃

n∈ω An and let < =
⋃

n∈ω <n. For the sake of simplicity we shall

work with A as the set of atoms. Let G be the group of all automorphisms

of 〈A,<〉 and let I = fin(A). The permutation model determined by G and

I is denoted by VS (S for the operator S).

Clearly, for all n ∈ ω, en ∈ An and for all a ∈ An+1 \ An, pr0 a = n and

if n > 1 then n − pr1 a is the unique i 6 n such that a ∈ Bn,i. Therefore,

for all n > 1, An and
⋃

i6nBn,i are disjoint, and the sets Bn,i (i 6 n) are

pairwise disjoint. Notice that for all n > 1 and all a ∈ An+1 \ (An∪{en+1}),

pr2 a ∈ An+1 \ An ∧ pr1 pr2 a = pr1 a + 1;(5.19)

pr1 a > 0 → pr3 a⋖n pr3 pr2 a.(5.20)

Lemma 5.7. For all n ∈ ω, 〈An, <n〉 is a building block, ⋖n is the covering

relation of <n, o is the least element of 〈An, <n〉, en is the greatest element

of 〈An, <n〉, and for all a ∈ An\{o}, ht(a) = pr1 a+1 and inf cov(a) = pr3 a.
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Proof. We prove this lemma by induction on n. The cases n = 0 and n = 1

are obvious. Next, for the inductive step, let n > 1 and assume that the

assertion holds for n. We prove that the assertion holds for n+1 as follows:

We first make some basic observations about ⋖n+1-chains. Note that

pr3 b ∈ An for any b ∈ An+1 \ An, and hence, by (5.19), pr3 pr2 a ∈ An for

any a ∈ An+1 \ (An ∪ {en+1}). Now, let a <n+1 b, and let t be a ⋖n+1-chain

of length m > 1 from a to b. By (5.19) and the definition of ⋖n+1, if b ∈ An,

then ran(t) ⊆ An and t is a ⋖n-chain from a to b. Thus we have

(5.21) b ∈ An ∧ a <n+1 b→ a ∈ An ∧ a <n b.

If a ∈ An+1\An, then t[m−1] ⊆ An+1\(An∪{en+1}), t(m−1) ∈ An+1\An,

and for all j < m−1, t(j+1) = pr2 t(j) and thus pr1 t(j+1) = pr1 t(j)+1,

which implies that m = pr1 b−pr1 a+1 and hence t is uniquely determined

by a and b. Therefore, we have that

if a ∈ An+1 \ An and a <n+1 b, then pr1 a < pr1 b,

and there exists a unique ⋖n+1-chain from a to b.
(5.22)

If a, b ∈ An+1 \ (An ∪ {en+1}), then ran(t) ⊆ An+1 \ (An ∪ {en+1}) and

t(j + 1) = pr2 t(j) for any j < m − 1, and therefore, by (5.19) and (5.20),

pr3 pr2 t(j)⋖n pr3 pr2 t(j + 1) for any j < m− 1. Thus we have

(5.23) a, b ∈ An+1 \ (An ∪ {en+1}) ∧ a <n+1 b→ pr3 pr2 a <n pr3 pr2 b.

We claim that for all a ∈ An+1 \ (An ∪ {en+1}),

(5.24) ∀d ∈ An

(

d <n+1 a→ d 6n pr3 pr2 a
)

.

In fact, let d ∈ An, let t be a ⋖n+1-chain of length m > 1 from d to a,

and let i = min{j < m | t(j) ∈ An+1 \ An}. Clearly, i > 0, t[i] ⊆ An,

t[m \ i] ⊆ An+1 \ (An ∪ {en+1}), d 6n t(i − 1), t(i − 1) = pr3 pr2 t(i),

and t(i) 6n+1 a, which implies that, by (5.23), pr3 pr2 t(i) 6n pr3 pr2 a.

Therefore, d 6n t(i− 1) = pr3 pr2 t(i) 6n pr3 pr2 a. Thus (5.24) is proved.

Now we prove that 〈An+1, <n+1〉 is a partially ordered set. Since <n+1 is

the transitive closure of ⋖n+1, it suffices to prove that <n+1 is irreflexive.

Assume towards a contradiction that there is a b ∈ An+1 such that b <n+1 b.

If b ∈ An, then, by (5.21), b <n b, contradicting the assumption that <n is

irreflexive. Otherwise, by (5.22), pr1 b < pr1 b, which is also a contradiction.

An+1 is finite since An is finite. Since o is the least element of 〈An, <n〉,

o 6n en⋖n+1 en+1 and o 6n pr3 pr2 a⋖n+1a for any a ∈ An+1\(An∪{en+1}),

which implies that o is also the least element of 〈An+1, <n+1〉. Since en is

the greatest element of 〈An, <n〉, we have d 6n en⋖n+1 en+1 for any d ∈ An.

For any a ∈ An+1 \ (An∪{en+1}), the sequence t of length n−pr1 a+1 such
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that t(0) = a and t(j + 1) = pr2 t(j) for any j < n − pr1 a is a ⋖n+1-chain

from a to en+1, and therefore a <n+1 en+1, which implies that en+1 is the

greatest element of 〈An+1, <n+1〉.

We prove that ⋖n+1 is the covering relation of <n+1; that is, for all a, b,

a⋖n+1 b↔ a <n+1 b ∧ ¬∃c
(

a <n+1 c <n+1 b
)

.

Clearly, if a <n+1 b but a <n+1 c <n+1 b for no c ∈ An+1, then a ⋖n+1 b.

For the other direction, assume towards a contradiction that a ⋖n+1 b and

a <n+1 c <n+1 b for some c ∈ An+1. We consider the following four cases:

If a ⋖n b, then b ∈ An and thus, by (5.21), a <n c <n b, contradicting the

assumption that ⋖n is the covering relation of <n. If a = en and b = en+1,

then we have that c ∈ An+1 \ (An ∪ {en+1}) and the sequence t of length

n− pr1 c+1 such that t(0) = c and t(j + 1) = pr2 t(j) for any j < n− pr1 c

is a ⋖n+1-chain from c to en+1, and thus, by (5.24) and (5.23), we get that

en 6n pr3 pr2 c 6n pr3 pr2 t(n−pr1 c−1) = pr3 en+1 = en−1, which is absurd.

If b ∈ An+1 \ (An ∪ {en+1}) and a = pr3 pr2 b, then, since c ∈ An implies

that, by (5.24), c 6n pr3 pr2 b = a, we have c ∈ An+1 \ (An ∪ {en+1}), and

thus, by (5.24) and (5.23), a 6n pr3 pr2 c <n pr3 pr2 b = a, which is absurd.

Finally, if a ∈ An+1\(An∪{en+1}) and b = pr2 a, then, by (5.22) and (5.19),

we have that pr1 a < pr1 c < pr1 b = pr1 a+1, which is also a contradiction.

Now we prove that 〈An+1, <n+1〉 is a lattice. Since An+1 is finite and

〈An+1, <n+1〉 has a greatest element, we only need to prove that any two

elements of An+1 have a greatest lower bound. Let a, b ∈ An+1. If a 6n+1 b

or b 6n+1 a, then obviously a and b have a greatest lower bound. Now,

suppose that a and b are incomparable. If a, b ∈ An, then, by (5.21), the

greatest lower bound of a and b in 〈An, <n〉 is also their greatest lower bound

in 〈An+1, <n+1〉. If a ∈ An and b ∈ An+1 \ (An ∪ {en+1}), then, by (5.21)

and (5.24), the greatest lower bound of a and pr3 pr2 b in 〈An, <n〉 is also

the greatest lower bound of a and b in 〈An+1, <n+1〉. Finally, we claim that

if a, b ∈ An+1 \ (An∪{en+1}), then the greatest lower bound of pr3 pr2 a and

pr3 pr2 b in 〈An, <n〉 is the greatest lower bound of a and b in 〈An+1, <n+1〉.

By (5.24), it suffices to show that for all d ∈ An+1, if d 6n+1 a and d 6n+1 b,

then d ∈ An. In fact, for all c ∈ An+1\(An∪{en+1}), by (5.22), there exists a

unique ⋖n+1-chain from c to en+1, and thus, since a and b are incomparable,

it cannot happen that c 6n+1 a and c 6n+1 b simultaneously.

We prove that 〈An+1, <n+1〉 satisfies the finitary lower covering condition.

Since 〈An, <n〉 satisfies the finitary lower covering condition, by (5.21), it

suffices to prove that for all b ∈ An+1 \An such that cov(b) contains at least

two elements, (5.2) holds. Since cov(b) contains at least two elements, by
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the definition of ⋖n+1, cov(b) contains some element of An+1\(An∪{en+1}).

Let a be an arbitrary element of An+1 \ (An ∪ {en+1}) such that a ⋖n+1 b.

Then b = pr2 a and thus pr3 b = pr3 pr2 a⋖n+1 a. Note that if b = en+1 then

cov(b) ∩An = {en} and pr3 b = en−1 ⋖n en, and if b ∈ An+1 \ (An ∪ {en+1})

then cov(b) ∩ An = {pr3 pr2 b} and, by (5.19) and (5.20), pr3 b⋖n pr3 pr2 b.

Therefore, pr3 b = inf cov(b) and (5.2) holds. Hence we have proved that

〈An+1, <n+1〉 satisfies the finitary lower covering condition and

(5.25) ∀b ∈ An+1 \ An

(

| cov(b)| > 2 → inf cov(b) = pr3 b
)

.

Now, by Lemma 5.3, in 〈An+1, <n+1〉, the height of b is well-defined for

any b ∈ An+1. Notice that for all d ∈ An, by (5.21), the height of d in

〈An+1, <n+1〉 is the same as its height in 〈An, <n〉. We claim that

(5.26) ∀a ∈ An+1 \ {o}
(

ht(a) = pr1 a + 1
)

.

Since in 〈An, <n〉, ht(a) = pr1 a+1 for any a ∈ An \ {o}, it suffices to prove

that for all b ∈ An+1 \An, ht(b) = pr1 b+ 1. Let b ∈ An+1 \An. If b = en+1,

then, since en⋖n+1 en+1, ht(b) = ht(en)+ 1 = pr1 en+2 = n+1 = pr1 b+1.

Otherwise, the sequence t of length n − pr1 b + 1 such that t(0) = b and

t(j + 1) = pr2 t(j) for any j < n − pr1 b is a ⋖n+1-chain from b to en+1,

which implies that ht(b) + n− pr1 b = ht(en+1) and hence ht(b) = pr1 b+ 1.

Thus (5.26) is proved.

Finally, we prove that 〈An+1, <n+1〉 is a building block and that for all

a ∈ An+1 \ {o}, inf cov(a) = pr3 a. Since 〈An, <n〉 is a building block and

in 〈An, <n〉, inf cov(a) = pr3 a for any a ∈ An \ {o}, by (5.21), it suffices

to prove that for all b ∈ An+1 \ An, inf cov(b) = pr3 b, if ht(b) = 2 then

| cov(b)| = 4, and if ht(b) > 2 then (5.3) holds. Let b ∈ An+1 \ An. We

consider the following three cases:

If ht(b) = 1, then, by (5.26), pr1 b = 0, and hence inf cov(b) = o = pr3 b.

If ht(b) = 2, then, by (5.26), pr1 b = 1, which implies that b ∈ Bn,n−1

and cov(b) ∩ (An+1 \ An) = {(n, 0, b, o, j) | j < 3}. Since cov(b) ∩ An is a

singleton, we have | cov(b)| = 4, and therefore, by (5.25), inf cov(b) = pr3 b.

If ht(b) > 2, then, by (5.26), pr1 b > 1. We further consider two subcases:

If b = en+1, then we have n = pr1 b > 1 and therefore pr3 b = en−1 6= o.

For all c⋖n pr3 b, if c = en−2 then Lb,c = 3 and hence
∣

∣{a ∈ cov(b) | pr3 a = c}
∣

∣ =
∣

∣{en} ∪ {(n, n− 1, b, c, j) | j < Lb,c}
∣

∣ = 4,

and if c 6= en−2 then Lb,c = 4 and hence
∣

∣{a ∈ cov(b) | pr3 a = c}
∣

∣ =
∣

∣{(n, n− 1, b, c, j) | j < Lb,c}
∣

∣ = 4.

Thus we have | cov(b)| > 4, which implies that, by (5.25), inf cov(b) = pr3 b.
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If b ∈ An+1 \ (An ∪ {en+1}), then, by (5.20), pr3 b ⋖n pr3 pr2 b ⋖n+1 b,

which implies that ht(pr3 b) = ht(b) − 2 > 0 and hence we have pr3 b 6= o.

For all c⋖n pr3 b, if pr3 pr3 pr2 b = c then Lb,c = 3 and hence

∣

∣{a ∈ cov(b) | pr3 a = c}
∣

∣

=
∣

∣{pr3 pr2 b} ∪ {(n, pr1 b− 1, b, c, j) | j < Lb,c}
∣

∣ = 4,

and if pr3 pr3 pr2 b 6= c then Lb,c = 4 and hence
∣

∣{a ∈ cov(b) | pr3 a = c}
∣

∣ =
∣

∣{(n, pr1 b− 1, b, c, j) | j < Lb,c}
∣

∣ = 4.

Thus we have | cov(b)| > 4, which implies that, by (5.25), inf cov(b) = pr3 b.

Now, since in all cases we have inf cov(b) = pr3 b, we can replace pr3 b

by inf cov(b) and pr3 a by inf cov(a) in the above two subcases, and hence

(5.3) holds in both subcases, which completes the proof. �

Corollary 5.8. 〈A,<〉 is a locally finite lattice with a least element.

Proof. By Lemma 5.7, for all n ∈ ω, 〈An, <n〉 is a finite lattice and o is the

least element of 〈An, <n〉. Hence, by (5.21), 〈A,<〉 is a locally finite lattice

and o is the least element of 〈A,<〉. �

Lemma 5.9. For all m ∈ ω, every automorphism of 〈Am, <m〉 extends to

an automorphism of 〈A,<〉.

Proof. Let m ∈ ω and let g be an automorphism of 〈Am, <m〉. We define an

automorphism π of 〈A,<〉 extending g as follows:

For each n ∈ ω, let

Cn =
{

b ∈ Am+2n+2 \Am+2n

∣

∣ pr1 b = 1
}

,

let

Dn =
{

(b, c)
∣

∣ b ∈ Am+2n+2 \ Am+2n ∧ pr1 b > 1 ∧ c⋖m+2n pr3 b
}

,

let σn be the function on Cn such that for all b ∈ Cn, σn(b) is the function

defined on {a ∈ Am+2n+2 \ Am+2n | a⋖m+2n+2 b} given by σn(b)(a) = pr4 a,

and let τn be the function on Dn such that for all (b, c) ∈ Dn, τn(b, c) is the

function defined on {a ∈ Am+2n+2 \ Am+2n | a⋖m+2n+2 b ∧ pr3 a = c} given

by τn(b, c)(a) = pr4 a. We define hn by recursion on n as follows:

h0 = g;

hn+1 = Ψ(Am+2n+2, <m+2n+2, σn, τn, hn),

where Ψ is defined before Lemma 5.6. Therefore, by Lemma 5.7 and (5.18),

a routine induction shows that for all n ∈ ω, hn+1 is an automorphism of

〈Am+2n+2, <m+2n+2〉 extending hn. It suffices to take π =
⋃

n∈ω hn. �
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Lemma 5.10. In VS , S(A) = Sfin(A).

Proof. Let u ∈ VS be a permutation of A, and let B ∈ fin(A) be a support

of u. Let k be the least natural number such that B ⊆ Ak. We claim that

mov(u) ⊆ Ak.

In fact, assume towards a contradiction that there is an a ∈ mov(u) \ Ak.

Let n = pr0 a and let b = u(a) 6= a. Then a ∈ An+1 \ An and hence k 6 n.

If b ∈ An, or if b ∈ An+1 \ An and pr1 b > pr1 a, then, by Lemma 5.7

and Lemma 5.6, there exists an automorphism g of 〈An+2, <n+2〉 fixing

An ∪ {b} pointwise and such that g(a) 6= a. By Lemma 5.9, g extends to an

automorphism π of 〈A,<〉. Then we have π ∈ fixG(B ∪ {b}) and π(a) 6= a.

Hence π moves u, contradicting the assumption that B is a support of u.

Thus, b /∈ An, and if b ∈ An+1 \ An then pr1 b < pr1 a. Let m = pr0 b.

Then b ∈ Am+1 \ Am and hence n 6 m, which implies that either a ∈ Am

or a ∈ Am+1 \Am and pr1 a > pr1 b. Hence, by Lemma 5.7 and Lemma 5.6,

there exists an automorphism h of 〈Am+2, <m+2〉 fixing Am ∪ {a} pointwise

and such that h(b) 6= b. By Lemma 5.9, h extends to an automorphism σ

of 〈A,<〉. Then we have σ ∈ fixG(B ∪ {a}) and σ(b) 6= b. Hence σ moves u,

contradicting again the assumption that B is a support of u.

Thus mov(u) ⊆ Ak. Since Ak is finite, we have u ∈ Sfin(A). �

Corollary 5.11. Let A be the set of atoms of VS and let a = |A|. In VS ,

we have a! 6fto a.

Proof. By Lemma 5.10, a! = Sfin(a), and by Fact 2.14, Sfin(a) 6fto fin(a).

Also, by Corollary 5.8 and Fact 5.1, we have fin(a) 6fto a. Therefore, we get

that a! = Sfin(a) 6fto fin(a) 6fto a. �

Now the following theorem immediately follows from Corollary 5.11 and

the Jech-Sochor theorem.

Theorem 5.12. The following statement is consistent with ZF: There exists

an infinite cardinal a such that a! 6fto a.

6. Conclusion

Three open problems posed in [22] are solved in this paper:

(i) As a special case of Corollary 3.29, we get that for all infinite sets x,

if there exists a permutation of x without fixed points, then there are no

finite-to-one maps from S(x) into x. This answers one of the open problems

posed in (2) of [22, §4].
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(ii) Theorem 5.12 shows that it is not provable in ZF that for all infinite

sets x, there are no finite-to-one maps from S(x) into x. This answers the

open problem (7) of [22, §4], since it is obvious that for all infinite sets x,

there exists a finite-to-one map from S(x) into x if and only if there exists

a finite-to-one surjection from S(x) onto x.

(iii) It follows from Lemma 4.11 that in the Shelah-type permutation

model VS, there exists an infinite set A such that there exists a surjection

from A onto S(A). Since it follows from Cantor’s theorem that there are

no surjections from A onto ℘(A), we get that there are no surjections from

S(A) onto ℘(A). This answers the open problem (8) of [22, §4].

Also, it follows from Corollary 3.17 that for all infinite sets x, if S(x) is

Dedekind infinite, then there are no finite-to-one maps from S(x) into x.

This is a generalization of Theorem 3.2 of [22].

In what follows, we list some open problems which are of interest for

future work, and then summarize the relationships between a! and some

other cardinals considered in this paper. Finally, we make a comparison of

these relationships with those between 2a and some other cardinals.

6.1. Open problems. Now, we propose four open problems as follows:

Question 6.1. Is it consistent with ZF that there is an infinite cardinal a

such that a! < ℵ0 · a?

By Lemma 3.30, an affirmative answer to this question would yield a

generalization of Theorem 5.12.

Question 6.2. Is it consistent with ZF that there exists an infinite cardinal

a 6 2ℵ0 such that a! 6fto a?

By Theorem 3.32, an affirmative answer to this question would give an

affirmative answer to Question 6.1.

Question 6.3. Does ZF prove that a! 6= seq1-1(a) for any cardinal a 6= 0?

In [10, Theorem 4], Halbeisen and Shelah proved in ZF that 2a 6= seq1-1(a)

for any cardinal a > 2. It is natural to ask whether we can replace 2a by a!

in this theorem.

Question 6.4. Is it consistent with ZF that there exists a cardinal a such

that a! = [a]3?

Note that, by Theorem 4.12, the existence of an infinite cardinal a such

that a! < [a]3 is consistent with ZF.
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6.2. Summary. Now we summarize the results obtained in the previous

sections. For all cardinals a, if a! is Dedekind infinite, then a! cannot be too

small, in the following sense:

• a! 
dfto seq(Spdfin(a)) (cf. Theorem 3.13);

• 2ℵ0 · a 6 2ℵ0 · seq(a) 6 2ℵ0 · Spdfin(a) 6 a! (cf. Theorem 3.8);

• ℵ0 · a 6 seq(a) 6 ℵ0 · Spdfin(a) < a! (cf. Corollary 3.14).

However, if we replace the requirement that a! is Dedekind infinite by the

requirement that a is infinite, then it may consistently happen that a! 6fto a

(cf. Theorem 5.12) and that a! < seq1-1(a) < seq(a) (cf. Proposition 4.7).

It is an open problem whether it may consistently happen that a! < ℵ0 · a

(cf. Question 6.1). Nevertheless, for all infinite cardinals a, we have:

• a! 6= seq(a) (cf. Corollary 3.16);

• a! 6= ℵ0 · a (cf. Corollary 3.18);

• an < a! (cf. Corollary 3.28);

• [a]2 6
[

[a]2
]2
< a! (cf. Corollary 3.25).

It is an open problem whether a! 6= seq1-1(a) is provable (cf. Question 6.3).

Even for Dedekind infinite cardinals a, it is not provable that
[

[

[a]2
]2
]2

6 a!

nor that ([a]2)2 6 a! (cf. Proposition 4.3), and it may consistently happen

that a! < [a]3 and a! 6∗ a (cf. Theorem 4.12). It is an open problem whether

or not it may consistently happen that a! = [a]3 (cf. Question 6.4).

For cardinals b, c, we write b ‖ c to express that b and c are incomparable.

For infinite cardinals a, it may consistently happen that a! ‖ seq1-1(a),

a! ‖ seq(a), a! ‖ [a]3, and a! ‖ 2a (cf. Lemma 4.2 and Proposition 4.3). Also,

by Lemma 3.30, Fact 2.12, Fact 2.7, and Fact 2.13, we have that a! ‖ ℵ0 · a

for any infinite but power Dedekind finite cardinal a, and therefore it may

consistently happen that a! ‖ ℵ0 · a.

Now, for infinite cardinals a, we list all the possible relationships between

a! and a, ℵ0 · a, seq1-1(a), seq(a), [a]3, or 2a in the following table.

a ℵ0 · a seq1-1(a) seq(a) [a]3 2a

a! > X X X X X X

a! = X X ? X ? X

a! < X ? X X X X

a! ‖ X X X X X X

a! 6fto X X X X X X

a! 6∗ X X X X X X
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We should also mention that it is consistent with ZF that there exists a

power Dedekind infinite cardinal a such that a! 6fto ℵ0. The sketch of the

proof is as follows: Consider the permutation model N 2(3) in [13]. In this

permutation model, the set A of atoms is the union of a denumerable set B

of pairwise disjoint 3-element sets, G is the group of all permutations of A

that leave B pointwise fixed, and I is the normal ideal fin(A). It is easy to

verify that in N 2(3), we have S(A) = Sfin(A) and there exists a three-to-one

surjection from A onto ω. Therefore, if we take a = |A|, then we have that

a is power Dedekind infinite, a 6fto ℵ0, and a! = Sfin(a), which implies that,

by Fact 2.14, a! = Sfin(a) 6fto fin(a) 6fto fin(ℵ0) = ℵ0.

6.3. Comparison with powers. The relationships between 2a and some

other cardinals are studied in [21, 10, 11, 6, 26, 18]. In [18, Proposition 3.13],

the first author proved that 2a 
dfto seq
1-1(pdfin(a)) for any power Dedekind

infinite cardinal a. In fact, for power Dedekind infinite cardinals a, we have:

• 2a 
dfto seq(pdfin(a)), pdfin(seq(a)), fin(pdfin(a)), pdfin(fin(a));

• 2ℵ0 · a 6 2ℵ0 · pdfin(a) 6 2a (cf. [18, Lemma 3.18]);

• ℵ0 · a 6 ℵ0 · pdfin(a) < 2a (cf. [18, Proposition 3.19]).

We shall omit the proof here. It is an open problem whether it is provable

in ZF that 2a 
 pdfin(pdfin(a)) for any power Dedekind infinite cardinal a.

Hence, 2a has stronger properties than a!, in the sense that the requirement

that a is power Dedekind infinite is weaker than the requirement that a! is

Dedekind infinite (cf. Fact 2.13), and 2a 
dfto seq(pdfin(a)) is stronger than

2a 
dfto seq(Spdfin(a)) (cf. Fact 2.15). Also, for infinite cardinals a, we have:

• 2a 
pdfto a
n (cf. [18, Proposition 3.11]);

• 2a 
fto ℵ0 · a;

• fin(a) < 2a (cf. [10, Theorem 3]);

• 2a 6= seq1-1(a) (cf. [10, Theorem 4]);

• 2a 6= seq(a) (cf. [10, Theorem 5]).

We also omit the proof here. Notice that, even for infinite cardinals a, 2a has

stronger properties than a!, in the sense that it may consistently happen that

a! 6fto a (cf. Theorem 5.12) and that Sfin(a) = a! (cf. Fact 4.5). Nevertheless,

it may consistently happen that 2a < Sfin(a) = a! < seq1-1(a) < seq(a)

(cf. Fact 4.5 and Proposition 4.7) and hence, by Fact 2.14, 2a 6fto fin(a).

For the relation 6∗, on the one hand, it may consistently happen that

a! 6∗ a (cf. Theorem 4.12), and on the other hand, by Cantor’s theorem,

we have 2a 
∗ a for any cardinal a. Moreover, for all infinite cardinals a

and all cardinals b 6pdfto a, we have 2a 
∗ b (cf. [18, Theorem 5.3]). Note
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that in [10, Theorem 1], Halbeisen and Shelah proved that the existence of

an infinite cardinal a such that 2a 6∗ fin(a) is consistent with ZF. Now we

propose three open problems concerning the relation 6∗ as follows:

Question 6.5. Is it consistent with ZF that there is an infinite cardinal a

such that 2a 6∗ a2?

This question is known as the dual Specker problem and is asked in [24]

(cf. also [8, p. 133] or [18, Problem 5.8]).

Question 6.6. Is it consistent with ZF that there is an infinite cardinal a

such that 2a 6∗ [a]2?

This question is asked in [9]. Notice that an affirmative answer to this

question would give an affirmative answer to Question 6.5.

Question 6.7. Is it consistent with ZF that there is an infinite cardinal a

such that 2a 6∗ ℵ0 · a?

In fact, an affirmative answer to this question would give an affirmative

answer to Question 6.6. The sketch of the proof is as follows: Note that for

all power Dedekind infinite cardinals a, ℵ0 · a 6∗ [a]2. Hence, we only need

to prove that for all infinite cardinals a, if 2a 6∗ ℵ0 · a, then a is power

Dedekind infinite. Let x be a set such that |x| = a, and let f be a surjection

from ω×x onto ℘(x). Then we can explicitly define a surjection g ⊆ f from

a subset of ω×x onto ℘(x) such that for all z ∈ x, g ↾ (ω×{z}) is injective.

If ℘(x) is Dedekind finite, then for all z ∈ x, dom(g) ∩ (ω × {z}) is finite,

and hence there is a finite-to-one map from dom(g) into x, contradicting

Theorem 5.3 of [18]. Therefore, we get that x is power Dedekind infinite,

and hence a is power Dedekind infinite.

Finally, for infinite cardinals a, we list all the possible relationships be-

tween 2a and a, ℵ0 · a, a2, fin(a), seq1-1(a), or seq(a) in the following table.

a ℵ0 · a a2 fin(a) seq1-1(a) seq(a)

2a > X X X X X X

2a = X X X X X X

2a < X X X X X X

2a ‖ X X X X X X

2a 6fto X X X X X X

2a 6∗
X ? ? X X X



FACTORIALS OF INFINITE CARDINALS 49

Acknowledgements. We would like to give thanks to Professor Qi Feng

and Professor Liuzhen Wu for their advice and encouragement during the

preparation of this paper. Both authors were partially supported by NSFC

No. 11871464.

References

[1] G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ. 25, American

Mathematical Society, Providence, R. I., 1967.

[2] A. Blass, Power-Dedekind finiteness, Manuscript (2013).

http://www.math.lsa.umich.edu/~ablass/pd-finite.pdf

[3] J. W. Dawson, Jr. and P. E. Howard, Factorials of infinite cardinals, Fund. Math.

93 (1976), 185–195.

[4] J. W. Degen, Some aspects and examples of infinity notions, Math. Log. Q. 40 (1994),

111–124.

[5] E. Ellentuck, Generalized idempotence in cardinal arithmetic, Fund. Math. 58 (1966),

241–258.

[6] T. Forster, Finite-to-one maps, J. Symb. Log. 68 (2003), 1251–1253.

[7] G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, Basel, 1998.

[8] L. Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, 2nd

ed., Springer Monogr. Math., Springer, Cham, 2017.

[9] L. Halbeisen, A weird relation between two cardinals, Arch. Math. Logic 57 (2018),

593–599.

[10] L. Halbeisen and S. Shelah, Consequences of arithmetic for set theory, J. Symb. Log.

59 (1994), 30–40.

[11] L. Halbeisen and S. Shelah, Relations between some cardinals in the absence of the

axiom of choice, Bull. Symb. Log. 7 (2001), 237–261.

[12] H. Herrlich, The finite and the infinite, Appl. Categ. Structures 19 (2011), 455–468.

[13] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys

Monogr. 59, American Mathematical Society, Providence, R. I., 1998.

[14] T. Jech, The Axiom of Choice, Stud. Logic Found. Math. 75, North-Holland, Ams-

terdam, 1973.

[15] A. Levy, The independence of various definitions of finiteness, Fund. Math. 46

(1958), 1–13.

[16] A. Levy, Basic Set Theory, Perspect. Math. Log., Springer, Berlin, 1979.

[17] J. E. Rubin, Non-constructive properties of cardinal numbers, Israel J. Math. 10

(1971), 504–525.

[18] G. Shen, Generalizations of Cantor’s theorem in ZF, Math. Log. Q. 63 (2017), 428–

436.

http://www.math.lsa.umich.edu/~ablass/pd-finite.pdf


50 G. SHEN AND J. YUAN

[19] N. Sonpanow and P. Vejjajiva, A finite-to-one map from the permutations on a set,

Bull. Aust. Math. Soc. 95 (2017), 177–182.

[20] N. Sonpanow and P. Vejjajiva, Some properties of infinite factorials, Math. Log. Q.

64 (2018), 201–206.

[21] E. Specker, Verallgemeinerte Kontinuumshypothese und Auswahlaxiom, Arch. Math.

5 (1954), 332–337.

[22] E. Tachtsis, On the existence of permutations of infinite sets without

fixed points in set theory without choice, Acta Math. Hungar. (2018).

https://doi.org/10.1007/s10474-018-0869-9

[23] A. Tarski, Sur les ensembles finis, Fund. Math. 6 (1924), 45–95.

[24] J. Truss, Dualisation of a result of Specker’s, J. Lond. Math. Soc. 6 (1973), 286–288.

[25] J. Truss, Classes of Dedekind finite cardinals, Fund. Math. 84 (1974), 187–208.

[26] P. Vejjajiva and S. Panasawatwong, A note on weakly Dedekind finite sets, Notre

Dame J. Form. Log. 55 (2014), 413–417.

Academy of Mathematics and Systems Science, Chinese Academy of Sci-
ences, No.55 Zhongguancun East Road, Beijing 100190, People’s Republic
of China

University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Bei-
jing 100049, People’s Republic of China

E-mail address : shen_guozhen@outlook.com

E-mail address : yuanjiachen15@mails.ucas.ac.cn

https://doi.org/10.1007/s10474-018-0869-9

	1. Introduction
	2. Preliminaries
	2.1. Dedekind finiteness and power Dedekind finiteness
	2.2. Some special cardinals
	2.3. Some notation on permutations

	3. Permutations that move power Dedekind finitely many elements
	3.1. Some further results
	3.2. Permutations that move finitely many elements

	4. Permutation models
	4.1. The basic Fraenkel model
	4.2. The ordered Mostowski model
	4.3. A Shelah-type permutation model

	5. A new permutation model
	5.1. A covering condition
	5.2. Building blocks
	5.3. The permutation model

	6. Conclusion
	6.1. Open problems
	6.2. Summary
	6.3. Comparison with powers
	Acknowledgements

	References

