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ON THE EXISTENCE OF LARGE ANTICHAINS FOR

DEFINABLE QUASI-ORDERS

BENJAMIN D. MILLER AND ZOLTÁN VIDNYÁNSZKY

Abstract. We generalize Harrington-Marker-Shelah’s Dilworth-
style characterization of the existence of non-empty perfect an-
tichains to co-analytic quasi-orders, establish the analogous the-
orem at the next definable cardinal, and consider generalizations
beyond the first level of the projective hierarchy.

Introduction

A quasi-order is a reflexive transitive binary relation. Associated
with every such relation R on a set X are the equivalence relation
x ≡R y ⇐⇒ (x R y and y R x) and the incomparability relation
x ⊥R y ⇐⇒ (¬x R y and ¬y R x). We say that a set Y ⊆ X is an
R-antichain if R ↾ Y is the diagonal on Y , and an R-chain if ⊥R ↾ Y is
empty. A subset of a topological space is perfect if it is closed and has
no isolated points, Borel if it is in the σ-algebra generated by the open
sets, analytic if it is a continuous image of a closed subset of NN, and
co-analytic if its complement is analytic. In §1, we generalize [HMS88,
Theorem 5.1] from Borel to co-analytic quasi-orders:

Theorem 1. Suppose that X is a Hausdorff space and R is a co-

analytic quasi-order on X. Then exactly one of the following holds:

(1) The space X is a union of countably-many Borel R-chains.
(2) There is a non-empty perfect R-antichain.

Our proof uses only Baire category arguments and the G0 dichotomy
[KST99, Theorem 6.3], which itself has a classical proof [Mil12]. An
interesting new wrinkle is that, while such arguments typically utilize
just one application of the G0 dichotomy, ours requires infinitely many.
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A homomorphism from a binary relation R on X to a binary relation
S on Y is a function φ : X → Y such that (φ × φ)(R) ⊆ S, and a
reduction of R to S is a homomorphism from R to S that is also a
homomorphism from ∼R to ∼S. A Borel equivalence relation E on
an analytic Hausdorff space X is smooth if there is a Borel-measurable
reduction of E to equality on 2N, and an analytic set A ⊆ X is E-
smooth if E ↾ A is smooth. In §2, we establish the analog of [HMS88,
Theorem 5.1] at the next Borel cardinal:

Theorem 2. Suppose that X is an analytic Hausdorff space and R is

a Borel quasi-order on X. Then exactly one of the following holds:

(1) There is a smooth Borel superequivalence relation of ≡R whose

equivalence classes are R-chains.
(2) There is an ≡R-non-smooth perfect set whose quotient by ≡R is

an (R/≡R)-antichain.

Our proof uses only Baire category arguments and the E0 dichotomy
[HKL90, Theorem 1.1], which itself has a classical proof [Mil12], and
reveals that the theorem holds for the rather degenerate reason that its
two alternatives are equivalent to those of the E0 dichotomy (for ≡R).
A subset of a topological space X is κ-Borel if it is in the κ-complete

algebra generated by the open sets, κ-Souslin if it is a continuous image
of a closed subset of κN, co-κ-Souslin if its complement is κ-Souslin,
bi-κ-Souslin if it is both κ-Souslin and co-κ-Souslin, and ℵ0-universally

Baire if its pre-image under every continuous function φ : 2N → X has
the Baire property. Let E0 denote the equivalence relation on 2N given
by c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m). An embedding is an
injective reduction. In §3, we note that our arguments also yield:

Theorem 3. Suppose that κ is an aleph, X is a Hausdorff space, and

R is an ℵ0-universally-Baire co-κ-Souslin quasi-order on X. Then at

least one of the following holds:

(1) The space X is a union of κ-many R-chains.
(2) There is a non-empty perfect R-antichain.

Theorem 4. Suppose that κ is an aleph, X is a Hausdorff space, and

R is an ℵ0-universally-Baire bi-κ-Souslin quasi-order on X. Then at

least one of the following holds:

(1) There is a homomorphism from ≡R to equality on 2κ such that

the pre-image of every singleton is an R-chain.
(2) There is a continuous embedding π : 2N → X of E0 into ≡R

such that π(2N)/≡R is an (R/≡R)-antichain.
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In the special case thatX is analytic, one can use the (non-classical) ar-
guments of [Kan97] to establish the strengthenings in which the objects
in condition (1) of these results are κ+-Borel/κ+-Borel measurable.
A subset of an analytic Hausdorff space is Σ1

1 if it is analytic, Π1
n

if its complement is Σ1
n, Σ

1
n+1 if it is a continuous image of a Π1

n set,

and ∆1
n if it is both Π1

n and Σ1
n. Let δ

1
n denote the supremum of

the lengths of all ∆1
n pre-wellorderings of NN. We say that a ∆1

2n+1

equivalence relation E on an analytic Hausdorff space X is smooth if
there exists κ < δ

1
2n+1 for which there is a ∆1

2n+1-measurable reduction
of E to equality on 2κ, and an analytic set A ⊆ X is E-smooth if
E ↾ A is smooth. Taking the known structure theory of the projective
sets as a black box, we note that our arguments also provide classical
proofs of the relevant special cases of the Kanovei-style strengthenings
of Theorems 3 and 4 necessary to obtain:

Theorem 5 (AD). Suppose that n ∈ N, X is an analytic Hausdorff

space, and R is a Π1
2n+1 quasi-order on X. Then exactly one of the

following holds:

(1) The space X is a union of (< δ
1
2n+1)-many ∆1

2n+1 R-chains.
(2) There is a non-empty perfect R-antichain.

Theorem 6 (AD). Suppose that n ∈ N, X is an analytic Hausdorff

space, and R is a ∆1
2n+1 quasi-order on X. Then exactly one of the

following holds:

(1) There is a smooth ∆1
2n+1 superequivalence relation of ≡R whose

equivalence classes are R-chains.
(2) There is an ≡R-non-smooth perfect set whose quotient by ≡R is

an (R/≡R)-antichain.

In a future paper with Müller, we will establish the version of the G0

dichotomy necessary to obtain such results from PD.
We work in ZF + DC throughout.

1. Perfect antichains

For each discrete set D and sequence s ∈ D<N, we use Ns to denote
the basic open set consisting of all extensions of s in DN. We use the
notation ∀∗x ∈ X P (x) to indicate that {x ∈ X | ¬P (x)} is meager,
and ∃∗x ∈ X P (x) to indicate that {x ∈ X | P (x)} is non-meager.
Fix sequences sn ∈ 2n such that ∀s ∈ 2<N∃n ∈ N s ⊑ sn, and define
G0 =

⋃
n∈N{(sn a (i) a c, sn a (1− i) a c) | c ∈ 2N and i < 2}. While

our proof of the characterization of the existence of a non-empty perfect
antichain requires infinitely-many applications of the G0 dichotomy, we
need only one to establish the following:
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Theorem 7. Suppose that X is a Hausdorff space, R is a co-analytic

quasi-order on X, and X is not a union of countably-many Borel R-
chains. Then there are compact sets Ki ⊆ X that are not unions of

countably-many Borel R-chains such that
∏

i<2Ki ⊆ ⊥R.

Proof. As ⊥R is analytic and X is not a union of countably-many
Borel R-chains, the G0 dichotomy yields a continuous homomorphism
φ : 2N → X from G0 to ⊥R. As the set R0 = (φ×φ)−1(R) is co-analytic,
it has the Baire property (see, for example, [Kec95, 21.6]), thus so too
does ⊥R0

.

Lemma 8. The relation ⊥R0
is non-meager.

Proof. Suppose, towards a contradiction, that ⊥R0
is meager, and fix

non-empty open sets Ui ⊆ 2N for which R0 is comeager in
∏

i<2 Ui
(see, for example, [Kec95, Proposition 8.26]). The Kuratowski-Ulam
theorem (see, for example, [Kec95, Theorem 8.41]) ensures that the sets
C0 = {c ∈ 2N | ∃∗d ∈ U0 c R0 d} and C1 = {d ∈ 2N | ∀∗c ∈ U0 c R0 d}
have comeager union, and [Kec95, Theorem 16.1] and the Kuratowski-
Ulam theorem imply that they have the Baire property. The Kuratow-
ski-Ulam theorem also ensures that C0 is non-meager, since otherwise
∀∗c, d ∈ U0 (¬c R0 d and d R0 c), and C1 is non-meager. As the E0-
saturation of every non-meager set with the Baire property is comeager
(see, for example, [Kec95, Theorem 8.47]), there are comeagerly-many
c ∈ 2N for which the sets Ci ∩ [c]E0

non-trivially partition [c]E0
. As

a straightforward induction reveals that E0 is the equivalence relation
generated by G0, it follows that (

∏
i<2Ci) ∩G0 6= ∅, contradicting the

fact that
∏

i<2Ci ⊆ R0.

Lemma 9. There are continuous homomorphisms φi : 2
N → 2N from

G0 to itself for which
∏

i<2 φi(2
N) ⊆ ⊥R0

.

Proof. By Lemma 8, there are non-empty open sets Ui ⊆ 2N and dense
open sets Vn ⊆

∏
i<2Ui such that

⋂
n∈N Vn ⊆ ⊥R0

. Recursively con-
struct ui,n ∈ 2<N and ki,n ∈ N such that

∏
i<2Nφi,n(ti) ⊆ Vn for all

t0, t1 ∈ 2n and φi,n(sn) = ski,n for all i < 2, where φi,n : 2
n → 2<N is

given by φi,n(t) = ui,0 a
⊕

m<n(t(m)) a ui,m+1. Then the functions
φi : 2

N → 2N given by φi(c) =
⋃
n∈N φi,n(c ↾ n) are as desired.

It only remains to observe that if the functions φi are as in Lemma
9, then the sets Ki = (φ ◦ φi)(2N) are as desired.

We now establish our characterization of the existence of a non-
empty perfect antichain:
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Proof of Theorem 1. Conditions (1) and (2) are clearly mutually ex-
clusive. To see ¬(1) =⇒ (2), note that if condition (1) fails, then
X is the projection onto either coordinate of the complement of ≡R,
thus analytic. Fix a continuous surjection φ : NN → X , and recursively
appeal to Theorem 7 to obtain functions ψn : 2

n → Nn and sequences
(Fs)s∈2n of closed subsets of X with the following properties:

(1) ∀s ∈ 2n Fs is not a union of countably-many Borel R-antichains.
(2) ∀s ∈ 2n Fs ⊆ φ(Nψn(s)).
(3) ∀s ∈ 2n Fsa(0) ∪ Fsa(1) ⊆ Fs.
(4) ∀s ∈ 2n Fsa(0) × Fsa(1) ⊆ ⊥R.
(5) ∀i < 2∀s ∈ 2n ψn(s) ⊑ ψn+1(s a (i)).

Define ψ : 2N → NN by ψ(c) =
⋃
n∈N ψn(c ↾ n), as well as π = φ ◦ ψ,

noting that π(c) ∈
⋂
n∈N Fc↾n for all c ∈ 2N. To see that π(2N) is a

perfect R-antichain, observe that if c, d ∈ 2N are distinct, then there is
a maximal natural number n ∈ N for which c ↾ n = d ↾ n, so the fact
that π(c) ∈ Fsa(c(n)) and π(d) ∈ Fsa(d(n)) ensures that π(c) ⊥R π(d).

2. Non-smooth antichains

We now establish our characterization of the existence of a non-
smooth perfect set whose quotient is an antichain:

Proof of Theorem 2. To see that conditions (1) and (2) are mutually
exclusive, note that if E is a Borel superequivalence relation of ≡R

whose classes are R-chains, and A ⊆ X is a set whose quotient by ≡R

is an (R/≡R)-antichain, then ≡R ↾ A = E ↾ A. When A is analytic, it
follows that if E is smooth, then so too is ≡R ↾ A.
To see ¬(1) =⇒ (2), note that if (1) fails, then ≡R is non-smooth,

so the E0 dichotomy yields a continuous embedding φ : 2N → X of E0

into ≡R. As the set R0 = (φ × φ)−1(R) is Borel, it has the Baire
property, thus so too does ⊥R0

.

Lemma 10. The relation ⊥R0
is comeager.

Proof. If there exist n ∈ N and s, t ∈ 2n for which R0 is comeager in
Ns × Nt, then the fact that E0 ⊆ R0 ensures that R0 is comeager in
Ns′ ×Nt′ for all s

′, t′ ∈ 2n, and therefore comeager, thus so too is ≡R0
,

contradicting the fact that the latter set is E0.

Lemma 11. There is a continuous embedding ψ : 2N → 2N of E0 into

itself that is also a homomorphism from ∼E0 to ⊥R0
.

Proof. By Lemma 10, there are dense open sets Un ⊆ 2N×2N such that⋂
n∈N Un ⊆ ⊥R0

. We can clearly assume that these sets are decreasing
and disjoint from the diagonal. Recursively construct ui,n ∈ 2<N such
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that |u0,n| = |u1,n| and
∏

i<2Nψn+1(tia(i)) ⊆ Un for all t0, t1 ∈ 2n, where
ψn+1 : 2

n+1 → 2<N is given by ψn+1(t) =
⊕

m≤n(t(m)) a ut(m),m. Then

the map ψ : 2N → 2N given by ψ(c) =
⋃
n∈N ψn(c ↾ n) is as desired.

It only remains to observe that if the function ψ is as in Lemma 11,
then the set (φ ◦ ψ)(2N) is as desired.

3. Generalizations

Simplifications of the classical proofs of the G0 and E0 dichotomies
can be used to obtain a continuous homomorphism from G0 to every κ-
Souslin graph on a Hausdorff space with no κ-coloring, and a continuous
embedding of E0 into every bi-κ-Souslin equivalence relation on a Haus-
dorff space which is not reducible to equality on 2κ [Mil12]. By using
these facts in lieu of the usual dichotomies in our proofs of Theorems
1 and 2, we obtain proofs of Theorems 3 and 4.
If AD holds and n ∈ N, then a subset of an analytic Hausdorff space

is ∆1
2n+1 if and only if it is δ

1
2n+1-Borel [Mar70, Mos71], and there is

a cardinal κ1
2n+1 for which δ

1
2n+1 = (κ1

2n+1)
+ [Kec74] and a subset of

an analytic Hausdorff space is Σ1
2n+1 if and only if it is κ1

2n+1-Souslin
(see, for example, [Jac08, Theorem 2.21]). It follows that continuous
images of δ1

2n+1-Borel sets are κ
1
2n+1-Souslin, a fact which alone ensures

that the classical proofs of the G0 and E0 dichotomies yield the special
cases of the Kanovei-style generalizations thereof at κ1

2n+1. By using
these in lieu of the usual dichotomies in our proofs of Theorems 1 and
2, we obtain proofs of the Kanovei-style strengthenings of Theorems
3 and 4 at κ1

2n+1. As AD also ensures that every subset of a topolog-
ical space is ℵ0-universally Baire (see, for example, [Kec95, Theorem
38.17]), Theorems 5 and 6 easily follow.
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