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EHRENFEUCHT-FRAÏSSÉ GAMES ON A CLASS OF

SCATTERED LINEAR ORDERS

F. MWESIGYE AND J.K. TRUSS

Abstract. Two structures A and B are n-equivalent if player II has a win-
ning strategy in the n-move Ehrenfeucht-Fräıssé game on A and B. In earlier
papers we studied n-equivalence classes of ordinals and coloured ordinals. In
this paper we similarly treat a class of scattered order-types, focussing on
monomials and sums of monomials in ω and its reverse ω∗.

1. Introduction

In [5] we studied the equivalence of finite coloured linear orders up to level n
in an Ehrenfeucht-Fräıssé game, written as ≡n, which means that player II has a
winning strategy in this game, as well as making some remarks about the infinite
case. We gave some bounds for the minimal representatives in the finite case, and
the infinite case for up to 2 moves. These results were extended in [6] to all coloured
ordinals, in the monochromatic case giving a precise list of optimal representatives,
and in the coloured case giving bounds, and in [7] some of the bounds for the finite
case were improved for 3 moves, and additional details about the classification given
for the 2-move case.

In this paper we tackle a class of linear orders which need not be well-ordered,
where things are considerably more complicated. This is a subclass of the so-called
‘scattered’ linear orders, being those which do not embed the order-type of the
rational numbers. According to Hausdorff’s characterization, these may be built up
from 0 and 1 by means of sums over ordinals or reverse ordinals; see Theorem 2.2. A
finer analysis of the class of scattered linear orderings in terms of finite sequences of
finite ordinal-labelled trees, is given in [2] (concentrating on characterizing scattered
orders up to mutual embeddability—‘equimorphism’). Even this class is too wide
for us to analyze at this stage, and we restrict attention to ‘monomials’, which are
products of (possibly infinitely many) copies of ω or its reverse ω∗, and certain
sums of these. First we briefly recall the required definitions.

For a linear order (A,<) we just write A provided that the ordering is clear.
In the n-move Ehrenfeucht-Fräıssé game Gn(A,B) on linear orders A and B (or
indeed any relational structures) players I and II play alternately, I moving first.
On each move I picks an element of either structure (his choice does not have to be
from the same structure on every move), and II responds by choosing an element
of the other structure. After n moves, I and II between them have chosen elements
a1, a2, . . . , an of A, and b1, b2, . . . , bn of B, and player II wins if the map taking ai
to bi for each i is an isomorphism of induced substructures (that is, it preserves
the ordering), and player I wins otherwise. It is not required that the ai are all
distinct, or that the bi are all distinct (though if ai = aj but bi 6= bj then player
II will automatically lose). There is no advantage to player I in repeating a move
he has played earlier, but we do need to consider this option in view of ‘2-phase’
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2 F. MWESIGYE AND J.K. TRUSS

games which arise later, where moves which are distinct on points may coincide on
‘blocks’. As we wish to consider varying values of n, we may also write G(A,B) for
the family of games {Gn(A,B) : n ≥ 1}.

Intuitively, I is trying to demonstrate that there is some difference between the
structures, while player II is trying to show that they are at least reasonably similar.
We say that A and B are n-equivalent and writeA ≡n B, if II has a winning strategy.
It is easy to see that ≡n is an equivalence relation, and it is standard that for any n,
there are only finitely many n-equivalence classes, so it is natural to enquire what
their optimal representatives may be. The problem for general orderings seems to
be quite hard, but with special conditions on the type of ordering, or the number
of moves, some results can be obtained. For ordinals, the notion of ‘optimality’
makes sense since we may just choose the least representative, but in the orders we
examine in this paper, this is not clear.

It is easy to see that structures A and B are elementarily equivalent, written
A ≡ B, if and only if A ≡n B for all n, so we may regard n-equivalence as a
natural approximation to elementary equivalence. We remark that the downward
Löwenheim-Skolem Theorem reduces the problem of the classification of linear or-
derings up to elementary equivalence to the same problem for countable linear or-
derings, so if we are trying to characterize optimal representatives for n-equivalence,
we may also restrict to the countable case.

If A and B are linear orders, then A + B stands for the concatenation of A
and B, that is, we first assume (by replacing by copies if necessary) that A and B

are disjoint, and we place all members of A to the left of all members of B. As
a generalization of this, we may write

∑

{Ai : i ∈ I} for the concatenation of a
family of linear orders {Ai : i ∈ I} indexed by a linear ordering I. We write A · B
for the anti-lexicographic product, B ‘copies of’ A, to accord with the customary
use for ordinals (and unlike [6], where lexicographic products are used). A linear
ordering is said to be scattered if the order-type of the rational numbers does not
embed in it. In [8] Corollary 2.1.8 it is shown that if A and B are scattered, then
so are A+B and A ·B. Following [8], we denote by ζ the order-type of the integers
Z, which can also be construed as ω∗ + ω, and by η the order-type of the rational
numbers Q.

The following straightforward result will be used without explicit reference.

Lemma 1.1. (i) If A ≡n B, then X+A+Y ≡n X+B+Y and X ·A·Y ≡n X ·B ·Y .
(ii) If Ai ≡n Bi for each i ∈ I, then

∑

{Ai : i ∈ I} ≡n

∑

{Bi : i ∈ I}.

Every ordinal α can be written in the form α = ωω ·α1 +α2 where α2 < ωω and
in terms of this representation, the following theorem of Mostowski and Tarski [3]
helps in understanding ordinals up to elementary equivalence.

Lemma 1.2. Let α = ωω · α1 + α2 and β = ωω · β1 + β2 be ordinals, where
α2, β2 < ωω. Then α is elementarily equivalent to β if and only if α2 = β2 and
either α1 = β1 = 0 or α1, β1 > 0.

As remarked in [8], this result enables us to conclude that ‘the set of all ordinals
less than ωω · 2 forms a complete and irredundant set of representatives of the
elementary equivalence classes of well-orderings’. The following more precise result
of Mostowski and Tarski is also needed (see [8] for a proof):

Lemma 1.3. For any n > 0, and ordinal β > 1, (i) ωn ≡2n ωn · β, (ii) ωn 6≡2n+1

ωn · β.

From Lemma 1.2 we know that if α and β are distinct ordinals which are both
< ωω, then α 6≡ β. Later in the paper we require the following more precise
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information about the level at which this elementary inequivalence is shown. Note
that the estimate of the number of moves required is given in terms of the Cantor
normal form for α, even though β may have a longer Cantor normal form (but this
does not matter).

Lemma 1.4. If α = ωm0 + ωm1 + . . .+ωmk−1 where m0 ≥ m1 ≥ . . . ≥ mk−1, and
β < α, then α 6≡2m0+k β.

Proof. We use induction on k. If k = 1 then α = ωm0 . If β = 0, player I wins in
one move by playing any point of α. Otherwise, there is b1 ∈ β such that β≥b1 ∼= ωl

for some l (possibly 0), which player I plays on his first move. Since β < α, l < m0.
Let a1 ∈ α be II’s reply. Then α≥a1 ∼= ωm0 and β≥b1 ∼= ωl, so player I can win in
at most 2l + 1 ≤ 2m0 − 1 more moves by Lemma 1.3(ii), if l > 0 (if l = 0, then b1
is greatest in β, so I wins in 1 more move by playing any point a2 > a1).

For the induction step, on his first move, player I plays the first point a1 of ωm1 ,
and we let b1 be II’s reply. If b1 is the least point of β, then I wins on the next
move by playing the least point of α. Otherwise, let b < b1 be such that for some
l, [b, b1) ∼= ωl. Since β < α, l ≤ m0. If l < m0, player I plays b2 = b, and whatever
a2 < a1 II plays, [a2, a1) ∼= ωm0 and [b2, b1) ∼= ωl, so I wins in 2l+1 ≤ 2m0−1 more
moves by Lemma 1.3(ii), or by the above argument if l = 0. Otherwise, l = m0 and
hence if α′ = ωm1 + . . .+ ωmk−1 ∼= α≥a1 and β′ = β≥b1 , β′ < α′. By the induction
hypothesis, player I can now win on the right in at most 2m1 + k − 1 more moves,
and since m1 ≤ m0, this makes at most 2m0 + k in all.

The next lemma tells us how reversal works with respect to sums and products,
where for any A, A∗ stands for the linear ordering obtained by reversing the ordering
on A.

Lemma 1.5. If A, B, and I are linear orderings, then

(i) (A+B)∗ = B∗ +A∗,
(ii) (A ·B)∗ = A∗ · B∗,
(iii) (

∑

{Ai : i ∈ I})∗ =
∑

{(Ai)
∗ : i ∈ I∗} where Ai are linear orderings.

In [6], a classification is given of all ordinals up to n-equivalence, which is based
on their Cantor normal form representation. In this paper we give some results
aimed at classifying all scattered linear orderings up to elementary equivalence and
n-equivalence. Since this forms a large and complicated class, we restrict attention
to ones which can be reasonably easily constructed. We shall see (in Theorem
2.3, Corollary 3.7 and Theorem 4.5, and using the downward Löweinheim-Skolem
theorem) that there are exactly 2ℵ0 elementary equivalence classes of scattered
orders. We principally focus on ‘monomials’, and sums of these indexed by a finite
set, or ω, ω∗, or ζ.

Definition 1.6. A monomial is a linear ordering which is the restricted anti-
lexicographic product of a non-empty well-ordered sequence of orderings each of
which is ω, ω∗, ζ, or a non-zero natural number. It is said to be a countable

monomial if it is the product of a countable such sequence.

Notice that we require the family to be well-ordered, and this is so that when
we order it anti-lexicographically, it is scattered, see Lemma 2.4 below. (We only
need consider anti-lexicographic products since lexicographic ones are isomorphic
to the anti-lexicographic products obtained by reversing the order of the terms;
the order the terms are taken in, and whether the product is lexicographic or anti-
lexicographic, crucially affects its behaviour.) In addition, in order to obtain a
linear order at all, the product needs to be taken to be ‘restricted’, which means
that it consists of the members of the product having ‘finite support’. The general
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notion is this: let I and Xi for all i ∈ I be linearly ordered sets and assume that
0 ∈ Xi for all i ∈ I (where 0 may actually lie in Xi, or is some arbitrarily chosen
‘default value’). The infinite restricted product

∏

i∈I Xi then stands for the set
of functions f : I →

⋃

i∈I Xi such that f(i) ∈ Xi for all i, and {i : f(i) 6= 0} is
finite. We say that f has finite support. The order is taken to be anti-lexicographic,
that is, by last difference (which extends the definition for the product of two linear
orders to the general case). This means that for f, g ∈

∏

i∈I Xi, f < g if (∃i)(f(i) <
g(i)∧((∀j > i)f(j) = g(j))). The hypothesis of finiteness of the support guarantees
that such i always exists. For example, ω · ω · ω · · · is a scattered linear ordering
(just equal to the usual ordinal power ωω) when ordered anti-lexicographically but
· · ·ω · ω · ω is dense as is seen in Lemma 2.4.

The paper is organized as follows. In section 2 we give further preliminary results
needed, leading up to the ‘Two-phase Lemma’ 2.9. In section 3 we give our main
results concerning n-equivalence of monomials. Theorems 3.4 and 3.5 characterize
the optimal length of equivalence of monomials which are finite products of ω and
ω∗. This is extended to monomials involving infinite terms, or infinitely many terms,
or both, or involving a finite term or ζ. Finally in section 4 we consider sums of
finitely many, ω, ω∗, or ζ monomials. Because of the complications involved, we
consider arbitrary sums just for powers of ω or ω∗, and sums of just two more
general monomials. These results should be enough to illustrate the issues arising.

2. Preliminary results

Scattered linear orderings may be analyzed in terms of Hausdorff rank as given
in [8] (where it was called F -rank). Here we just treat the countable case.

Definition 2.1. Let V =
⋃

{Vα : α < ω1} where

(i) V0 = {0, 1},
(ii) if α > 0, Vα is the set of all linear orderings which may be written in the

form
∑

{Li : i ∈ I} where I ∼= ω, ω∗, ζ = ω∗ + ω, or finite n, and each Li

lies in
⋃

{Vβ : β < α},
(iii) the Hausdorff rank of L is the least α, if any, such that L ∈ Vα.

The following theorem characterizes all countable scattered linear orderings.

Theorem 2.2 (Hausdorff,[8]). A countable linear ordering L is in V if and only if
it is a countable scattered linear ordering.

Thus Lemma 1.2 tells us that every ordinal is elementarily equivalent to an
ordinal with Hausdorff rank at most ω + 1.

In terms of Hausdorff rank, we may view ω and ω∗ as the simplest (infinite) scat-
tered orderings, and ones built up from these and finite orders by ω- (or ω∗-) sums
as the next most complicated. Even here, we have 2ℵ0 elementarily inequivalent
examples, as is shown in the following well-known result. We give two other exam-
ples of such families later in the paper, in Corollary 3.7 for (infinite) monomials,
and in Theorem 4.5 for ω-sums of powers of ω or ω∗.

Theorem 2.3. There are 2ℵ0 distinct equivalence classes of countable scattered
linear orderings modulo ≡.

Proof. For each X ⊆ N we shall find L(X) so that if X 6= Y , then L(X) 6≡ L(Y ).
We let Mn(X) be of order-type ω∗ + ω + n+ 2 if n ∈ X and of order-type ω∗ + ω

if n 6∈ X ; and let L(X) =
∑

{Mn(X) : n < ω}, which is obtained by concatenating
M0(X),M1(X),M2(X), . . . in that order. Let X,Y ⊆ N be such that X 6= Y . Let
n ∈ X \ Y (if X \ Y 6= ∅, or n ∈ Y \ X otherwise). Then player I has a winning
strategy in the (n+4)-move game on L(X) and L(Y ). For player I chooses in order
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the final n+2 elements of Mn(X) for his first n+2 turns. He then considers player
II’s n + 2 responses b1, b2, . . . , bn+2 in L(Y ). If, for some i, there is an element
of L(Y ) between bi and bi+1 then player I chooses that element on his (n + 3)rd
turn and player II loses immediately. Otherwise, since there are no maximal discrete
sequences of exactly n+2 elements in L(Y ), either bn+2 has an immediate successor,
or b1 has an immediate predecessor in L(Y ). Player I chooses such an element bn+3;
suppose without loss of generality, that bn+2 < bn+3. Then player II must choose
an element an+3 of L(X) beyond the last point an+2 of Mn(X). But then player
I chooses an element between an+2 and an+3, and as there is no element between
bn+2 and bn+3, player II loses. This therefore provides a winning strategy for I.
Thus if X and Y are distinct subsets of N, then L(X) 6≡ L(Y ), so there are 2ℵ0

distinct equivalence classes of countable scattered linear orderings modulo ≡.

The next result shows why we insist that products are taken over well-ordered
families (under the anti-lexicographic order).

Lemma 2.4. For any non-well-ordered set I and linear orders αi > 1 for all i ∈ I,
∏

i∈I αi is not scattered.

Proof. Let β =
∏

i∈I αi. We look at β as a linear ordering of functions as defined
above. Since I is not well-ordered, it has an infinite subset I ′ ordered in type ω∗

and we show that the set X of elements of β whose support is contained in I ′ is
densely ordered. Let f, g ∈ X be such that f < g. Let t ∈ I be such that for i > t,
f(i) = g(i) and f(t) < g(t). Since f(t) 6= g(t), t ∈ I ′ so there is s < t in I ′ outside
the union of the supports of f and g.

In the first case there is a > 0 in αs, in which case we let

h(i) =

{

f(i) if i 6= s

a if i = s

Then the greatest (only) point at which f and h differ is s, and since f(s) = 0 <

a = h(s), we have f < h. Since t is the greatest point at which h and g differ and
h(t) = f(t) < g(t), also h < g. If 0 is the greatest in αs (for example if αs = ω∗)
then pick a < 0 in αs and instead let

h(i) =

{

g(i) if i 6= s

a if i = s

and once more, f < h < g.

Although ζ is allowed as a term in the definition of ‘monomial’, we now show
that its role is insignificant.

Lemma 2.5. (i) For any B 6= ∅, ζ · B ≡ ζ and ω ≡ ω + ζ · B.
(ii) For any orderings A and B for which A has a last element, ω ·A+ζ ·B ≡ ω ·A.

Proof. (i) Take any n ≥ 1 and we show that ζ · B ≡n ζ. Since ζ is infinite ‘in
both directions’, player II may play in such a way that if a1 < a2 < . . . < ar and
b1 < b2 < . . . < br are the first r moves by the two players in ζ · B and ζ, so that
for each j, aj and bj are the moves played on the same move (not necessarily the
jth), then for 1 ≤ j < r, |(aj , aj+1)| and |(bj , bj+1)| are either equal, or are both
≥ 2n−r − 1. (Of course, (−∞, a1), (−∞, b1) , (ar,∞), (br,∞) are all infinite.) It is
easy for player II to play so that this statement is true (since the required minimum
length of each interval is essentially halved at each stage), and when r = n − 1,
there is still a point available for him to play.

For ω and ω+ζ ·B, in n moves, II follows a similar strategy, in addition ensuring
that |(−∞, a1)| and |(−∞, b1)| are either equal, or both ≥ 2n−r − 1.
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(ii) Write X = ω ·A+ζ ·B, Y = ω ·A, and A = C+1. Then X = ω(C+1)+ζ ·B
and Y = ω(C + 1). Thus X = ω · C + ω + ζ ·B and Y = ω · C + ω, and the result
follows from (i) (and Lemma 1.1).

We note that part (i) applies even if B is not scattered, though in this paper
we restrict to the scattered case. We also note that (ii) may be false without the
assumption that A has a last element. For instance, ω2 + ζ 6≡4 ω2. For on his first
move, I plays a1 in ζ. Let b1 ∈ ω2 be II’s reply. Now I plays the first point b2
of the copy of ω greater than b1, and II’s reply a2 must be in ζ. Now I plays the
predecessor a3 of a2 in ζ; let b3 ∈ [b1, b2) be II’s reply. Since b2 is a limit ordinal, I
may now play in (b3, b2), and II cannot respond.

In any monomial, we group together like terms, so that we can alternatively
define a monomial to be a (restricted, anti-lexicographic) well-ordered product of
orders of the form ωα, (ω∗)β , ζγ , mδ for m ∈ ω, m ≥ 2, and non-zero ordinals
α, β, γ, δ, no two consecutive ones of the same type, and these are then referred
to as the terms of the monomial. Any monomial of interest to us will fall into
one of three categories, namely a finite monomial product, an ω-monomial product
or a transfinite monomial product (where the last one is indexed by an ordinal
greater than ω). We refer to all finite ordinals as trivial monomials. For example,

ω2·ω∗2

·ω3·ζ ·4 is a finite monomial product and (ω∗)2·ω5·ζ ·(ω∗)2·ω5·ζ · · · ω2·ζ3 · · ·
is a transfinite monomial product. We refer to α, β and γ as the exponents of the
terms ωα, ωβ , and ζγ respectively. A monomial in which ζ appears is called a
ζ-product.

Corollary 2.6. Any ζ-product is elementarily equivalent to one of the form A · ζ,
where ζ does not occur in A.

Proof. Let A be a monomial in which ζ occurs. By considering the first occurrence
of ζ, we may write A = A1 · ζ · A2, where ζ does not occur in A1. By Lemma 2.5,
ζ ·A2 ≡ ζ, so A ≡ A1 · ζ.

Now there are various standard elementary equivalences which are well known
or easily established, such as ζ ≡ ζ ·B given in Lemma 2.5. Since we are focussing
on optimal representatives for countable scattered linear orders, these standard
equivalences lead us to rule out certain monomials from consideration (and a full
treatment would reduce a general monomial to one of the simplified ones in our
list). We do not give a completely precise definition of simple, or optimal form.
The idea is that it should at least be a canonical representative of an equivalence
class under ≡ (or some ≡n), and should be of least possible Hausdorff rank. If it
exists, then it should be possible to recognize it as such, but it might be hard to
show that it does not exist. The principal restrictions which seem to be required
are now given. We let Σ be the family of monomials A satisfying the following:

(a) No finite ordinal appears as a term in A except on the extreme right.
(This is because, if n 6= 0 is finite and A is any non-trivial monomial,

then n · A ≡ A, since n · ω = ω, n · ω∗ = ω∗ and n · ζ = ζ.)
(b) If ωα or (ω∗)α is a term of A, then α ≤ ω (by Lemma 1.2).
(c) Any ζ-product has the form A · ζ where ζ does not appear in A.

The above discussion shows that our first main task is to classify the restricted
monomials that involve only products of (ω∗)α, ωβ and n where n appears as the
last term of the monomial (we exclude ζ since it can increase rank by at most 1).

Finally in this section we give some basic lemmas about n-equivalence. The fol-
lowing result gives finer detail about the level of elementary equivalence, from which
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Lemma 1.2 can be deduced, and is a slightly stronger version of the corresponding
result of Mostowski and Tarski quoted in [6].

Lemma 2.7. For any integer n > 0 and non-empty linear orders X and Y , such
that either X and Y both have a least element, or neither do,

(i) ωn ·X ≡2n ωn · Y ,
(ii) ωn 6≡2n+1 ωn ·X if |X | > 1.

Proof. Note that we are just assuming that X and Y are linearly ordered, not
necessarily well-ordered, so we cannot deduce the result from the one in [6] about
ordinals.

We prove (i) by induction. If n = 1, player II may play so that I plays the least
point of one of the orders if and only if II plays the least point of the other order,
and then II can respond to any second move by I. (This shows why the hypotheses
on X and Y are required; if X has a least element and Y does not, player I can win
immediately by playing the first point of ω ·X .) For the induction step, assuming
the result for n, let A = ωn+1 ·X , B = ωn+1 · Y , A′ = ωn ·X , B′ = ωn · Y , so that
A = ω ·A′ and B = ω ·B′. By induction hypothesis, A′ ≡2n B′, so II has a winning
strategy σ here. In the 2(n+1)-move game on A and B, he follows σ ‘on the copies
of ω’, making sure that on each move he plays the member of the current copy of
ω corresponding to what I played.

Consider the first point at which II is unable to play the member of ω correspond-
ing to what I has played. This can only happen in the last two moves. Without
loss of generality, suppose that I’s move a lies in A, and let a− < a < a+ where
a−, a+ are the closest points of A to a already played on left and right respectively
(a− = −∞ or a+ = ∞ are allowed if there are none such), and let b−, b+ be the
corresponding points of B. Since II cannot respond, b− and b+ must lie in con-
secutive copies of ω (if there was another copy of ω in between, he could choose a
suitable member of it; if b− and b+ are in the same copy, then so are a− and a+,
hence also a, and now II can certainly play the point corresponding to a). Hence
(b−, b+) ∼= ω + k for some finite k, and (a−, a+) ∼= ω + ω · Z + k for some linear
order Z (since the argument just given shows that a− and a+ lie in distinct copies).
By the basis case, ω ≡2 ω + ω · Z, so also ω + k ≡2 ω + ω · Z + k, and II can play
successfully for the last 2 moves.

(ii) is also proved by induction. On his first move, I plays the least member b1 of
a copy of ωn (but not the first) in ωn ·X . Let a1 ∈ ωn be II’s response. If a1 = 0,
then I wins at once by playing to the left of his first move in ωn ×X . Otherwise
he plays a2 < a1 in ωn so that [a2, a1) ∼= ωk for some k, which must be < n (it is
possible that k = 0, as must happen for instance in the basis case, n = 1). Let II’s
second move in ωn ×X be b2. Then (b2, b1) ∼= ωn × Z for some non-empty Z. If
(a2, a1) = ∅ (that is, k = 0) then I wins on the third move by playing in between
b2 and b1 in B. Otherwise k > 0, and (a2, a1) ∼= ωk, and by induction hypothesis,
I can win in the remaining 2n − 1 moves by playing between a2 and a1 in A, and
between b2 and b1 in B, since 2k + 1 ≤ 2n− 1.

Definition 2.8. Let A and B be elementarily inequivalent linear orderings and n be
a non-zero natural number. Then n is the optimal length of elementary equivalence
of A and B if A ≡n B and A 6≡n+1 B.

In this case, we shall refer to a strategy that enables player I to win in n + 1
moves as an optimal strategy for player I, and a strategy that enables player II to
win in n moves as an optimal strategy for player II. We denote the optimal length of
elementary equivalence of a game on A and B by l(A,B). We remark that l(A,B)
is a unique non-zero natural number unless A and B are elementarily equivalent
(when we could write l(A,B) = ∞).
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Lemma 2.9 (2-phase lemma). Let A′, B′ be non-empty linear orders, m a positive
integer, and A = ωm ·A′, B = ωm ·B′, such that l(A′, B′) = n.

(i) If A′, B′ either both have a least element, or neither does, then l(A,B) =
2m+ n.

(ii) If one of A′, B′ has a least element but the other does not, then l(A,B) = 1.

Proof. Let σ and τ be optimal strategies for players I and II in the (n + 1)-move
and n-move games respectively on A′ and B′.

We first give a winning strategy for player I in the (2m+n+1)-move game on A

and B. For the first n+1 moves, I plays according to σ on the ‘copies’ of ωm in A,
on each move playing the first point of the copy. Let’s assume that player II plays
so that he hasn’t yet lost after these n+1 moves. This means that the partial map
determined by these n+1 moves of the two players in A and B is order-preserving.
Since σ is a winning strategy, the map cannot be (strictly) order-preserving on the
copies, and this means that player II must have played a point of a copy of ωm

which contains a point that has already been played. Therefore, player II must at
some point in these first n+1 moves have played a point which is not the first in its
copy of ωm. Without loss of generality, suppose that the first such point b played
by II lies in B, and this is in response to a ∈ A played by I. Then for some b′ < b,
and k < m, [b′, b) ∼= ωk. Player I now plays b′ as his next move. Let a′ ∈ A be II’s
reply. Then a′ < a and the interval (a′, a) has order-type of the form ωm · Z for
some non-empty Z. If there is no point between b′ and b (so that k = 0), I wins
on the next move by playing in A between a′ and a. Otherwise, (b′, b) ∼= ωk and
(a′, a) ∼= ωm · Z, so by Lemma 2.7(ii), player I can win in the next 2k + 1 moves,
and n+ 2 + 2k + 1 ≤ n+ 2 + 2m− 1 = 2m+ n+ 1.

Next we note that if A′ has a least element and B′ does not then the same applies
to A and B, and I can win the game on A′ and B′, and also the game on A and
B, in 2 moves, by playing the least element of A′, or A as the case may be, on his
first move; since B′, B have no least, whatever II plays on his first move, I wins by
playing to its left. Thus actually l(A′, B′) = l(A,B) = 1, giving (ii). Similarly if
B′ has a least but A′ does not.

So now assume that A′, B′ either both have a least element, or neither does.
Observe that we may assume that under τ , I plays the first element of one of A′

and B′ (if it exists) if and only if II plays the first element of the other structure.
Indeed, on all moves except the last, II must play thus, since otherwise he loses on
the next move as I will play to the left of the non-first element. And on his last
move, there can be no disadvantage for II in doing so.

We can now give a winning strategy for player II in the (2m + n)-move game
on A and B. For the first n moves, player II uses τ on A′ and B′, playing the
corresponding point within each copy to that played by I. There are now 2m moves
remaining. It suffices to show that II can win the game restricted to (a1, a2) in A

and (b1, b2) in B, where a1 and a2 are consecutive points already played in A, and
b1 and b2 are the corresponding points in B (or one or other may be ±∞ if the other
is the greatest or least so far played), in the remaining moves. In other words, we
have to see that (a1, a2) ≡2m (b1, b2). Note that for some ordinals α1, α2 < ωm, and
a′1, a

′
2 ∈ A′, b′1, b

′
2 ∈ B′, a1 = (α1, a

′
1), a2 = (α2, a

′
2), b1 = (α1, b

′
1), and b2 = (α2, b

′
2)

(where these are now ordered pairs, and not intervals). Since τ is winning for II
‘on the blocks’ in n moves, a′1 = a′2 ⇔ b′1 = b′2, and in this case, the intervals
(a1, a2) and (b1, b2) are actually equal (to the same ordinal ≤ ωm), and therefore
(a1, a2) ≡2m (b1, b2). Otherwise, a′1 < a′2 and b′1 < b′2, and (a1, a2) and (b1, b2) are
isomorphic to ωm×X+α2, ω

m×Y +α2, for some non-empty X and Y , both having
a least element, and by Lemma 2.7(i), these are 2m-equivalent. This analysis also
applies to the case a1 = b1 = −∞. Here by assumption on τ , a′2 is least in A′ ⇔ b′2
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is least in B′, in which case (a1, a2) ∼= α2
∼= (b1, b2). Since ωm has no greatest, the

corresponding problem does not arise on the right.

3. The class of monomials of countable scattered linear orderings

In this section we look at monomials of the forms
Mn0

0 ·Mn1

1 · · ·M
ns−1

s−1 ,
Mn0

0 ·Mn1

1 ·Mn2

2 · · · ,
and Mn0

0 ·Mn1

1 · · ·Mnω
ω ·M

nω+1

ω+1 · · · M
nω+t−1

ω+t−1

(finite monomial, ω-monomial, transfinite monomial respectively) where each Mi is
ω or ω∗ and the two types alternate, and the ni are non-zero. Mostly we suppose
that the two monomials we are comparing begin with the same one of ω, ω∗, as
otherwise things are rather easy, as explained by the first result.

Theorem 3.1. Let A = Mn0

0 ·Mn1

1 ·Mn2

2 · · ·M
ns−1

s−1 and B = Nn0

0 ·Nn1

1 · · ·N
nt−1

t−1

where s, t, mi, nj are positive integers, and Mi alternate between ω and ω∗ (or the
other way round), and so do the Nj, and M0 = ω ⇔ N0 = ω∗. Then if s = 1 or
t = 1 (or both), l(A,B) = 1, and otherwise, l(A,B) = 2.

Proof. For the first part, let us suppose that s = 1 and M0 = ω, the other cases
being similar. Then A has a least member and B does not. Here I plays the least
member a1 of A on his first move, and then to the left of whatever b1 ∈ B II plays,
and wins on the second move.

If s, t ≥ 2, then neither A nor B has a least or greatest element, and this ensures
that II can win in 2 moves. To see that I can win in 3 moves, again assume for ease
that M0 = ω, and I plays on his first move the least member a1 of a copy of ωm0 .
II’s reply b1 lies in a copy of (ω∗)n0 , so has an immediate predecessor b2, which I
plays on his second move. Since a1 has no immediate predecessor in A, I wins on
the third move by playing between II’s moves a2 and a1.

The next result is of use when we consider ‘extra’ parts of a monomial beyond
the significant sections.

Theorem 3.2. Let A = Mn0

0 ·Mn1

1 ·Mn2

2 · · ·M
ns−1

s−1 ·X and B = Mn0

0 ·Mn1

1 · · ·M
ns−1

s−1 ·
Y where for all i, ni is a non-zero finite number, X and Y are non-empty linear
orders, and M0, M1, . . . alternate between ω and ω∗ (or the other way round). Then

(i) if X and Y either both have least elements, or neither do, and similarly for
greatest elements, then A ≡2(n0+n1+···+ns−1) B,

(ii) if |X | > 1 then
Mn0

0 ·Mn1

1 ·Mn2

2 · · ·M
ns−1

s−1 6≡2(n0+n1+···+ns−1)+1 Mn0

0 ·Mn1

1 · · ·M
ns−1

s−1 ·X.

Proof. (i) We use induction on s. If s = 1 then the result follows from Lemma
2.7(i) (noting that there the hypothesis was just on least elements, but here since
M0 is allowed to be ω or ω∗, we need the hypothesis on least and greatest). For the
induction step, we assume the result for s, and write A′ = Mn1

1 ·Mn2

2 · · ·Mns
s ·X

and B′ = Mn1

1 ·Mn2

2 · · ·Mns
s · Y . By induction hypothesis, A′ ≡2(n1+n2+···+ns) B

′,
and from Lemma 2.9 we deduce that A ≡2(n0+n1+···+ns) B.

(ii) The basis case follows from Lemma 2.7(ii), and the induction step follows
by considering Mn1

1 ·Mn2

2 · · ·Mns
s and Mn1

1 ·Mn2

2 · · ·Mns
s ·X , which by induction

hypothesis are 2(n1 + n2 + · · · + ns) + 1-inequivalent, and again applying Lemma
2.9.

For the next result we require a slightly different strengthening of Lemma 2.7.

Lemma 3.3. For any integers n ≥ m > 0 and non-empty linear orders X and Y ,
(i) if neither X nor Y has a least element, then ωm ·X ≡2m+1 ωn · Y ,
(ii) if neither X nor Y has a greatest or least element, then ωm ·X ≡2m+2 ωn ·Y .
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Proof. (i) Let A = ωm · X and B = ωn · Y , and write A′ = X , B′ = ωn−m · Y .
Then A′ and B′ are non-empty, and so l(A′, B′) ≥ 1, and neither of them has a
least element. So by Lemma 2.9(i), l(A,B) ≥ 2m+ 1.

(ii) With the same A′ and B′, this time neither A′ nor B′ has a greatest or least,
so l(A′, B′) ≥ 2, and by Lemma 2.9(i) again, l(A,B) ≥ 2m+ 2.

We are now able to give a more general result about monomials, first comparing
ones of equal lengths.

Theorem 3.4. Let A = Mm0

0 ·Mm1

1 · · ·M
ms−1

s−1 6= B = Mn0

0 ·Mn1

1 · · ·M
ns−1

s−1 where
mi and ni are non-zero finite numbers for every i < s and M0, M1, . . . alternate
between ω and ω∗ and let t be the smallest i such that mi 6= ni. (Assume without
loss of generality that mt < nt.)

(i) If t = s− 1 , then l(A,B) = 2(m0 +m1 + · · ·+mt),
(ii) If t = s− 2, then l(A,B) = 2(m0 +m1 + · · ·+mt) + 1,
(iii) If t < s− 2, then l(A,B) = 2(m0 +m1 + · · ·+mt) + 2.

Proof. Throughout we assume without loss of generality that M0 = ω.
(i) We use induction. If s = 1 then the result follows from Lemma 2.7. Otherwise,

if s > 0, write A as ωm0 ·A′, and B as ωm0 ·B′, where A′ = Mm1

1 ·Mm2

2 · · ·M
ms−1

s−1

and B′ = Mm1

1 · Mm2

2 · · ·M
ms−2

s−2 · M
ns−1

s−1 . By induction hypothesis, l(A′, B′) =
2(m1 + . . . +ms−1). Since neither A′ nor B′ has a least element, by Lemma 2.9,
l(A,B) = 2(m0 +m1 + · · ·+ms−1).

(ii) We first show that A 6≡2(m0+m1+···+mt)+2 B. If s ≤ 2, then as s − 2 exists,
s = 2, and A = ωm0 · (ω∗)m1 , B = ωn0 · (ω∗)n1 where m0 < n0. Thus A = ωm0 ·A′,
B = ωm0 ·B′ where A′ = (ω∗)m1 and B′ = ωn0−m0 · (ω∗)n1 . Since A′ has a greatest
and B′ does not, l(A′, B′) = 1, so by Lemma 2.9(i), l(A,B) = 2m0 + 1 (as neither
A′ nor B′ has a least).

If s ≥ 3, we use induction. Let A′ = Mm1

1 · Mm2

2 · · ·M
ms−1

s−1 and B′ = Mn1

1 ·
Mn2

2 · · ·M
ns−1

s−1 , so that A = ωm0 · A′ and B = ωm0 · B′. By induction hypothesis,
l(A′, B′) = 2(m1 +m2 + · · ·+ms−2) + 1. Since A′, B′ do not have least elements,
by Lemma 2.9(i) it follows that l(A,B) = 2(m0 +m1 + · · ·+mt) + 1.

(iii) First consider the case where t = 0, and we start by showing that A 6≡2m0+3

B. Let I choose the first point b1 of an ωn0-block of B, and let a1 be II’s response.
Then either a1 is the first point in its ωm0-block, in which case, as M1 = ω∗, there
is an immediately preceding block, so I can play a2 < a1 so that [a2, a1) ∼= ωm0 ,
or if not, I can play a2 < a1 so that [a2, a1) ∼= ωk where k < m0 (possibly k = 0).
Let b2 be II’s reply. Then b2 < b1 and so [b2, b1) is a multiple of ωn0 . By Lemma
2.7(ii), ωk 6≡2k+1 (b2, b1), so I can win in at most 2k + 1 ≤ 2m0 + 1 more moves (if
k = 0, then (a2, a1) = ∅, so I wins on the next move by playing between b2 and b1),
meaning that he has used at most 2m0 + 3 moves in all.

The fact that A ≡2m0+2 B follows at once from Lemma 3.3(ii).
Now consider the general case t > 0, and we use induction. We write A = ωm0 ·A′

and B = ωm0 · B′, where A′ = Mm1

1 . . .M
ms−1

s−1 and B′ = Mn1

1 . . .M
ns−1

s−1 . By
induction hypothesis, l(A′, B′) = 2(m1 + . . .+mt) + 2, and the result now follows
by appeal to Lemma 2.9.

We extend the same result to the case of monomials of different lengths.

Theorem 3.5. Let A = Mm0

0 ·Mm1

1 · · ·M
ms−1

s−1 and B = Mn0

0 ·Mn1

1 · · ·M
nt−1

t−1 where
mi and ni are non-zero finite numbers for i < s, j < t, s < t, and M0, M1, . . .

alternate between ω and ω∗ and let u be the smallest i such that mi 6= ni (or, if
mi = ni for all i < s then we let u = s).

(i) If u = s or s− 1, then l(A,B) = 2(m0 +m1 + · · ·+ms−2) + 1,
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(ii) If u = s− 2, and ms−2 < ns−2, then l(A,B) = 2(m0 +m1 + · · ·+ms−3 +
ms−2) + 1, and if ns−2 < ms−2, then l(A,B) = 2(m0 +m1 + · · ·+ms−3 +
ns−2) + 2,

(iii) If u < s− 2, then l(A,B) = 2(m0 +m1 + · · ·+mu−1 +min(mu, nu)) + 2.

Proof. (i) First suppose that s = 1. Assume without loss of generality that M0 = ω.
Thus A = ωm0 and B = ωn0 · (ω∗)n1 · · · where m0 = n0 if u = 1 and m0 6= n0 if
u = 0. By Lemma 2.9(ii), l(A,B) = 1 = 2(m0 + . . .+ms−2) + 1.

If s = 2, then A = ωm0 · (ω∗)m1 and B = ωm0 · (ω∗)n1 · ωn2 · · · (where again
m1 = n1 or m1 6= n1 depending on the value of u). Here if we let A′ = (ω∗)m1 and
B′ = (ω∗)n1 · ωn2 · · · , then by the case s = 1 (with ω∗ in place of ω), l(A′, B′) = 1.
As neither A′ nor B′ has a least, by Lemma 2.9(i), l(A,B) = 2m0 + 1, as desired.

Now let s > 2 and we use induction. Writing A′ = Mm1

1 · · ·M
ms−1

s−1 , B′ =

Mn1

1 · · ·M
nt−1

t−1 , by the induction hypothesis, l(A′, B′) = 2(m1 + . . . + ms−2) + 1,
and by appeal to Lemma 2.9 again, l(A,B) = 2(m0 +m1 + . . .+ms−2) + 1.

(ii) If s = 2 then assuming M0 = ω, A = ωm0(ω∗)m1 and B = ωn0(ω∗)n1ωn2 · · · .
If m0 < n0 then we write A = ωm0 ·A′ and B = ωm0 ·B′, where neither A′ = (ω∗)m1

nor B′ = ωn0−m0(ω∗)n1ωn2 · · · has a least element. Clearly l(A′, B′) = 1, so by
Lemma 2.9(i), l(A,B) = 2m0 + 1. If n0 < m0 then A = ωn0 ·A′ and B = ωn0 ·B′,
where A′ = ωm0−n0(ω∗)m1 , B′ = (ω∗)n1ωn2 · · · again do not have least elements.
This time, l(A′, B′) = 2, giving l(A,B) = 2n0 + 2. For I can win in 3 moves by
playing the first point of the final ωm0−n0 block in A′. Whatever b1 ∈ B′ II plays
has an immediate predecessor b2 which I plays, and then I wins on the third move
by playing in A′ between a2 and a1. Since however A

′ and B′ have neither greatest
nor least, A′ ≡2 B

′.
For general s > 2 we argue inductively, and write A = ωm0 · A′, B = ωm0 · B′.

By induction hypothesis the result holds for A′ and B′, and this lifts to A and B

by using Lemma 2.9(i).
(iii) Here we haveA = Mm0

0 · · ·M
mu−1

u−1 Mmu
u · · ·M

ms−1

s−1 and B = Mm0

0 · · ·M
mu−1

u−1

Mnu
u · · ·M

mt−1

t−1 . First suppose that u = 0 and M0 = ω, so A = ωm0 · · ·M
ms−1

s−1 ,

B = ωn0 · · ·M
nt−1

t−1 , m0 < n0, s > 2. Player I plays the first point b1 of an ωn0

block in B. Then as in the proof of Theorem 3.4, whatever a1 ∈ A II plays, I can
play a2 < a1 so that [a2, a1) ∼= ωk for some k ≤ m0 (in the same ωm0 block as a1 if
it is not the first point of the block, or else in the immediately preceding block if it
is the first). Then [b2, b1) must be a multiple of ωn0 , and as m0 < n0, by Lemma
2.7(ii), I can win in at most 2m0 +1 further moves, making at most 2m0 +3 in all.

A similar argument applies if n0 < m0, and the general case follows by induction
using Lemma 2.9(i) as before.

Corollary 3.6. If A = Mm0

0 ·Mm1

1 · · ·M
ms−1

s−1 and B = Mn0

0 ·Mn1

1 · · ·M
nt−1

t−1 where
mi, nj for i < s, j < t are non-zero natural numbers, then A ≡ B if and only if
s = t and mi = ni for all i.

Proof. =⇒ It follows from Theorem 3.5 that s = t. Suppose that mj 6= nj for some
j, and let u be the least such. Theorem 3.4 gives a precise value for m that depends
on u such that A ≡m B but A 6≡m+1 B. Therefore A 6≡ B which is a contradiction.
Hence mj = nj for all j.

⇐= Suppose that s = t and mi = ni for all i < s. Then A ∼= B and hence
A ≡ B.

Corollary 3.6 tells us that the simple form of a finite product monomial, say
A = Mn0

0 · Mn1

1 · · ·M
ns−1

s−1 with finite exponents, is A itself and it is unique. The
following corollary tells us about the simple form of an ω-monomial product with
finite exponents.



12 F. MWESIGYE AND J.K. TRUSS

Corollary 3.7. If A = Mm0

0 · Mm1

1 · · · and B = Mn0

0 · Mn1

1 · · · are ω-monomial
products where mi, ni are non-zero natural numbers, then A ≡ B if and only if
mi = ni for all i.

Proof. =⇒ Suppose that mi 6= ni for some i, and let t be the smallest such i. By
following the same strategy as in Theorem 3.4, player I can win in 2(n0+n1+ · · ·+
nt) + 3 moves, which shows that A 6≡ B.

⇐= Conversely, if mi = ni for all i , then A ∼= B, so A ≡ B.

Corollary 3.8. Let A = Mn0

0 ·Mn1

1 · · · and B = Mn0

0 ·Mn1

1 · · ·N where N is any
monomial. Then A is elementarily equivalent to B.

Proof. By the proof of Theorem 3.4, for each n, A ≡n B, and hence A ≡ B.

We now consider monomials that involve infinite exponents.

Theorem 3.9. If A = Mm0

0 ·Mm1

1 · · ·M
mt−1

t−1 ·Mλ
t ·M

mt+1

t+1 · · · where every mi is a

non-zero natural number and λ ≥ ω and B = Mm0

0 ·Mm1

1 · · ·M
mt−1

t−1 ·Mλ
t ·M

nt+1

t+1

where nt+1 ≥ 1, then A ≡n B for all n, so A ≡ B.

Proof. By Theorem 3.2, for each k, A ≡2(m0+m1+...+mt−1+k) B, and hence A ≡n B

for all n.

We remark that the same method shows that Mm0

0 · Mm1

1 · · ·M
mt−1

t−1 · Mλ
t ·

M
mt+1

t+1 ≡ Mm0

0 ·Mm1

1 · · ·M
mt−1

t−1 ·Mµ
t ·M

nt+1

t+1 .

By Corollary 3.8, the simple form of a monomial which has at least one term
with infinite exponent is obtained by replacing the first such term by the one with
exponent ω, replacing the next term if any by one with exponent 1, and removing
all subsequent terms.

Example 3.10. (i) ωω · ω∗ ≡ ωω · (ω∗)n for any non-zero ordinal n.
(ii) ωω · (ω∗)n1 · ωn2 ≡ ωω · ω∗.
(iii) Mn0

0 ·Mn1

1 · · ·Mns
s ·ωω ·ω∗ ≡ Mn0

0 ·Mn1

1 · · ·Mns
s ·ωω ·(ω∗)k1 ·ωk2 ·(ω∗)k3 · · · .

(iv) Mn0

0 ·Mn1

1 · · ·Mns
s · ωω · ω∗ ≡ Mn0

0 ·Mn1

1 · · ·Mns
s · ωα · ω∗ for any α ≥ ω.

Theorem 3.11. Any member of Σ has a unique simple form.

Proof. This is a consequence of Theorems 3.4, 3.5, 3.9, and Corollary 3.8.

Theorem 3.12. Any monomial product is elementarily equivalent some monomial
product of rank at most ω + 1.

Proof. This also follows from 3.4, 3.9, 3.9, and 3.8, and since, as we saw earlier,
ζ can only cause the rank of a monomial product to grow by at most 1 up to
elementary equivalence and that no terms that come after ζ appear in the simple
form of any given monomial.

From the above work, we draw the following conclusions.
Any X ∈ Σ is elementarily equivalent to a linear ordering of rank at most

ω + 1. Hence for monomials involving ω∗, ω, and n, the bound on the rank of such
monomials modulo elementary equivalence is the same as the bound on the rank of
ordinals modulo elementary equivalence. The presence of ζ causes rank to grow by
at most 1 up to elementary equivalence. In fact, the bound on the rank of members
of the new class of monomials up to elementary equivalence is still ω + 1.

Briefly considering the non-scattered case, we let Σq be the monomial class
of countable linear orderings which allows η, the order-type of the rationals, to
appear as a term, that is, Σq is a class of linear orderings that are products of
ωri , (ω∗)si , ζti , η and n where si, ki and ti are non-zero ordinals. We note that any
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L ∈ Σq is either a scattered countable monomial (if η does not appear), a dense
countable monomial or falls in between. In fact as in Corollary 2.6, if η occurs at
all, we may suppose up to elementary equivalence that it occurs just once, and at
the end, so that the monomial has the form A · η, where A is scattered.

4. On sums of monomials

The next stage in building scattered orderings according to Definition 2.1 is to
look at sums of monomials over ω, ω∗, Z, or a finite set as index set. The general
case is too complicated for our current techniques, so we just give a few illustrative
special cases. We assume non-redundancy of the expression as in the following
definition.

Definition 4.1. A monomial sum, W , is a linear ordering which is a sum of
monomials over an index set ω, ω∗, Z, or m ∈ ω, such that if M and N are
consecutive terms of W , then M +N 6= M,N .

Each monomial occurring in a monomial sum is a term. First we look at the cases
where the terms are just powers of ω or ω∗, and the index set is Z. We remark
on a special case, relevant for what follows, in which the terms on the right are
eventually all powers ωni of ω, from the kth on, say. The definition of ‘monomial
sum’ entails that nk ≥ nk+1 ≥ . . ., so this sequence is eventually constant, from
the lth term on, say. Then ωnl + ωnl+1 + . . . = ωnl · ω = ωnl+1. The Z-indexed
sum thus could be replaced by an ω∗-indexed one (though we do not do this, as we
are seeking to compare similar sums of non-trivial terms). If however beyond the
kth, all terms are powers of ω∗, the powers could increase. Dual remarks apply to
behaviour on the left, with the roles of ω and ω∗ interchanged.

Lemma 4.2. If A =
∑

{ti : i ∈ Z} and B =
∑

{ui : i ∈ Z} are monomial sums,
and there are natural numbers mi and ni such that for each i, ti = ωmi or (ω∗)mi ,
and ui is either ωni or (ω∗)ni , then A ∼= B if and only if there is an automorphism
θ of Z such that for all i, ui = tθi.

Proof. Automorphisms of Z are of course just translations. Clearly if there is an
automorphism of Z as stated, then A ∼= B. Conversely, suppose that ϕ : A → B

is an isomorphism. We shall show that for each i, ϕ(ti) = uj for some j, and the
result then follows on letting θ(i) = j.

First suppose that ti is a singleton, i.e. mi = 0, and let j be such that ϕ(ti) ⊆ uj .
We show that uj is also a singleton, which establishes that ϕ(ti) = uj. If this does
not hold, then ϕ(ti) must be a proper subset of uj , so nj 6= 0. Assume without loss
of generality that uj = ωnj . Not all tk for k ≥ i can be singletons. For then they
would all have to map into uj under ϕ, and uj+1 would be disjoint from the image
of ϕ. Let k > i be least such that tk is not a singleton. Then tk = (ω∗)mk with
mk > 0 (as otherwise, the singletons would be ‘absorbed’ into tk, contrary to the
definition of ‘monomial sum’). But since ϕ is an isomorphism, and the points of B
greater than ϕ(ti) begin with an ω-sequence, this is impossible.

Next assume that mi 6= 0. Now ϕ(ti) intersects a finite non-empty set Ji of ujs.
This Ji is minimal such that ϕ(ti) ⊆

⋃

j∈Ji
uj. Suppose without loss of generality

that ti = ωmi , and let j and k be the least and greatest of Ji respectively. Then
each ϕ(ti) ∩ ur is well-ordered. If j < r < k, ur ⊆ ϕ(ti), and so ur = ωnr . At the
left hand end point, I = ϕ(ti) ∩ uj is a final segment of uj, so either uj = ωnj , in
which case ϕ(ti) ∩ uj

∼= ωnj or uj = (ω∗)nj and ϕ(ti) ∩ uj is finite. At the right
hand end point, F = ϕ(ti) ∩ uk is an infinite initial segment of uk isomorphic to
ωmi , so that uk = ωnk and mi ≤ nk. Thus ϕ(ti) = I ∪ ωnj+1 ∪ . . . ∪ ωnk−1 ∪ F ∼=
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ωnj +ωnj+1 + . . .+ωnk−1 +ωmi , or I +ωnj+1 + . . .+ωnk−1 +ωmi where I is finite.
In each case, this is isomorphic to ωmi , so by definition of B a monomial sum,
either j = k, or k = j + 1 and I is finite. To sum up, there are a finite set I and
an initial segment F of ωnk isomorphic to ωmi such that ϕ(ti) = I ∪ F . Applying
the same argument to ϕ−1uk (noting that uk cannot be a singleton) we see that
actually mi = nk, and hence ϕ(ti) = uj as required.

Lemma 4.3. If α, β, and γ are ordinals, and m > 1, then
(i) γ infinite ⇒ α 6≡4 β + ωm + γ∗,
(ii) β infinite ⇒ α 6≡4 β + (ω∗)m + γ∗.

Proof. We treat (i) and (ii) simultaneously. Let us write α = λ + k where λ is a
limit ordinal or zero and k is finite. If k = 0, I plays the greatest point of γ∗ and
wins in 2 moves. If k > 0, I plays the first point a1 of the final k-block of α. If II
replies with b1 in γ∗, (in (i)) or (ω∗)m + γ∗ (in (ii)), and b1 is not least in this set,
I plays its predecessor b2, and as a1 has no predecessor, wins in 3 moves. If b1 is
the least in γ∗ (this case does not arise in (ii)), I plays the ωth point of γ∗ from
the right (which may equal b1). Note that this has no successor. Then if a2 is II’s
reply, either a2 is the maximum of α, in which case I wins on the next move, or
else I can play its successor, and wins in 4 moves.

Otherwise, b1 ∈ β + ωm (in (i)), or β (in (ii)). Now in case (i) I plays some
b2 > b1 in β + ωm with no predecessor, possible since m > 1. Whatever a2 > a1 I
plays in α has no predecessor, so I wins in 4 moves. In case (ii), player I instead
plays some b2 in the (ω∗)m block with no successor, and whatever a2 > a1 I plays
is either greatest in α or has a successor, so I wins in 2 more moves.

For technical reasons, which will be explained, we focus of ω-sums. Before for-
mulating our main result on these, or indeed on Z-sums, we have to deal with the
fact that by Lemma 2.5, ω + ω∗ + ω ≡ ω, which means that we have to make a
further restriction in the monomial sums which arise in our main theorem. We
summarize these in the following result.

Lemma 4.4. If k, l,m, n ≥ 1, then ωk+(ω∗)l+ωm ≡ ωn ↔ k = l = 1 and m = n.
More precisely, if m 6= n then ωk + (ω∗)l + ωm 6≡2min(m,n)+2 ωn, if l > 1 then

ωk+(ω∗)l+ωm 6≡3 ωn, and if l = 1,m = n, and k > 1, then ωk+(ω∗)l+ωm 6≡6 ω
n.

Proof. First we note that if m 6= n then player I can win by playing the least point
a1 of the ωm block. Whatever point b1 of ωn player II plays, then by Lemma 1.3,
player I wins on the right in at most 2min(m,n)+1 more moves, since A>a1 ∼= ωm

and B>b1 ∼= ωn. So from now on assume that m = n. If l > 1 then player I
plays the ωth point a1 of (ω∗)l from the right, noting that this has no immediate
successor. Whatever b1 ∈ ωn player II plays, b1 has a successor b2, which I now
plays, and whatever a2 > a1 II plays in ωk + (ω∗)l + ωm, I wins (in 3 moves) by
playing between a1 and a2. So from now on we may suppose that l = 1 and m = n.

If k > 1, then player I plays the last point a1 in the copy of ω∗. Let II’s reply
be b1 = ωrpr + . . . + ωp1 + p0 ∈ ωn. Since A>a1 ∼= B>b1 (∼= ωn) we concentrate
on the left, where A<a1 ∼= ωk + ω∗ and for some coefficients pi < ω, for i ≤ r,
where r < m, B<b1 ∼= ωrpr + . . . + ωp1 + p0. If p0 = 0 then player I wins at once
since A<a1 has a greatest but B<b1 does not, so we now suppose that p0 6= 0. If
pr = . . . = p2 = p1 = 0 then player I plays a2 = ω in A<a1 . This has no immediate
predecessor, but every point of B<b1 does have (or is minimal), and so again I wins
quickly. Otherwise there is a least i > 0 such that pi 6= 0. Player I plays the first
point b2 of the last ωi block in B<b1 . Suppose that Player II plays a2. If a2 ∈ ω∗,
then Player I plays the least point b3 of the final p0 block of (b2, b1) and wins since
b3 has no immediate predecessor, but any move that II can make does. Otherwise,
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a2 ∈ ωk, so (a2, a1) ∼= ωk + ω∗ and (b2, b1) ∼= ωi + p0. Player I plays the least point
b3 of the final p0 block of (b2, b1). Once more, if II plays in ω∗, I wins at once. If
II plays a3 ∈ ωk, then (a3, a1) ∼= ωk + ω∗ and (b3, b1) is finite, and again I wins by
playing the ωth point of (a3, a1).

Finally observe that ω + ω∗ + ωm = ω + ω∗ + ω + ωm ≡ ω + ωm = ωm.

The above result explains the reason for the restriction taken on monomial sums.
Let us say that a monomial sum is special if no three consecutive terms are of the
form ω, ω∗, ωm or (ω∗)m, ω, ω∗ for any m ≥ 1. Note that we may reduce any
monomial sum in the previous sense to an elementarily equivalent special one using
Lemma 4.4. The only seeming exception would be if the terms eventually alternate
between ω and ω∗ on the right, or on the left; but then the right is ω + ζ · ω ≡ ω

by Lemma 2.5 (and similarly for such behaviour on the left), so we can reduce to
a monomial over bounded domain (which we don’t actually treat, but we could do
so).

Theorem 4.5. If A =
∑

{ti : i ∈ ω} and B =
∑

{ui : i ∈ ω} are special monomial
sums, and there are natural numbers mi and ni such that for each i, ti = ωmi or
(ω∗)mi , and ui is either ωni or (ω∗)ni , then A ∼= B if and only if A ≡ B.

Proof. Clearly A ∼= B ⇒ A ≡ B, so we concentrate on showing that A 6∼= B ⇒ A 6≡
B. We therefore assume that A and B are not isomorphic, and aim to show that
they are not elementarily equivalent, that is, that player I has a winning strategy
in some finite Ehrenfeucht-Fräıssé game on A and B. For ease we suppose that
whenever mi or ni equals 0, then the corresponding term is a power of ω rather
than ω∗. Since A 6∼= B, there is a least N such that tN 6∼= uN . We shall describe an
Ehrenfeucht-Fräıssé game on a (finite) number of moves on A and B, whose precise
value (depending on N) can be read off from the proof, and which is winning for
player I.

Case 1: A = α and B = β are both ordinals. Since A 6∼= B, α 6∼= β. Since
m0 ≥ m1 ≥ m2 ≥ . . ., this sequence is eventually constant, and it follows that
α < ωω, and similarly β < ωω. Hence, by Lemma 1.4, player I has a winning
strategy.

Case 2: One of A and B, A say, is an ordinal, the other not. If some member b1 of
B has no immediate successor, then player I plays it on his first move. Whatever
a1 ∈ A player II plays, a1 has a successor a2, which I now plays, and whatever
b2 > b1 II plays in B, I can play b3 between b1 and b2, and wins on the third move.
If however, every member of B has a successor, then any i such that ui = (ω∗)ni

must have ni = 1, and furthermore this cannot happen for consecutive terms. If
such i is 0, then A has a least member and B does not, so I wins in 2 moves by
playing the least member of A on his first move, following it by a member of B
less than whatever II plays. If such i is non-zero, then we have ui−1 + ui + ui+1 =
ωni−1 + ω∗ + ωni+1 , and as every member of B has a successor, ni−1 > 0, and as
it is special, ni−1 > 1. On his first two moves, player I plays the first point b1 of
ui−1 and the last point b2 of ui. If a1 and a2 are II’s responses in A, then (a1, a2)
is well-ordered, so I wins in 4 more moves by Lemma 4.3.

From now on we therefore assume that neither A nor B is an ordinal. Let α, β be
ordinals (possibly 0) such that for some i, j,

⋃

k<i tk
∼= α,

⋃

k<j uk
∼= β, ti = (ω∗)mi ,

uj
∼= (ω∗)nj .

Case 3: In the notation just introduced, α 6= β (which is equivalent to N <

max(i, j)). By interchanging A and B if necessary, suppose that α > β. Then
by Lemma 1.4, α 6≡2m0+i β. Using the winning strategy provided by the proof of
that lemma, I plays the first points a1, a2, . . . , ai of t0, t1, . . . , ti−1 respectively, and
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let II’s replies be b1, b2, . . . , bi. If the game continued as far as this, then β ≥ α,
contrary to assumption. Hence there is a least k such that bk ∈

⋃

l≥j ul. Note

that ak ≤ min(ti−1). Now I stops playing the above sequence, and instead plays
bk+1 ∈ uj so that bk+1 < bk. Whatever ak+1 < ak II now plays, A<ak+1 is an
ordinal and B<bk+1 ∼= β + (ω∗)nj , so I can win in 4 more moves by appealing to
Lemma 4.3, except in one case, which is when uj−1 = ω and uj = ω∗ (i.e. nj = 1).
But now, as B is a special monomial sum, uj+1 must equal (ω∗)nj+1 . If bk+1 is
the maximum of uj, it therefore has no successor, so I wins in two more moves by
playing the successor ak+2 of ak+1. If bk+1 is not the maximum of uj , then I plays
the maximum bk+2 of uj on his next move. As this is the first point of B having no
immediate successor , to avoid losing quickly, player II must play the first point ak+2

of A, if any, having no successor (which could only be the greatest point of some
ω∗-block which is followed by an (ω∗)ml -block), so ak+2 ∈

⋃

l≥i tl. Now (bk+1, bk+2)

is finite, and I plays the first point ak+3 of ti−1, which lies in (ak+1, ak+2) since
ak ≤ min(ti−1). This has no immediate predecessor, and therefore he wins on the
next move.

Case 4: α = β (which implies that N ≥ i), and for i ≤ k ≤ N , tk = (ω∗)mk and
uk = (ω∗)nk . Player I plays the greatest point a1 of tN . If II replies with b1 ∈ α,
then I can win by appeal to Lemma 4.3. Note that this is inapplicable only in the
case in which ti−1 = ω and ti = ω∗; but then, as A is a special monomial sum, ti+1

must equal (ω∗)mi+1 , and hence the greatest point a2 of ti has no successor, and I
wins by playing it on his second move. If b1 ∈

⋃

i≤k≤N ui then I restricts the play

to A<a1 ∼= α + γ∗ and B<b1 ∼= α + δ∗ for non-isomorphic ordinals γ and δ < ωω.
(If b1 ∈

⋃

i<k<N ui then δ < γ; if b1 ∈ uN then γ 6= δ by definition of N .) He plays
on γ∗ ∪ δ∗ using a winning strategy provided by Lemma 1.4 until II plays in α (in
A or B), and then he again wins using Lemma 4.3. If b1 ∈

⋃

l>N ul then I plays
the greatest point b2 of uN , and the play proceeds in the way just described with
the roles of A and B reversed.

Case 5: α = β, and for i ≤ k ≤ N , tk = (ω∗)mk but uN = ωnN (which implies
that for i ≤ k < N , uk = (ω∗)mk). Player I again plays the greatest point a1 of
tN , and if II’s reply b1 is in

⋃

l<N ul, the same argument as in the previous case
applies. In fact this is still true even if b1 lies in the first ω points of uN , since then
B<b1 ∼=

⋃

l<N ul. So we now assume that b1 ∈
⋃

l≥N ul, and B<b1 has an initial

infinite well-ordered set beyond
⋃

l<N ul.
Player I now plays the least point b2 of uN , and by the arguments given in Case

4, player II must play some point a2 of tN−1 (since these are precisely the points
for which A<a2 ∼= B<b2). If there is a least point b3 of B greater than the first ω
points of uN , player I plays this on his third move. Then b3 has no predecessor,
but whatever a3 ∈ (a2, a1) II now plays does, so I wins in two more moves. If there
is no least point of B greater than the first ω points of uN , then uN = ω, and
uN+1 = (ω∗)nN+1 , and as the monomial sums are special, nN+1 > 1. Player I plays
some b3 ∈ uN+1 less than b1. Now (b2, b3) ∼= ω+(ω∗)nN+1 and whatever a3 II plays,
(a2, a3) is a reversed ordinal, so player I wins in 4 more moves by Lemma 4.3 (for
the reversed ordering).

Case 6: α = β, and for some k ≤ N , tl = ul = (ω∗)ml for i ≤ l < k, and tk = ωmk .
Thus

⋃

l<i tl
∼=

⋃

l<i ul
∼= α, and

⋃

i≤l<k tl =
⋃

i≤l<k ul
∼= γ∗, for some ordinal γ.

Player I plays the greatest point a1 of tk−1. If II’s reply lies in
⋃

l<k−1 ul then
we may argue as in Case 4 that I can win. If b1 ∈ uk−1, but is not among the
final ω∗ points, then I plays the greatest point b2 of uk−1. Let a2 be II’s reply. If
(a1, a2) is well-ordered, either b1 has no successor or I can play b3 ∈ (b1, b2) having
no successor, and wins in 2 more moves. Otherwise, if possible, I plays a3 ∈ (a1, a2)
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with no predecessor and wins in 2 more moves. If this is not possible, then mk = 1
and tk+1 = (ω∗)mk+1 , in which case I plays some point a3 of tk+1 in (a1, a2). Since
the monomials are special, mk+1 > 1 and I wins by appeal to Lemma 4.3.

Next suppose that b1 ∈
⋃

l≥k ul. Now player I plays the greatest point b2 of uk−1

and the whole argument is rerun with A and B interchanged.
The only case remaining is that b1 lies in the final ω∗ points of uk−1 (or in the

reversed argument, that a2 lies in the final ω∗ points of tk−1). If uk = (ω∗)nk ,
player I plays the greatest point b2 of uk. If a2 is II’s reply, I plays a3 ∈ (a1, a2) if
possible having no predecessor, and wins in 2 more moves. If this is not possible,
then mk = 1 and tk+1 = (ω∗)mk+1 , and as A is a special monomial sum, mk+1 > 1.
Player I plays the greatest point a3 of tk+1, and wins using Lemma 4.3.

Otherwise, uk = ωnk . Now we see that A<a1 ∼= B<b1 ∼= α + γ∗, and A>a1 ∼=
⋃

l≥k tl, and B>b1 ∼=
⋃

l≥k ul. We may now argue inductively, since there are fewer
blocks between tk, uk and tN , uN than from t0, u0.

The size of the class of such structures up to elementary equivalence is therefore
2ℵ0 . We remark that the result we would really like is just as for Theorem 4.5, but
with ω-sums replaced by Z-sums. The problem in proving the result in this case is
as follows. Assuming that A 6∼= B, player I endeavours to find a finite Ehrenfeucht-
Fräıssé game on A and B that he can win. He plays some a1 ∈ A for instance, and
player II replies with b1 ∈ B. We now know that A>a1 6∼= B>b1 or A<a1 6∼= B<b1 ,
suppose the former. This essentially reduces the problem to an ω-sum, so should
be amenable to the methods presented in Theorem 4.5. The trouble is however,
that the number of moves required by player I may depend on the choice of b1 by
player II, and player I may not be able to predict this number in advance, which it
is essential that he can do.

Next we consider sums of more general terms, however only in a special case,
namely of two terms A = A1 +A2 and B = B1 +B2, where A1, A2 start differently
(one with ω, the other with ω∗) and B1, B2 start in the same ways respectively.
Generally we’d expect that l(A,B) = min(l(A1, B1), l(A2, B2)), since we could
imagine that the players will play either on the left, or on the right, but this isn’t
necessarily true. For an easy example consider A1 = ω∗, B1 = (ω∗)2, A2 = B2 =
ω · ω∗, where l(A1, B1) = 2, l(A2, B2) = ∞, but l(A,B) = 3 (see below). A precise
list of the ways in which the expected result fails is included in the following result.

Theorem 4.6. Let A = A1+A2 and B = B1+B2 where A1 = Mm0

0 ·Mm1

1 · · ·M
ms−1

s−1 ,

A2 = Nn0

0 ·Nn1

1 · · ·N
nt−1

t−1 and B1 = M
p0

0 ·Mp1

1 · · ·M
pu−1

u−1 , B2 = N
q0
0 ·N q1

1 · · ·N
qv−1

v−1

be sums of two monomials where

(i) the Mi alternate between ω and ω∗, and so do the Ni and,
(ii) M0 = ω ⇔ N0 = ω∗.

Then l(A,B) = min(l(A1, B1), l(A2, B2)), except when M0 = ω∗, in the following
cases:

s = u = 1, t, v ≥ 2, and 1 = min(m0, p0), m0 6= p0,
t = v = 1, s, u ≥ 2, and 1 = min(n0, q0), n0 6= q0,
s = 1, u ≥ 2, and t ≥ 2 or t = 1 and m0 ≥ 2,
u = 1, s ≥ 2, and v ≥ 2 or v = 1 and p0 ≥ 2,
t = 1, v ≥ 2, and s ≥ 2 or s = 1 and n0 ≥ 2,
v = 1, t ≥ 2, and u ≥ 2 or u = 1 and q0 ≥ 2, in which case l(A,B) = 3
s = 1, u ≥ 2, and t = m0 = 1,
u = 1, s ≥ 2, and v = p0 = 1,
t = 1, v ≥ 2, and s = n0 = 1,
v = 1, t ≥ 2, and u = q0 = 1, in which case l(A,B) = 2.
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Proof. First we deal with the exceptional cases. We remark that in all of these,
the formula l(A,B) = min(l(A1, B1), l(A2, B2)) is invalid. In the first, for instance,
l(A1, B1) = 2, and l(A2, B2) ≥ 2, which gives min(l(A1, B1), l(A2, B2)) = 2, and if
s = 1 and u ≥ 2, then l(A1, B1) = 1.

We first consider s = u = 1, A1 = ω∗, B1 = (ω∗)p0 , p0 > 1, and t, v ≥ 2, so
that A2, B2 have no least. For a winning strategy in G4(A,B), player I plays the

last point b1 of the last but one copy of ω∗ in (ω∗)p0 , so that B>b1
1

∼= ω∗. If II
plays a1 ∈ A which has a successor a2, then II plays a2 on his second move, and
whatever b2 > b1 in B II plays, as b1 has no immediate successor, I can play b3
between b1 and b2 and win on the third move. Since every member of A2 has a
successor, the only other option is that II plays the greatest point a1 of A1. Now I
plays the greatest point b2 of B1, and I must respond in A2, and I wins in 2 more
moves, making 4 in all (we have here used the fact that B2 has no least). Next we
have to see that II has a winning strategy in G3(A,B). For this we observe that if
two linear orders each have at least 3 elements, and one has a minimum if and only
if the other does, and similarly for maxima, then they are 2-equivalent. Note that
player II can play in such a way that if the first two moves are both on the left, then
for some k ∈ ω and λ which is a limit ordinal or 0, a1 is the kth point from the right
in A1 and b1 is the (λ + k)th point from the right in B1. The remark just made,
together with the assumption that A2, B2 do not have least elements (since they
clearly do not have greatest either) shows that A<a1 ≡2 B<b1 and A>a1 ≡2 B>b1

as required. Similarly, if the play takes place on the right, II can ensure that a1 is
a successor if and only if b1 is a successor, which is sufficient to guarantee the truth
of the same condition.

The case of t = v = 1, s, u ≥ 2, and 1 = min(n0, q0), n0 6= q0 is handled similarly
(it is just obtained by reversing the ordering).

For the remaining ‘exceptional’ cases, it suffices to consider that of s = 1 and
u ≥ 2, subdivided into t ≥ 2, t = 1 and m0 ≥ 2, and t = m0 = 1. (The others
are essentially the same, bearing in mind that the right hand terms begin with ω

instead of ω∗, which is compensated for by the fact that we are now reading ‘in the
other direction’.)

For s = 1, u ≥ 2, t ≥ 2, we have A1 = (ω∗)m0 , A2 = ωn0 · (ω∗)n1 · · ·N
nt−1

t−1 .
We see that I can win in 4 moves. On his first move he plays the greatest point of
A1. If II plays b1 ∈ B2, then I plays its successor on the next move, and wins in 3
moves. If II plays b1 ∈ B1, I plays b2 > b1 in B1 which has no successor. Whatever
move a2 II plays, it lies in A2, so has a successor, which I can play on his 3rd move,
and I wins in 4 moves in all. Now we have to show that II can win the 3-move
game. We remark that two infinite linear orders are 2-equivalent if and only one
has a least element if and only if the other does, and one has a greatest element if
and only if the other does. Since neither A nor B has a greatest or least element,
we just have to note that both orders have the same 3 options for A<a and A>a

occurring, namely there are ai ∈ A such that A<a1 has a greatest and A>a1 has a
least (ai is an ‘inner’ point of a copy of ω or ω∗), A<a2 has a greatest and A>a2

has no least, and A<a3 has no greatest and A>a3 has a least, and similarly for B.
Thus II can respond to whatever I plays on his first move so that if a and b are the
first moves played, then A<a ≡2 B<b and A>a ≡2 B>b, so II can win.

Next consider s = 1, u ≥ 2, t = 1 and m0 ≥ 2. Thus A1 = (ω∗)m0 , A2 = ωn0 .
To win in 4 moves, I starts by playing the ωth point a1 of A1 from the right. If II
plays in B2, I plays its successor and wins in 3 moves. If II plays b1 ∈ B1, I plays
b2 > b1 in B1 with no successor. Whichever a2 > a1 II plays, it has a successor,
so I can win in 2 more moves, making 4 in all. A similar argument to the previous
paragraph shows that II can win in 3 moves.



EHRENFEUCHT-FRAÏSSÉ GAMES ON A CLASS OF SCATTERED LINEAR ORDERS 19

If s = 1, u ≥ 2, and t = m0 = 1, then A1 = ω∗, A2 = ωn0 , so every point of A
has a successor. I can win in 3 moves by playing a point b1 of B1 with no successor
(the greatest point of a copy of (ω∗)p0 for instance); now any response a1 by II has
a successor, so I can win in 2 more moves. Here we have to see that II can win in
2 moves. This is immediate since A and B have no greatest or least.

Now let use move on to the general (non-exceptional) case.
Let us write m for min(l(A1, B1), l(A2, B2)), and suppose without loss of gener-

ality that m = l(A1, B1) = l(Mm0

0 ·Mm1

1 · · ·M
ms−1

s−1 ,M
p0

0 ·Mp1

1 · · ·M
pu−1

u−1 ) is finite.

In m moves, Player II has strategies for both games G(Mm0

0 ·Mm1

1 · · ·M
ms−1

s−1 ,M
p0

0 ·

M
p1

1 · · ·M
pu−1

u−1 ) and G(Nn0

0 ·Nn1

1 · · ·N
nt−1

t−1 , N
q0
0 ·N q1

1 · · ·N
qv−1

v−1 ), and so he wins by
using whichever one is required, depending on which side I’s moves lie.

A rather more complicated argument is required to show that player I can win
in at most m + 1 moves, as it isn’t clear how he can ensure that the other player
plays on the same side as him (which is the left, in view of our assumption on
m). The best hope is that player I can ‘force’ the play to take place on the left.
If II strays to the right in the early stages, then I can ensure a quick win, and
otherwise, his strategy will ensure that the play is to the left of already played
moves, unlike in the exceptional cases. We follow the proofs of Theorems 3.4 and
3.5, which compare monomials of the same and different lengths respectively. In
the induction steps, we can ensure that this happens without too much trouble.
Suppose that A1 = Mm0

0 ·A′, and B1 = Mm0

0 ·B′, and assume that I has a winning
strategy σ for the game on A′ and B′ in l moves. We show that he can convert
this into a winning strategy on the game between A and B in 2m0 + l moves. Let
I play in A1 ∪ B1 according to σ on the copies of Mm0

0 , playing the first or last
point depending on whether M0 = ω or ω∗. If ever in the first l moves, II plays in
A2 ∪B2, then I can win in 2 more moves by playing the predecessor or successor of
II’s last move in A2 ∪B2, in the two cases, and then II must respond with a point
not adjacent to I’s last move in A1 ∪B1, and I wins by playing in between the two
in A1 ∪B1. Otherwise, as σ is winning in the game on A′ and B′, at some stage by
the lth, player II plays in the same copy of Mm0

0 more than once. By the argument
given in the proof of Lemma 2.9(i) for instance, player I can win in at most 2m0

more moves, and this is because he forces the play to lie between points which have
already been played on the left.

This leaves us to deal with various ‘basis cases’. Some of these also follow by
the same argument, since they use variants of the 2-phase lemma, and one or two
require separate treatment.

There are two cases arising in the basis of Theorem 3.4(i), depending on whether
M0 = ω or ω∗. In the first of these, where A1 = ωm0 , B1 = ωp0 , m0 < p0, player
I plays the ωm0th point b1 of B1. If II plays in A2, then I wins in at most 2 more
moves, and 3 ≤ 2m0 +1. Otherwise, a1 ∈ A1, and I wins as usual, forcing the play
to the left of the initial moves.

In the second case, A1 = (ω∗)m0 , B1 = (ω∗)p0 , m0 < p0. First note that as
l(A1, B1) = 2m0 and l(A1, B1) ≤ l(A2, B2), A2 has a least if and only if B2 has a
least (and they both have no greatest). For if one of them has a least and the other
does not, then l(A2, B2) = 1. If m0 ≥ 2, I plays the ωm0th point b1 of B1 from the
right. If II’s move a1 lies in A2, then I plays its successor and wins in ≤ 3 moves.
If a1 ∈ A1 is not the greatest in A1, I plays a2 > a1 in A1 so that for some k < m0,
(a1, a2] ∼= (ω∗)k. If II replies in B1, then the game continues in A1 ∪B1 on (ω∗)m0

and (ω∗)m0 · 2, so I wins in 2k+ 1 more moves, ≤ 2m0 − 1. If II replies in B2 then
I wins in 2 more moves, and 4 ≤ 2m0 + 1. If a1 is the greatest member of A1, I
plays the ωm0th point of B1 from the right. Now II must reply in A2, so I again
wins in 2 more moves.
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If m0 = 1, we have to show that I can win in 3 moves. As this is not the
exceptional case, A2 or B2 has a least, and by the above remark they both have a
least. Hence A2 = ωn0 and B2 = ωq0 . I plays the ωth point b1 of B1 from the right.
In this case, all members of A have successors, so whatever point of A II plays, I
can win in 2 more moves.

The basis cases for 3.5(i) are the following: A1 = ωm0 , B1 = ωp0 · (ω∗)p1 · · · ;
A1 = (ω∗)m0 , B1 = (ω∗)p0 · ωp1 · · · ; A1 = ωm0(ω∗)m1 , B1 = ωm0(ω∗)p1 · · · ; A1 =
(ω∗)m0ωm1 , B1 = (ω∗)m0ωp1 · · · .

In the first of these, A1 has a least and B1 does not, and the same applies to
A and B, so l(A,B) = l(A1, B1) = 1. In the third and fourth cases, since we are
working on the copies of ωm0 or (ω∗)m0 an auxiliary game is used, and I can force
the play to lie on the left (or else II deviates to the right and I wins quickly).

The second case is one of the exceptional ones, so has already been covered.
The basis case for 3.4(ii) is s = u = 2, A1 = Mm0

0 Mm1

1 , B1 = M
p0

0 M
p1

1 , m0 < p0.

We write A′ = Mm1

1 , B′ = M
p0−m0

0 M
p1

1 . Here A has a greatest element or least,
and B′ has neither, so I wins G(A′, B′) in 2 moves. He plays according to this
winning strategy in G(A,B) playing the least or greatest element of the appropriate
copy of Mm0

0 in A1∪B1, and wins in at most 2m0+2 moves (considering separately
the case in which II plays in A2 ∪B2 on one of the first two moves).

The basis case for 3.5(ii) is handled similarly, which is A1 = Mm0

0 Mm1

1 , B1 =
M

p0

0 M
p1

1 M
p2

2 · · · , m0 6= p0.
The basis cases for 3.4(iii) and 3.5(iii) are s = u ≥ 3, A1 = Mm0

0 · · ·M
ms−1

s−1 ,

B1 = M
p0

0 · · ·M
pu−1

u−1 , m0 < p0. The same argument applies, on Mm0

0 blocks,
taking into account dealing with a possible play by II on the right.
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