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EQUATIONAL THEORIES OF FIELDS

AMADOR MARTIN-PIZARRO AND MARTIN ZIEGLER

Abstract. A complete first-order theory is equational if every definable set is
a Boolean combination of instances of equations, that is, of formulae such that
the family of finite intersections of instances has the descending chain condi-
tion. Equationality is a strengthening of stability. We show the equationality
of the theory of proper extensions of algebraically closed fields of some fixed
characteristic and of the theory of separably closed fields of arbitrary imper-
fection degree. Srour showed that the theory of differentially closed fields in
positive characteristic is equational. We give also a different proof of his result.
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1. Introduction

Consider a sufficiently saturated model of a complete theory T . A formula ϕ(x; y)
is an equation (for a given partition of the free variables into x and y) if the family of
finite intersections of instances ϕ(x, a) has the descending chain condition (DCC).
The theory T is equational if every formula ψ(x; y) is equivalent modulo T to a
Boolean combination of equations ϕ(x; y).
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2 AMADOR MARTIN-PIZARRO AND MARTIN ZIEGLER

Quantifier elimination implies that the theory of algebraically closed fields of
some fixed characteristic is equational. Separably closed fields of positive charac-
teristic have quantifier elimination after adding λ-functions to the ring language
[2]. The imperfection degree of a separably closed field K of positive characteristic
p encodes the linear dimension of K over Kp. If the imperfection degree is finite,
restricting the λ-functions to a fixed p-basis yields again equationality. A similar
manipulation yields elimination of imaginaries for separably closed field K of posi-
tive characteristic and finite imperfection degree, in terms of the field of definition
of the corresponding defining ideal. However, there is not an explicit description
of imaginaries for separably closed fields K of infinite imperfection degree, that is,
when K has infinite linear dimension over the definable subfield Kp.

Another important (expansion of a) theory of fields having infinite linear dimen-
sion over a definable subfield is the theory of an algebraically closed field with a
predicate for a distinguished algebraically closed proper subfield. Any two such
pairs are elementarily equivalent if and only if they have the same characteristic.
They are exactly the models of the theory of Poizat’s belles paires [14] of alge-
braically closed fields.

Determining whether a particular theory is equational is not obvious. So far, the
only known natural example of a stable non-equational theory is the free non-abelian
finitely generated group [15, 11]. In this paper, we will prove the equationality of
several theories of fields: the theory of belles paires of algebraically closed fields of
some fixed characteristic, as well as the theory of separably closed fields of arbitrary
imperfection degree We also give a new proof of the equationality of the theory of
differentially closed fields in positive characteristic, which was established by Srour
[18]. In Section 9 we include an alternative proof for belles paires of characteristic
0, by showing that definable sets are Boolean combination of certain definable sets,
which are Kolchin-closed in the corresponding expansion DCF0. A similar approach
appeared already in [5] using different methods. We generalise this approach to
arbitrary characteristic in Section 10.

2. Equations and indiscernible sequences

Most of the results in this section come from [13, 6, 7]. We refer the avid reader
to [10] for a gentle introduction to equationality.

We work inside a sufficiently saturated model U of a complete theory T . A
formula ϕ(x; y), with respect to a given partition of the free variables into x and y, is
an equation if the family of finite intersections of instances ϕ(x, b) has the descending
chain condition (DCC). If ϕ(x; y) is an equation, then so are ϕ−1(y;x) = ϕ(x, y) and
ϕ(f(x); y), whenever f is a ∅-definable map. Finite conjunctions and disjunctions of
equations are again equations. By an abuse of notation, given an incomplete theory,
we will say that a formula is an equation if it is an equation in every completion of
the theory.
The theory T is equational if every formula ψ(x; y) is equivalent modulo T to a
Boolean combination of equations ϕ(x; y).

Typical examples of equational theories are the theory of an equivalence relation
with infinite many infinite classes, the theory of R-modules.

Example 2.1. In any field K, for every polynomial p(X,Y ) with integer coeffi-
cients, the equation p(x; y)

.
= 0 is an equation in the model-theoretic sense.
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Proof. This follows immediately from Hilbert’s Basis Theorem, which implies that
the Zariski topology on Kn is noetherian, i.e. the system of all algebraic sets

{

a ∈ Kn
∣

∣

∣

m
∧

i=1

qi(a) = 0
}

,

where qi ∈ K[X1, . . . , Xn], has the DCC.
There is a simpler proof, without using Hilbert’s Basis Theorem: Observe first
that p(x; y)

.
= 0 is an equation, if p is linear in x, since then p(x; a)

.
= 0 defines

a subspace of Kn. Now, every polynomial has the form q(M1, . . . ,Mm; y), where
q(u1, . . . , um; y) is linear in the ui, for some monomials M1, . . . ,Mm in x. �

Quantifier elimination for the incomplete) theory ACF of algebraically closed fields
and the above example yield that ACF is equational.

Equationality is preserved under unnaming parameters and bi-interpretability
[6]. It is unknown whether equationality holds if every formula ϕ(x; y), with x a
single variable, is a boolean combination of equations.

By compactness, a formula ϕ(x; y) is an equation if there is no indiscernible
sequence (ai, bi)i∈N such that ϕ(ai, bj) holds for i < j, but 6|= ϕ(ai, bi). Thus, equa-
tionality implies stability [13]. In stable theories, non-forking provides a natural
notion of independence. Working inside a sufficiently saturated model, we say that
two sets A and B are independent over a common subset C, denoted by A |⌣C

B,

if, for every finite tuple a in A, the type tp(a/B) does not fork over C. Non-forking
extensions of a type over an elementary substructure M to any set B ⊃M are both
heir and definable over M .

Definition 2.2. A type q over B is an heir of its restriction q ↾M to the elementary
substructure M if, whenever the formula ϕ(x,m, b) belongs to q, with m in M and
b in B, then there is some m′ in M such that ϕ(x,m,m′) belongs to q ↾M .
A type q over B is definable over M if, for each formula ϕ(x, y), there is a formula
θ(y) with parameters in M such that for every b in B,

ϕ(x, b) ∈ q if and only if |= θ(b).

Observe that if q is definable overM , for any formula ϕ(x, y), any two such formulae
θ(y) are equivalent modulo M , so call it the ϕ-definition of q.

If ϕ is an equation, the ϕ-definition of a type q over B is particularly simple.
The intersection

⋂

ϕ(x,b)∈q

ϕ(U, b)

is a definable set given by a formula ψ(x) over B contained in q. If suffices to set

θ(y) = ∀x (ψ(x)→ ϕ(x, y)) .

By the above characterisation, a formula ϕ(x; y) is an equation if and only if
every instance ϕ(a, y) is indiscernibly closed definable sets [7, Theorem 3.16]. A
definable set is indiscernibly closed if, whenever (bi)i≤ω is an indiscernible sequence
such that bi lies in X for i < ω, then so does bω.
Extending the indiscernible sequence so that it becomes a Morley sequence over an
initial segment, we conclude the following:
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Lemma 2.3. In a complete stable theory T , a definable set ϕ(a, y) is indiscernibly
closed if, for every elementary substructure M and every Morley sequence (bi)i≤ω
over M such that

a |⌣
M

bi with |= ϕ(a, bi) for i < ω,

then bω realises ϕ(a, y) as well.
We may take the sequence of length κ+1, for every infinite cardinal κ, and assume
that a |⌣M

{bi}i<κ.

In [18, Theorem 2.5], Srour stated a different criterion for the equationality of a
formula. Let us provide a version of his result. Given a formula ϕ(x, y) and a type
p over B, denote

p+ϕ = {ϕ(x, b) | ϕ(x, b) ∈ p}.

Lemma 2.4. Given a formula ϕ(x; y) in a stable theory T , the following are equi-
valent:

(1) The formula ϕ(x; y) is an equation.
(2) Given a tuple a of length |x| and a subset B, there is a finite subset B0 of

B such that

tp+ϕ (a/B0) ⊢ tp+
ϕ (a/B).

(3) There is a regular cardinal κ > |T | such that, for any tuple a of length |x|
and any elementary substructures M ⊂ N with a |⌣M

N and |N | = κ, there

is a subset B0 of N with |B0| < κ such that

tp(a/MB0) ⊢ tp+
ϕ (a/N).

Proof. For (1) =⇒ (2), we observe that the intersection

⋂

{ϕ(U, b) | ϕ(x, b) ∈ tp+ϕ (a/B)}

is a finite intersection with parameters in a finite subset B0 of B. The implication
(2) =⇒ (3) is immediate. For (3) =⇒ (1), it suffices to show that the set ϕ(a, y)
is indiscernibly closed, for every tuple a of length |x|. By Lemma 2.3, let M be an
elementary substructure and (bi)i≤κ a Morley sequence over M such that

a |⌣
M

(bi)i<κ and |= ϕ(a, bi) for i < κ.

We construct a continuous chain of elementary substructures (Ni)i<κ, each of car-
dinality at most κ containing M , such that:

• the sequence (bj)i≤j≤κ remains indiscernible over Ni;
• b<i is contained in Ni;
• a |⌣M

Ni ∪ (bj)i≤j<κ.

Set N0 =M . For i < κ limit ordinal, set

Ni =
⋃

j<i

Nj .

Thus, we need only consider the successor case. Suppose Ni has already been
constructed and let Ni+1 be an elementary substructure of cardinality at most κ
containing Ni ∪ {bi} such that
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Ni+1 |⌣
Ni∪{bi}

a ∪ (bj)i<j≤κ.

Observe that the sequence (bj)i<j≤κ remains indiscernible over Ni+1. By mono-
tonicity applied to the above independence, we have that

Ni+1 |⌣
Ni∪(bj)i≤j≤κ

a,

so, by transitivity,
a |⌣
M

Ni+1 ∪ (bj)i<j≤κ,

as desired.
The elementary substructure N =

⋃

i<κ

Ni has cardinality κ. Finite character

implies that a |⌣M
N . By hypothesis, there is a subset B0 of N of cardinality

strictly less than κ such that

tp(a/MB0) ⊢ tp+
ϕ (a/N).

Regularity of κ yields that B0 ⊂ Ni for some i < κ. In particular, the elements
bi and bκ have the same type over Ni, and therefore over MB0. Let ã such that
ãbi ≡MB0

abκ. Since
tp+
ϕ (a/N) ⊃ {ϕ(x, bj)}j<κ,

we conclude that |= ϕ(ã, bi), and thus |= ϕ(a, bκ), as desired. �

Remark 2.5. Whenever a |⌣M
N , the type tp(a/N) is definable with the same

definition schema as the one of tp(a/M). In particular, we can add a fourth equiv-
alence to Lemma 2.4: the formula ϕ(x; y) is an equation if and only if, whenever
a |⌣M

N , then

tp(a/M) ⊢ tp+
ϕ (a/N).

We will finish this section with an observation on imaginaries in equational theo-
ries.

Lemma 2.6. Assume that there is a collection F of equations, closed under finite
conjuntions, such that every formula is a boolean combination of instances of for-
mulae in F . If every instance of an equation in F has a real canonical parameter,
then the theory has weak elimination of imaginaries.

Proof. Since the theory is stable, it suffices to show that every global type q has a
real canonical base. As in Definition 2.2, we need only include the canonical param-
eters of the ϕ-definition of every formula ϕ in F . Observe that the corresponding
formula ψ(x) in q is an instance of a formula in F . �

3. Basics on fields

In this section, we will include some basic notions of field theory and commutative
algebra needed in order to prove the equationality of the theories of fields we will
consider later on. We will work inside somesufficiently large algebraically closed
field U.

Two subfields L1 and L2 are linearly disjoint over a common subfield F , denoted
by

L1 |ld⌣
F

L2,
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if, whenever the elements a1, . . . , an of L1 are linearly independent over F , then
they remain so over L2, or, equivalently, if L1 has a linear basis over F which is
linearly independent over L2.
Linear disjointness implies algebraic independence and agrees with the latter when-
ever the base field F is algebraically closed. Let us note that linear disjointness
is symmetric, and a transitive relation: If F ⊂ D2 ⊂ L2 is a subfield, denote by
D2 · L1 the field generated by D2 and L1. Then

L1 |ld⌣
F

L2

if and only if

L1 |ld⌣
F

D2 and D2 · L1 |ld⌣
D2

L2.

By multiplying with a suitable denominator, we may also use the terminology for
a subring A being linearly disjoint from a fieldB over a common subring C.

Definition 3.1. Consider a theory T of fields in the language L extending the
language of rings Lrings = {+,−, · , 0, 1} such that there is a predicate P , which is
interpreted in every model of T as a definable subfield. A subfield A of a sufficiently
saturated model K of T is P-special if

A |ld⌣
P(A)

P(K),

where P(A) equals P(K) ∩A.

It is easy to see that elementary substructures of K are P-special.

Lemma 3.2. Inside a sufficiently saturated model K of a stable theory T of fields
in the language L ⊃ Lrings equipped with a definable subfield P(K), consider a
P-special field A and a field B, both containing an elementary substructure M of
K such that A |⌣M

B. The fields P(K) ·A and P(K) ·B are linearly disjoint over

P(K) ·M .

Note that we write F · F ′ for the field generated by F and F ′.

Proof. It suffices to show that elements a1, . . . , an of A which are linearly dependent
over P(K) · B are also linearly dependent over P(K) ·M . Thus, let z1, . . . , zn in
P(K) ·B, not all zero, such that

n
∑

i=1

ai · zi = 0.

Multiplying by a suitable denominator, we may assume that all the zi’s lie in the
subring generated by P(K) and B, so

zi =

m
∑

j=1

ζijbj ,

for some ζij ’s inP(K) and b1, . . . , bm in B, which we may assume to be linearly

independent over P(K).
The type tp(a1, . . . , an/Mb1, . . . bm) is a nonforking extension of tp(a1, . . . , an/M),
so in particular is a heir over M . Thus, there are some ηij ’s in P(K), not all zero,

and c1, . . . , cm in M linearly independent over P(K), such that
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n
∑

i=1

ai

m
∑

j=1

ηijcj = 0.

Since A is P-special, we may assume all the ηij ’s lie in P(A). As {cj}1≤j≤m are
P-linearly independent, at least one of the elements in

{
∑

1≤j≤m

η1j cj , . . . ,
∑

1≤j≤m

ηnj cj}

is different from 0, as desired.
�

A natural example of a definable subfield is the field of pth powers Kp, whenever
K has positive characteristic p > 0. The corresponding notion of Kp-special is
separability: A non-zero polynomial f(T ) over a subfield K is separable if every
root (in the algebraic closure of K) has multiplicity 1, or equivalently, if f and its

formal derivative ∂f
∂T

are coprime. Whenever f is irreducible, the latter is equivalent

to ∂f
∂T
6= 0. In particular, every non-constant polynomial in characteristic 0 is

separable. In positive characteristic p, an irreducible polynomial f is separable if
and only if f is not a polynomial in T p.
An algebraic extension K ⊂ L is separable if the minimal polynomial over K of
every element in L is separable. Algebraic field extensions in characteristic 0 are
always separable. In positive characteristic p, the finite extension is separable if
and only if the fields K and Lp are linearly disjoint over Kp. This explains the
following definition:

Definition 3.3. An arbitrary (possibly not algebraic) field extension F ⊂ K is
separable if, either the characteristic is 0 or, in case the characteristic is p > 0, the
fields F and Kp are linearly disjoint over F p.

A field K is perfect if either it has characteristic 0 or if K = Kp, for p = char(K).
Any field extension of a perfect field is separable. Given a field K, we define its
imperfection degree (in N∪ {∞}), as 0 if the characteristic of K is 0, or ∞, in case
of positive characteristic p if [K : Kp] is infinite. Otherwise [K : Kp] = pe for e the
degree of imperfection. Thus, a field is perfect if and only if its imperfection degree
is 0

Another example of fields equipped with a definable subfields are differential
fields. A differential field consists of a field K together with a distinguished additive
morphism δ satisfying Leibniz’ rule

δ(xy) = xδ(y) + yδ(x).

Analogously to Zariski-closed sets for pure field, one defines Kolchin-closed sets in
differential fields as zero sets of systems of differential-polynomials equations, that
is, polynomial equations on the different iterates of the variables under the deriva-
tion. For a tuple x = (x1, . . . , xn) in K, denote by δ(x) the tuple (δ(x1), . . . , δ(xn)).

Lemma 3.4. In any differential field (K, δ), an algebraic differential equation

p(x, δx, δ2x . . . ; y, δy, δ2y, . . .)
.
= 0

is an equation in the model-theoretic sense.
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Proof. In characteristic zero this follows from Ritt-Raudenbush’s Theorem, which
states that the Kolchin topology is noetherian. In arbitrary characteristic, it suf-
fices to observe, as in Example 2.1, that p(x, δx, . . . ; y, δy, . . .) can be written as
q(M1, . . . ; y, δy, . . .) where q(u1, . . . ; y0, y1, . . .) is linear in the ui’s, for some differ-
ential monomials Mj ’s in x. �

In particular, the theory DCF0 of differentially closed fields of characteristic 0 is
equational, since it has quantifier elimination [21].
In a differential field (K, δ), the set of constants

CK = {x ∈ K | δ(x) = 0}

is a definable subfield, which contains Kp if p = char(K) > 0. If K is algebraically
closed, then so is CK .

Fact 3.5. The elements a1, . . . , ak of the differential field (K, δ) are linearly depen-
dent over CK = {x ∈ K | δ(x) = 0} if and only if their Wronskian W(a1, . . . , ak) is
0, where

W(a1, . . . , ak) = det











a1 a2 . . . ak
δ(a1) δ(a2) . . . δ(ak)

...
...

δk−1(a1) δk−1(a2) . . . δk−1(ak)











.

Whether the above matrix has determinant 0 does not dependon the differential
field where we compute it. In particular, every differential subfield L of K is CK-
special.

Perfect fields of positive characteristic cannot have non-trivial derivations. In
characteristic zero though, any field K which is notalgebraic over the prime field has
a non-trivial derivation δ. Analogously to perfectness, we say that the differential
field (K, δ) is differentially perfect if either K has characteristic 0 or, in case p =
char(K) > 0, if every constant has a pth-root, that is, if CK = Kp.
Notice that the following well-known result generalises the equivalent situation for
perfect fields and separable extensions.

Remark 3.6. Let (K, δ) be a differential field and F a differentially perfect differ-
ential subfield of K. The extension F ⊂ K is separable.

Proof. We need only prove it when the characteristic of K is p > 0. By Fact 3.5,
the fields F and CK are linearly disjoint over CF = F p. Since Kp ⊂ CK , this
implies that F and Kp are linearly disjoint over F p. �

In section 8, we will consider a third theory of fields equipped with a definable
subfield: belles paires of algebraically closed fields. In order to show that the cor-
responding theory is equational, we require some basic notions from linear algebra
(cf. [4, Résultats d’Algèbre]). Fix some subfield E of U.

Let V be a vector subspace of En with basis {v1, . . . , vk}. Observe that

V =
{

v ∈ En
∣

∣ v ∧ (v1 ∧ · · · ∧ vk) = 0 in
∧k+1

En
}

.

The vector v1 ∧ · · · ∧ vk depends only on V , up to scalar multiplication, and de-
termines V completely. The Plücker coordinates Pk(V ) of V are the homogeneous

coordinates of v1 ∧ · · · ∧ vk with respect to the canonical basis of
∧k

En. The
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kth-Grassmannian Grk(E
n) of En is the collection of Plücker coordinates of all k-

dimensional subspaces of En. Clearly Grk(E
n) is contained in P

r−1(E), for r =
(

n
k

)

.

The kth-Grassmannian is Zariski-closed. Indeed, given an element ζ of
∧k

En, there

is a smallest vector subspace Vζ of En such that ζ belongs to
∧k Vζ . The vector

space Vζ is the collection of inner products e y ζ, for e in
∧k−1

(En)∗. Recall that
the inner product y is a bilinear map

y :
∧k−1

(En)∗ ×
∧k

(En)→ E.

A non-trivial element ζ of
∧k

En determines a k-dimensional subspace of En if and
only if

ζ ∧ (e y ζ) = 0,

for every e in
∧k−1

(En)∗. Letting e run over a fixed basis of
∧k−1

(En)∗, we see
that the kth-Grassmannian is the zero-set of a finite collection of homogeneous
polynomials.

Let us conclude this section with an observation regarding projections of certain
varieties.

Remark 3.7. Though the theory of algebraically closed fields has elimination of
quantifiers, the projection of a Zariski-closed set need not be again closed. For
example, the closed set

V = {(x, z) ∈ E × E | x · z = 1}

projects onto the open set {x ∈ E |x 6= 0}. An algebraic variety Z is complete if,
for all varieties X , the projection X × Z → X is a Zariski-closed map. Projective
varieties are complete.

4. Model Theory of separably closed fields

Recall that a field K is separably closed if it has no proper algebraic separable
extension, or equivalently, if every non-constant separable polynomial over K has
a root in K. For each fixed degree, this can be expressed in the language of rings.
Thus, the class of separably closed fields is axiomatisable. Separably closed fields
of characteristic zero are algebraically closed. For a prime p, let SCFp denote
the theory of separably closed fields of characteristic p and SCFp,e the theory of
separably closed fields of characteristic p and imperfection degree e. Note that
SCFp,0 is the theory ACFp of algebraically closed fields of characteristic p.

Fact 4.1. (cf. [2, Proposition 27]) The theory SCFp,e is complete and stable, but not
superstable for e > 0. Given a model K and a separable field extension k ⊂ K, the
type of k in K is completely determined by its quantifier-free type. In particular,
the theory has quantifier elimination in the language

Lλ = Lrings ∪ {λ
i
n | 1 ≤ i ≤ n < ω},

where the value λin(a0, . . . , an) is defined as follows in K. If there is a unique
sequence ζ1, . . . , ζn ∈ K with a0 = ζp1 a1 + · · · + ζpn an, we set λin(a0, . . . , an) = ζi.
Otherwise, we set λin(a0, . . . , an) = 0 and call it undefined,

Note that λin(a0, . . . , an) is defined if and only if

K |= ¬ p -Depn(a1, . . . , an) ∧ p -Depn+1(a0, a1, . . . , an),
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where p -Depn(a1, . . . , an) means that a1, . . . , an are Kp-linearly dependent. In
particular, the value λin(a0, . . . , an) is undefined for n > pe.

For a subfield k of a model K of SCFp, the field extension k ⊂ K is separable if
and only if k is closed under λ-functions.

Notation. For elements a0, . . . , an of K, the notation λ(a0, a1, . . . , an) ↓ is an
abbreviation for ¬ p -Depn(a1, . . . , an) ∧ p -Depn+1(a0, a1, . . . , an).

Remark 4.2. If the imperfection degree e is finite, we can fix a p-basis b =
(b1, . . . , be) of K, that is, a tuple such that the collection of monomials

b̄ = (bν11 · · · b
νe
e | 0 ≤ ν1, . . . , νe < p)

is a linear basis of K over Kp. All p-bases have the same type. If we replace the
λ-functions by the functions Λν(a) = λνpe(a, b̄), then the theory SCFp,e(b), in the
language of rings with constants for b and equipped with the functions Λν(x), has
again quantifier elimination. Furthermore, the Λ-values of a sum or a product can
be easily computed in terms of the values of each factor. In particular, the canonical
base of the type (a/K) in SCFp,e(b) is the field of definition of the vanishing ideal
of the infinite tuple

(a,Λ(a),Λ(Λ(a)), . . .).

Thus, the theory SCFp,e(b) has elimination of imaginaries.
As in Lemma 3.4, it follows that the formula t(x; y)

.
= 0 is a model-theoretic

equation, for every LΛ-term t(x, y). This implies that SCFp,e(b), and therefore
SCFp,e, is equational.

Whether there is an explicit expansion of the language of rings in which SCFp,∞

has elimination of imaginaries is not yet known.

From now on, work inside a sufficiently saturated model K of the incomplete
theory SCFp. The imperfection degree of K may be either finite or infinite.
Since an Lλ-substructure determines a separable field extension, Lemma 3.2 implies
the following result:

Corollary 4.3. Consider two subfields A and B of K containing an elementary
substructure M of K. Whenever

A
SCFp

|⌣
M

B,

the fields Kp ·A and Kp ·B are linearly disjoint over Kp ·M .

Note that the field Kp · A is actually the ring generated by Kp and A, since A is
algebraic over Kp.

Proof. The Lλ-structure A′ generated by A is a subfield, since a−1 = λ11(1, a
p) for

a 6= 0. Since A′ |⌣
SCFp,e

M
B, and A′ is Kp-special, we have that KP ·A′ and Kp ·B

are linearly disjoint over M . Whence KP · A and KP · B are also linearly disjoint
over M �

We will now exhibit our candidate formulae for the equationality of SCFp, uni-
formly on the imperfection degree.
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Definition 4.4. The collection of λ-tame formulae is the smallest collection of
formulae in the language Lλ, containing all polynomial equations and closed under
conjunctions, such that, for any natural number n and polynomials q0, . . . , qn in
Z[x], given a λ-tame formula ψ(x, z1, . . . , zn), the formula

ϕ(x) = p -Depn(q1(x), . . . , qn(x)) ∨
(

λ(q0(x), . . . , qn(x))↓ ∧ ψ(x, λn(q0(x), . . . , qn(x)))
)

is λ-tame.

Note that the formula ϕ above is equivalent to

p -Depn(q1, . . . , qn) ∨
(

p -Depn+1(q0, . . . , qn) ∧ ψ(x, λn(q(x)))
)

.

In particular, the formula p -Depn(q1(x), . . . , qn(x)) is a tame λ-formula, since it is
equivalent to

p -Depn(q1(x), . . . , qn(x)) ∨
(

λ(0, q1(x), . . . , qn(x))↓ ∧ 0
.
= 1

)

.

There is a natural degree associated to a λ-tame formula, in terms of the amount
of nested λ-tame formulae it contains, whereas polynomial equations have degree
0. The degree of a conjunction is the maximum of the degrees of the corresponding
formulae.

The next remark is easy to prove by induction on the degree of the formula:

Remark 4.5. Given a λ-tame formula ϕ in m many free variables and polyno-
mials r1(X), . . . , rm(X) in several variables with integer coefficients, the formula
ϕ(r1(x), . . . , rm(x)) is equivalent in SCFp to a λ-tame formula of the same degree.

Proposition 4.6. Modulo SCFp, every formula is equivalent to a Boolean combi-
nation of λ-tame formulae.

Proof. By Fact 4.1, it suffices to show that the equation t(x)
.
= 0 is equivalent to

a Boolean combination of λ-tame formulae, for every Lλ-term t(x). Proceed by
induction on the number of occurrences of λ-functions in t. If no λ-functions occur
in t, the result follows, since polynomial equations are λ-tame. Otherwise

t(x) = r(x, λn(q0(x), . . . , qn(x)))

for some Lλ-term r(x, z1, . . . , zn) and polynomials qi. By induction, the term
r(x, z̄)

.
= 0 is equivalent to a Boolean combination BK(ψ1(x, z̄), . . . , ψm(x, z̄)) of

λ-tame formulae ψ1(x, z̄), . . . , ψm(x, z̄). Consider now the λ-tame formulae

ϕi(x) = p -Depn(q1(x), . . . , qn(x)) ∨
(

λ(q(x))↓ ∧ ψi(x, λn(q(x)))
)

.

Note that

SCFp,e |=
(

(λ(q(x))↓) −→ (ψi(x, λn(q(x))) ↔ ϕi(x))
)

.

Therefore t(x)
.
= 0 is equivalent to

(

¬λ(q(x))↓ ∧ r(x, 0)
.
= 0

)

∨
(

λ(q(x))↓ ∧ BK(ϕ1(x), . . . , ϕm(x))
)

,

which is, by induction, a Boolean combination of λ-tame formulae. �

We conclude this section with a homogenisation result for λ-tame formulae, which
will be used in the proof of the equationality of SCFp.
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Proposition 4.7. For every λ-tame ϕ(x, y1, . . . , yn) there is a λ-tame formula
ϕ′(x, y0, y1, . . . , yn) of same degree such that

SCFp |= ∀x, y0 . . . yn
(

ϕ′(x, y0, . . . , yn)←→
(

ϕ
(

x,
y1
y0
, . . . ,

yn
y0

)

∨ y0
.
= 0

))

.

We call ϕ′ a homogenisation of ϕ with respect to y0, . . . , yn.

Proof. Let y denote the tuple (y1, . . . , yn). By induction on the degree, we need only
consider basic λ-tame formulae, since the result is preserved by taking conjunctions.
For degree 0, suppose that ϕ(x, y) is the formula q(x, y)

.
= 0, for some polynomial

q. Write

q(x,
y

y0
) =

q′(x, y0, y)

yN0
.

Then ϕ′(x, y0, y) = y0 · q′(x, y)
.
= 0 is a homogenisation.

If ϕ(x, y) has the form

p -Depn(q1(x, y), . . . , qm(x, y)) ∨
(

λ(q0, . . . , qm)↓ ∧ψ(x, y, λn(q0, . . . , qm))
)

,

let ψ′(x, y0, y, z) be a homogenisation of ψ(x, y, z) with respect to y0, y. There is a
natural number N such that for each 0 ≤ j ≤ m,

qj(x,
y

y0
) =

q′j(x, y0, y)

yN0

for polynomials q′j . Set now q′′j = y0 · q′j and

ϕ′(x, y0, y) = p -Depn(q
′′
1 , . . . , q

′′
m) ∨

(

λ(q′′0 , . . . , q
′′
m)↓ ∧ψ′(x, y0, y, λn(q

′′
0 , . . . , q

′′
m))

)

.

�

5. Equationality of SCFp

By Proposition 4.6, in order to show that the theory SCFp is equational, we need
only show that each λ-tame formula is an equation in every completion SCFp,e.
As before, work inside a sufficiently saturated model K of some fixed imperfection
degree.

For the proof, we require generalised λ-functions : If the vectors ā0, . . . , ān in
KN are linearly independent over Kp and the system

ā0 =

n
∑

i=1

ζpi āi

has a solution, then it is unique and denoted by λiN,n(ā0, . . . , ān). The notation

λN,n(ā0, . . . , ān) ↓ means that all λiN,n’s are defined. Observe that λi1,n = λin. We

denote by p -DepN,n(ā0, . . . , ān) the formula stating that the vectors ā1, . . . , ān are
linearly dependent over Kp.

Theorem 5.1. Given any partition of the variables, every λ-tame formula ϕ(x; y)
is an equation in SCFp,e

Proof. We proceed by induction on the degree D of the λ-tame formula. For D = 0,
it is clear. So assume that the theorem is true for all λ-tame formulae of degree
smaller than some fixed degree D ≥ 1. Let ϕ(x; y) be a λ-tame formula of degree
D.
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Claim. If

ϕ(x; y) = p -DepN,n(q̄1(x
p, y), . . . , q̄n(x

p, y)) ∨
(

λN (q̄0(x
p, y), . . . , q̄n(x

p, y))↓ ∧ ψ(x, y, λN,n(q̄0(x
p, y), . . . , q̄n(x

p, y)))
)

,

where ψ(x, y, z1, . . . , zn) is a λ-tame formula of degree D − 1, then ϕ(x; y) is an
equation.

Proof of Claim. It suffices to show that every instance ϕ(x, b) is equivalent to a
formula ψ′(x, b′, b), where ψ′(x, y′, y) is a λ-tame formula of degree D− 1, for some
tuple b′.
Choose a Kp-basis b1, . . . , bN ′ of all monomials in b occurring in the q̄k(x

p, b)’s and

write q̄k(x
p, b) =

∑N ′

j=1 q̄j,k(x, b
′)p · bj . We use the notation qk(x, b

′) for the vector

of length NN ′ which consists of the concatenation of the vectors q̄j,k(x, b
′). Let

Q(x, b′) be the (NN ′×n)-matrix with columns q1(x, b
′), . . . ,qn(x, b

′). The vectors
q̄1(x

p, b), . . . , q̄n(x
p, b) are linearly dependent over Kp if and only if the columns of

Q(x, b′) are linearly dependent over K. Let J range over all n-element subsets of
{1, . . . , NN ′} and let QJ(x, b′) be the corresponding n× n-submatrices. Thus

SCFp,e |=
(

p -DepN,n(q̄1(x
p, y), . . . , q̄n(x

p, y))←→
∧

J

det(QJ(x, b′))
.
= 0

)

.

If det(QJ(x, b′)) is not zero, the vector ζ = λN,n(q̄0(x
p, b), . . . , q̄n(x

p, b)) is defined

if and only if q0(x, b
′) = Q(x, b′) · ζ. In that case,

ζ = det(QJ(x, b′))−1 · BJ(x, b′) · qJ0 (x, b
′),

where BJ (x, b′) is the adjoint of QJ(x, b′). Set dJ(x, b′) = det(QJ(x, b′)) and
rJ (x, b′) = BJ (x, b′) · qJ0 (x, b

′), so

ζ = dJ(x, b′)−1 · rJ (x, b′).

Consider the λ-tame formula

ψJ(x, b′, b, z) =
(

q0(x, b
′)
.
= Q(x, b′) · z ∧ ψ(x, b, z)

)

,

of degree D − 1. It follows that ϕ(x, b) is equivalent to
∧

J

(

dJ (x, b′)
.
= 0 ∨ ψJ (x, b′, b, dJ(x, b′)−1 · rJ (x, b′))

)

,

which is equivalent to a λ-tame formula of degree D − 1, by Remark 4.5 and
Proposition 4.7. � Claim

For the proof of the theorem, since a conjunction of equations is again an equa-
tion, we may assume that

ϕ(x; y) = p -Depn(q1(x, y), . . . , qn(x, y)) ∨
(

λ(q0(x, y), . . . , qn(x, y))↓ ∧ ψ(x, y, λn(q0(x, y), . . . , qn(x, y)))
)

for some λ-tame formula ψ(x, y, z1, . . . , zn) of degree D− 1. It suffices to show that
ϕ(a, y) is indiscernibly closed. By Lemma 2.3, consider an elementary substructure
M of K and a Morley sequence (bi)i≤ω over M such that

a |⌣
M

bi with |= ϕ(a, bi) for i < ω.

We must show that K |= ϕ(a, bω).
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Choose a (Kp ·M)-basis a1, . . . , aN of the monomials in a which occur in the qk(a, y)

and write qk(a, y) =
∑N

j=1 qj,k(a
′p,m, y) · aj , for some tuple m in M and a′ in K.

Let q̄k(a
′p,m, y) be the vector

(

qj,k(a
′p,m, y)

)

1≤j≤N
and consider the formula

ϕ′(x, x′; y′, y) = p -DepN,n(q̄1(x
′p, y′, y), . . . , q̄n(x

′p, y′, y)) ∨
(

λN (q̄0(x
′p, y′, y), . . . , q̄n(x

′p, y′, y))↓ ∧

ψ(x, y, λN,n(q̄0(x
′p, y′, y), . . . , q̄n(x

′p, y′, y)))
)

.

Clearly,

SCFp,e |= ∀y(ϕ
′(a, a′,m, b) −→ ϕ(a, y)).

By Corollary 4.3, the elements a1, . . . , aN are linearly independent over the field
(Kp · M)(bi), so ϕ′(a, a′,m, bi) holds in K, since K |= ϕ(a, bi) for i < ω. By
the previous claim, the λ-tame formula ϕ′(x, x′; y′, y) is an equation. Since the
sequence (m, b0), . . . (m, bω) is indiscernible, we have that ϕ′(a, a′,m, bω) holds in
K, so K |= ϕ(a, bω), as desired. �

Together with Proposition 4.6, the above theorem yields the following:

Corollary 5.2. The (incomplete) theory SCFp of separably closed fields of charac-
teristic p > 0 is equational.

Proof. Proposition 4.6 yields, that modulo SCFp every formula is a Boolean com-
bination of sentences (i.e. formulas without free variables) and λ-tame formulas.
Sentences are equations by definition, λ-tame formulas are equations by Theorem
5.1. �

Lemma 2.6 and Theorem 5.1 yield a partial elimination of imaginaries for SCFp,e.

Corollary 5.3. The theory SCFp,e of separably closed fields of characteristic p > 0
and imperfection degree e has weak elimination of imaginaries, after adding canon-
ical parameters for all instances of λ-tame formulae.

Question. Is there an explicit description of the canonical parameters of instances
of λ-tame formulae, similar to the geometric sorts introduced in [12]?

6. Model Theory of differentially closed fields in positive

characteristic

The model theory of existentially closed differential fields in positive characteris-
tic has been thoroughly studied by Wood [19, 20]. In contrast to the characteristic
0 case, the corresponding theory is no longer ω-stable nor superstable: its universe
is a separably closed field of infinite imperfection degree (see Section 4).
A differential field (K, δ) is differentially closed if it is existentially closed in the
class of differential fields. That is, whenever a quantifier-free Lδ = Lrings ∪ {δ}-
formula ϕ(x1, . . . , xn), with parameters in K, has a realisation in a differential field
extension (L, δL) of (K, δ), then there is a realisation of ϕ(x1, . . . , xn) in K.

A differential polynomial p(x) is a polynomial in x and its higher order derivatives
δ(x), δ2(x), . . . The order of p is the order of the highest occurring derivative.

Fact 6.1. The class of differentially closed fields of positive characteristic p can be
axiomatised by the complete theory DCFp with following axioms:

• The universe is a differentially perfect differential field of characteristic p.
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• Given two differential polynomials g(x) 6= 0 and f(x) in one variable with

ord(g) < ord(f) = n such that the separant sf = ∂f
∂(δnx) of f is not identi-

cally 0, there exists an element a with g(a) 6= 0 and f(a) = 0.

The type of a differentially perfect differential subfield is determined by its quantifier-
free type. The theory DCFp is stable but not superstable, and has quantifier-
elimination in the language Lδ,s = Lδ∪{s}, where s is the following unary function:

s(a) =

{

b, with a = bp in case δ(a) = 0.

0, otherwise.

Note that every non-constant separable polynomial is a differential polynomial of
order 0 whose separant is non-trivial (since δ0(x) = x). In particular, every model
K of DCFp is a separably closed field. Furthermore, the imperfection degree of
K is infinite: Choose for every n in N an element an in K with δn(an) = 0 but
δn−1(an) 6= 0. It is easy to see that the family {an}n∈N is linearly independent over
Kp.

Remark 6.2. The quotient field of any Lδ,s-substructure of a model of DCFp is
differentially perfect.

Proof. Let a
b

be an element in the quotient field with derivative 0. The element

abp−1 = a
b
bp is also a constant, so abp−1 = s(abp−1)p. Hence

a

b
=

(s(abp−1)

b

)p

.

�

From now on, we work inside a sufficiently saturated model K of DCFp.

Corollary 6.3. Consider two subfields A and B of K containing an elementary
substructure M of K. Whenever

A
DCFp

|⌣
M

B,

the fields Kp ·A and Kp ·B are linearly disjoint over Kp ·M .

Proof. The quotient field A′ of the Lδ,s-structure generated by A is Kp-special, by
the Remarks 3.6 and 6.2. The result now follows from Lemma 3.2, as in the proof
of Corollary 4.3. �

We will now present a relative quantifier elimination, by isolating the formulae
which will be our candidates for the equationality of DCFp.

Definition 6.4. Let x be a tuple of variables. A formula ϕ(x) in the language Lδ is
δ-tame if there are differential polynomials q1, . . . , qm, with qi in the differential ring
Z{X,T1, . . . , Ti−1}, and a system of differential equations Σ in Z{X,T1, . . . , Tn}
such that

ϕ(x) = ∃ z1 . . . ∃zn
(

n
∧

j=1

zpj
.
= qj(x, z1, . . . , zj−1) ∧ Σ(x, z1, . . . , zn)

)

.

Proposition 6.5. Every formula in DCFp is a Boolean combination of δ-tame
formulae.
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Proof. The proof is a direct adaptation of the proof of Proposition 4.6. We need
only show that the equation t(x)

.
= 0 is a Boolean combination of δ-tame formulae,

for every Lδ,s-term t(x). Proceed by induction on the number of occurrences of
s in t. Suppose that t(x) = r(x, s(q(x))), for some Lδ,s-term r and a polynomial
q, By induction, the equation r(x, z)

.
= 0 is equivalent to a Boolean combination

BK(ψ1(x, z), . . . ) of δ-tame formulae. Thus t(x)
.
= 0 ist equivalent to

(

¬δ(q(x))
.
= 0 ∧ r(x, 0)

.
= 0

)

∨
(

δ(q(x))
.
= 0 ∧ BK(∃z zp

.
= q(x) ∧ ψ1(x, z), . . . )

)

,

which is, by induction, a Boolean combination of δ-tame formulae. �

We conclude this section with a homogenisation result for δ-tame formulae, as
in Proposition 4.7.

Proposition 6.6. Given a δ-tame formula ϕ(x1, . . . , xn) and natural numbers
k1, . . . , kn, there is a δ-tame formula ϕ′(x0, . . . , xn) such that

DCFp ⊢ ∀x0 . . .∀xn
(

ϕ′(x0, . . . , xn)←→
(

ϕ
( x1

xk10
, . . . ,

xn

xkn0

)

∨ x0
.
= 0

))

.

Proof. We prove it by induction on the number of existential quantifiers iny ϕ. If
ϕ is a system Σ of differential equations, rewrite

Σ(
x1

xk10
, . . . ,

xn

xkn0
)⇐⇒

Σ′(x0, . . . , xn)

xN0
,

for some natural number N and a system of differential equations Σ′(x0, . . . , xn).
Set

ϕ′(x0, . . . , xn) = x0 · Σ
′(x0, . . . , xn).

For a general δ-tame formula, write

ϕ(x1, . . . , xn) = ∃z (zp
.
= q(x1, . . . , xn) ∧ ψ(x1, . . . , xn, z)) ,

for some polynomial q and a δ-tame formula ψ with one existential quantifier less.
There is a polynomial q′(x0, . . . , xn) such that

q(
x1

xk10
, . . . ,

xn

xkn0
) =

q′(x0, . . . , xn)

xpN−1
0

,

for some natural numberN . By induction, there is a δ-tame formula ψ′(x0, . . . , xn, z)
such that

DCFp ⊢ ∀x0 . . . ∀xn∀z
(

ψ′(x0, . . . , xn, z)←→
(

ψ
( x1

xk10
, . . . ,

xn

xkn0
,
z

xN0

)

∨ x0
.
= 0

))

.

Set now

ϕ′(x0, . . . , xn) = ∃z (z
p .
= x0 · q

′(x1, . . . , xn) ∧ ψ
′(x0, x1, . . . , xn, z)) .

�
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7. Equationality of DCFp

We have now all the ingredients to show that the theory DCFp of existentially
closed differential fields of positive characteristic p is equational. Working inside a
sufficiently saturated model K of DCFp, given a δ-tame formula in a fied partition
of the variables x and y, one can show, similar to the proof of Theorem 5.1, that
the set ϕ(a, y) is indiscernibly closed. However, we will provide a proof, which
resonates with Srour’s approach [18], using Lemma 2.4. We would like to express
our gratitude to Zoé Chatzidakis and Carol Wood for pointing out Srour’s result.

Theorem 7.1 (Srour [18]). In any partition of the variables, the δ-tame formula
ϕ(x; y) is an equation.

Srour proved this for the equivalent notion of S-formulae, cf. Definition 7.4 and
Lemma 7.5.

Proof. We prove it by induction on the number n of existential quantifiers. For
n = 0, the formula ϕ(x; y) is a system of differential equations, which is clearly an
equation, by Lemma 3.4.

For n > 0, write ϕ(x, y) as

∃z
(

zp
.
= q(x, y) ∧ ψ(x, y, z)

)

,

where ψ(x, y, z) is a δ-tame formula with n− 1 existential quantifiers.

Claim. Suppose that every differential monomial in x occurs in q(x, y) as a pth-
power. Then ϕ(x; y) is an equation.

Proof of Claim. It suffices to prove that ϕ(x, b) is equivalent to a δ-tame formula
ψ′(x, b, b′) with n− 1 existential quantifiers, for some tuple b′. Choose a Kp-basis
1 = b0, . . . , bN of the differential monomials in b occurring in q(x, b) and write

q(x, b) =
∑N

i=0 qi(x, b
′)p · bi. Then ϕ(x, b) is equivalent (in DCFp) to

∃z
(

z
.
= q0(x, b

′) ∧
N
∧

i=1

qi(x, b
′)
.
= 0 ∧ ψ(x, b, z)

)

,

which is equivalent to

ψ′(x, b, b′) =
(

N
∧

i=1

qi(x, b
′)
.
= 0 ∧ ψ(x, b, q0(x, b

′))
)

.

� Claim

In order to show that ϕ(x; y) is an equation, we will apply Remark 2.5. Consider
a tuple a of length |x|, and two elementary substructures M ⊂ N with a |⌣M

N .
Choose now a Kp ·M -basis a0, . . . , aM of the differential monomials in a which
occur in q(a, y) and write

q(a, y) =

N
∑

i=0

qi(a
′p,m, y) · ai,

for tuples a′ in K and m in M , and differential polynomials qi(x
′, y′, y) with integer

coefficients and linear in x′ and y′. Observe that we may assume that a′ |⌣Ma
N ,

which implies aa′ |⌣M
N .
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By Corollary 6.3, the elements a0, . . . , aM remain linearly independent over Kp ·N .
Thus, for all b in N ,

K |= ϕ(a, b)←→ ψ′(a, a′,m, b),

where

ψ′(x, x′, y′, y) = ∃z
(

zp
.
= q0(x

′p, y′, y) ∧
N
∧

i=1

qi(x
′p, y′, y)

.
= 0 ∧ ψ(x, y, z)

)

.

By the previous claim, the δ-tame formula ψ′(x, x′; y′, y) is an equation, so

tp(a, a′/M) ⊢ tp+ψ′(a, a
′/N).

In order to show that
tp(a/M) ⊢ tp+

ϕ (a/N),

consider a realisation ã of tp(a/M) and an instance ϕ(x, b) in tp+ϕ (a/N). There
is a tuple ã′ such that aa′ ≡M ãã′. Since K |= ψ′(a, a′,m, b), we have K |=

ψ′(ã, ã′,m, b). Observe that there are ã0, . . . , ãN whith q(ã, y) =
N
∑

i=0

qi(ã
′p,m, y)·ãi,

so we have in particular that

q(ã, b) = q0(ã
′,m, b),

whence K |= ϕ(ã, b), as desired.
�

Together with Proposition 6.5, we conclude the following result:

Corollary 7.2. The theory DCFp of existentially closed differential fields is equa-
tional.

Similar to Corollary 5.3, there is a partial elimination of imaginaries for DCFp,
by Lemma 2.6 and Theorem 7.1. Unfortunately, we do not have either an explicit
description of the canonical parameters of instances of δ-tame formulae.

Corollary 7.3. The theory DCFp of differentially closed fields of positive charac-
teristic p has weak elimination of imaginaries, after adding canonical parameters
for all instances of δ-tame formulae.

Digression: On Srour’s proof of the equationality of DCFp.

Definition 7.4 (Srour [18]). An S-Formula ϕ is a conjunction of Lδ,s-equations
such that, for every subterm s(r) of a term occurring in ϕ, the equation δ(r)

.
= 0

belongs to ϕ.

Srour’s proof first shows that every formula is equivalent in DCFpto a Boolean
combination of S-formulae. This follows from Proposition 6.5, as the next Lemma
shows.

Lemma 7.5. Every tame δ-formula is equivalent to an S-formula, and conversely.

Proof. For every Lδ,s-formula ψ(x, z) and every polynomial q(x), observe that

DCFp ⊢ ∃z
(

zp
.
= q(x) ∧ ψ

(

x, z
)

)

←→
(

δ(q)
.
= 0 ∧ ψ

(

x, s(q(x))
)

)

.

�
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In order to show that S-formulae ϕ(x; y) are equations, Srour uses the fact that,
whenever A and B are elementary submodels of a model K of DCFp which are
linearly disjoint over their intersection M , then for every a ∈ A and any S-formula
ϕ(x; y),

tp(a/M) ⊢ tp+
ϕ (a/B).

In order to do so, he observes that S-formulae are preserved under differential ring
homomorphisms, as well as a striking result of Shelah (see the the proof of [16,
Theorem 9]): the ring generated by A and B is differentially perfect, that is, it is
closed under s. We would like to present a slightly simpler proof of Shelah’s result.

Lemma 7.6. (Shelah’s Lemma [16, Theorem 9]) Let M be a common differential
subfield of the the two differential fields A and B and R = A ⊗M B. If M is
existentially closed in B, then the ring of constants of R is generated by CA and
CB.

In particular, in characteristic p, the ring R is differentially perfect, whenever both
A and B are.

Proof. Claim 1. The differential field A is existentially closed in R. In particular
R is an integral domain.

Proof of Claim 1. Suppose R |= ρ(a, r), for some quantifier-free δ-formula ρ(x, y),
and tuples a in A and r in R. Rewriting ρ, we may assume that r = b and a occurs
linearly in ρ and is an enumeration of a basis of A over M . In particular, there is
a quantifier-free formula ρ′(y) such that for all b ∈ B

R |= ∀y
(

ρ(a, b)←→ ρ′(b)
)

.

Since M is existentially closed in B, and the validity of quantifier-free formulae is
preserved under substructures, we conclude that there is some a′ in M satisfying
ρ′(y) and thus ρ(a, a′) holds in R, and hence in A.

� Claim 1

Let K be the quotient field of R.

Claim 2. The ring of constants of the ring R′ generated by A and CB is generated
by CA and CB.

Proof of Claim 2. Let (ai) be a basis of A over CA, with a0 = 1. Every x in R′ can
be written as

∑

i ai · ci, for some ci in the ring generated by CA and CB. By Fact
3.5, the ai’s are independent over CK . If x is a constant in R′ ⊂ K, then x = c0.
� Claim 2

Fix now a basis (ai)i∈I of A over M and let x =
∑

i∈I ai · bi be a constant in R.

Claim 3. All δ(bj) are in the M -span of {bi | i ∈ I}.

Proof of Claim 3. Write δ(aj) =
∑

i∈I mj,iai for mj,i ∈ M . Since 0 = δ(x), we
have

0 =
∑

i

ai · δ(bi) +
∑

j

(
∑

i

mj,iai) · bj =
∑

i

ai · δ(bi) +
∑

i

ai · (
∑

j

mi,jbj),

whence δ(bi) = −
∑

jmj,ibi. � Claim 3

Claim 4. All bi’s lie in the ring generated by M and CB.
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Proof of Claim 4. Let b ∈ Bn be the column vector of the non-zero elements of
{bi | i ∈ I}. By the last claim, there is an n × n-matrix H with coefficients in
M with δ(b) = H · b. Let u1, . . . , um be a maximal linearly independent system
of solutions of δ(y) = H · y in Mn. Consider the n × m-matrix U with columns
u1, . . . , um. Since M is existentially closed in B, the column vectors u1, . . . um, b
must be linearly dependent, so b = U · z for some vector z in Bm. It follows that

H · b = δ(b) = δ(U) · z + U · δ(z) = H · U · z + U · δ(z) = H · b+ U · δ(z),

whence δ(z) = 0. � Claim 4

In particular, the constant x lies in the ring R′ from Claim 2, so x is in the ring
generated by CA and CB. �

Interlude: An alternative proof of the equationality of SCFp,∞. As a by-
product of Theorem 7.1, we obtain a different proof of the equationality of SCFp,∞:
We will show that every λ-tame formula is an equation, since it is equivalent in a
particular model of SCFp,∞, namely a differentially closed field of characteristic p,
to a δ-tame formula. A similar method will appear again in Corollary 9.10.

Proposition 7.7. Every λ-tame formula is equivalent in DCFp to a δ-tame for-
mula.

Proof. Work inside a model (K, δ) of DCFp. The proof goes by induction on the
degree of the λ-tame formula ϕ(x). If ϕ is a polynomial equation, there is nothing to
prove. Since the result follows for conjunctions, we need only consider the particular
case when ϕ is of the form:

ϕ(x) = p -Depn(q1, . . . , qn) ∨ (λ(q0, . . . , qn)↓ ∧ψ(x, λ(q0, . . . , qn))),

for some λ-tame formula ψ(x, z1, . . . , zn) of strictly smaller degree and polynomials
q0, . . . , qn in Z[x].
Let W(x) = W(q1, . . . , qn) be the Wronskian of q1, . . . , qn, that is, the determinant
of the matrix

A(x) =











q1 q2 . . . qn
δ(q1) δ(q2) . . . δ(qn)

...
...

δn−1(q1) δn−1(q2) . . . δn−1(qn)











.

and B(x) be the adjoint matrix of A(x). Set

D(x) =











q0
δ(q0)

...
δn−1(q0)











.

Since K is differentially perfect, the elements q1(x), . . . , qn(x) are linearly indepen-
dent over Kp if and only if W(x) 6= 0. In that case, the functions λ(q0, . . . , qn)

are defined if and only if every coordinate of the vector W(x)−1 · B(x) · D(x) is a
constant, in which case we have

λ(q0, . . . , qn)
p = W(x)

−1 · B(x) ·D(x),
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or equivalently,

(W(x) · λ(q0, . . . , qn))
p = W(x)p−1 · B(x) ·D(x)

By induction, the formula ψ(x, z1, . . . , zn) is equivalent to a δ-tame formula ψδ.
Homogenising with respecto to z0, z1, . . . , zn, as in Proposition 6.6, there is a δ-
tame formula ψ′

δ(x, z0, z1, . . . , zn) equivalent to

ψδ(x,
z1
z0
, . . . ,

zn
z0

) ∨ z0
.
= 0

Therefore, if z = (z1, · · · , zn), then

K |=
(

ϕ(x)←→ ∃z
(

zp
.
= W(x)p−1 ·B(x) ·D(x) ∧ ψ′

δ(x,W(x), z)
)

)

.

The right-hand side is a δ-tame formula, as desired. �

By Propositions 4.6 and 7.7, and Theorem 7.1, we obtain a different proof of
Corollary 5.2:

Corollary 7.8. The theory SCFp,∞ of separably closed fields of characteristic p > 0
and infinite imperfection degree is equational.

8. Model Theory of Pairs

The last theory of fields we will consider in this work is the (incomplete) theory
ACFP of proper pairs of algebraically closed fields. Most of the results mentioned
here appear in [8, 14, 1].

Work inside a sufficiently saturated model (K,E) of ACFP in the language LP =
Lrings ∪ {P}, where E = P (K) is the proper subfield. We will use the index P to
refer to the expansion ACFP.
A subfield A of K is tame if A is algebraically independent from E over EA = E∩A,
that is,

A
ACF

|⌣
EA

E.

Tameness was called P -independence in [1], but in order to avoid a possible confu-
sion, we have decided to use a different terminology.

Fact 8.1. The completions of the theory ACFP of proper pairs of algebraically
closed fields are obtained once the characteristic is fixed. Each of these completions
is ω-stable of Morley rank ω. The LP -type of a tame subfield of K is uniquely
determined by its LP -quantifier-free type.
Every subfield of E is automatically tame, so the induced structure on E agrees
with the field structure. The subfield E is a pure algebraically closed field and has
Morley rank 1.
If A is a tame subfield, then its LP -definable closure coincides with the inseparable
closure of A and its LP -algebraic closure is the field algebraic closure acl(A) of A,
and EaclP (A) = acl(EA).

Based on the above fact, Delon [3] considered the following expansion of the
language LP :

LD = LP ∪ {Depn, λ
i
n}1≤i≤n∈N,
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where the relation Depn is defined as follows:

K |= Depn(a1, . . . , an)⇐⇒ a1, . . . , an are E-linearly independent,

and the λ-functions take values in E and are defined by the equation

a0 =

n
∑

i=1

λin(a0, a1 . . . , an) ai,

if K |= Depn(a1, . . . , an) ∧ ¬Depn+1(a0, a1, . . . , an), and are 0 otherwise. Clearly,
a field A is closed under the λ-functions if and only if it is linearly disjoint from
E over EA, that is, if it is P -special, as in Definition 3.1. Note that the fraction
field of an LD-substructure is again closed under λ-functions and thus it is tame.
The theory ACFP has therefore quantifier elimination [3] in the language LD. Note
that the formula P (x) is equivalent to Dep2(1, x). Likewise, the predicate Depn is
is equivalent to λ1n(a1, a1 . . . , an) = 1.

Since the definable closure of a set is P -special, we conclude the following result
by Lemma 3.2.

Corollary 8.2. Given two subfields A and B of K containing an Lp-elementary

substructure M of K such that A |⌣
P

M
B, then the fields E ·A and E ·B are linearly

disjoint over E ·M .

Our candidates for the equations in the theory ACFP will be called tame formu-
lae.

Definition 8.3. Let x be a tuple of variables. A formula ϕ(x) in the language LP
is tame if there are polynomials q1, . . . , qm in Z[X,Z], homogeneous in the variables
Z, such that

ϕ(x) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

j≤m

qj(x, ζ)
.
= 0

)

.

Lemma 8.4. Let q1, . . . , qm ∈ Z[X,Y, Z] be polynomials, homogeneous in the vari-
ables Y and Z separately. The LP -formula

∃ υ ∈ P r ∃ζ ∈ P s
(

¬υ
.
= 0 ∧ ¬ζ

.
= 0 ∧

∧

k≤m

qk(x, υ, ζ)
.
= 0

)

is equivalent in ACFP to a tame formula.

Proof. With the notation ξ∗,j = ξ1,j , . . . , ξr,j and ξi,∗ = ξi,1, . . . , ξi,s, the previous
formula is equivalent in ACFP to the tame formula

∃(ξ1,1, . . . , ξrs) ∈ P
r,s \ 0

r,s,m
∧

i,j,k=1

qk(x, ξ∗,j , ξi,∗)
.
= 0.

�

Corollary 8.5. The collection of tame formulae is closed under conjunctions and
disjunctions.

In order to prove that tame formulae determine the type in ACFP, we need a
short observation regarding the E-annihilator of a (possibly infinite) tuple. Fix
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some enumeration (Mi(x1, . . . , xs))i=1,2,... of all monomials in s variables. Given a
tuple a of length s, denote

Annn(a) =

{

(λ1, . . . , λn) ∈ E
n

∣

∣

∣

∣

n
∑

i=1

λi ·Mi(a) = 0

}

.

Notation. If we denote by x · y the scalar multiplication of two tuples x and y of
length n, that is

x · y =

n
∑

i=1

xi · yi,

then

Annn(a) = {λ ∈ E
n | λ · (M1(a), . . . ,Mn(a)) = 0}.

Lemma 8.6. Two tuples a and b of K have the same type if and only if

ldimE Annn(a) = ldimE Annn(b)

and the type tp(Pk(Annn(a))) equals tp(Pk(Annn(a))) (in the pure field language),
for every n in N.

Proof. We need only prove the right-to-left implication. Since Pk(Anni(a)) is de-
termined by Pk(Annn(a)), for i ≤ n, we obtain an automorphism of E mapping
Pk(Annn(a)) to Pk(Annn(b)) for all n. This automorphism maps Annn(a) to
Annn(b) for all n and hence extends to an isomorphism of the rings E[a] and
E[b]. It clearly extends to a field isomorphism of the tame subfields E(a) and E(b)
of K, which in turn can be extended to an automorphism of (K,E). So a and b
have the same ACFP-type, as required. �

Proposition 8.7. Two tuples a and b of K have the same ACFP-type if and only
if they satisfy the same tame formulae.

Proof. Let q1(Z), . . . , qm(Z) be homogeneous polynomials over Z. By Lemma 8.6,
it suffices to show that

« Annn(x) has a k-dimensional subspace V such that
∧

j≤m qj(Pk(V )) = 0 »

is expressible by a tame formula. Indeed, it suffices to guarantee that there is an
element ζ in Grk(E

n) such that

(e y ζ) · (M1(x), . . . ,Mn(x)) = 0

for all e from a a fixed basis of
∧k−1

(En)∗, and
∧

j≤m

qj(ζ) = 0.

In particular, the tuple ζ is not trivial, so we conclude that the above is a tame
formula. �

By compactness, we conclude the following:

Corollary 8.8. In the (incomplete) theory ACFP of proper pairs of algebraically
closed fields, every formula is a Boolean combination of tame formulae.
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9. Equationality of belles paires of algebraically closed fields

In order to show that the stable theory ACFP of proper pairs of algebraically
closed fields is equational, we need only consider tame formulae with respect to some
partition of the variables, by Corollary 8.8. As before, work inside a sufficiently
saturated model (K,E) of ACFP in the language LP = Lrings ∪ {P}, where E =
P (K) is the proper subfield.
Consider the following special case as an auxiliary result.

Lemma 9.1. Let ϕ(x; y) be a tame formula. The formula

ϕ(x; y) ∧ x ∈ P

is an equation.

Proof. Let b be a tuple in K of length |y|, and suppose that the formula ϕ(x, b) has
the form

ϕ(x, b) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

j≤m

qj(x, b, ζ)
.
= 0

)

.

for some polynomials q1, . . . , qm with integer coefficients and homogeneous in ζ.
Express each of the monomials in b appearing in the above equation as a linear
combination of a basis of K over E. We see that there are polynomials r1, . . . , rs
with coefficients in E, homogeneous in ζ, such that the formula ϕ(x, b) ∧ x ∈ P is
equivalent to

∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

j≤s

rj(x, ζ)
.
= 0

)

.

Working inside the algebraically closed subfield E, the expression inside the brackets
is a projective variety, which is hence complete. By Remark 3.7, its projection is
again Zariski-closed, as desired. �

Proposition 9.2. Let ϕ(x; y) be a tame formula. The formula ϕ(x; y) is an equa-
tion.

Proof. We need only show that every instance ϕ(a, y) of a tame formula is indis-
cernibly closed. By Lemma 2.3, it suffices to consider a Morley sequence (bi)i≤ω
over an elementary substructure M of (K,E) with

a
P

|⌣
M

bi with |= ϕ(a, bi) for i < ω.

Suppose that the formula ϕ(a, y) has the form

ϕ(a, y) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

j≤m

qj(a, y, ζ)
.
= 0

)

,

for polynomials q1, . . . , qn with integer coefficients and homogeneous in ζ.
By Corollary 8.2, the fields E ·M(a) and E ·M(bi) are linearly disjoint over E(M) for
every i < ω. A basis (cν) of E ·M(a) over E ·M remains thus linearly independent
over E ·M(bi). By appropriately writing each monomial in a in terms of the basis
(cν), and after multiplication with a common denominator, we have that

ϕ(a, y) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

ν

rν(e,m, y, ζ) · cν
.
= 0

)

,
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where e a tuple fromE andm is a tuple fromM , and the polynomials rν(X,Y
′, Y, Z)

are homogeneous in Z. Hence, linearly disjointness implies that

K |= ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

ν

rν(e,m, bi, ζ)
.
= 0

)

for i < ω.

By Lemma 9.1, the formula

ϕ′(e, y′, y) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

ν

rν(e, y
′, y, ζ)

.
= 0

)

is indiscernibly closed. Since the sequence (m, bi)i≤ω is indiscernible, we have K |=
ϕ′(e,m, bω), so K |= ϕ(a, bω), as desired.

�

Corollary 8.8 and Proposition 9.2 yield now the equationality of ACFP.

Theorem 9.3. The theory of proper pairs of algebraically closed fields of a fixed
characteristic is equational.

Encore! An alternative proof of equationality for pairs in characteristic

0. We will exhibit an alternative proof to the equationality of the theory Tp of
belles paires of algebraically closed fields in characteristic 0, by means of differential
algebra, based on an idea of Günaydın [5].

Definition 9.4. Consider an arbitrary field K with a subfield E. A subspace of
the vector space Kn is E-defined if it is generated by vectors from En.
Since the intersection of two E-defined subspaces is again E-defined, every subset
A of K is contained in a smallest E-defined subspace AE , which we call the E-hull
of A.

Notation. We write vE to denote {v}E. Clearly AE is the sum of all vE for v in
A. The E-hull vE can be computed as follows: Fix a basis (cν | ν ∈ N) of K over E
and write v =

∑

ν∈N cνeν for vectors eν ∈ En. Then {eν | ν ∈ N} is a generating

set of vE .

Similarly, every subset A of the ring of polynomials K[X1, . . . , Xn] has an E-hull
AE , that is, the smallest E-defined subspace of K[X1, . . . , Xn].

Lemma 9.5. Let I be an ideal of K[X1, . . . , Xn]. Then IE is the smallest ideal
containing I and generated by elements of E[X1, . . . , Xn].

Proof. An ideal J generated by the polynomials fi in E[X1, . . . , Xn] is generated,
as a vector space, by the products Xjfi. Conversely, for each variable Xj , the
vector space {f | Xjf ∈ IE} is E-defined and contains I. Thus it contains IE , so
IE is an ideal. �

If the ideal I is generated by polynomials fi, then the union of all fEi generates the
ideal IE . Note also that, if I is homogeneous, i.e. it is the sum of all

Id = {f ∈ I | h homogeneous of degree d},

then so is IE , with (IE)d = (Id)
E .
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From now on, consider a sufficiently saturated algebraically closed differential
field (K, δ), equipped with a non-trivial derivation δ. Denote its field of constants
CK by E. For example, we may choose (K, δ) to be a saturated model of DCF0,
the elementary theory of differential closed fields of characteristic zero.
Observe that the pair (K,E) is a model of the theory ACFP0 of proper extensions
of algebraically closed fields in characteristic 0. In order to show that this theory
is equational, it suffices to show, by Proposition 8.7, that every instance of a tame
formula determines a Kolchin-closed set in (K, δ). We first need some auxiliary
lemmata on the differential ideal associated to a system of polynomial equations.

Lemma 9.6. Let v be a vector in Kn. Then the E-hull of v is generated by
v, δ(v), . . . , δn−1(v).

Proof. Any E-defined subspace is clearly closed under δ. Thus, we need only show
the the subspace V generated by v, δ(v), . . . , δn−1(v) is E-defined. Let k ≤ n be
minimal such that v can be written as

v = a1e1 + · · ·+ akek

for some elements ai in K and vectors ei in En. Thus, the ei’s are linearly inde-
pendent and generate vE . Hence V ⊂ vE . If the dimension of V is strictly smaller
than k, then v, δ(v), . . . , δk−1(v) are linearly dependent over K. The rows of the
matrix











a1 a2 . . . ak
δ(a1) δ(a2) . . . δ(ak)

...
...

δk−1(a1) δk−1(a2) . . . δk−1(ak)











are thus linearly dependent over K. It follows from Fact 3.5 that a1, . . . , ak are
linearly dependent over E. So there are ξi in E, not all zero, such that ξ1a1+ · · ·+
ξkak = 0. The vector space

{

k
∑

i=1

biei

∣

∣

∣

k
∑

i=1

ξibi = 0
}

,

which contains v, has a basis from En and dimension strictly smaller than k, con-
tradicting the choice of the ei’s. �

In order to apply the previous result, consider the derivationD on the polynomial
ring K [X1, . . . , Xn] obtained by differentiating the coefficients of a polynomial in
K (and setting D(Xi) = 0, for 1 ≤ i ≤ n). We say that an ideal I of K [X1, . . . , Xn]
is differential if it is closed under D.

Corollary 9.7. An ideal of K [X ] is differential if and only if it can be generated
by elements from E [X ].

Corollary 9.8. Given homogeneous polynomials h0, . . . , hm in K [X ] of a fixed
degree d, there exists an integer k in N (bounded only in terms of d and the length of
X) such that the ideal generated by {Dj(hi)}i≤m

j<k

is a differential and homogeneous

ideal.

We now have all the ingredients in order to show that tame formulae are equa-
tions.
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Proposition 9.9. Let ϕ(x, y) be a tame formula. The definable set ϕ(x, b) is
Kolchin-closed set in (K, δ).

Proof. Suppose that

ϕ(x, b) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

i≤m

qi(x, ζ)
.
= 0

)

,

for polynomials qj(X,Z) over K homogeneous in Z of some fixed degree d. Let k
be as in Corollary 9.8.
For a tuple a in K of length |x|, write

Dj(qi(a, Z)) = qi,j(a, . . . , δ
j(a), Z),

for polynomials qi,j(X0, . . . , Xk, Z) over K, homogeneous in Z. By Corollary 9.8,
the ideal I(a, Z) generated by

{qi,j(a, . . . , δ
j(a), Z)}i<m

j<k

has a generating set consisting of homogeneous polynomials

g1(Z), . . . , gs(Z)

with coefficients in E [Z].
Now, since ζ ranges over the constant field, the tuple a realises ϕ(x, b) if and

only if

(K,E) |= ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧ I(a, ζ)

.
= 0

)

,

which is equivalent to

(K,E) |= ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

i≤s

gi(ζ)
.
= 0

)

,

The field E is an elementary substructure of K, so the above is equivalent to

K |= ∃ ζ

(

¬ζ
.
= 0 ∧

∧

i<s

gi(ζ)
.
= 0

)

,

which is again equivalent to

K |= ∃ ζ

(

¬ζ
.
= 0 ∧ I(a, ζ)

.
= 0

)

.

Since I(a, Z) is homogeneous, the Zariski-closed set it determines is complete, hence
its projection is given by a finite number of equations X(a, . . . , δk−1(a)). Thus, the
tuple a realises ϕ(x, b) holds if and only if

(K, δ) |= X(a, . . . , δk−1(a)),

which clearly describe a Kolchin-closed set, as desired. �

By Corollary 8.8, we conclude the following:

Corollary 9.10. The theory ACFP0 of proper pairs of algebraically closed fields of
characteristic 0 is equational.
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A definable set {a ∈ Kn | (K,E) |= ϕ(a, b)} is t-tame, if ϕ is tame, for some b a
tuple in K.

Corollary 9.11. In models of ACFP0, the family of t-tame sets has the DCC.

Proof. The Kolchin topology is noetherian, by Ritt-Raudenbush’s Theorem. �

Question. Do t-tame sets have the DCC in arbitrary characteristic?

10. Appendix: Linear Formulae

A stronger relative quantifier elimination was provided in [5, Theorem 1.1], ,
which yields a nicer description of the equations to consider in the theory ACFP0.
We will provide an alternative approach to Günaydın’s result, valid in arbitrary
characteristic. We work inside a sufficiently saturated model (K,E) of ACFP.

A tame formula ϕ(x) (cf. Definition 8.3) is linear if the corresponding polyno-
mials in ϕ are linear in Z, that is, if there is a matrix (qi,j(X)) of polynomials with
integer coefficients such that

ϕ(x) = ∃ζ ∈ P s



¬ζ
.
= 0 ∧

k
∧

j=1

ζ1q1,j(x) + · · ·+ ζsqs,j(x)
.
= 0



 .

A linear formula is simple if k = 1, that is, if it has the form

Deps(q1(x), . . . , qs(x)),

for polynomials qi in Z[X1, . . . , Xn].
We will show that every tame formula is equivalent in ACFP to a conjunction of

simple linear formulae. We first start with an easy observation.

Lemma 10.1. Every tame formula is equivalent in ACFP to a linear tame formula.

Proof. Consider a tame formula

ϕ(x) = ∃ ζ ∈ P r
(

¬ζ
.
= 0 ∧

∧

j≤m

qj(x, ζ)
.
= 0

)

.

Denote by Z the tuple of variables (Z1, . . . , Zlength(ζ)). For a tuple a in K of length
|x|, denote by I(a, Z) the ideal in K[Z] generated by q1(a, Z), . . . qm(a, Z). Recall
the definition of the E-hull I(a, Z)E of I(a, Z) (Definition 9.4). Since I(a, Z) ⊂
I(a, Z)E , a zero of I(a, Z)E is a zero of I(a, Z). A relative converse holds: If the
tuple ζ in Er is a zero of the ideal I(a, Z), then I(a, Z) is contained in the ideal
generated by all Zi − ζi’s, which is E-defined, so ζ is a zero of I(a, Z)E . As in the
proof of Proposition 9.9, we conclude that (K,E) |= ϕ(a) if an only if IE(a, Z) has
a non-trivial zero in Kr.
The ideal I(a, Z)E is generated by polynomials from qj(a, Z)

E . In particular, there
is a degree d, independent from a, such that IE(a, Z) has a non-trivial zero if and
only if the E-hull (I(a, Z)E)d of I(a, Z)d is not all of K[Z]d. As a vector space, the
ideal I(a, Z)d is generated by all products M · qj(a, Z), with M a monomial in Z
such that deg(M) + degZ(qj(X,Z)) = d. Given an enumeration M1, . . . ,Ms of all
monomials in Z of degree d, the vector space I(a, Z)d is generated by a sequence
of polynomials f1, . . . , fk of the form

fj =M1r1,j(a) + · · ·+Msrs,j(a),
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for polynomials ri,j(X) ∈ Z[X ] which do not depend of a. Thus, the tuple a
realises ϕ(x) if and only if (I(a, Z)E)d 6= K[Z]d, that is, if and only if there is a
tuple ξ ∈ Es \ 0 such that ξ1r1,j(a) + · · · + ξsrs,j(a) = 0 for all j = 1, . . . , k. The
latter is expressible by a linear formula. �

In order to show that every tame formula is equivalent to a conjunction of simple
linear formulae, we need the following result:

Proposition 10.2. For all natural numbers m and n, there is a natural number
N and an n× N -matrix (rj,k) of polynomials from Z[x1,1, . . . , xm,n] such that the
linear formula

∃ ζ ∈ P r



¬ζ
.
= 0 ∧

n
∧

j=1

ζ1x1,j + · · ·+ ζmxm,j
.
= 0



 . (1)

is equivalent in ACFP to the conjunction of
∧

j1<···<jm

det((xi,ji′ ))
.
= 0 (2)

and

N
∧

k=1

Depm
(

n
∑

j=1

x1,jrj,k(x̄), . . . ,

n
∑

j=1

xm,jrj,k(x̄)
)

. (3)

Proof. The implication (1) ⇒ ((2) ∧ (3)) always holds, regardless of the choice of
the polynomials rj,k: Whenever a matrix A = (ai,k) over K is such that there is a
non-trivial vector ζ in Em with

n
∧

j=1

m
∑

i=1

ζiai,j = 0,

then the rows of A are linearly dependent, so det((ai,ji′ )) = 0 for all j1 < · · · < jm.
For all k, we have that

m
∑

i=1

ζi
(

n
∑

j=1

ai,jrj,k(ā)
)

=

n
∑

j=1

(

m
∑

i=1

ζiai,j
)

rj,k(ā) = 0.

For the converse, an easy compactness argument yields the existence of the poly-
nomials rj,k, once we show that (1) follows from (2) together with the infinite
conjunction

∧

r1,...rn∈Z[x̄]

Depm
(

n
∑

j=1

x1,jrj(x̄), . . . ,

n
∑

j=1

xm,jrj(x̄)
)

. (4)

Hence, let A = (ai,k) be a matrix over K witnessing (2) and (4). The rows of A
are K-linearly dependent, by (2). If the matrix were defined over E, its rows would
then be E-linearly dependent, which yields (1). Thus, if we R is the subring of K
generated by the entries of A, we may assume that the ring extension E ⊂ E[R] is
proper.

Claim 1. There is a non-zero element r in R which is not a unit in E[R].

Proof of Claim 1. The field E(R) has transcendence degree τ ≥ 1 over E. As
in the proof of Noether’s Normalisation Theorem [9, Theorem X 4.1], there is a
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transcendence basis r1, . . . , rτ of R over E, such that E[R] is an integral extension
of E[r1, . . . , rτ ]. If r1 were a unit in E[R], its inverse would u be a root of a
polynomial with coefficients in E[r1, . . . , rτ ] and leading coefficient 1. Multiplying
by a suitable power of r1, we obtain a non-trivial polynomial relation among the
r′js, which is a contradiction. � Claim 1

Claim 2. Given a sequence V1, . . . Vn of finite dimensional E-subvector spaces
of E[R], there is a sequence z1, . . . , zn of non-zero elements of R such that the
subspaces V1z1, . . . , Vnzn are independent.

Proof of Claim 2. Assume that z1, . . . , zk−1 have been already constructed. Let
z be as in Claim 1. If we consider the sequence of ideals zkE[R], an easy case
of Krull’s Intersection Theorem ([9, Theorem VI 7.6]) applied to the noetherian
integral domain E[R] yields that

0 =
⋂

k∈N

zkE[R].

Choose some natural number Nk large enough such that

(V1z1 + · · ·+ Vk−1zk−1) ∩ z
NkE[R] = 0,

and set zk = zNk . � Claim 2

Let us now prove that the matrix A satisfies (1). Let Vj be the E-vector space
generated by a1,j, . . . , am,j, that is, by the j-th column of A. Choose 0 6= zj in R
as in Claim 2, and write each zj = rj(ā), for some polynomial rj(x̄) with integer
coefficients. Since A satisfies (4), there is a non-trivial tuple ζ in Em such that

m
∑

i=1

ζi
(

n
∑

j=1

ai,jzj
)

=
n
∑

j=1

(

m
∑

i=1

ζiai,j
)

zj = 0.

Observe that
(
∑m
i=1 ζiai,j

)

zj belongs to Vjzj. The subspaces Viz1, . . . , Vnzn are

independent, so each
(
∑m
i=1 ζiai,j

)

zj must equal 0. Therefore so is

m
∑

i=1

ζiai,j = 0,

as desired. �

Question. Can the integer N and the polynomials ri,j in Proposition 10.2 be
explicitly computed?

Theorem 10.3. Every tame formula is equivalent in ACFP to a conjunction of
simple linear formulae.

Proof. By Lemma 10.1, it suffices to show that every linear formula is is equivalent
in ACFP to a conjunction of simple linear formulae. This follows immediately
from Proposition 10.2, once we remark that the polynomial equation q(x)

.
= 0 is

equivalent in ACFP to the simple linear formula Dep1(q(x)). �

Together with Corollary 8.8, we deduce another proof of [5, Theorem 1.1], valid
in all characteristics:

Corollary 10.4. In the theory ACFP of proper pairs of algebraically closed field,
every formula is equivalent in to a boolean combination of simple tame formulae.
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In particular, we obtain another proof of the equationality of ACFP in characteristic
0, for every simple linear formula is an equation in a differential field: Indeed, the
formula Deps(x1, . . . , xs) is equivalent to the differential equation W(x1, . . . , xs)

.
=

0.
Corollary 10.4 implies, together with Corollary 8.5, that a finite conjunction of

linear formulae is again linear. However, we do not think that the same holds for
simple linear formulae.
A key point in the proof of [5, Theorem 1.1] is the fact that each LD-function λin
defines, on its domain, a continuous function with respect to the topology generated
by instances of simple linear formulae [5, Proposition 2.6]. We will conclude with
an easy proof that all functions λin × id× · · · × id are continuous with respect to
this topology. For this, we need an auxiliary definition (cf. Definition 4.4):

Definition 10.5. The collection of λP -formulae is the smallest collection of formu-
lae in the language LD, closed under conjunctions and containing all polynomial
equations, such that, for any natural number n and polynomials q0, . . . , qn in Z[x],
given a λP -formula ψ(x, z1, . . . , zn), the formula

ϕ(x) = Depn(q1(x), . . . , qn(x)) ∨
(

λ(q0(x), . . . , qn(x))↓ ∧ ψ(x, λn(q0(x), . . . , qn(x)))
)

is λP -tame, where λ(y0, . . . , yn)↓ is an abbreviation for

¬Depn(y1, . . . , yn) ∧Depn+1(y0, . . . , yn).

Proposition 10.6. Up to equivalence in ACFP, tame formulae and λP -formulae
coincide.

Proof. Notice that every simple linear formula is λP -tame, since

Depn(y1, . . . , yn) ⇔ Depn(y1, . . . , yn) ∨
(

λ(0, y1, . . . , yn)↓ ∧ (1
.
= 0)

)

.

By Theorem 10.3, we conclude that all tame formulae are λP -tame.
We prove the other inclusion by induction on the degree of the λP -formula ϕ(x).
Polynomial equations are clearly tame. By Corollary 8.5, the conjunction of tame
formulae is again tame. Thus, we need only show that ϕ(x) is tame, whenever

ϕ(x) = Depn(q1, . . . , qn) ∨
(

λ(q0, . . . , qn)↓ ∧ ψ(x, λn(q0, . . . , qn))
)

,

for some tame formula ψ(x, z1, . . . , zn). Write

ψ(x, z) = ∃ζ ∈ P s
(

¬ζ
.
= 0 ∧

∧

k≤m

pk(x, z, ζ)
.
= 0

)

,

for some polynomials p1(x, z, u), . . . , pm(x, z, u) with integer coefficients and homo-
geneous in u.
Homogenising with respect to the variables z0, z1, . . . , zn, there is some natural
number N such that, for each k ≤ m,

pk(x, z
−1
0 z, u)zN0 = rk(x, z0, z, u),

where rk is homogeneous in (z0, z) and in u, separately. Thus,
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ACFP |=

(

ϕ(x)←→

(

∃(ζ0, ζ) ∈ P
n+1 ∃υ ∈ P s

(

¬(ζ0, ζ)
.
= 0 ∧ ¬υ

.
= 0

∧ ζ0q0(x) + · · ·+ ζnqn(x)
.
= 0 ∧

∧

k≤m

rk(x, ζ0, ζ, υ)
.
= 0

)

))

.

The right-hand expression is a tame formula, by Lemma 8.4, and so is ϕ, as desired.
�
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