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BASES FOR FUNCTIONS BEYOND THE FIRST
BAIRE CLASS

RAPHAEL CARROY AND BENJAMIN D. MILLER

ABSTRACT. We provide a finite basis for the class of Borel func-
tions that are not in the first Baire class, as well as the class of
Borel functions that are not o-continuous with closed witnesses.

INTRODUCTION

A topological space is analytic if it is a continuous image of a closed
subset of NN, A subset of a topological space is Borel if it is in the
o-algebra generated by open sets, F,, if it is a union of countably-many
closed sets, and Gy if it is an intersection of countably-many open sets.

Suppose that X and Y are topological spaces. Given a family I' of
subsets of X, a function ¢: X — Y is I'-measurable if p~(V) € T for
every open set V C Y. A function is Borel if it is Borel-measurable,
Baire class one if it is F,-measurable, and o-continuous with closed
witnesses if its domain is the union of countably-many closed sets on
which it is continuous. A result of Jayne-Rogers (see [JR82, Theorem
1]) ensures that a function from an analytic metric space to a separable
metric space has this property if and only if it is Gs-measurable.

A quasi-order on a set Z is a reflexive transitive binary relation <
on Z. Aset BC Zis a basis under < for Z ifVz € Zdbe B b < z.

A closed continuous embedding of ¢: X — Y into ¢': X' — Y’
consists of a pair of closed continuous embeddings 7x: X — X’ and
Ty : ¢(X) — ¢/(X’) such that ¢’ omy = my 0. Note that the existence
of such a pair depends not only on the graphs of the functions ¢ and
@', but on Y as well, since different choices of Y DO ¢(X) can lead to

different values of ¢(X). Here we establish the following results.

Theorem 1. There is a twenty-four-element basis under closed contin-
uous embeddability for the class of non-Baire-class-one Borel functions
between analytic metric spaces.
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Theorem 2. There is a twenty-seven-element basis under closed con-
tinuous embeddability for the class of non-o-continuous-with-closed-wit-
nesses Borel functions between analytic metric spaces.

In §Il we discuss the compactification NN of N<N underlying our
arguments, as well as the corresponding compactification NY of NN,
In 2 we discuss the endomorphisms of N<N underlying our argu-
ments. In §3, we provide a three-element basis for the class of Baire
measurable functions from NY to separable metric spaces. In § we
provide a three-element basis for the class of non-o-continuous-with-
closed-witnesses Baire-class-one functions from analytic metric spaces
to separable metric spaces. In §5 we provide an eight-element basis for
the class of all functions from NI\ N¥ to analytic metric spaces. And
in §6, we establish Theorems [I] and

1. A COMPACTIFICATION OF N=N

We use s ~ t to denote the concatenation of sequences s and t, and
we say that s is an initial segment of t, or s C ¢, if there exists s’ for
which t = s ~ /. Endow the set NSN = NN U {t ~ (c0) | t € N<I}
with the smallest topology with respect to which the sets of the form
{t} and N; = {c € NN | ¢ C ¢}, where t € N<N are clopen.

Proposition 1.1. The family B of sets of the form {t} and N;\ ({t}U
UKZ-MA(]-)), where i € N and t € NN, is a clopen basis for N=N,

Proof. Let 7 be the topology generated by B. As every set in B is
clearly clopen, it is sufficient to show that the sets {¢t} and N; are 7-
clopen for all t € N<N. As these sets are clearly 7-open, we need only
show that they are 7-closed. As N.(; is 7-closed in N, for all 1 € N
and t € N<N| a straightforward induction shows that A is 7-closed for
all t € NN, As {t} is 7-closed in A for all t € N<N | it follows that {¢}
is 7-closed for all t € N<N, X

Proposition 1.2. The space N=N is compact.

Proof. Suppose, towards a contradiction, that there is an open cover U
of N=N with no finite subcover.

Lemma 1.3. Suppose thatt € N<N and no finite set YV C U covers N.
Then there exists j € N such that no finite set V C U covers Ny.(;y.

Proof. Fix U € U containing t ~ (c0). Proposition [Tl then yields
i € N with My \ ({t} UU,.; Miniy) € U, in which case no finite set
V C U covers J,; Ni(j), and it follows that there exists j < i for
which no finite set V C U covers Ny(;). =



THE FIRST BAIRE CLASS 3

By recursively applying Lemma [[.3, we obtain b € N¥ such that for
no i € N is there a finite set V C U covering N,;. But Proposition [I]
implies that every open neighborhood of b contains some Nj;. X

Given a countable set I and a topological space X, we say that a
sequence (7;);e; € X converges to a point x € X, or x; — x, if for
every open neighborhood U of z there are only finitely many ¢ € I with
x; ¢ U. When [ and X are equipped with partial orders <; and <y,
we say that (x;);er is decreasing if i <; j = z; <x x; for alli,j € I.

Proposition 1.4. The space N=N has a compatible ultrametric.

Proof. Fix a decreasing sequence (€;)en<v of positive real numbers
converging to zero. Set d(a,a) = 0 for all @ € N3N as well as
d(a,b) = max{e; | t € {a | min(|al,i(a,d)),b | min(|b|,i(a,d))} N N<N}
for all distinct a,b € N=N| where i(a,b) = min{i € N|a [ i #b | i}.

To see that d is an ultrametric, suppose that a,b,c € N=N are
pairwise distinct. Observe that if i(a,c) < max{i(a,b),i(b,c)}, then
d(a,c) € {d(b,c),d(a,b)}, so d(a,c) < max{d(a,b),d(b,c)}. And if
i(a,c) = max{i(a,b),i(b,c)}, then setting i = i(a,b) = i(a,c) = i(b, c),
it follows that

d(a,c) = max{e; | t € {a [ i,c i} NN}
<max{e [t € {alib]icli} NN}
= max{d(a,b),d(b,c)}.

And if i(a,c) > max{i(a,b),i(b,c)}, then setting ¢ = d(a,b) = d(b,c)
and t = a [ i(a,b) = ¢ [ i(b,c), it follows that d(a,c) < ¢ < €, and
therefore d(a,c) < max{d(a,b),d(b,c)}.

As {t} = B(t,¢) and N; \ {t} = BN, \ {t},¢) for all t € NN and
NAEU 2 Niet3y) = BN {UU, o, Mooy, min(feg | < 1)
for all i € N and t € N<Y, Proposition [[.1] ensures that every open
subset of N=N is d-open.

Given b € N¥ and € > 0, fix i € N with e,; < €, set t = b | 4, and note
that \V; C B(b,e). Given t € NV and € > 0, fix i € N with ¢,y < €
for all j > i, and observe that N;\ ({t} UU;_; Ni~(j)) € B(t ~ (00), €).
Thus every d-open subset of NSV is open. X

It follows that N=N is Polish. As the space NI = N3N\ N<N 5 a
perfect subset of NSV a result of Brouwer’s ensures that it is homeo-

* Y

morphic to 2V (see, for example, [Kec95, Theorem 7.4]).
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2. MEET EMBEDDINGS

The meet of sequences s,t € N<N is the sequence r = sAt of maximal
length for which »r C s and » £ t. A A-embedding is an injection
7: NN — N<N guch that w(s At) = m(s) A m(t) for all s,t € N<N,

Proposition 2.1. Suppose that 7: NN — N<N_ Then 7 is a A-
embedding if and only if the following conditions hold:
(1) Vi e NVt € NN 7(t) © #n(t ~ (7).
(2) Vi,j € NVt € N<N
(t#j = 7t~ @)(x@)]) # 7@~ (7)) (= @)])).

Proof. Suppose first that 7 is a A-embedding. To see that condition (1)
holds, observe that if i € N and ¢ € N<N_ then 7 (t) = w(¢t) A7w(t ~ (7)),
so 7(t) C w(t ~ (7)), thus w(¢t) C m(t ~ (i)). And to see that condition
(2) holds, observe that if i,j € N are distinct and t € N<N| then
m(t) =m(t ~ @) Ax(t ~ (7)), som(t ~ ()(|7(@)]) # 7t ~ () (|7 (#)]).

Suppose now that 7 satisfies conditions (1) and (2). To see that
7 is a A-embedding, suppose that s, € N<N are distinct, and define
r = s A\t. By reversing the roles of s and t if necessary, we can assume
that |s| > |r|, so w(r) T =(s), thus either » = ¢ or (|t| > |r| and
w(s)(|7(r)]) # w(t)(|7(r)])). In both cases, it follows that 7(s) # 7 (¢)
and 7(r) = 7(s) A m(t). X

Remark 2.2. In particular, it follows that if 7: N<N — N<N has the
property that 7(t) ~ (i) E 7w(t ~ (7)) for all i € N and t € NN then 7
is a A-embedding.

There is a simple but useful means of amalgamating appropriately
indexed families of A-embeddings.

Proposition 2.3. Suppose that (7;);en<n s a sequence of A-embeddings
with the property that 7,(N<N) C N; for allt € N<N. Then the function
7 NN — N<N given by n(t) = (I Tz men)(2) is also a A-embedding.

Proof. Note that if i € N and ¢t € NN, then t ~ (1) T mi) (¢t ~ (4)),
so Proposition 211 ensures that ([T, mm)(t ~ (i) E 7(t ~ (4)),
thus 7(t) T ([T,<jq mea)(t ~ (4)) E w(t ~ (). It also implies that if
i # j, then (TL, < mm)(E ~ (D)7 (@)]) # (TTucpy mern) (& ~ () (7 (E)]),
so w(t ~ (0))(|7(t)]) # w(t ~ (4))(|=(t)]). One last application of
Proposition [2.1] therefore ensures that 7 is a A-embedding. X

We next consider the connection between A-embeddings and closed
continuous embeddings.
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Proposition 2.4. Every A-embedding m: NN — N<N has a unique
extension to a (necessarily injective) continuous map 7: NN — N=N,
given by T(b) = U;ey (b [4) and 7(t ~ (00)) = 7(t) ~ (oc0) for all
be NY and t € N<N,

Proof. Suppose that 7: NN — N=N i5 a continuous extension of 7. If
be NN then b | i — b, and since (7(b | 4))sen is strictly increasing by
Proposition 211 it follows that 7(b) = (J,cy (b [ 4). If t € N<N, then
t ~ (i) =t ~ (00), and since w(t) = w(t ~ (i)) A7(t ~ (j)) for all
distinct 7, 7 € N, it follows that 7(t ~ (c0)) = 7(t) ~ (00).

To see that these constraints actually define a continuous function,
note that if ¢ € N<N| then either 771(N;) = 0 or there exists s € N<N
of minimal length with ¢ C 7(s), in which case 7 1(N;) = N,.

To see that 7 is injective, it is enough to check that its restriction to
NN is injective. Towards this end, suppose that a,b € N are distinct,
fix ¢ € N least for which a(i) # b(i), set t = a [ i = b [ 4, and observe
that m(t ~ (a(2)))(|x(t)]) # (¢t ~ (b(0)))(|7(£)|) by Proposition 2.}
thus 7(a) and 7(b) are distinct. X

Remark 2.5. It follows that the extension associated with the com-
position of two A-embeddings is the composition of their extensions.

Given a function ¢: X — Y and sets X’ C X and Y’ D ¢(X'), let
¢ | X' = Y’ denote the function ¢: X’ — Y’ given by ¢(z) = ¢(z) for
all z € X’. Compactness ensures that if 7 is a A-embedding, then 7 and

7 | N are closed continuous embeddings. The following observations
show that so too are 7 [ NN — NN and 7 [ NIV \ NV — NI\ NV,

Proposition 2.6. Suppose that m: NN — N<N s a A-embedding.
Then 7 | NN — NN s closed.

Proof. 1t is sufficient to show that every sequence (b, ),en of elements of
NY for which (7(b,,))nen converges to an element of NV is itself conver-
gent to an element of NN, As (7(b,) | i)nen is eventually constant for
all i € N, a simple induction shows that (b, [ 7),en is also eventually
constant for all i € N, 80 (b, )nen converges to an element of NV, X

Proposition 2.7. Suppose that m: NN — N<N 45 g A-embedding.
Then 7 | NI\ NN — NIV\ NN s closed.

Proof. 1t is sufficient to show that every sequence (s, ),en of elements
of N<N such that (7(s,))nen converges to t ~ (co) for some t € N<N
has a subsequence converging to an element of NI \ N¥. By passing to
a subsequence, we can assume that 7(s,,) A 7(s,) = t for all distinct
m,n € N. Let s be the C-minimal element of N<N for which ¢ C (s).
Then s, A s, = s for all distinct m,n € N, thus s,, = s ~ (00). X
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A set T C NN is C-dense if Vs € N<N3t € T s C t. More generally,
aset T C N<Nis C-dense below r € NNifvs e NNFt e T r ~ s C ¢

Proposition 2.8. Suppose that T C N<N. Then there is a A-embedding
7 NN — N<N such that n(N<N) C T or n(N<N) C ~T.

Proof. Fix S € {T,~T} which is C-dense below some s € N< and
recursively construct a function 7: NN — A, N S with the property
that w(t) ~ (i) C 7(t ~ (i)) for all i € N and ¢t € N<N. =

Proposition 2.9. Suppose that C C NV is a non-meager set with the
Baire property. Then there is a A-embedding m: N<N — N<N with the
property that #(NY) C C.

Proof. Fix s € N<N for which C is comeager in N; N NY, as well as
dense open sets U, C N, N NY with the property that Mnen Un € C.
Set T, = {t € NN | ;NN C U,} for all n € N, and recursively
construct a function 7: N<N — A, " N<N such that 7(N") C T;, for all

n € Nand 7(t) ~ (i) C 7(t ~ (4)) for all i € N and t € N<N, X

3. BAIRE MEASURABLE FUNCTIONS ON NN

Here we provide a basis for the class of Baire measurable functions
from NN to separable metric spaces.

Proposition 3.1. Suppose that X is a second countable topological
space and ¢: NN — X is Baire measurable. Then there is a A-embedding
m: NN o N<N for which ¢ o7 is continuous.

Proof. Fix a comeager set C' C NN on which ¢ is continuous, and appeal
to Proposition 2.9 to obtain a A-embedding 7: NN — N<N with the
property that 7(NY) C C. <

Proposition 3.2. Suppose that X is a metric space and ¢: NN — X
is continuous. Then there is a A-embedding m: NN — N<N with the
property that diam ¢(Nr)) — 0.

Proof. Fix a sequence (€;)yen<n of positive real numbers converging to
zero, note that the continuity of ¢ ensures that for all t € N<N the
set T, = {s € NV | diam ¢(N;) < ¢} is C-dense, and recursively
construct a function 7: N<N — N<N such that 7(t) € T} for all t € N<N
and 7(t) ~ (i) E7(t ~ (7)) for all i € N and t € N<N, b5

Given a countable set I and a topological space X, we say that a
sequence (X;);es of subsets of X converges to a point x € X, or X; — z,
if for every open neighborhood U of x, all but finitely many ¢ € I have
the property that X; C U. We say that (X;);es is discrete if for all
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x € X there is an open neighborhood U of x such that all but finitely
many ¢ € I have the property that U N X; = 0.

Proposition 3.3. Suppose that X is a metric space and ¢: NN — X
has the property that diam ¢(N;~;)) — 0 for all t € N<N. Then there is
a A-embedding m: NN — N<N sych that (@(Nx(~@))) )ien is convergent
or discrete for all t € N<N,

Proof. For each t € N<V| the fact that diam ¢(N;~(;)) — 0 ensures that
there is an injection ¢;: N — N for which (¢(Ny~(,(i))) )ien is convergent
or discrete. Define 7: N<N — N<N by choosing 7(@)) € N<N arbitrarily
and setting 7(t ~ (1)) = 7(t) ~ (tr)(¢)) for all i € Nand t e NN,

We say that a function ¢: X — Y is nowhere constant if there is no
non-empty open set U C X on which ¢ is constant.

Proposition 3.4. Suppose that X is a metric space and ¢: NN —
X 1is continuous and nowhere constant. Then there is a N-embedding
7 NN 5 N<N such that

Vi € NVt € NN ¢(Nr(~) N Ujem iy @WNae-iy)) = 0-
Proof. Clearly each ¢(N;) is infinite.

Lemma 3.5. For all t € NN, there is a function 1;: N — N<N\ {0}
such that (14()(0))ien is injective and the closures of ¢(Ni. i) and
Ujemn iy @WNinu(y)) are disjoint for all i € N.

Proof. As each ¢(N;.(;)) is infinite, there are extensions b; € NN of
t ~ (i) such that ¢(b;) ¢ {¢(b;) | j < i} for all i € N. Fix a subsequence
(a;)ien of (b;)ien for which {¢(a;) | i € N} is discrete. For each i € N,
fix €; > 0 such that ¢(a;) ¢ B(¢(ai),€) for all j € N\ {i}, as well as
w(i) € NN\ {@} with t ~ 4,(i) C a; and (N, ) € B(d(as), €:/3).

Suppose, towards a contradiction, that there exists ¢ € N for which
some z € X is in the closures of ¢(N;., ;) and Ujemay PNiws))-
Then there exist j € N\ {i} and y € ¢(N,,,(j)) with the property that
d(z,y) < ¢;/3, in which case

d(p(ai), p(ay)) < d(¢(ai), ) + d(z,y) + d(y, ¢(a;))
< 62/3 + 62/3 + Ej/3
< max{e;, €},
so ¢(a;) € B(¢(aj),€;) or ¢(a;) € B(¢(ai), €;), a contradiction. 2

Define 7: N<N — N<N by choosing 7(f)) € N<N arbitrarily and set-
ting w(t ~ (1)) = m(t) ~ tr) (@) for all i € N and ¢ € NN, b5
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We now obtain our main result stabilizing the topological behavior
of Baire measurable functions from NY to separable metric spaces.

Theorem 3.6. Suppose that X is a separable metric space and ¢: NN —
X is Baire measurable. Then there is a N-embedding w: N<N — N<N
such that ¢ o7 is constant or extends to a closed continuous embedding
on NN or NI,

Proof. By Remark [2.5], we are free to replace ¢ by its composition with
the extension of any A-embedding. For example, by Proposition B.1]
we can assume that ¢ is continuous.

If there exists s € N<N for which ¢ | A is constant, then define
7: NN — NN by 7(t) = s ~ t for all t € NN 50 ¢ o 7 is constant.
Otherwise, Propositions 2.8 B.2] B3, and [B.4 yield a A-embedding
m: NN — N<¥ such that diam ¢(Nz@)) — 0, (¢(Nr~@)))ien is con-
vergent for all £ € N<N or discrete for all t € N<N, and

Vi € Nvt € N<N ¢(N7r(t/\(i))) N UjeN\{i} gb(./\/}(tﬁ(j))) = (.
As T(N;) C Ny for all ¢ € N<N/ it follows that
Vi € NVt € NV (¢ o) (Ningi)) N Ujem iy (¢ 0 T (Ning)) = 0.

So by replacing ¢ with ¢ o T, we can assume that diam ¢(N;) — 0,
(¢(Nin(i)))ien is convergent for all ¢ € N<N or discrete for all ¢ € N<,
and

(1) Vi € NVt € NN o(Nini) N Ujem iy @ WNini)) = 0.

To see that ¢ is injective, note that if a,b € NY are distinct, then
there is a least ¢ € N for which a(i) # b(7). Setting t =a [ i =10 [ 1, it
follows from (1) that ¢(Ni-(a@))) and ¢(Ni-())) are disjoint, thus ¢(a)
and ¢(b) are distinct.

We next check that if (¢(Ni-()))ien is discrete for all ¢ € N<N, then
¢ is a closed continuous embedding. It is sufficient to show that every
sequence (by,)nen of elements of NN for which (¢(b,,))nen converges to
some z € X is itself convergent. But a straightforward recursive argu-
ment yields b € NV such that z is in the closure of ¢(Nj;) for all i € N,
so (1) ensures that z is not in the closure of ;e o)y @(Nopin(s)) for
all i € N, thus (b, [ 7)nen is eventually constant with value b | i for all
1 € N, hence b, — b.

It remains to check that if (¢(N;~(;)))ien is convergent for all ¢ € N<N,
then the extension of ¢ to NI given by ¢(t ~ (00)) = lim;_, ¢(Ni~i))
for all t+ € N<N is a closed continuous embedding. To see that ¢ is
injective, note that if ¢, d € N are distinct, then there is a least i € N
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with ¢(i) # d(i). By reversing the roles of ¢ and d if necessary, we
can assume that c(i) # oco. Set t = ¢ [ i = d | 4, and appeal to
(1) to see that ¢(c) is in the closure of ¢(N(cq))) but ¢(d) is not, so
o(c) # ¢(d). To see that ¢ is continuous, suppose that ¢ € NN and U
is an open neighborhood of ¢(c), and fix an open neighborhood V' of
¢(c) whose closure is contained in U. If ¢ € N¥, then there exists i € N
for which ¢(N.;) C V, thus N,j; is an open neighborhood of ¢ whose
image under ¢ is contained in U. Otherwise, there exists ¢ € N<N for
which ¢ =t ~ (00), as well as i € N for which ¢(N; \ U, ., Ni~jy) C V.
Then N\ U, ; Ni~(j) is an open neighborhood of ¢ whose image under
¢ is contained in U. X

For each topological space X, let cx denote the unique function
from X to the trivial topological space {oo}. Given topological spaces
X CY,define txy: X =Y by txy(z) =z forall z € X.

Proposition 3.7. Suppose that X is a separable metric space, ¢: NN —
X is Baire measurable, m: NN — NN 45 ¢ A-embedding, and ¢ o7
is constant or extends to a closed continuous embedding on NN or
NI, Then there exist g9 € {cw} U {uwy | Z € {NV,NJ}} and
¥ do(NN) — ¢(NN) with the property that (7 | NN — NN ) is a
closed continuous embedding of ¢y into ¢.

Proof. If ¢ o7 is constant, then set ¢y = cyv and let ¢ be the unique
function from cyn(NY) to (¢ o T)(NY). If ¢ o T extends to a closed
continuous embedding ¢ on Z € {NY, NI}, then set ¢o =ty 5. X

4. BAIRE-CLASS-ONE FUNCTIONS THAT ARE NOT 0-CONTINUOUS
WITH CLOSED WITNESSES

Here we strengthen [Sol98| Theorem 3.1] by providing a basis for the
class of non-o-continuous-with-closed-witnesses Baire-class-one func-
tions from analytic metric spaces to separable metric spaces.

Proposition 4.1. Suppose that X is a metric space and ¢: NN — X
has the property that ¢ | NN is continuous. Then there is a A-embedding
72 NN — N<N such that either (¢ oT)(NN) N (¢ o7)(NY\NN) = () or
¢ oT is continuous at every point of NV,

Proof. We can assume that there is no s € N<N with the property that
inf{d(¢(s ~ b), (s ~t ~ (00))) | b € N¥Vand t € NN} > 0, since
otherwise the A-embedding 7: NN — N<N given by 7(t) = s ~ t for
all t € N<N has the property that (¢ o7)(NN) N (¢ o 7) (NN \ NV) = ().
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Lemma 4.2. Suppose that € > 0 and s € N<N. Then there exists
t € NN with d(¢(s ~t ~b),p(s ~t ~ (00))) < € for all b € NV,

Proof. Fix § < e and u € N<Y with diam ¢(N,-.,NNY) < §, and b € N¥
and v € NN with d(¢(s ~u ~b),¢(s ~u ~v ~ (00))) < €—6, and
set t =u ~w. b

Fix a sequence (€,)nen of positive real numbers converging to zero,
and recursively construct a function 7: NN — N<N with the property
that d(¢(m(t) ~ b),¢(n(t) ~ (0))) < € for all b € N¥ and ¢ € NN,
and 7(t) ~ (i) E7(t ~ (4)) for all i € N and ¢t € N<N, =

We say that a metric space is e-discrete if all distinct points have
distance at least € from one another.

Proposition 4.3. Suppose that X is a metric space, ¢: NN\ NN — X
€ >0, andt € NN, Then there is a A-embedding m: N<N — N, NN<N
with the property that ¢ o T is an injection into an e-discrete set or
(¢ o) (NN \ NN is contained in the e-ball around a point of G(Nf).

Proof. If for no finite set I C ¢(NY \ NY) and extension u of ¢ is it
the case that ¢(N,) C B(F,¢), then fix an enumeration (t,),ecy of NV
with the property that ¢,, T t, = m < n for all m,n € N, and
recursively construct m: N<N — A, N N<N such that ¢(7(t,) ~ (00)) ¢
B({o(m(tm) ~ (00)) | m < n},e) and w(t),) ~ (n) C w(t,) for all n > 0,
where ¢/ is the maximal proper initial segment of t,.

Otherwise, there exists € ¢(NY \ NV) with the property that the
set S = {s € NV | ¢(s ~ (0)) € B(z,€)} is C-dense below some
extension w of ¢, in which case we can recursively construct a function
7: NN = A, NS with the property that m(v) ~ (i) C n(v ~ (7)) for
all i € N and v € N<N, X

Proposition 4.4. Suppose that X is a metric space and ¢: NY\ NN —
X. Then there is a A-embedding m: NN — N<N such that ¢ o T is an
injection into an e-discrete set for some € > 0 or diam (¢poT)(N;) — 0.

Proof. Suppose that for no € > 0 is there a A-embedding 7: N<N —
N<Nsuch that ¢ o7 is an injection into an e-discrete set, fix a sequence
(€¢)en<n of positive real numbers converging to zero, and recursively
apply Proposition 3] to the functions ¢, = ¢ o [[, <1t Tt tO obtain
A-embeddings m;: N<N — N;AN<N such that (¢ o [,<, Trm) (N \NY)
is contained in an ¢-ball for all t € N<N. Let 7 be the A-embedding

obtained from applying Proposition to (m)sen<v, and observe that
diam (¢ o ) (N;) — 0. =
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Define p: NI\ NN — N<N by setting p(t ~ (00)) =t for all t € N<N,
Let NSN = N<N'U {oo} denote the one-point compactification of N<N,

Theorem 4.5. Suppose that X is an analytic metric space, Y is a
separable metric space, and ¢: X — Y 1is a Baire-class-one function
that is not o-continuous with closed witnesses. Then there exists ¢g €
{en} U{uw g | Z € {NY,NI'}} for which there is a closed continuous
embedding of ¢po U p into ¢.

Proof. By the Jayne-Rogers theorem (see, for example, [JR82l The-
orem 1]), we can assume that ¢ is not Gg-measurable. Hurewicz’s
dichotomy theorem for F, sets then yields a closed continuous embed-
ding ¥: NY — X with (¢ o)(NN) N (¢ o ¢)(NY\ NY) = () (see, for
example, [CMS| Theorem 4.2]). As (1, idm) is a closed continu-
ous embedding of ¢ o into ¢, by replacing the latter with the former,
we can assume that X = NI and ¢(NV) N ¢(NY\ NY) = (.

By Proposition 3., there is a A-embedding 7: N<N — N<N for which
(¢om) | NV is continuous. By composing 7 with the A-embedding given
by Proposition 4], we can assume that (¢ o 7)(NN)N (¢ o 7) (NI \ NV) =
() or ¢ o7 is continuous at every point of NY. As ¢ is Baire class one,
the former possibility would imply that the pre-images of (¢ o 7)(NV)
and (¢ o 7)(NN\ NV) under ¢ o 7 are disjoint dense Gs subsets of NY,
so the latter holds. By Proposition 4.4, we can assume that either
there exists € > 0 for which (¢ o7) | NI\ N¥ is an injection into an
e-discrete set, or diam (¢ o 7)(N; N (NY\ NY)) — 0. As the former
possibility contradicts the facts that (¢po7)(NY) N (gpo7)(NYV\NY) =
and (¢po7)(NY) C (¢ o7) (NI \ NV), it follows that the latter holds. By
applying Proposition 3] with any € > 0 and t € N<N, but replacing
the given metric on X by one with respect to which all pairs of distinct
points have distance at least ¢ from one another, we can assume that
(¢pom) | NI\ NN is either constant or injective.

Lemma 4.6. Suppose that (s,)nen is an injective sequence of elements
of NN and (b, )nen is a sequence of elements of NN such that s, C b,
for allm € N. Then dx((¢poT)(by), (¢ oT)(s, ~ (00))) = 0.

Proof. Simply note that (¢ o7)(b,) € (¢ oT)(Ns, N (NY\ NIV)) for all
n € N and diam (¢ o 7) (N, N (NY\ NY)) — 0. 5

Along with the facts that (¢ o 7)(NY) N (¢ o 7) (NI \ NV) = @) and
(¢ o) (NY) C (pom)(NN\NV), Lemma ensures that (¢ o7) |
NI\ N is not constant, and is therefore injective. Along with the
fact that (¢ o7)(NN) N (¢ o 7)(NV\ NY) = ), Lemma .G ensures that
(¢ o) (NI \ NV) is discrete.
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By Theorem [B.6, we can assume that (¢ o7) | NY is constant or
extends to a closed continuous embedding on N or NY.

We will now complete the proof by showing that there exist ¢y €
{en} U{awz | Z € {NYNI'}} and ¢: ¢o(NY) U NN — ¢(X) for
which (7 | NIY — NI ¢) is a closed continuous embedding of ¢y U p
into ¢.

If (p o) | NV is constant with value y € Y, then set ¢y = ¢y, and
note that the extension ¢ of ¢ o7 o p~! to NZN given by 1(00) = y
is injective. As Lemma ensures that (¢ o 7)(s, ~ (00)) — y for
every injective sequence (s,)nen of elements of N<N, it follows that 1)
is continuous, so the compactness of NN ensures that 1) is a closed
continuous embedding.

If (po7) | NV is a closed continuous embedding, then set ¢y =
v v, and note that the extension ¢ of ¢ o7 o p~t to N=N given by
Y | NV = (po7) | NV is a continuous injection. To see that it is
closed, it is enough to show that every injective sequence (a,)nen oOf
elements of N=N for which (1(ay,))nen converges to some point y € Y
has a subsequence converging to a point of NN, As N=N is compact,
by passing to a subsequence, we can assume that (a,),eny converges
to a point of N=N.  As every point of N<V is isolated, it therefore
converges to a point of NY. And if there exists t € N<Y for which
an, — t ~ (00), then there are extensions b, € NY of a, for all n € N,
in which case b, — t ~ (c0) and 9(b,) — y by Lemma L6 Fix n € N
sufficiently large that (¢ o 7)(b,,) # y for all m > n, and observe that
{b,, | m > n} is a closed subset of NN whose image under ¢ o 7 is not
closed, contradicting the fact that (¢ o7) | NV is closed.

If (po7) | NN extends to a closed continuous embedding 9" on N,
then set ¢ = uyw v, and note that the extension ¢ of ¢ o7 o pt
to N=N given by ¢ | NI = ¢’ | NY is injective. To see that it is
continuous, suppose that (¢,),en i an injective sequence of elements
of N<N converging to t ~ (oo) for some t € N<N_ fix b, € N;, NN for
all n € N, and observe that the continuity of ¢’ ensures that ¢(b,) —
Wt ~ (00)), thus Lemma implies that ¢(t,) — ¥(t ~ (00)). As
N=Nis compact, it follows that 1 is a closed continuous embedding.

5. Functions onN NI\ NN

Here we provide a basis for the class of all functions from N \ NN
to analytic metric spaces.

Proposition 5.1. Suppose that X is a topological space, ¢: NN\ NN —
X is injective, and x € X. Then there is a A-embedding 7: N<N — N<N
such that x ¢ (¢ o) (NI \ NY),
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Proof. Fix s € N<N such that = ¢ ¢(N,), and define 7: NN — N<N
by 7(t) = s ~ t for all t € N<N, =

Proposition 5.2. Suppose that X is a metric space and ¢: NV \ NN —
X. Then there is a A-embedding m: N<N — N<N with the property that
((pom)(t ~ (i,00)))ien is convergent or {(¢ o T)(t ~ (i,00)) | i € N}
is closed and discrete for all t € N<N,

Proof. For each t € N<N| there is an injection ;: N — N for which
(@(t ~ (14(i),00)))ien is convergent or {p(t ~ (14(i),00)) | i € N} is
closed and discrete. Define 7: N<N — N<N by choosing m(f)) € N<N
arbitrarily and setting 7(t ~ (i)) = 7(t) ~ (tr (7)) for all i € N and
t € NN and note that (¢ o 7)(t ~ (i,00)) = ¢(n(t ~ (i)) ~ (00)) =
P(m(t) ~ (txey(i),00)) for all i € N and ¢ € NV, b5

Proposition 5.3. Suppose that X is a metric space, ¢: NN\ NN — X
F C X is finite, and t € N<N. Then there is a A-embedding m: N<N —
N; N N<N such that either ((¢ o T)(u ~ (00)))uen<n converges to an
element of F' or the closure of (¢ o 7)(NY\ NY) is disjoint from F'.

Proof. 1f the set S, = {s € NN | ¢(s ~ (c0)) € B(F,¢)} is C-dense
below t for all € > 0, then there exist an extension u of ¢t and = €
F such that the set S, = {s € NN | ¢(s ~ () € B(z,€)} is
C-dense below u for all € > 0. Fix a sequence (€,),en<n of positive
real numbers converging to zero, and recursively construct a function
7 NN — A, N N<N such that 7(v) € S, for all v € N<N and
m(v) ~ (i) C 7(v ~ (7)) for all i € N and v € NN and observe that
(¢om) (v~ (00)) = =

Otherwise, fix € > 0 and an extension u of ¢t with the property that
N, NS, =0, define 7: NN — A, N NN by 7(v) = u ~ v, and note
that the closure of (¢ o 7)(NY \ NY) is disjoint from F'. X

For the rest of this section, it will be convenient to fix an enumeration
(tn)nen of N<N such that t,, ¢, = m < n for all m,n € N.

Proposition 5.4. Suppose that X is a metric space and ¢: NV \ NN —
X. Then there is a A-embedding m: N<N — N<N with the property that
((poT)(t ~ (00)))en<n converges or for no natural numbers m < n is
(poT)(ty, ~ (00)) or a limit point of {(¢poT)(t, ~ (i,00)) | i € N} in
the closure of (¢ oT)(N,).

Proof. Suppose that for no A-embedding 7: N<N¥ — N<N is the se-
quence ((¢poT)(t ~ (00)))sen<n convergent. By Proposition [5.2] we can
assume that (¢(t ~ (4,00)))sen is convergent or {¢(t ~ (i,00)) | i € N}
is closed and discrete for all + € N<N. By recursively applying Lemma
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to the functions ¢, = ¢ o [, <t Tk, We obtain A-embeddings
7 NN — N, N N<N such that for no natural numbers m < n is (¢ o
Hk§|tm\ Tomik) (tm ~ (00)) or a limit point of {(¢ o Hk§|tm| Tt k) (Em
(1,00)) | i € N} in the closure of (¢ o [[,, Ten) (M) Let m be
the A-embedding obtained from applying Proposition to () en<r,
and observe that for no natural numbers m < n is it the case that
(¢ oT)(ty, ~ (00)) or a limit point of {(¢ o T)(t,, ~ (i,00)) | i € N} in
the closure of (¢ o7)(N;,). =

Theorem 5.5. Suppose that X is an analytic metric space and ¢: NY\
NN — X. Then there is a A-embedding 7: NN — N<N such that o7
is constant, ¢ o extends to a closed continuous embedding on NI \ NN
or NI or gpomop™! extends to a closed continuous embedding on N<V,
NN NSNA\ NN NSND gp NS,

Proof. As before, we will repeatedly precompose ¢ with appropriate
A-embeddings, albeit this time so as to stabilize the behavior of the
function 1) = ¢ o p~!, as opposed to that of the function ¢ itself. By
applying Proposition 3] with any € > 0 and t € N<N, but replacing
the given metric on X by one with respect to which all pairs of distinct
points have distance at least € from one another, we can assume that
1) is either constant or injective. As ¢ is constant in the former case,
we can assume that we are in the latter.

By Proposition .4, we can ensure that ¢(N<Y) is closed and discrete
or diam ¥ (N;) — 0. As 1 is a closed continuous embedding in the
former case, we can assume that we are in the latter.

Let 1) be the extension of ¥ to a partial function on N=N given by
P(b) = limi oo yp(b | 7) and Ot ~ (00)) = limiseet(t ~ (i) for
all b € NN and t € NN, By Proposition (.2 we can assume that
{4p(t ~ (4)) | i € N} has a limit point = t ~ (o0) € dom(¢)) for all
t € N<N,

As each point of N<N is isolated, diam ¢(Ny;) — 0 for all b € NN,
and diam 1 (N;~;)) — 0 for all ¢ € N<N, it follows that ¢ is continuous.
To see that 1 is closed, it is sufficient show that every injective sequence
(Cn)nen of points in the domain of ¥ for which (¢(c,))nen is convergent
has a subsequence converging to a point in the domain of . By passing
to a subsequence, we can assume that the sequence converges to a point
of NSN. As each point of N<¥ is isolated, the sequence converges to
a point of NI so the facts that diam (Nyy;) — 0 for all b € NN,
diam ¢(N;~;y) — 0 for all ¢ € NN and {¢(t ~ (¢)) | ¢ € N} has a
limit point = t ~ (00) € dom(¢) for all + € N<N ensure that it
converges to a point of the domain of .
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By Proposition 2.8 we can assume that one of the following holds:

(1) NI\ NN C dom(@) and Vt € N<N @(t) = @(t ~ (00)).
(2) NI\ NN C dom(¢)) and Vt € N<Na)(t) # (t ~ (c0)).
(3) (NY'\N¥) N dom(z)) = 0.

As the domain of 1 is analytic, so too is its intersection with NN, It fol-
lows that the latter intersection has the Baire property, so Proposition
allows us to assume that one of the following holds:

(a) The domain of ¢ is disjoint from N,
(b) The domain of ¥ contains N,

In the special case that condition (b) holds, Theorem 3.0 allows us to
assume that ¢ | NV is either constant or injective.

Proposition [5.4] allows us to assume that (¢(t)),en<y converges to
some r € X or for no natural numbers m < n is ¥(t,,) or Y (t, ~ (00))
in the closure of 1(N;,). In the former case, Proposition 5] allows
us to assume that (N<Y) is discrete, so the extension of 1 to N7V
sending oo to x is a closed continuous embedding, thus we can assume
that we are in the latter.

Lemma 5.6. Suppose that c,d € dom(v)) are distinct but 1(c) = ¥(d).
Then there exists t € NN such that {c,d} = {t,t ~ (00)}.

Proof. To see that v | NN\ NV is injective, observe that if m < n,
both t,, ~ (00) and t, ~ (c0) are in the domain of 1), and moreover
Uty ~ (00)) = Y(t, ~ (00)), then 9 (t,, ~ (o)) is in the closure of
»(MN,), a contradiction.

To see that ¢ | NV is injective when NN is contained in the domain of
1), note that otherwise it is constant, and let z be this constant value.
Then for each t € N<N| there is a sequence (u;);en of elements of N<N
such that ¢(t ~ (i) ~ (u;)) — =, so the fact that diam ¢(Ny-;)) — 0
ensures that ¥(t ~ (00)) = x, contradicting the fact that ¢ | NI\ NN
is injective.

To see that (NV) N ¢(N<N) = ), note that if b € dom(¢p) N NV,
t € NN and (b) = (t), then there exist m < n with ¢,, = t and
tn C b, 80 () is in the closure of (N, ), a contradiction.

To see that ¢(NY) N (NI \ NY) = ), note that if b € dom(p) N NY,
t € NN t ~ (00) € dom(¢), and ¢ (b) = ¥(t ~ (c0)), then there exist
m < n with t,, = t and t, C b, in which case 9(t,, ~ (00)) is in the
closure of ¥(N;,), a contradiction.

Observe finally that if s,¢ € N<N are distinct, t ~ (00) € dom(v)),

and ¥ (s) = ¥(t ~ (00)), then there exist m # n such that t,, = s and
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t, = t. Then t(t,,) is in the closure of ¥(N;, ) and (¢, ~ (c0)) is in
P(MN,,), a contradiction. <

If (1a) or (1b) holds, then ¢ | NI\ N¥ or ¢ [ NIV is an extension
of ¢ to a closed continuous embedding. If (2a), (2b), (3a), or (3b)

holds, then 1 is an extension of ¢ to a closed continuous embedding
on NSN\ NN NN N<N or NN, X

Proposition 5.7. Suppose that X is an analytic metric space, ¢: NI\
NY = X, 7: NN 5 N<N s q A-embedding, and ¢ o T is constant,
¢ o7 extends to a closed continuous embedding on NY \ NN or NI,
or pomop! extends to a closed continuous embedding on N<N, N=N,
NEM\NN, NN or NN, Then there exist ¢g € {cnmwn Yt 2 | Z €
{NIANY, NFHU{ew<n zop | Z € {N<F NEY NEV\NY, N=N, NEY}} and
i do(NN\ NN) — (NN \ NNY with the property that (7 | NI\ NV —
NI\ NN 9)) is a closed continuous embedding of ¢g into ¢.

Proof. If ¢oT is constant, then set ¢y = ey v and let ¢ be the unique
function from ey (N} \ NY) to (¢ o T)(NY\ NY). If ¢ o T extends to
a closed continuous embedding 1 on Z € {NIV\ NN NI} then set ¢y =
i,z And if o7 o p~! extends to a closed continuous embedding
Yon Z € {N<N NV NN\ NV N=N N=N}_then set ¢g = ty<n z0p. K

6. BOREL FUNCTIONS THAT ARE NOT BAIRE CLASS ONE

Here we provide bases for the classes of non-Baire-class-one Borel
functions and non-o-continuous-with-closed-witnesses Borel functions
between analytic metric spaces.

Proposition 6.1. Suppose that X is a metric space and ¢: NY — X
has the property that ¢ | NY is continuous and ¢(NV) ¢ ¢(NI\ NN),
Then there is a N-embedding m: NN — N<N with the property that
(@ om)(NY) N (¢ om)(NJ\ NY) = 0.

Proof. Fix b € NN for which ¢(b) is not in the closure of ¢(NY \ NY).
Then there is an open neighborhood U of ¢(b) disjoint from ¢(N\ NY),
as well as an open neighborhood V' of ¢(b) whose closure is contained
in U, in which case the continuity of ¢ | NV yields a proper initial
segment s of b for which ¢(N; N NY) C V. Then the A-embedding
7: NN — N<N given by 7(t) = s ~ t for all t € NV is as desired. =

GiVen ¢NN: NN — X and QSNIE\NN: NIE \ NN — Y, let ¢NN L ¢N§\NN
denote the corresponding function from NY to the disjoint union X LY.
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Theorem 6.2. Suppose that X and Y are analytic metric spaces and
¢: X —'Y is a Borel function that is not Baire class one. Then there
exist ¢NN € {CNN} U {LNN,Z | Z S {NN,NT}} and ¢N§\NN S {CNIE\NN} U
{ionwrz | Z € {INJANYNTR} U {eerzop | Z € {NT NSV NEN
NN N<N NSNWY for which there is a closed continuous embedding of
O U ¢N§\NN nto ¢.

Proof. Hurewicz’s dichotomy theorem for F, sets yields a closed contin-
uous embedding 1: NY — X with (¢ o¢)(NY) N (¢ o) (NN \ NN) = 0.
As (v, idm) is a closed continuous embedding of ¢ o 1 into ¢, by
replacing the latter with the former, we can assume that X = NY and
$(NY) N ¢(NIY\ NY) = 0.

By Proposition 3., there is a A-embedding 7: N<N — N<N for which
(¢om) | NV is continuous. By composing 7 with the A-embedding given
by Proposition[6.1], we can assume that (¢ o 7)(N¥N)N (¢ o ) (NI \ NV) =
(). By composing 7 with the A-embedding given by Theorem 3.6, we can
assume that (¢ o7) | NV is constant or extends to a closed continuous
embedding on NY or N, And by composing 7 with the A-embedding
given by Theorem [5.5, we can assume that (¢po7) | NI\ NY is constant,
(¢po7) | NI\ NN extends to a closed continuous embedding on NI\ NN
or NIV or ¢poTop~! extends to a closed continuous embedding on N<N,
NN NS\ NN NSND or NSN

By Proposition B, there exist ¢y € {epn} U{uwn 2 | Z € {NV,N{'}}
and Yy o (NN) — ¢(NN) for which (7 | NN — NN 4hw) is a closed
continuous embedding of ¢pv into ¢ | NY. By Proposition (.7, there
exist ¢ € {enpyw } U {inr z | Z € (NS ANV NI U {igen z 0p |
AS {N<N7 Nva N*SN\NNv NSNv N*SN}} and 7vDNI,E'\NN : (bNIE\NN (NE}I \ NN) -
o(NIV\ NN) for which (7 [ NY\ NY¥ — NI\ N ¢ ) is a closed
continuous embedding of ¢ into ¢ | Ny \ NV, Then (7 | N} —
[\ U ) is a closed continuous embedding of ¢y L ¢ v into

®. =

Theorems and together provide the promised twenty-seven
element basis under closed continuous embeddability for the class of
non-o-continuous-with-closed-witnesses Borel functions between ana-
lytic metric spaces.
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