BASES FOR FUNCTIONS BEYOND THE FIRST BAIRE CLASS

RAPHAËL CARROY AND BENJAMIN D. MILLER

ABSTRACT. We provide a finite basis for the class of Borel functions that are not in the first Baire class, as well as the class of Borel functions that are not σ -continuous with closed witnesses.

INTRODUCTION

A topological space is *analytic* if it is a continuous image of a closed subset of $\mathbb{N}^{\mathbb{N}}$. A subset of a topological space is *Borel* if it is in the σ -algebra generated by open sets, F_{σ} if it is a union of countably-many closed sets, and G_{δ} if it is an intersection of countably-many open sets.

Suppose that X and Y are topological spaces. Given a family Γ of subsets of X, a function $\phi: X \to Y$ is Γ -measurable if $\phi^{-1}(V) \in \Gamma$ for every open set $V \subseteq Y$. A function is Borel if it is Borel-measurable, Baire class one if it is F_{σ} -measurable, and σ -continuous with closed witnesses if its domain is the union of countably-many closed sets on which it is continuous. A result of Jayne-Rogers (see [JR82, Theorem 1]) ensures that a function from an analytic metric space to a separable metric space has this property if and only if it is G_{δ} -measurable.

A quasi-order on a set Z is a reflexive transitive binary relation \leq on Z. A set $B \subseteq Z$ is a basis under \leq for Z if $\forall z \in Z \exists b \in B \ b \leq z$.

A closed continuous embedding of $\phi: X \to Y$ into $\phi': X' \to Y'$ consists of a pair of closed continuous embeddings $\pi_X: X \to X'$ and $\pi_Y: \overline{\phi(X)} \to \overline{\phi'(X')}$ such that $\phi' \circ \pi_X = \pi_Y \circ \phi$. Note that the existence of such a pair depends not only on the graphs of the functions ϕ and ϕ' , but on Y as well, since different choices of $Y \supseteq \phi(X)$ can lead to different values of $\overline{\phi(X)}$. Here we establish the following results.

Theorem 1. There is a twenty-four-element basis under closed continuous embeddability for the class of non-Baire-class-one Borel functions between analytic metric spaces.

²⁰¹⁰ Mathematics Subject Classification. Primary 03E15, 26A21, 28A05, 54H05. Key words and phrases. Baire class, basis, embedding, sigma-continuous.

The authors were supported in part by FWF Grants P28153 and P29999.

R. CARROY AND B.D. MILLER

Theorem 2. There is a twenty-seven-element basis under closed continuous embeddability for the class of $non-\sigma$ -continuous-with-closed-witnesses Borel functions between analytic metric spaces.

In §1, we discuss the compactification $\mathbb{N}_*^{\leq \mathbb{N}}$ of $\mathbb{N}^{\leq \mathbb{N}}$ underlying our arguments, as well as the corresponding compactification $\mathbb{N}_*^{\mathbb{N}}$ of $\mathbb{N}^{\mathbb{N}}$. In §2, we discuss the endomorphisms of $\mathbb{N}^{<\mathbb{N}}$ underlying our arguments. In §3, we provide a three-element basis for the class of Baire measurable functions from $\mathbb{N}^{\mathbb{N}}$ to separable metric spaces. In §4, we provide a three-element basis for the class of non- σ -continuous-withclosed-witnesses Baire-class-one functions from analytic metric spaces to separable metric spaces. In §5, we provide an eight-element basis for the class of all functions from $\mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$ to analytic metric spaces. And in §6, we establish Theorems 1 and 2.

1. A compactification of $\mathbb{N}^{\leq \mathbb{N}}$

We use $s \sim t$ to denote the *concatenation* of sequences s and t, and we say that s is an *initial segment* of t, or $s \sqsubseteq t$, if there exists s' for which $t = s \sim s'$. Endow the set $\mathbb{N}_*^{\leq \mathbb{N}} = \mathbb{N}^{\leq \mathbb{N}} \cup \{t \sim (\infty) \mid t \in \mathbb{N}^{<\mathbb{N}}\}$ with the smallest topology with respect to which the sets of the form $\{t\}$ and $\mathcal{N}_t = \{c \in \mathbb{N}_*^{\leq \mathbb{N}} \mid t \sqsubseteq c\}$, where $t \in \mathbb{N}^{<\mathbb{N}}$, are clopen.

Proposition 1.1. The family \mathcal{B} of sets of the form $\{t\}$ and $\mathcal{N}_t \setminus (\{t\} \cup \bigcup_{i \leq i} \mathcal{N}_{t \cap (j)})$, where $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, is a clopen basis for $\mathbb{N}_*^{\leq \mathbb{N}}$.

Proof. Let τ be the topology generated by \mathcal{B} . As every set in \mathcal{B} is clearly clopen, it is sufficient to show that the sets $\{t\}$ and \mathcal{N}_t are τ clopen for all $t \in \mathbb{N}^{<\mathbb{N}}$. As these sets are clearly τ -open, we need only show that they are τ -closed. As $\mathcal{N}_{t^{\frown}(i)}$ is τ -closed in \mathcal{N}_t for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, a straightforward induction shows that \mathcal{N}_t is τ -closed for all $t \in \mathbb{N}^{<\mathbb{N}}$. As $\{t\}$ is τ -closed in \mathcal{N}_t for all $t \in \mathbb{N}^{<\mathbb{N}}$, it follows that $\{t\}$ is τ -closed for all $t \in \mathbb{N}^{<\mathbb{N}}$.

Proposition 1.2. The space $\mathbb{N}_*^{\leq \mathbb{N}}$ is compact.

Proof. Suppose, towards a contradiction, that there is an open cover \mathcal{U} of $\mathbb{N}_*^{\leq \mathbb{N}}$ with no finite subcover.

Lemma 1.3. Suppose that $t \in \mathbb{N}^{<\mathbb{N}}$ and no finite set $\mathcal{V} \subseteq \mathcal{U}$ covers \mathcal{N}_t . Then there exists $j \in \mathbb{N}$ such that no finite set $\mathcal{V} \subseteq \mathcal{U}$ covers $\mathcal{N}_{t \cap (j)}$.

Proof. Fix $U \in \mathcal{U}$ containing $t \frown (\infty)$. Proposition 1.1 then yields $i \in \mathbb{N}$ with $\mathcal{N}_t \setminus (\{t\} \cup \bigcup_{j < i} \mathcal{N}_{t \frown (j)}) \subseteq U$, in which case no finite set $\mathcal{V} \subseteq \mathcal{U}$ covers $\bigcup_{j < i} \mathcal{N}_{t \frown (j)}$, and it follows that there exists j < i for which no finite set $\mathcal{V} \subseteq \mathcal{U}$ covers $\mathcal{N}_{t \frown (j)}$.

By recursively applying Lemma 1.3, we obtain $b \in \mathbb{N}^{\mathbb{N}}$ such that for no $i \in \mathbb{N}$ is there a finite set $\mathcal{V} \subseteq \mathcal{U}$ covering $\mathcal{N}_{b|i}$. But Proposition 1.1 implies that every open neighborhood of b contains some $\mathcal{N}_{b|i}$.

Given a countable set I and a topological space X, we say that a sequence $(x_i)_{i\in I} \in X^I$ converges to a point $x \in X$, or $x_i \to x$, if for every open neighborhood U of x there are only finitely many $i \in I$ with $x_i \notin U$. When I and X are equipped with partial orders \leq_I and \leq_X , we say that $(x_i)_{i\in I}$ is decreasing if $i \leq_I j \implies x_j \leq_X x_i$ for all $i, j \in I$.

Proposition 1.4. The space $\mathbb{N}_*^{\leq \mathbb{N}}$ has a compatible ultrametric.

Proof. Fix a decreasing sequence $(\epsilon_t)_{t\in\mathbb{N}^{<\mathbb{N}}}$ of positive real numbers converging to zero. Set d(a, a) = 0 for all $a \in \mathbb{N}_*^{\leq\mathbb{N}}$, as well as $d(a, b) = \max\{\epsilon_t \mid t \in \{a \restriction \min(|a|, i(a, b)), b \restriction \min(|b|, i(a, b))\} \cap \mathbb{N}^{<\mathbb{N}}\}$ for all distinct $a, b \in \mathbb{N}_*^{\leq\mathbb{N}}$, where $i(a, b) = \min\{i \in \mathbb{N} \mid a \restriction i \neq b \restriction i\}$.

To see that d is an ultrametric, suppose that $a, b, c \in \mathbb{N}_*^{\leq \mathbb{N}}$ are pairwise distinct. Observe that if $i(a, c) < \max\{i(a, b), i(b, c)\}$, then $d(a, c) \in \{d(b, c), d(a, b)\}$, so $d(a, c) \leq \max\{d(a, b), d(b, c)\}$. And if $i(a, c) = \max\{i(a, b), i(b, c)\}$, then setting i = i(a, b) = i(a, c) = i(b, c), it follows that

$$d(a,c) = \max\{\epsilon_t \mid t \in \{a \upharpoonright i, c \upharpoonright i\} \cap \mathbb{N}^{<\mathbb{N}}\}$$

$$\leq \max\{\epsilon_t \mid t \in \{a \upharpoonright i, b \upharpoonright i, c \upharpoonright i\} \cap \mathbb{N}^{<\mathbb{N}}\}$$

$$= \max\{d(a,b), d(b,c)\}.$$

And if $i(a,c) > \max\{i(a,b), i(b,c)\}$, then setting $\epsilon = d(a,b) = d(b,c)$ and $t = a \upharpoonright i(a,b) = c \upharpoonright i(b,c)$, it follows that $d(a,c) \le \epsilon_t \le \epsilon$, and therefore $d(a,c) \le \max\{d(a,b), d(b,c)\}$.

As $\{t\} = \mathcal{B}(t, \epsilon_t)$ and $\mathcal{N}_t \setminus \{t\} = \mathcal{B}(\mathcal{N}_t \setminus \{t\}, \epsilon_t)$ for all $t \in \mathbb{N}^{<\mathbb{N}}$, and $\mathcal{N}_t \setminus (\{t\} \cup \bigcup_{j \leq i} \mathcal{N}_{t \cap (j)}) = \mathcal{B}(\mathcal{N}_t \setminus (\{t\} \cup \bigcup_{j \leq i} \mathcal{N}_{t \cap (j)}), \min(\{\epsilon_{t \cap (j)} \mid j \leq i\}))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, Proposition 1.1 ensures that every open subset of $\mathbb{N}_*^{\leq \mathbb{N}}$ is *d*-open.

Given $b \in \mathbb{N}^{\mathbb{N}}$ and $\epsilon > 0$, fix $i \in \mathbb{N}$ with $\epsilon_{b \mid i} < \epsilon$, set $t = b \mid i$, and note that $\mathcal{N}_t \subseteq \mathcal{B}(b,\epsilon)$. Given $t \in \mathbb{N}^{<\mathbb{N}}$ and $\epsilon > 0$, fix $i \in \mathbb{N}$ with $\epsilon_{t \cap (j)} < \epsilon$ for all $j \ge i$, and observe that $\mathcal{N}_t \setminus (\{t\} \cup \bigcup_{j < i} \mathcal{N}_{t \cap (j)}) \subseteq \mathcal{B}(t \cap (\infty), \epsilon)$. Thus every *d*-open subset of $\mathbb{N}_*^{\leq \mathbb{N}}$ is open.

It follows that $\mathbb{N}_*^{\leq \mathbb{N}}$ is Polish. As the space $\mathbb{N}_*^{\mathbb{N}} = \mathbb{N}_*^{\leq \mathbb{N}} \setminus \mathbb{N}^{<\mathbb{N}}$ is a perfect subset of $\mathbb{N}_*^{\leq \mathbb{N}}$, a result of Brouwer's ensures that it is homeomorphic to $2^{\mathbb{N}}$ (see, for example, [Kec95, Theorem 7.4]).

R. CARROY AND B.D. MILLER

2. Meet embeddings

The meet of sequences $s, t \in \mathbb{N}^{<\mathbb{N}}$ is the sequence $r = s \wedge t$ of maximal length for which $r \sqsubseteq s$ and $r \sqsubseteq t$. A \wedge -embedding is an injection $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $\pi(s \wedge t) = \pi(s) \wedge \pi(t)$ for all $s, t \in \mathbb{N}^{<\mathbb{N}}$.

Proposition 2.1. Suppose that $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$. Then π is a \wedge -embedding if and only if the following conditions hold:

(1)
$$\forall i \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}} \pi(t) \sqsubset \pi(t \frown (i)).$$

(2) $\forall i, j \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}}$
 $(i \neq j \implies \pi(t \frown (i))(|\pi(t)|) \neq \pi(t \frown (j))(|\pi(t)|)).$

Proof. Suppose first that π is a \wedge -embedding. To see that condition (1) holds, observe that if $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, then $\pi(t) = \pi(t) \wedge \pi(t \frown (i))$, so $\pi(t) \sqsubseteq \pi(t \frown (i))$, thus $\pi(t) \sqsubset \pi(t \frown (i))$. And to see that condition (2) holds, observe that if $i, j \in \mathbb{N}$ are distinct and $t \in \mathbb{N}^{<\mathbb{N}}$, then $\pi(t) = \pi(t \frown (i)) \wedge \pi(t \frown (j))$, so $\pi(t \frown (i))(|\pi(t)|) \neq \pi(t \frown (j))(|\pi(t)|)$.

Suppose now that π satisfies conditions (1) and (2). To see that π is a \wedge -embedding, suppose that $s, t \in \mathbb{N}^{<\mathbb{N}}$ are distinct, and define $r = s \wedge t$. By reversing the roles of s and t if necessary, we can assume that |s| > |r|, so $\pi(r) \sqsubset \pi(s)$, thus either r = t or (|t| > |r| and $\pi(s)(|\pi(r)|) \neq \pi(t)(|\pi(r)|)$. In both cases, it follows that $\pi(s) \neq \pi(t)$ and $\pi(r) = \pi(s) \wedge \pi(t)$.

Remark 2.2. In particular, it follows that if $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ has the property that $\pi(t) \frown (i) \sqsubseteq \pi(t \frown (i))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, then π is a \wedge -embedding.

There is a simple but useful means of amalgamating appropriately indexed families of \wedge -embeddings.

Proposition 2.3. Suppose that $(\pi_t)_{t\in\mathbb{N}^{<\mathbb{N}}}$ is a sequence of \wedge -embeddings with the property that $\pi_t(\mathbb{N}^{<\mathbb{N}}) \subseteq \mathcal{N}_t$ for all $t\in\mathbb{N}^{<\mathbb{N}}$. Then the function $\pi\colon\mathbb{N}^{<\mathbb{N}}\to\mathbb{N}^{<\mathbb{N}}$ given by $\pi(t)=(\prod_{n\leq |t|}\pi_{t\restriction n})(t)$ is also a \wedge -embedding.

Proof. Note that if $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, then $t \frown (i) \sqsubseteq \pi_{t \frown (i)}(t \frown (i))$, so Proposition 2.1 ensures that $(\prod_{n \le |t|} \pi_{t \upharpoonright n})(t \frown (i)) \sqsubseteq \pi(t \frown (i))$, thus $\pi(t) \sqsubset (\prod_{n \le |t|} \pi_{t \upharpoonright n})(t \frown (i)) \sqsubseteq \pi(t \frown (i))$. It also implies that if $i \ne j$, then $(\prod_{n \le |t|} \pi_{t \upharpoonright n})(t \frown (i))(|\pi(t)|) \ne (\prod_{n \le |t|} \pi_{t \upharpoonright n})(t \frown (j))(|\pi(t)|)$, so $\pi(t \frown (i))(|\pi(t)|) \ne \pi(t \frown (j))(|\pi(t)|)$. One last application of Proposition 2.1 therefore ensures that π is a \wedge -embedding.

We next consider the connection between \wedge -embeddings and closed continuous embeddings.

Proposition 2.4. Every \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ has a unique extension to a (necessarily injective) continuous map $\overline{\pi} \colon \mathbb{N}_*^{\leq \mathbb{N}} \to \mathbb{N}_*^{\leq \mathbb{N}}$, given by $\overline{\pi}(b) = \bigcup_{i \in \mathbb{N}} \pi(b \upharpoonright i)$ and $\overline{\pi}(t \frown (\infty)) = \pi(t) \frown (\infty)$ for all $b \in \mathbb{N}^{\mathbb{N}}$ and $t \in \mathbb{N}^{<\mathbb{N}}$.

Proof. Suppose that $\overline{\pi} \colon \mathbb{N}_*^{\leq \mathbb{N}} \to \mathbb{N}_*^{\leq \mathbb{N}}$ is a continuous extension of π . If $b \in \mathbb{N}^{\mathbb{N}}$, then $b \upharpoonright i \to b$, and since $(\pi(b \upharpoonright i))_{i \in \mathbb{N}}$ is strictly increasing by Proposition 2.1, it follows that $\overline{\pi}(b) = \bigcup_{i \in \mathbb{N}} \pi(b \upharpoonright i)$. If $t \in \mathbb{N}^{<\mathbb{N}}$, then $t \frown (i) \to t \frown (\infty)$, and since $\pi(t) = \pi(t \frown (i)) \land \pi(t \frown (j))$ for all distinct $i, j \in \mathbb{N}$, it follows that $\overline{\pi}(t \frown (\infty)) = \pi(t) \frown (\infty)$.

To see that these constraints actually define a continuous function, note that if $t \in \mathbb{N}^{<\mathbb{N}}$, then either $\overline{\pi}^{-1}(\mathcal{N}_t) = \emptyset$ or there exists $s \in \mathbb{N}^{<\mathbb{N}}$ of minimal length with $t \sqsubseteq \pi(s)$, in which case $\overline{\pi}^{-1}(\mathcal{N}_t) = \mathcal{N}_s$.

To see that $\overline{\pi}$ is injective, it is enough to check that its restriction to $\mathbb{N}^{\mathbb{N}}$ is injective. Towards this end, suppose that $a, b \in \mathbb{N}^{\mathbb{N}}$ are distinct, fix $i \in \mathbb{N}$ least for which $a(i) \neq b(i)$, set $t = a \upharpoonright i = b \upharpoonright i$, and observe that $\pi(t \frown (a(i)))(|\pi(t)|) \neq \pi(t \frown (b(i)))(|\pi(t)|)$ by Proposition 2.1, thus $\overline{\pi}(a)$ and $\overline{\pi}(b)$ are distinct.

Remark 2.5. It follows that the extension associated with the composition of two \wedge -embeddings is the composition of their extensions.

Given a function $\phi: X \to Y$ and sets $X' \subseteq X$ and $Y' \supseteq \phi(X')$, let $\phi \upharpoonright X' \to Y'$ denote the function $\psi: X' \to Y'$ given by $\phi(x) = \psi(x)$ for all $x \in X'$. Compactness ensures that if π is a \wedge -embedding, then $\overline{\pi}$ and $\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}}_*$ are closed continuous embeddings. The following observations show that so too are $\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ and $\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}_*$.

Proposition 2.6. Suppose that $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ is a \wedge -embedding. Then $\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is closed.

Proof. It is sufficient to show that every sequence $(b_n)_{n\in\mathbb{N}}$ of elements of $\mathbb{N}^{\mathbb{N}}$ for which $(\overline{\pi}(b_n))_{n\in\mathbb{N}}$ converges to an element of $\mathbb{N}^{\mathbb{N}}$ is itself convergent to an element of $\mathbb{N}^{\mathbb{N}}$. As $(\overline{\pi}(b_n) \upharpoonright i)_{n\in\mathbb{N}}$ is eventually constant for all $i \in \mathbb{N}$, a simple induction shows that $(b_n \upharpoonright i)_{n\in\mathbb{N}}$ is also eventually constant for all $i \in \mathbb{N}$, so $(b_n)_{n\in\mathbb{N}}$ converges to an element of $\mathbb{N}^{\mathbb{N}}$.

Proposition 2.7. Suppose that $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ is a \wedge -embedding. Then $\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ is closed.

Proof. It is sufficient to show that every sequence $(s_n)_{n\in\mathbb{N}}$ of elements of $\mathbb{N}^{<\mathbb{N}}$ such that $(\pi(s_n))_{n\in\mathbb{N}}$ converges to $t \frown (\infty)$ for some $t \in \mathbb{N}^{<\mathbb{N}}$ has a subsequence converging to an element of $\mathbb{N}^{\mathbb{N}}_{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$. By passing to a subsequence, we can assume that $\pi(s_m) \land \pi(s_n) = t$ for all distinct $m, n \in \mathbb{N}$. Let s be the \sqsubseteq -minimal element of $\mathbb{N}^{<\mathbb{N}}$ for which $t \sqsubseteq \pi(s)$. Then $s_m \land s_n = s$ for all distinct $m, n \in \mathbb{N}$, thus $s_n \to s \frown (\infty)$. A set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is \sqsubseteq -dense if $\forall s \in \mathbb{N}^{<\mathbb{N}} \exists t \in T \ s \sqsubseteq t$. More generally, a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is \sqsubseteq -dense below $r \in \mathbb{N}^{<\mathbb{N}}$ if $\forall s \in \mathbb{N}^{<\mathbb{N}} \exists t \in T \ r \frown s \sqsubseteq t$.

Proposition 2.8. Suppose that $T \subseteq \mathbb{N}^{<\mathbb{N}}$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $\pi(\mathbb{N}^{<\mathbb{N}}) \subseteq T$ or $\pi(\mathbb{N}^{<\mathbb{N}}) \subseteq \sim T$.

Proof. Fix $S \in \{T, \sim T\}$ which is \sqsubseteq -dense below some $s \in \mathbb{N}^{<\mathbb{N}}$, and recursively construct a function $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_s \cap S$ with the property that $\pi(t) \frown (i) \sqsubseteq \pi(t \frown (i))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$.

Proposition 2.9. Suppose that $C \subseteq \mathbb{N}^{\mathbb{N}}$ is a non-meager set with the Baire property. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that $\overline{\pi}(\mathbb{N}^{\mathbb{N}}) \subseteq C$.

Proof. Fix $s \in \mathbb{N}^{<\mathbb{N}}$ for which C is comeager in $\mathcal{N}_s \cap \mathbb{N}^{\mathbb{N}}$, as well as dense open sets $U_n \subseteq \mathcal{N}_s \cap \mathbb{N}^{\mathbb{N}}$ with the property that $\bigcap_{n \in \mathbb{N}} U_n \subseteq C$. Set $T_n = \{t \in \mathbb{N}^{<\mathbb{N}} \mid \mathcal{N}_t \cap \mathbb{N}^{\mathbb{N}} \subseteq U_n\}$ for all $n \in \mathbb{N}$, and recursively construct a function $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_s \cap \mathbb{N}^{<\mathbb{N}}$ such that $\pi(\mathbb{N}^n) \subseteq T_n$ for all $n \in \mathbb{N}$ and $\pi(t) \cap (i) \sqsubseteq \pi(t \cap (i))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$.

3. Baire measurable functions on $\mathbb{N}^{\mathbb{N}}$

Here we provide a basis for the class of Baire measurable functions from $\mathbb{N}^{\mathbb{N}}$ to separable metric spaces.

Proposition 3.1. Suppose that X is a second countable topological space and $\phi \colon \mathbb{N}^{\mathbb{N}} \to X$ is Baire measurable. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ for which $\phi \circ \overline{\pi}$ is continuous.

Proof. Fix a comeager set $C \subseteq \mathbb{N}^{\mathbb{N}}$ on which ϕ is continuous, and appeal to Proposition 2.9 to obtain a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that $\overline{\pi}(\mathbb{N}^{\mathbb{N}}) \subseteq C$.

Proposition 3.2. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}} \to X$ is continuous. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that diam $\phi(\mathcal{N}_{\pi(t)}) \to 0$.

Proof. Fix a sequence $(\epsilon_t)_{t\in\mathbb{N}^{<\mathbb{N}}}$ of positive real numbers converging to zero, note that the continuity of ϕ ensures that for all $t\in\mathbb{N}^{<\mathbb{N}}$ the set $T_t = \{s\in\mathbb{N}^{<\mathbb{N}} \mid \operatorname{diam} \phi(\mathcal{N}_s) < \epsilon_t\}$ is \sqsubseteq -dense, and recursively construct a function $\pi\colon\mathbb{N}^{<\mathbb{N}}\to\mathbb{N}^{<\mathbb{N}}$ such that $\pi(t)\in T_t$ for all $t\in\mathbb{N}^{<\mathbb{N}}$ and $\pi(t) \cap (i) \sqsubseteq \pi(t \cap (i))$ for all $i\in\mathbb{N}$ and $t\in\mathbb{N}^{<\mathbb{N}}$.

Given a countable set I and a topological space X, we say that a sequence $(X_i)_{i \in I}$ of subsets of X converges to a point $x \in X$, or $X_i \to x$, if for every open neighborhood U of x, all but finitely many $i \in I$ have the property that $X_i \subseteq U$. We say that $(X_i)_{i \in I}$ is discrete if for all

6

 $x \in X$ there is an open neighborhood U of x such that all but finitely many $i \in I$ have the property that $U \cap X_i = \emptyset$.

Proposition 3.3. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}} \to X$ has the property that diam $\phi(\mathcal{N}_{t_{n}(i)}) \to 0$ for all $t \in \mathbb{N}^{<\mathbb{N}}$. Then there is $a \wedge \text{-embedding } \pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $(\phi(\mathcal{N}_{\pi(t_{n}(i))}))_{i\in\mathbb{N}}$ is convergent or discrete for all $t \in \mathbb{N}^{<\mathbb{N}}$.

Proof. For each $t \in \mathbb{N}^{<\mathbb{N}}$, the fact that diam $\phi(\mathcal{N}_{t \frown (i)}) \to 0$ ensures that there is an injection $\iota_t \colon \mathbb{N} \to \mathbb{N}$ for which $(\phi(\mathcal{N}_{t \frown (\iota_t(i))}))_{i \in \mathbb{N}}$ is convergent or discrete. Define $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by choosing $\pi(\emptyset) \in \mathbb{N}^{<\mathbb{N}}$ arbitrarily and setting $\pi(t \frown (i)) = \pi(t) \frown (\iota_{\pi(t)}(i))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$. \boxtimes

We say that a function $\phi: X \to Y$ is *nowhere constant* if there is no non-empty open set $U \subseteq X$ on which ϕ is constant.

Proposition 3.4. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}} \to X$ is continuous and nowhere constant. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that

$$\forall i \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}} \ \overline{\phi(\mathcal{N}_{\pi(t \frown (i))})} \cap \overline{\bigcup_{j \in \mathbb{N} \setminus \{i\}} \phi(\mathcal{N}_{\pi(t \frown (j))})} = \emptyset.$$

Proof. Clearly each $\phi(\mathcal{N}_t)$ is infinite.

Lemma 3.5. For all $t \in \mathbb{N}^{<\mathbb{N}}$, there is a function $\iota_t \colon \mathbb{N} \to \mathbb{N}^{<\mathbb{N}} \setminus \{\emptyset\}$ such that $(\iota_t(i)(0))_{i\in\mathbb{N}}$ is injective and the closures of $\phi(\mathcal{N}_{t \frown \iota_t(i)})$ and $\bigcup_{i\in\mathbb{N}\setminus\{i\}}\phi(\mathcal{N}_{t \frown \iota_t(j)})$ are disjoint for all $i\in\mathbb{N}$.

Proof. As each $\phi(\mathcal{N}_{t^{(i)}})$ is infinite, there are extensions $b_i \in \mathbb{N}^{\mathbb{N}}$ of $t^{(i)}$ such that $\phi(b_i) \notin \{\phi(b_j) \mid j < i\}$ for all $i \in \mathbb{N}$. Fix a subsequence $(a_i)_{i \in \mathbb{N}}$ of $(b_i)_{i \in \mathbb{N}}$ for which $\{\phi(a_i) \mid i \in \mathbb{N}\}$ is discrete. For each $i \in \mathbb{N}$, fix $\epsilon_i > 0$ such that $\phi(a_j) \notin \mathcal{B}(\phi(a_i), \epsilon_i)$ for all $j \in \mathbb{N} \setminus \{i\}$, as well as $\iota_t(i) \in \mathbb{N}^{\mathbb{N}} \setminus \{\emptyset\}$ with $t \sim \iota_t(i) \sqsubseteq a_i$ and $\phi(\mathcal{N}_{t \sim \iota_t(i)}) \subseteq \mathcal{B}(\phi(a_i), \epsilon_i/3)$.

Suppose, towards a contradiction, that there exists $i \in \mathbb{N}$ for which some $x \in X$ is in the closures of $\phi(\mathcal{N}_{t \sim \iota_t(i)})$ and $\bigcup_{j \in \mathbb{N} \setminus \{i\}} \phi(\mathcal{N}_{t \sim \iota_t(j)})$. Then there exist $j \in \mathbb{N} \setminus \{i\}$ and $y \in \phi(\mathcal{N}_{t \sim \iota_t(j)})$ with the property that $d(x, y) \leq \epsilon_i/3$, in which case

$$d(\phi(a_i), \phi(a_j)) \le d(\phi(a_i), x) + d(x, y) + d(y, \phi(a_j))$$

$$< \epsilon_i/3 + \epsilon_i/3 + \epsilon_j/3$$

$$\le \max\{\epsilon_i, \epsilon_j\},$$

so $\phi(a_i) \in \mathcal{B}(\phi(a_j), \epsilon_j)$ or $\phi(a_j) \in \mathcal{B}(\phi(a_i), \epsilon_i)$, a contradiction.

Define $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by choosing $\pi(\emptyset) \in \mathbb{N}^{<\mathbb{N}}$ arbitrarily and setting $\pi(t \frown (i)) = \pi(t) \frown \iota_{\pi(t)}(i)$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$.

We now obtain our main result stabilizing the topological behavior of Baire measurable functions from $\mathbb{N}^{\mathbb{N}}$ to separable metric spaces.

Theorem 3.6. Suppose that X is a separable metric space and $\phi \colon \mathbb{N}^{\mathbb{N}} \to X$ is Baire measurable. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $\phi \circ \overline{\pi}$ is constant or extends to a closed continuous embedding on $\mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_{*}$.

Proof. By Remark 2.5, we are free to replace ϕ by its composition with the extension of any \wedge -embedding. For example, by Proposition 3.1, we can assume that ϕ is continuous.

If there exists $s \in \mathbb{N}^{<\mathbb{N}}$ for which $\phi \upharpoonright \mathcal{N}_s$ is constant, then define $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by $\pi(t) = s \frown t$ for all $t \in \mathbb{N}^{<\mathbb{N}}$, so $\phi \circ \overline{\pi}$ is constant. Otherwise, Propositions 2.8, 3.2, 3.3, and 3.4 yield a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that diam $\phi(\mathcal{N}_{\pi(t)}) \to 0$, $(\phi(\mathcal{N}_{\pi(t\cap(i))}))_{i\in\mathbb{N}}$ is convergent for all $t \in \mathbb{N}^{<\mathbb{N}}$ or discrete for all $t \in \mathbb{N}^{<\mathbb{N}}$, and

$$\forall i \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}} \ \overline{\phi(\mathcal{N}_{\pi(t \frown (i))})} \cap \overline{\bigcup_{j \in \mathbb{N} \setminus \{i\}} \phi(\mathcal{N}_{\pi(t \frown (j))})} = \emptyset$$

As $\overline{\pi}(\mathcal{N}_t) \subseteq \mathcal{N}_{\pi(t)}$ for all $t \in \mathbb{N}^{<\mathbb{N}}$, it follows that

$$\forall i \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}} \ \overline{(\phi \circ \overline{\pi})(\mathcal{N}_{t \frown (i)})} \cap \overline{\bigcup_{j \in \mathbb{N} \setminus \{i\}} (\phi \circ \overline{\pi})(\mathcal{N}_{t \frown (j)})} = \emptyset.$$

So by replacing ϕ with $\phi \circ \overline{\pi}$, we can assume that diam $\phi(\mathcal{N}_t) \to 0$, $(\phi(\mathcal{N}_{t \cap (i)}))_{i \in \mathbb{N}}$ is convergent for all $t \in \mathbb{N}^{<\mathbb{N}}$ or discrete for all $t \in \mathbb{N}^{<\mathbb{N}}$, and

(†)
$$\forall i \in \mathbb{N} \forall t \in \mathbb{N}^{<\mathbb{N}} \ \overline{\phi(\mathcal{N}_{t \frown (i)})} \cap \overline{\bigcup_{j \in \mathbb{N} \setminus \{i\}} \phi(\mathcal{N}_{t \frown (j)})} = \emptyset.$$

To see that ϕ is injective, note that if $a, b \in \mathbb{N}^{\mathbb{N}}$ are distinct, then there is a least $i \in \mathbb{N}$ for which $a(i) \neq b(i)$. Setting $t = a \upharpoonright i = b \upharpoonright i$, it follows from (†) that $\phi(\mathcal{N}_{t \cap (a(i))})$ and $\phi(\mathcal{N}_{t \cap (b(i))})$ are disjoint, thus $\phi(a)$ and $\phi(b)$ are distinct.

We next check that if $(\phi(\mathcal{N}_{t_{\frown}(i)}))_{i\in\mathbb{N}}$ is discrete for all $t\in\mathbb{N}^{<\mathbb{N}}$, then ϕ is a closed continuous embedding. It is sufficient to show that every sequence $(b_n)_{n\in\mathbb{N}}$ of elements of $\mathbb{N}^{\mathbb{N}}$ for which $(\phi(b_n))_{n\in\mathbb{N}}$ converges to some $x\in X$ is itself convergent. But a straightforward recursive argument yields $b\in\mathbb{N}^{\mathbb{N}}$ such that x is in the closure of $\phi(\mathcal{N}_{b\restriction i})$ for all $i\in\mathbb{N}$, so (\dagger) ensures that x is not in the closure of $\bigcup_{j\in\mathbb{N}\setminus\{b(i)\}}\phi(\mathcal{N}_{b\restriction i\frown(j)})$ for all $i\in\mathbb{N}$, thus $(b_n\restriction i)_{n\in\mathbb{N}}$ is eventually constant with value $b\restriction i$ for all $i\in\mathbb{N}$, hence $b_n\to b$.

It remains to check that if $(\phi(\mathcal{N}_{t_{\frown}(i)}))_{i\in\mathbb{N}}$ is convergent for all $t\in\mathbb{N}^{<\mathbb{N}}$, then the extension of ϕ to $\mathbb{N}^{\mathbb{N}}_{*}$ given by $\overline{\phi}(t\frown(\infty)) = \lim_{i\to\infty} \phi(\mathcal{N}_{t\frown(i)})$ for all $t\in\mathbb{N}^{<\mathbb{N}}$ is a closed continuous embedding. To see that $\overline{\phi}$ is injective, note that if $c, d\in\mathbb{N}^{\mathbb{N}}_{*}$ are distinct, then there is a least $i\in\mathbb{N}$ with $c(i) \neq d(i)$. By reversing the roles of c and d if necessary, we can assume that $c(i) \neq \infty$. Set $t = c \upharpoonright i = d \upharpoonright i$, and appeal to (\dagger) to see that $\overline{\phi}(c)$ is in the closure of $\phi(\mathcal{N}_{t \cap (c(i))})$ but $\overline{\phi}(d)$ is not, so $\overline{\phi}(c) \neq \overline{\phi}(d)$. To see that $\overline{\phi}$ is continuous, suppose that $c \in \mathbb{N}^{\mathbb{N}}_{*}$ and Uis an open neighborhood of $\overline{\phi}(c)$, and fix an open neighborhood V of $\overline{\phi}(c)$ whose closure is contained in U. If $c \in \mathbb{N}^{\mathbb{N}}$, then there exists $i \in \mathbb{N}$ for which $\phi(\mathcal{N}_{c \restriction i}) \subseteq V$, thus $\mathcal{N}_{c \restriction i}$ is an open neighborhood of c whose image under $\overline{\phi}$ is contained in U. Otherwise, there exists $t \in \mathbb{N}^{<\mathbb{N}}$ for which $c = t \cap (\infty)$, as well as $i \in \mathbb{N}$ for which $\phi(\mathcal{N}_t \setminus \bigcup_{j < i} \mathcal{N}_{t \cap (j)}) \subseteq V$. Then $\mathcal{N}_t \setminus \bigcup_{j < i} \mathcal{N}_{t \cap (j)}$ is an open neighborhood of c whose image under $\overline{\phi}$ is contained in U.

For each topological space X, let c_X denote the unique function from X to the trivial topological space $\{\infty\}$. Given topological spaces $X \subseteq Y$, define $\iota_{X,Y} \colon X \to Y$ by $\iota_{X,Y}(x) = x$ for all $x \in X$.

Proposition 3.7. Suppose that X is a separable metric space, $\phi \colon \mathbb{N}^{\mathbb{N}} \to X$ is Baire measurable, $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ is a \wedge -embedding, and $\phi \circ \overline{\pi}$ is constant or extends to a closed continuous embedding on $\mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_*$. Then there exist $\phi_0 \in \{c_{\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},Z} \mid Z \in \{\mathbb{N}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}_*\}\}$ and $\psi \colon \overline{\phi_0(\mathbb{N}^{\mathbb{N}})} \to \overline{\phi(\mathbb{N}^{\mathbb{N}})}$ with the property that $(\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \psi)$ is a closed continuous embedding of ϕ_0 into ϕ .

Proof. If $\phi \circ \overline{\pi}$ is constant, then set $\phi_0 = c_{\mathbb{N}^{\mathbb{N}}}$ and let ψ be the unique function from $c_{\mathbb{N}^{\mathbb{N}}}(\mathbb{N}^{\mathbb{N}})$ to $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}})$. If $\phi \circ \overline{\pi}$ extends to a closed continuous embedding ψ on $Z \in \{\mathbb{N}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}_*\}$, then set $\phi_0 = \iota_{\mathbb{N}^{\mathbb{N}}, Z}$.

4. Baire-class-one functions that are not σ -continuous with closed witnesses

Here we strengthen [Sol98, Theorem 3.1] by providing a basis for the class of non- σ -continuous-with-closed-witnesses Baire-class-one functions from analytic metric spaces to separable metric spaces.

Proposition 4.1. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}}_* \to X$ has the property that $\phi \upharpoonright \mathbb{N}^{\mathbb{N}}$ is continuous. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that either $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}) \cap (\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$ or $\phi \circ \overline{\pi}$ is continuous at every point of $\mathbb{N}^{\mathbb{N}}$.

Proof. We can assume that there is no $s \in \mathbb{N}^{<\mathbb{N}}$ with the property that $\inf\{d(\phi(s \frown b), \phi(s \frown t \frown (\infty))) \mid b \in \mathbb{N}^{\mathbb{N}} \text{ and } t \in \mathbb{N}^{<\mathbb{N}}\} > 0$, since otherwise the \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ given by $\pi(t) = s \frown t$ for all $t \in \mathbb{N}^{<\mathbb{N}}$ has the property that $\overline{(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}})} \cap \overline{(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}})} = \emptyset$.

Lemma 4.2. Suppose that $\epsilon > 0$ and $s \in \mathbb{N}^{<\mathbb{N}}$. Then there exists $t \in \mathbb{N}^{<\mathbb{N}}$ with $d(\phi(s \frown t \frown b), \phi(s \frown t \frown (\infty))) < \epsilon$ for all $b \in \mathbb{N}^{\mathbb{N}}$.

Proof. Fix $\delta < \epsilon$ and $u \in \mathbb{N}^{<\mathbb{N}}$ with diam $\phi(\mathcal{N}_{s \frown u} \cap \mathbb{N}^{\mathbb{N}}) < \delta$, and $b \in \mathbb{N}^{\mathbb{N}}$ and $v \in \mathbb{N}^{<\mathbb{N}}$ with $d(\phi(s \frown u \frown b), \phi(s \frown u \frown v \frown (\infty))) < \epsilon - \delta$, and set $t = u \frown v$.

Fix a sequence $(\epsilon_n)_{n\in\mathbb{N}}$ of positive real numbers converging to zero, and recursively construct a function $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that $d(\phi(\pi(t) \frown b), \phi(\pi(t) \frown (\infty))) < \epsilon_{|t|}$ for all $b \in \mathbb{N}^{\mathbb{N}}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, and $\pi(t) \frown (i) \sqsubseteq \pi(t \frown (i))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$.

We say that a metric space is ϵ -discrete if all distinct points have distance at least ϵ from one another.

Proposition 4.3. Suppose that X is a metric space, $\phi \colon \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to X$, $\epsilon > 0$, and $t \in \mathbb{N}^{<\mathbb{N}}$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_t \cap \mathbb{N}^{<\mathbb{N}}$ with the property that $\phi \circ \overline{\pi}$ is an injection into an ϵ -discrete set or $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ is contained in the ϵ -ball around a point of $\phi(\mathcal{N}_t)$.

Proof. If for no finite set $F \subseteq \phi(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ and extension u of t is it the case that $\phi(\mathcal{N}_u) \subseteq \mathcal{B}(F, \epsilon)$, then fix an enumeration $(t_n)_{n \in \mathbb{N}}$ of $\mathbb{N}^{<\mathbb{N}}$ with the property that $t_m \sqsubseteq t_n \implies m \le n$ for all $m, n \in \mathbb{N}$, and recursively construct $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_t \cap \mathbb{N}^{<\mathbb{N}}$ such that $\phi(\pi(t_n) \frown (\infty)) \notin \mathcal{B}(\{\phi(\pi(t_m) \frown (\infty)) \mid m < n\}, \epsilon)$ and $\pi(t'_n) \frown (n) \sqsubseteq \pi(t_n)$ for all n > 0, where t'_n is the maximal proper initial segment of t_n .

Otherwise, there exists $x \in \phi(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ with the property that the set $S = \{s \in \mathbb{N}^{<\mathbb{N}} \mid \phi(s \frown (\infty)) \in \mathcal{B}(x,\epsilon)\}$ is \sqsubseteq -dense below some extension u of t, in which case we can recursively construct a function $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_u \cap S$ with the property that $\pi(v) \frown (i) \sqsubseteq \pi(v \frown (i))$ for all $i \in \mathbb{N}$ and $v \in \mathbb{N}^{<\mathbb{N}}$.

Proposition 4.4. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to X$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $\phi \circ \overline{\pi}$ is an injection into an ϵ -discrete set for some $\epsilon > 0$ or diam $(\phi \circ \overline{\pi})(\mathcal{N}_t) \to 0$.

Proof. Suppose that for no $\epsilon > 0$ is there a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $\phi \circ \overline{\pi}$ is an injection into an ϵ -discrete set, fix a sequence $(\epsilon_t)_{t\in\mathbb{N}^{<\mathbb{N}}}$ of positive real numbers converging to zero, and recursively apply Proposition 4.3 to the functions $\phi_t = \phi \circ \prod_{n < |t|} \overline{\pi_{t\mid n}}$ to obtain \wedge -embeddings $\pi_t \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_t \cap \mathbb{N}^{<\mathbb{N}}$ such that $(\phi \circ \prod_{n \le |t|} \overline{\pi_{t\mid n}})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ is contained in an ϵ_t -ball for all $t \in \mathbb{N}^{<\mathbb{N}}$. Let π be the \wedge -embedding obtained from applying Proposition 2.3 to $(\pi_t)_{t\in\mathbb{N}^{<\mathbb{N}}}$, and observe that diam $(\phi \circ \overline{\pi})(\mathcal{N}_t) \to 0$.

10

Define $p: \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by setting $p(t \frown (\infty)) = t$ for all $t \in \mathbb{N}^{<\mathbb{N}}$. Let $\mathbb{N}^{<\mathbb{N}}_* = \mathbb{N}^{<\mathbb{N}} \cup \{\infty\}$ denote the *one-point compactification* of $\mathbb{N}^{<\mathbb{N}}$.

Theorem 4.5. Suppose that X is an analytic metric space, Y is a separable metric space, and $\phi: X \to Y$ is a Baire-class-one function that is not σ -continuous with closed witnesses. Then there exists $\phi_0 \in \{c_{\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},Z} \mid Z \in \{\mathbb{N}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}_*\}\}$ for which there is a closed continuous embedding of $\phi_0 \cup p$ into ϕ .

Proof. By the Jayne-Rogers theorem (see, for example, [JR82, Theorem 1]), we can assume that ϕ is not G_{δ} -measurable. Hurewicz's dichotomy theorem for F_{σ} sets then yields a closed continuous embedding $\psi \colon \mathbb{N}^{\mathbb{N}}_* \to X$ with $(\phi \circ \psi)(\mathbb{N}^{\mathbb{N}}) \cap (\phi \circ \psi)(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$ (see, for example, [CMS, Theorem 4.2]). As $(\psi, \operatorname{id}_{\overline{(\phi \circ \psi)}(\mathbb{N}^{\mathbb{N}}_*)})$ is a closed continuous embedding of $\phi \circ \psi$ into ϕ , by replacing the latter with the former, we can assume that $X = \mathbb{N}^{\mathbb{N}}_*$ and $\overline{\phi}(\mathbb{N}^{\mathbb{N}}) \cap \phi(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$. By Proposition 3.1, there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ for which

By Proposition 3.1, there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ for which $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is continuous. By composing π with the \wedge -embedding given by Proposition 4.1, we can assume that $(\overline{\phi \circ \pi})(\mathbb{N}^{\mathbb{N}}) \cap (\overline{\phi \circ \pi})(\mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$ or $\phi \circ \overline{\pi}$ is continuous at every point of $\mathbb{N}^{\mathbb{N}}$. As ϕ is Baire class one, the former possibility would imply that the pre-images of $(\overline{\phi \circ \pi})(\mathbb{N}^{\mathbb{N}})$ and $(\overline{\phi \circ \pi})(\mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}})$ under $\phi \circ \overline{\pi}$ are disjoint dense G_{δ} subsets of $\mathbb{N}^{\mathbb{N}}_{*}$, so the latter holds. By Proposition 4.4, we can assume that either there exists $\epsilon > 0$ for which $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}}$ is an injection into an ϵ -discrete set, or diam $(\phi \circ \overline{\pi})(\mathcal{N}_{t} \cap (\mathbb{N}^{\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}})) \to 0$. As the former possibility contradicts the facts that $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}) \cap (\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$ and $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}) \subseteq \overline{(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}})}$, it follows that the latter holds. By applying Proposition 4.3 with any $\epsilon > 0$ and $t \in \mathbb{N}^{<\mathbb{N}}$, but replacing the given metric on X by one with respect to which all pairs of distinct points have distance at least ϵ from one another, we can assume that $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}}$ is either constant or injective.

Lemma 4.6. Suppose that $(s_n)_{n \in \mathbb{N}}$ is an injective sequence of elements of $\mathbb{N}^{<\mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ is a sequence of elements of $\mathbb{N}^{\mathbb{N}}$ such that $s_n \sqsubseteq b_n$ for all $n \in \mathbb{N}$. Then $d_X((\phi \circ \overline{\pi})(b_n), (\phi \circ \overline{\pi})(s_n \frown (\infty))) \to 0$.

Proof. Simply note that $(\phi \circ \overline{\pi})(b_n) \in \overline{(\phi \circ \overline{\pi})(\mathcal{N}_{s_n} \cap (\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}))}$ for all $n \in \mathbb{N}$ and diam $(\phi \circ \overline{\pi})(\mathcal{N}_{s_n} \cap (\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})) \to 0.$

Along with the facts that $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}) \cap (\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$ and $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}) \subseteq \overline{(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})}$, Lemma 4.6 ensures that $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$ is not constant, and is therefore injective. Along with the fact that $(\overline{\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}})} \cap (\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$, Lemma 4.6 ensures that $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ is discrete.

By Theorem 3.6, we can assume that $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is constant or extends to a closed continuous embedding on $\mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_*$.

We will now complete the proof by showing that there exist $\phi_0 \in \{c_{\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},Z} \mid Z \in \{\mathbb{N}^{\mathbb{N}}, \mathbb{N}_*^{\mathbb{N}}\}\}$ and $\psi \colon \phi_0(\mathbb{N}_*^{\mathbb{N}}) \cup \mathbb{N}^{<\mathbb{N}} \to \overline{\phi(X)}$ for which $(\overline{\pi} \upharpoonright \mathbb{N}_*^{\mathbb{N}} \to \mathbb{N}_*^{\mathbb{N}}, \psi)$ is a closed continuous embedding of $\phi_0 \cup p$ into ϕ .

If $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is constant with value $y \in Y$, then set $\phi_0 = c_{\mathbb{N}^{\mathbb{N}}}$, and note that the extension ψ of $\phi \circ \overline{\pi} \circ p^{-1}$ to $\mathbb{N}^{<\mathbb{N}}_*$ given by $\psi(\infty) = y$ is injective. As Lemma 4.6 ensures that $(\phi \circ \overline{\pi})(s_n \frown (\infty)) \to y$ for every injective sequence $(s_n)_{n \in \mathbb{N}}$ of elements of $\mathbb{N}^{<\mathbb{N}}$, it follows that ψ is continuous, so the compactness of $\mathbb{N}^{<\mathbb{N}}_*$ ensures that ψ is a closed continuous embedding.

If $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is a closed continuous embedding, then set $\phi_0 = \iota_{\mathbb{N}^{\mathbb{N}},\mathbb{N}^{\mathbb{N}}}$, and note that the extension ψ of $\phi \circ \overline{\pi} \circ p^{-1}$ to $\mathbb{N}^{\leq \mathbb{N}}$ given by $\psi \upharpoonright \mathbb{N}^{\mathbb{N}} = (\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is a continuous injection. To see that it is closed, it is enough to show that every injective sequence $(a_n)_{n \in \mathbb{N}}$ of elements of $\mathbb{N}^{\leq \mathbb{N}}$ for which $(\psi(a_n))_{n \in \mathbb{N}}$ converges to some point $y \in Y$ has a subsequence converging to a point of $\mathbb{N}^{\mathbb{N}}$. As $\mathbb{N}_*^{\leq \mathbb{N}}$ is compact, by passing to a subsequence, we can assume that $(a_n)_{n \in \mathbb{N}}$ converges to a point of $\mathbb{N}_*^{\leq \mathbb{N}}$. As every point of $\mathbb{N}^{<\mathbb{N}}$ is isolated, it therefore converges to a point of $\mathbb{N}_*^{\mathbb{N}}$. And if there exists $t \in \mathbb{N}^{<\mathbb{N}}$ for which $a_n \to t \frown (\infty)$, then there are extensions $b_n \in \mathbb{N}^{\mathbb{N}}$ of a_n for all $n \in \mathbb{N}$, in which case $b_n \to t \frown (\infty)$ and $\psi(b_n) \to y$ by Lemma 4.6. Fix $n \in \mathbb{N}$ sufficiently large that $(\phi \circ \overline{\pi})(b_m) \neq y$ for all $m \geq n$, and observe that $\{b_m \mid m \geq n\}$ is a closed subset of $\mathbb{N}^{\mathbb{N}}$ whose image under $\phi \circ \overline{\pi}$ is not closed, contradicting the fact that $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is closed.

If $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ extends to a closed continuous embedding ψ' on $\mathbb{N}_*^{\mathbb{N}}$, then set $\phi_0 = \iota_{\mathbb{N}^{\mathbb{N}}, \mathbb{N}_*^{\mathbb{N}}}$, and note that the extension ψ of $\phi \circ \overline{\pi} \circ p^{-1}$ to $\mathbb{N}_*^{\leq \mathbb{N}}$ given by $\psi \upharpoonright \mathbb{N}_*^{\mathbb{N}} = \psi' \upharpoonright \mathbb{N}_*^{\mathbb{N}}$ is injective. To see that it is continuous, suppose that $(t_n)_{n \in \mathbb{N}}$ is an injective sequence of elements of $\mathbb{N}^{<\mathbb{N}}$ converging to $t \frown (\infty)$ for some $t \in \mathbb{N}^{<\mathbb{N}}$, fix $b_n \in \mathcal{N}_{t_n} \cap \mathbb{N}^{\mathbb{N}}$ for all $n \in \mathbb{N}$, and observe that the continuity of ψ' ensures that $\psi(b_n) \rightarrow$ $\psi(t \frown (\infty))$, thus Lemma 4.6 implies that $\psi(t_n) \rightarrow \psi(t \frown (\infty))$. As $\mathbb{N}_*^{\leq \mathbb{N}}$ is compact, it follows that ψ is a closed continuous embedding.

5. Functions on $\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$

Here we provide a basis for the class of all functions from $\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ to analytic metric spaces.

Proposition 5.1. Suppose that X is a topological space, $\phi \colon \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to X$ is injective, and $x \in X$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $x \notin (\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$.

12

Proof. Fix $s \in \mathbb{N}^{<\mathbb{N}}$ such that $x \notin \phi(\mathcal{N}_s)$, and define $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by $\pi(t) = s \frown t$ for all $t \in \mathbb{N}^{<\mathbb{N}}$.

Proposition 5.2. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to X$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that $((\phi \circ \overline{\pi})(t \frown (i, \infty)))_{i \in \mathbb{N}}$ is convergent or $\{(\phi \circ \overline{\pi})(t \frown (i, \infty)) \mid i \in \mathbb{N}\}$ is closed and discrete for all $t \in \mathbb{N}^{<\mathbb{N}}$.

Proof. For each $t \in \mathbb{N}^{<\mathbb{N}}$, there is an injection $\iota_t \colon \mathbb{N} \to \mathbb{N}$ for which $(\phi(t \frown (\iota_t(i), \infty)))_{i \in \mathbb{N}}$ is convergent or $\{\phi(t \frown (\iota_t(i), \infty)) \mid i \in \mathbb{N}\}$ is closed and discrete. Define $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ by choosing $\pi(\emptyset) \in \mathbb{N}^{<\mathbb{N}}$ arbitrarily and setting $\pi(t \frown (i)) = \pi(t) \frown (\iota_{\pi(t)}(i))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{<\mathbb{N}}$, and note that $(\phi \circ \overline{\pi})(t \frown (i, \infty)) = \phi(\pi(t \frown (i)) \frown (\infty)) = \phi(\pi(t) \frown (\iota_{\pi(t)}(i), \infty))$ for all $i \in \mathbb{N}$ and $t \in \mathbb{N}^{\mathbb{N}}$.

Proposition 5.3. Suppose that X is a metric space, $\phi \colon \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \to X$, $F \subseteq X$ is finite, and $t \in \mathbb{N}^{<\mathbb{N}}$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_t \cap \mathbb{N}^{<\mathbb{N}}$ such that either $((\phi \circ \overline{\pi})(u \frown (\infty)))_{u \in \mathbb{N}^{<\mathbb{N}}}$ converges to an element of F or the closure of $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ is disjoint from F.

Proof. If the set $S_{\epsilon} = \{s \in \mathbb{N}^{<\mathbb{N}} \mid \phi(s \frown (\infty)) \in \mathcal{B}(F, \epsilon)\}$ is \sqsubseteq -dense below t for all $\epsilon > 0$, then there exist an extension u of t and $x \in$ F such that the set $S_{\epsilon,x} = \{s \in \mathbb{N}^{<\mathbb{N}} \mid \phi(s \frown (\infty)) \in \mathcal{B}(x, \epsilon)\}$ is \sqsubseteq -dense below u for all $\epsilon > 0$. Fix a sequence $(\epsilon_v)_{v \in \mathbb{N}^{<\mathbb{N}}}$ of positive real numbers converging to zero, and recursively construct a function $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_u \cap \mathbb{N}^{<\mathbb{N}}$ such that $\pi(v) \in S_{\epsilon_v,x}$ for all $v \in \mathbb{N}^{<\mathbb{N}}$ and $\pi(v) \frown (i) \sqsubseteq \pi(v \frown (i))$ for all $i \in \mathbb{N}$ and $v \in \mathbb{N}^{<\mathbb{N}}$, and observe that $(\phi \circ \overline{\pi})(v \frown (\infty)) \to x$.

Otherwise, fix $\epsilon > 0$ and an extension u of t with the property that $\mathcal{N}_u \cap S_{\epsilon} = \emptyset$, define $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_u \cap \mathbb{N}^{<\mathbb{N}}$ by $\pi(v) = u \frown v$, and note that the closure of $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})$ is disjoint from F.

For the rest of this section, it will be convenient to fix an enumeration $(t_n)_{n\in\mathbb{N}}$ of $\mathbb{N}^{<\mathbb{N}}$ such that $t_m \sqsubseteq t_n \implies m \le n$ for all $m, n \in \mathbb{N}$.

Proposition 5.4. Suppose that X is a metric space and $\phi: \mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}} \to X$. Then there is a \wedge -embedding $\pi: \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that $((\phi \circ \overline{\pi})(t \frown (\infty)))_{t \in \mathbb{N}^{<\mathbb{N}}}$ converges or for no natural numbers m < n is $(\phi \circ \overline{\pi})(t_m \frown (\infty))$ or a limit point of $\{(\phi \circ \overline{\pi})(t_m \frown (i, \infty)) \mid i \in \mathbb{N}\}$ in the closure of $(\phi \circ \overline{\pi})(\mathcal{N}_{t_n})$.

Proof. Suppose that for no \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ is the sequence $((\phi \circ \overline{\pi})(t \frown (\infty)))_{t \in \mathbb{N}^{<\mathbb{N}}}$ convergent. By Proposition 5.2, we can assume that $(\phi(t \frown (i, \infty)))_{i \in \mathbb{N}}$ is convergent or $\{\phi(t \frown (i, \infty)) \mid i \in \mathbb{N}\}$ is closed and discrete for all $t \in \mathbb{N}^{<\mathbb{N}}$. By recursively applying Lemma

5.3 to the functions $\phi_t = \phi \circ \prod_{k < |t|} \overline{\pi_{t \restriction k}}$, we obtain \wedge -embeddings $\pi_t \colon \mathbb{N}^{<\mathbb{N}} \to \mathcal{N}_t \cap \mathbb{N}^{<\mathbb{N}}$ such that for no natural numbers m < n is $(\phi \circ \prod_{k \le |t_m|} \overline{\pi_{t_m \restriction k}})(t_m \frown (\infty))$ or a limit point of $\{(\phi \circ \prod_{k \le |t_m|} \overline{\pi_{t_m \restriction k}})(t_m \frown (i, \infty)) \mid i \in \mathbb{N}\}$ in the closure of $(\phi \circ \prod_{k \le |t_n|} \overline{\pi_{t_n \restriction k}})(\mathcal{N}_{t_n})$. Let π be the \wedge -embedding obtained from applying Proposition 2.3 to $(\pi_t)_{t \in \mathbb{N}^{<\mathbb{N}}}$, and observe that for no natural numbers m < n is it the case that $(\phi \circ \overline{\pi})(t_m \frown (\infty))$ or a limit point of $\{(\phi \circ \overline{\pi})(t_m \frown (i, \infty)) \mid i \in \mathbb{N}\}$ in the closure of $(\phi \circ \overline{\pi})(\mathcal{N}_{t_n})$.

Theorem 5.5. Suppose that X is an analytic metric space and $\phi \colon \mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}} \to X$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that $\phi \circ \overline{\pi}$ is constant, $\phi \circ \overline{\pi}$ extends to a closed continuous embedding on $\mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}_*^{\mathbb{N}}$, or $\phi \circ \overline{\pi} \circ p^{-1}$ extends to a closed continuous embedding on $\mathbb{N}^{<\mathbb{N}}$, $\mathbb{N}_*^{<\mathbb{N}}$, $\mathbb{N}_*^{\leq\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, or $\mathbb{N}_*^{\leq\mathbb{N}}$.

Proof. As before, we will repeatedly precompose ϕ with appropriate \wedge -embeddings, albeit this time so as to stabilize the behavior of the function $\psi = \phi \circ p^{-1}$, as opposed to that of the function ϕ itself. By applying Proposition 4.3 with any $\epsilon > 0$ and $t \in \mathbb{N}^{<\mathbb{N}}$, but replacing the given metric on X by one with respect to which all pairs of distinct points have distance at least ϵ from one another, we can assume that ψ is either constant or injective. As ϕ is constant in the former case, we can assume that we are in the latter.

By Proposition 4.4, we can ensure that $\psi(\mathbb{N}^{<\mathbb{N}})$ is closed and discrete or diam $\psi(\mathcal{N}_t) \to 0$. As ψ is a closed continuous embedding in the former case, we can assume that we are in the latter.

Let $\overline{\psi}$ be the extension of ψ to a partial function on $\mathbb{N}_*^{\leq \mathbb{N}}$ given by $\overline{\psi}(b) = \lim_{i \to \infty} \psi(b \upharpoonright i)$ and $\overline{\psi}(t \frown (\infty)) = \lim_{i \to \infty} \psi(t \frown (i))$ for all $b \in \mathbb{N}^{\mathbb{N}}$ and $t \in \mathbb{N}^{<\mathbb{N}}$. By Proposition 5.2, we can assume that $\{\psi(t \frown (i)) \mid i \in \mathbb{N}\}$ has a limit point $\implies t \frown (\infty) \in \operatorname{dom}(\overline{\psi})$ for all $t \in \mathbb{N}^{<\mathbb{N}}$.

As each point of $\mathbb{N}^{<\mathbb{N}}$ is isolated, diam $\psi(\mathcal{N}_{b\restriction i}) \to 0$ for all $b \in \mathbb{N}^{\mathbb{N}}$, and diam $\psi(\mathcal{N}_{t \cap (i)}) \to 0$ for all $t \in \mathbb{N}^{<\mathbb{N}}$, it follows that $\overline{\psi}$ is continuous. To see that $\overline{\psi}$ is closed, it is sufficient show that every injective sequence $(c_n)_{n\in\mathbb{N}}$ of points in the domain of $\overline{\psi}$ for which $(\overline{\psi}(c_n))_{n\in\mathbb{N}}$ is convergent has a subsequence converging to a point in the domain of $\overline{\psi}$. By passing to a subsequence, we can assume that the sequence converges to a point of $\mathbb{N}_*^{\leq\mathbb{N}}$. As each point of $\mathbb{N}^{<\mathbb{N}}$ is isolated, the sequence converges to a point of $\mathbb{N}_*^{\mathbb{N}}$, so the facts that diam $\psi(\mathcal{N}_{b\restriction i}) \to 0$ for all $b \in \mathbb{N}^{\mathbb{N}}$, diam $\psi(\mathcal{N}_{t \cap (i)}) \to 0$ for all $t \in \mathbb{N}^{<\mathbb{N}}$, and $\{\psi(t \cap (i)) \mid i \in \mathbb{N}\}$ has a limit point $\implies t \cap (\infty) \in \operatorname{dom}(\overline{\psi})$ for all $t \in \mathbb{N}^{<\mathbb{N}}$ ensure that it converges to a point of the domain of $\overline{\psi}$. By Proposition 2.8, we can assume that one of the following holds:

- (1) $\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \subseteq \operatorname{dom}(\overline{\psi}) \text{ and } \forall t \in \mathbb{N}^{<\mathbb{N}} \ \overline{\psi}(t) = \overline{\psi}(t \frown (\infty)).$ (2) $\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}} \subseteq \operatorname{dom}(\overline{\psi}) \text{ and } \forall t \in \mathbb{N}^{<\mathbb{N}} \ \overline{\psi}(t) \neq \overline{\psi}(t \frown (\infty)).$
- (3) $(\mathbb{N}^{\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}}) \cap \operatorname{dom}(\overline{\psi}) = \emptyset.$

As the domain of $\overline{\psi}$ is analytic, so too is its intersection with $\mathbb{N}^{\mathbb{N}}$. It follows that the latter intersection has the Baire property, so Proposition 2.9 allows us to assume that one of the following holds:

- (a) The domain of $\overline{\psi}$ is disjoint from $\mathbb{N}^{\mathbb{N}}$.
- (b) The domain of $\overline{\psi}$ contains $\mathbb{N}^{\mathbb{N}}$.

In the special case that condition (b) holds, Theorem 3.6 allows us to assume that $\overline{\psi} \upharpoonright \mathbb{N}^{\mathbb{N}}$ is either constant or injective.

Proposition 5.4 allows us to assume that $(\psi(t))_{t\in\mathbb{N}^{\leq \mathbb{N}}}$ converges to some $x \in X$ or for no natural numbers m < n is $\psi(t_m)$ or $\overline{\psi}(t_m \frown (\infty))$ in the closure of $\psi(\mathcal{N}_{t_n})$. In the former case, Proposition 5.1 allows us to assume that $\psi(\mathbb{N}^{<\mathbb{N}})$ is discrete, so the extension of ψ to $\mathbb{N}^{<\mathbb{N}}_*$ sending ∞ to x is a closed continuous embedding, thus we can assume that we are in the latter.

Lemma 5.6. Suppose that $c, d \in \text{dom}(\overline{\psi})$ are distinct but $\overline{\psi}(c) = \overline{\psi}(d)$. Then there exists $t \in \mathbb{N}^{<\mathbb{N}}$ such that $\{c, d\} = \{t, t \land (\infty)\}.$

Proof. To see that $\overline{\psi} \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ is injective, observe that if m < n, both $t_m \sim (\infty)$ and $t_n \sim (\infty)$ are in the domain of $\overline{\psi}$, and moreover $\overline{\psi}(t_m \frown (\infty)) = \overline{\psi}(t_n \frown (\infty))$, then $\overline{\psi}(t_m \frown (\infty))$ is in the closure of $\psi(\mathcal{N}_{t_n})$, a contradiction.

To see that $\overline{\psi} \upharpoonright \mathbb{N}^{\mathbb{N}}$ is injective when $\mathbb{N}^{\mathbb{N}}$ is contained in the domain of $\overline{\psi}$, note that otherwise it is constant, and let x be this constant value. Then for each $t \in \mathbb{N}^{<\mathbb{N}}$, there is a sequence $(u_i)_{i\in\mathbb{N}}$ of elements of $\mathbb{N}^{<\mathbb{N}}$ such that $\psi(t \cap (i) \cap (u_i)) \to x$, so the fact that diam $\psi(\mathcal{N}_{t \cap (i)}) \to 0$ ensures that $\overline{\psi}(t \frown (\infty)) = x$, contradicting the fact that $\overline{\psi} \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ is injective.

To see that $\overline{\psi}(\mathbb{N}^{\mathbb{N}}) \cap \psi(\mathbb{N}^{<\mathbb{N}}) = \emptyset$, note that if $b \in \operatorname{dom}(\overline{\psi}) \cap \mathbb{N}^{\mathbb{N}}$, $t \in \mathbb{N}^{<\mathbb{N}}$, and $\overline{\psi}(b) = \psi(t)$, then there exist m < n with $t_m = t$ and $t_n \sqsubset b$, so $\psi(t_m)$ is in the closure of $\psi(\mathcal{N}_{t_n})$, a contradiction.

To see that $\overline{\psi}(\mathbb{N}^{\mathbb{N}}) \cap \overline{\psi}(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$, note that if $b \in \operatorname{dom}(\overline{\psi}) \cap \mathbb{N}^{\mathbb{N}}$, $t \in \mathbb{N}^{<\mathbb{N}}, t \frown (\infty) \in \operatorname{dom}(\overline{\psi}), \text{ and } \overline{\psi}(b) = \overline{\psi}(t \frown (\infty)), \text{ then there exist}$ m < n with $t_m = t$ and $t_n \sqsubset b$, in which case $\overline{\psi}(t_m \frown \infty)$ is in the closure of $\psi(\mathcal{N}_{t_n})$, a contradiction.

Observe finally that if $s, t \in \mathbb{N}^{<\mathbb{N}}$ are distinct, $t \frown (\infty) \in \operatorname{dom}(\overline{\psi})$, and $\psi(s) = \overline{\psi}(t \frown (\infty))$, then there exist $m \neq n$ such that $t_m = s$ and $t_n = t$. Then $\psi(t_m)$ is in the closure of $\psi(\mathcal{N}_{t_n})$ and $\overline{\psi}(t_n \frown (\infty))$ is in $\psi(\mathcal{N}_{t_m})$, a contradiction.

If (1a) or (1b) holds, then $\overline{\psi} \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ or $\overline{\psi} \upharpoonright \mathbb{N}^{\mathbb{N}}_*$ is an extension of ϕ to a closed continuous embedding. If (2a), (2b), (3a), or (3b) holds, then $\overline{\psi}$ is an extension of ψ to a closed continuous embedding on $\mathbb{N}^{\leq \mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{\leq \mathbb{N}}_*$, or $\mathbb{N}^{\leq \mathbb{N}}$.

Proposition 5.7. Suppose that X is an analytic metric space, $\phi \colon \mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}} \to X$, $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ is a \wedge -embedding, and $\phi \circ \overline{\pi}$ is constant, $\phi \circ \overline{\pi}$ extends to a closed continuous embedding on $\mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}_*^{\mathbb{N}}$, $or \phi \circ \overline{\pi} \circ p^{-1}$ extends to a closed continuous embedding on $\mathbb{N}^{<\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}_*^{<\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$, ψ is a closed continuous embedding of ϕ_0 into ϕ .

Proof. If $\phi \circ \overline{\pi}$ is constant, then set $\phi_0 = c_{\mathbb{N}^N \setminus \mathbb{N}^N}$ and let ψ be the unique function from $c_{\mathbb{N}^N \setminus \mathbb{N}^N}(\mathbb{N}^N \setminus \mathbb{N}^N)$ to $(\phi \circ \overline{\pi})(\mathbb{N}^N \setminus \mathbb{N}^N)$. If $\phi \circ \overline{\pi}$ extends to a closed continuous embedding ψ on $Z \in {\mathbb{N}^N \setminus \mathbb{N}^N, \mathbb{N}^N}$, then set $\phi_0 = \iota_{\mathbb{N}^N \setminus \mathbb{N}^N, \mathbb{Z}}$. And if $\phi \circ \overline{\pi} \circ p^{-1}$ extends to a closed continuous embedding ψ on $Z \in {\mathbb{N}^{<N} \setminus \mathbb{N}^N, \mathbb{N}^{<N}}$, then set $\phi_0 = \iota_{\mathbb{N}^{<N}, \mathbb{N}^{<N}}$, $\mathbb{N}^{<N} \setminus \mathbb{N}^N, \mathbb{N}^{<N}$, $\mathbb{N}^{<N} \setminus \mathbb{N}^N, \mathbb{N}^{<N}$, $\mathbb{N}^{<N} \setminus \mathbb{N}^N, \mathbb{N}^{<N}$, then set $\phi_0 = \iota_{\mathbb{N}^{<N}, \mathbb{Z}} \circ p$. \boxtimes

6. Borel functions that are not Baire class one

Here we provide bases for the classes of non-Baire-class-one Borel functions and non- σ -continuous-with-closed-witnesses Borel functions between analytic metric spaces.

Proposition 6.1. Suppose that X is a metric space and $\phi \colon \mathbb{N}^{\mathbb{N}}_* \to X$ has the property that $\phi \upharpoonright \mathbb{N}^{\mathbb{N}}$ is continuous and $\phi(\mathbb{N}^{\mathbb{N}}) \nsubseteq \overline{\phi(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})}$. Then there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ with the property that $(\overline{\phi \circ \pi})(\mathbb{N}^{\mathbb{N}}) \cap (\overline{\phi \circ \pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$.

Proof. Fix $b \in \mathbb{N}^{\mathbb{N}}$ for which $\phi(b)$ is not in the closure of $\phi(\mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}})$. Then there is an open neighborhood U of $\phi(b)$ disjoint from $\phi(\mathbb{N}_*^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}})$, as well as an open neighborhood V of $\phi(b)$ whose closure is contained in U, in which case the continuity of $\phi \upharpoonright \mathbb{N}^{\mathbb{N}}$ yields a proper initial segment s of b for which $\phi(\mathcal{N}_s \cap \mathbb{N}^{\mathbb{N}}) \subseteq V$. Then the \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ given by $\pi(t) = s \frown t$ for all $t \in \mathbb{N}^{<\mathbb{N}}$ is as desired.

Given $\phi_{\mathbb{N}^{\mathbb{N}}} \colon \mathbb{N}^{\mathbb{N}} \to X$ and $\phi_{\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}} \colon \mathbb{N}^{\mathbb{N}}_* \to Y$, let $\phi_{\mathbb{N}^{\mathbb{N}}} \sqcup \phi_{\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}}$ denote the corresponding function from $\mathbb{N}^{\mathbb{N}}_*$ to the disjoint union $X \sqcup Y$. **Theorem 6.2.** Suppose that X and Y are analytic metric spaces and $\phi: X \to Y$ is a Borel function that is not Baire class one. Then there exist $\phi_{\mathbb{N}^{\mathbb{N}}} \in \{c_{\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},Z} \mid Z \in \{\mathbb{N}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}_{*}\}\}$ and $\phi_{\mathbb{N}^{\mathbb{N}},\mathbb{N}^{\mathbb{N}}} \in \{c_{\mathbb{N}^{\mathbb{N}},\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},\mathbb{N}^{\mathbb{N}}}\} \in \{c_{\mathbb{N}^{\mathbb{N}},\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},\mathbb{N},Z} \circ p \mid Z \in \{\mathbb{N}^{<\mathbb{N}}, \mathbb{N}^{<\mathbb{N}}_{*}, \mathbb{N}^{<\mathbb{N}}_{*} \setminus \mathbb{N}^{\mathbb{N}}, \mathbb{N}^{<\mathbb{N}}_{*}\}\}$ for which there is a closed continuous embedding of $\phi_{\mathbb{N}^{\mathbb{N}}} \sqcup \phi_{\mathbb{N}^{\mathbb{N}},\mathbb{N}^{\mathbb{N}}}$ into ϕ .

Proof. Hurewicz's dichotomy theorem for F_{σ} sets yields a closed continuous embedding $\psi \colon \mathbb{N}^{\mathbb{N}}_* \to X$ with $(\phi \circ \psi)(\mathbb{N}^{\mathbb{N}}) \cap \overline{(\phi \circ \psi)(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})} = \emptyset$. As $(\psi, \operatorname{id}_{\overline{(\phi \circ \psi)(\mathbb{N}^{\mathbb{N}}_*)}})$ is a closed continuous embedding of $\phi \circ \psi$ into ϕ , by replacing the latter with the former, we can assume that $X = \mathbb{N}^{\mathbb{N}}_*$ and $\phi(\mathbb{N}^{\mathbb{N}}) \cap \overline{\phi(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}})} = \emptyset$.

By Proposition 3.1, there is a \wedge -embedding $\pi \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ for which $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is continuous. By composing π with the \wedge -embedding given by Proposition 6.1, we can assume that $(\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}) \cap (\phi \circ \overline{\pi})(\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}) = \emptyset$. By composing π with the \wedge -embedding given by Theorem 3.6, we can assume that $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}$ is constant or extends to a closed continuous embedding on $\mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_*$. And by composing π with the \wedge -embedding given by Theorem 5.5, we can assume that $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ is constant, $(\phi \circ \overline{\pi}) \upharpoonright \mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ extends to a closed continuous embedding on $\mathbb{N}^{\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}_*$, or $\phi \circ \overline{\pi} \circ p^{-1}$ extends to a closed continuous embedding on $\mathbb{N}^{<\mathbb{N}}_*$, $\mathbb{N}^{<\mathbb{N}}_* \setminus \mathbb{N}^{\mathbb{N}}_*$.

By Proposition 3.7, there exist $\phi_{\mathbb{N}^{\mathbb{N}}} \in \{c_{\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}^{\mathbb{N}},Z} \mid Z \in \{\mathbb{N}^{\mathbb{N}}, \mathbb{N}_{*}^{\mathbb{N}}\}\}$ and $\psi_{\mathbb{N}^{\mathbb{N}}} : \overline{\phi_{\mathbb{N}^{\mathbb{N}}}(\mathbb{N}^{\mathbb{N}})} \to \overline{\phi(\mathbb{N}^{\mathbb{N}})}$ for which $(\overline{\pi} \upharpoonright \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \psi_{\mathbb{N}^{\mathbb{N}}})$ is a closed continuous embedding of $\phi_{\mathbb{N}^{\mathbb{N}}}$ into $\phi \upharpoonright \mathbb{N}^{\mathbb{N}}$. By Proposition 5.7, there exist $\phi_{\mathbb{N}_{*}^{\mathbb{N}}/\mathbb{N}^{\mathbb{N}}} \in \{c_{\mathbb{N}_{*}^{\mathbb{N}}/\mathbb{N}^{\mathbb{N}}}\} \cup \{\iota_{\mathbb{N}_{*}^{\mathbb{N}}/\mathbb{N}^{\mathbb{N}}, Z} \mid Z \in \{\mathbb{N}_{*}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}, \mathbb{N}_{*}^{\mathbb{N}}\}\} \cup \{\iota_{\mathbb{N}^{<\mathbb{N}}, Z} \circ p \mid Z \in \{\mathbb{N}^{<\mathbb{N}}, \mathbb{N}_{*}^{<\mathbb{N}}, \mathbb{N}_{*}^{<\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}, \mathbb{N}_{*}^{<\mathbb{N}}\}\}$ and $\psi_{\mathbb{N}_{*}^{\mathbb{N}}/\mathbb{N}^{\mathbb{N}}} : \overline{\phi_{\mathbb{N}_{*}^{\mathbb{N}}/\mathbb{N}^{\mathbb{N}}}(\mathbb{N}_{*}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}})} \to \overline{\phi(\mathbb{N}_{*}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}, \mathbb{N}_{*}^{<\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}, \mathbb{N}^{<\mathbb{N}})}$ for which $(\overline{\pi} \upharpoonright \mathbb{N}_{*}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}} \to \mathbb{N}_{*}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}, \psi_{\mathbb{N}_{*}/\mathbb{N}^{\mathbb{N}}})$ is a closed continuous embedding of $\phi_{\mathbb{N}_{*}^{\mathbb{N}}/\mathbb{N}^{\mathbb{N}}}$ into $\phi \upharpoonright \mathbb{N}_{*}^{\mathbb{N}} \setminus \mathbb{N}^{\mathbb{N}}$. Then $(\overline{\pi} \upharpoonright \mathbb{N}_{*}^{\mathbb{N}} \to \mathbb{N}_{*}^{\mathbb{N}}, \psi_{\mathbb{N}_{*}/\mathbb{N}^{\mathbb{N}}})$ is a closed continuous embedding of $\phi_{\mathbb{N}_{*}/\mathbb{N}^{\mathbb{N}}}$ into ϕ .

Theorems 4.5 and 6.2 together provide the promised twenty-seven element basis under closed continuous embeddability for the class of non- σ -continuous-with-closed-witnesses Borel functions between analytic metric spaces.

References

[CMS] R. Carroy, B.D. Miller, and D.T. Soukup, *The open dihypergraph dichotomy* and the second level of the Borel hierarchy, to appear in Contemporary Mathematics.

- [JR82] J.E. Jayne and C.A. Rogers, First level Borel functions and isomorphisms, J. Math. Pures Appl. (9) 61 (1982), no. 2, 177–205. MR 673304 (84a:54072)
- [Kec95] A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
- [Sol98] S. Solecki, Decomposing Borel sets and functions and the structure of Baire class 1 functions, J. Amer. Math. Soc. 11 (1998), no. 3, 521–550. MR 1606843 (99h:26010)

RAPHAËL CARROY, KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, 1090 WIEN, AUSTRIA *E-mail address*: raphael.carroy@univie.ac.at

URL: http://www.logique.jussieu.fr/~carroy/indexeng.html

BENJAMIN D. MILLER, KURT GÖDEL RESEARCH CENTER FOR MATHEMATI-CAL LOGIC, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, 1090 WIEN, AUS-TRIA

E-mail address: benjamin.miller@univie.ac.at

URL: http://www.logic.univie.ac.at/benjamin.miller