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INQUISITIVE BISIMULATION

IVANO CIARDELLI AND MARTIN OTTO

Abstract. Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style

modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture

not just the information that agents have, but also the questions that they are interested in.

Technically, InqML fits within the family of logics based on team semantics. From a model-

theoretic perspective, it takes us a step in the direction of monadic second-order logic, as

inquisitive modal operators involve quantification over sets of worlds. We introduce and

investigate the natural notion of bisimulation equivalence in the setting of InqML. We

compare the expressiveness of InqML and first-order logic in the context of relational

structures with two sorts, one for worlds and one for information states, and characterise

inquisitive modal logic as the bisimulation invariant fragment of first-order logic over

various natural classes of two-sorted structures.

§1. Introduction. The recently developed framework of inquisitive logic [10,
7, 3, 5] can be seen as a generalisation of classical logic which encompasses
not only statements, but also questions. One reason why this generalisation
is interesting is that it provides a novel perspective on the logical notion of
dependency, which plays an important rôle in applications (e.g., in database
theory) and which has recently received attention in the field of dependence
logic [32]. Indeed, dependency is nothing but a facet of the fundamental logical
relation of entailment, once this is extended so as to apply not only to statements,
but also to questions [4]. This connection explains the deep similarities existing
between systems of inquisitive logic and systems of dependence logic (see [35, 4,
3, 36]). A different rôle for questions in a logical system comes from the setting
of modal logic: once the notion of a modal operator is suitably generalised,
questions can be embedded under modal operators to produce new statements
that have no “standard” counterpart. This approach was first developed in [11]
in the setting of epistemic logic. The resulting inquisitive epistemic logic models
not only the information that agents have, but also the issues that they are
interested in, i.e., the information that they would like to obtain. Modal formulae
in inquisitive epistemic logic can express not only that an agent knows that p (by
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2 IVANO CIARDELLI AND MARTIN OTTO

the formula �p) but also that she knows whether p (�?p) or that she wonders
whether p (by the formula ⊞?p)—a statement that cannot be expressed without
the use of embedded questions. As shown in [11], several key notions of epistemic
logic generalise smoothly to questions: besides common knowledge we now have
common issues, the issues publicly entertained by the group; and besides publicly
announcing a statement, agents can now also publicly ask a question, which
typically results in new common issues. Thus, inquisitive epistemic logic may
be seen as one step in extending modal logic from a framework to reason about
information and information change, to a richer framework which also represents
a higher stratum of cognitive phenomena, in particular issues that may be raised
in a communication scenario.
Of course, like standard modal logic, inquisitive modal logic provides a general

framework that admits various interpretations, each suggesting corresponding
constraints on models. For instance, an interpretation of InqML as a logic of
action is suggested in [3]. In that interpretation, a modal formula �?p expresses
that whether a certain fact p will come about is pre-determined independently
of the agent’s choices, while ⊞?p expresses that whether p will come about is
fully determined by the agent’s choices.
From the perspective of mathematical logic, inquisitive modal logic is a natural

generalisation of standard modal logic. In standard modal logic, the accessibility
relation of a Kripke model associates with each possible world w ∈ W a set
σ(w) ⊆W of possible worlds, namely, the worlds accessible from w; any formula
ϕ of modal logic is semantically associated with a set |ϕ|M ⊆ W of worlds,
namely, the set of worlds where it is true; modalities then express relationships
between these sets: for instance, �ϕ expresses the fact that σ(w) ⊆ |ϕ|M. In the
inquisitive setting, the situation is similar: we still have a set Σ(w) associated
with each possible world w, and a set [ϕ]M associated with a formula ϕ. Now,
however, both Σ(w) and [ϕ]M are no longer sets of worlds, but sets of sets
of worlds. Inquisitive modalities still express relationships between these two
objects: �ϕ expresses the fact that

⋃
Σ(w) ∈ [ϕ]M, while ⊞ϕ expresses the fact

that Σ(w) ⊆ [ϕ]M.
In this manner, inquisitive logic leads to a new framework for modal logic that

can be viewed as a generalisation of the standard framework. This raises the
question of whether and how the classical notions and results of modal logic carry
over to this more general setting. In this paper we address this question for the
fundamental notion of bisimulation and for two classical results revolving around
this notion, namely, the Ehrenfeucht-Fräıssé theorem for modal logic, and van
Benthem style characterisation theorems [17, 34, 31, 26]. A central topic of this
paper is the rôle of bisimulation invariance as a unifying semantic feature that
distinguishes modal logics from classical predicate logics. As in many other areas,
from temporal and process logics to knowledge representation in AI and database
applications, so also in the inquisitive setting we find that the appropriate notion
of bisimulation invariance allows for precise model-theoretic characterisations of
the expressive power of modal logic in relation to first-order logic.
Our first result is that the right notion of inquisitive bisimulation equivalence

∼, with finitary approximation levels ∼n, supports a counterpart of the classi-
cal Ehrenfeucht–Fräıssé characterisations for first-order logic or for basic modal
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logic. This result establishes an exact correspondence between the expressive
power of InqML and the finite approximation levels of inquisitive bisimula-
tion equivalence: if two points are behaviourally different in a way that can be
detected within a finite number of steps, then the difference between them is
witnessed by an InqML formula, and vice versa. The result is non-trivial in our
setting because of some subtle issues stemming from the interleaving of first- and
second-order features in inquisitive modal logic.

Theorem 1.1 (inquisitive Ehrenfeucht–Fräıssé theorem).
Over finite vocabularies, the finite levels ∼n of inquisitive bisimulation equiva-
lence correspond to the levels of InqML-equivalence up to modal nesting depth n.

In order to compare InqML with classical first-order logic, we define a class of
two-sorted relational structures, and show how such structures encode models for
InqML. With respect to such relational structures we find not only a “standard
translation” of InqML into two-sorted first-order logic, but also a van Benthem
style characterisation of InqML as the bisimulation-invariant fragment of (two-
sorted) first-order logic over several natural classes of models. These results are
technically interesting, and they are not available on the basis of classical tech-
niques, because the relevant classes of two-sorted models are non-elementary (in
fact, first-order logic is not compact over these classes, as we show). Our tech-
niques yield characterisation theorems both in the setting of arbitrary inquisitive
models, and in restriction to just finite ones—i.e. both in the sense of classical
model theory and in the sense of finite model theory.

Theorem 1.2. Inquisitive modal logic can be characterised as the ∼-invariant
fragment of first-order logic FO over natural classes of (finite or arbitrary) rela-
tional inquisitive models.

Beside the conceptual development and the core results themselves, we think
that also the methodological aspects of the present investigations have some
intrinsic value. Just as inquisitive logic models cognitive phenomena at a level
strictly above that of standard modal logic, so the model-theoretic analysis moves
up from the level of ordinary first-order logic to a level strictly between first- and
second-order logic. This level is realised by first-order logic in a two-sorted frame-
work that incorporates second-order objects in the second sort in a controlled
fashion. This leads us to generalise a number of notions and techniques devel-
oped in the model-theoretic analysis of modal logics over non-elementary classes
of frames (cf. [17, 26, 13, 27], among others). In the present paper we technically
focus on the general case of inquisitive modal models. This also sets the stage
for the model-theoretic treatment of inquisitive epistemic models. That case,
which is of particular interest from the point of view of logical modelling, also
requires some further extensions of the technical apparatus presented here. We
aim to present corresponding results from [9] in a sequel to the present paper.

§2. Inquisitive modal logic. In this section we provide an essential intro-
duction to inquisitive modal logic, InqML [3]. For further details and proofs,
we refer to §7 of [3].
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2.1. Foundations of inquisitive semantics. Usually, the semantics of a
logic specifies truth-conditions for the formulae of the logic. In modal logics
these truth-conditions are relative to possible worlds in a Kripke model. However,
this approach is limited in an important way: while suitable for statements, it is
inadequate for questions. To overcome this limitation, inquisitive logic interprets
formulae not relative to states of affairs (possible worlds), but relative to states
of information. Following a tradition that goes back to the work of Hintikka [20],
information states are modelled extensionally as sets of worlds, namely, the set
of those worlds which are compatible with the given information.1

Definition 2.1. [information states]
An information state over a set of worlds W is a subset s ⊆W .

The empty set represents a state of inconsistent information, which is not
compatible with any world. We refer to it as the inconsistent state.
Rather than specifying when a sentence is true at a world w, inquisitive seman-

tics specifies when a sentence is supported by an information state s: intuitively,
for a statement α this means that the information available in s implies that α
is true; for a question µ, it means that the information available in s settles µ.
If t and s are information states and t ⊆ s, this means that t holds at least as
much information as s: we say that t is an extension of s. If t is an extension
of s, everything that is supported at s will also be supported at t. This is a
key feature of inquisitive semantics, and it leads naturally to the notion of an
inquisitive state.

Definition 2.2. [inquisitive states]
An inquisitive state over a set of possible worlds W is a non-empty set of infor-
mation states Π ⊆ ℘(W ) that is downward closed in the sense that s ∈ Π implies
t ∈ Π for all t ⊆ s (downward closure).

The downward closure condition requires that Π be closed under extensions of
information states. As described in the next section, an inquisitive state can be
seen as a combined representation of information and issues. For more discussion
on the significance of this structure, see [6, 11, 12].

2.2. Inquisitive modal models. A Kripke frame can be thought of as a set
W of worlds together with a map σ that equips each world with a set of worlds
σ(w), i.e., an information state: the set of worlds that are accessible from w.
Similarly, an inquisitive modal frame consists of a set W of worlds together

with an inquisitive assignment, a map Σ : W → ℘℘(W ) that assigns to each
world a corresponding inquisitive state Σ(w), i.e. a downward closed set of in-
formation states. A model is a frame enriched by a propositional assignment.

Definition 2.3. [inquisitive modal models]
An inquisitive modal frame is a pair F = (W,Σ), where W is a set, whose

1An analogous step from single worlds to sets of worlds (or, depending on the setting,
from assignments to sets of assignments) is taken in recent work on independence-friendly
logic [21, 22] and dependence logic [32, 33, 1, 16, 35, 36], where sets of worlds are referred to
as teams. Although they originated independently and for different purposes, inquisitive logic
and dependence logic are tightly related. For detailed discussion of this connection, see [3, 4].
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elements are referred to as worlds, and Σ: W → ℘℘(W ) assigns an inquisitive
state Σ(w) to each world w ∈ W .
An inquisitive modal model for a set P of propositional atoms is a pair

M = (F, V ) where F is an inquisitive modal frame, and V : P → ℘(W ) is a
propositional assignment.
A world-(or state-)pointed inquisitive modal model is a pair consisting of a

model M and a distinguished world (or state) in M.

With an inquisitive modal model M we can always associate a standard Kripke
model K(M) having the same set of worlds and modal accessibility map σ : W →
℘(W ) induced by the inquisitive map Σ according to

σ : W −→ ℘(W )
w 7−→ σ(w) :=

⋃
Σ(w).

A natural interpretation for inquisitive modal models is the epistemic one,
developed in [11, 2]. In that interpretation, the map Σ is taken to describe not
only an agent’s knowledge, as in standard epistemic logic, but also an agent’s
issues.2 The agent’s knowledge state at w, σ(w) =

⋃
Σ(w), consists of all the

worlds that are compatible with what the agent knows. The agent’s inquisitive
state at w, Σ(w), consists of all those information states where the agent’s issues
are settled. This interpretation is particularly interesting in the multi-modal
setting, where a model comes with multiple state maps Σa, one for each agent
a in a set A. Moreover, this specific interpretation suggests some constraints on
the maps Σa, analogous to the usual S5 constraints on Kripke models.

Definition 2.4. [inquisitive epistemic models]
An inquisitive epistemic frame for a set A of agents is a pair F = (W, (Σa)a∈A),
where each map Σa : W → ℘℘(W ) assigns to each world w an inquisitive state
Σa(w) in accordance with the following constraints, where σa(w) =

⋃
Σa(w):

– w ∈ σa(w) (factivity);
– v ∈ σa(w) ⇒ Σa(v) = Σa(w) (full introspection).

It is easy to verify that the Kripke frame associated with an inquisitive epis-
temic frame is an S5 frame, i.e., the accessibility maps σa correspond to acces-
sibility relations Ra :={(v, w) : v∈σa(w)} that are equivalence relations on W .

Example 2.5. Consider a model with four worlds, wpq, wpq, wpq, wpq, where
the subscript indicate the propositional valuation at each world. The inquisitive
state map Σ is as follows, where S↓ indicates the closure of the set S ⊆ ℘(W )
under subsets.

Σ(wpq) = Σ(wpq) = {{wpq}, {wqq}}
↓

Σ(wpq) = Σ(wpq) = {{wpq, wpq}}
↓

This model is depicted in Figure 1. At a world w, the epistemic state σ(w) of
the agent consists of those worlds included in the same dashed area as w; the

2In inquisitive semantics, the term issue is used to refer to the content of a question. For
instance, the issues that a detective entertains might be those expressed by the questions who
committed the murder, whether they had an accomplice, and what the motive is.
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wpq wpq

wpq wpq

Figure 1. A single-agent inquisitive epistemic model

solid blocks inside this area are the maximal elements of the inquisitive state
Σ(w)—i.e., the maximal states in which the issue is resolved.
At worlds wpq and wpq, the agent’s knowledge state is {wpq, wpq}: that is, the

agent knows that p is true, but not whether q is true. Moreover, in order to
settle the agent’s issues it is necessary and sufficient to reach an extension of the
current state which settles whether q. In short, then, these are worlds where the
agent knows that p and wonders whether q.
At worlds wpq and wpq, the agent’s knowledge state is {wpq, wpq}: that is, the

agent knows that ¬p, but not whether q. However, at these worlds no further
information is needed to resolve the agent’s issues. Thus, these are worlds where
the agent knows that ¬p and does not have any remaining issues.

2.3. Inquisitive modal logic. The syntax of inquisitive modal logic InqML

is given by:

ϕ ::= p | ⊥ | (ϕ ∧ ϕ) | (ϕ→ ϕ) | (ϕ

>

ϕ) |�ϕ | ⊞ϕ

The syntax of inquisitive epistemic logic is defined analogously, except that
modalities are indexed by agents; that is, for every agent a ∈ A we have two
corresponding modalities �a and ⊞a, which are interpreted based on the state
map Σa associated with the agent.3 We treat negation and disjunction as defined
connectives (syntactic shorthands) according to

¬ϕ := ϕ→ ⊥ and ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

so that the above syntax emulates standard propositional formulae in terms
of atoms and connectives ∧ and → together with the defined ¬ and ∨. The
semantics of these will be essentially the same as in standard propositional logic.
In addition to standard connectives, our language contains a new connective,

>

, called inquisitive disjunction. We may read formulae built up by means of
this connective as propositional questions. For instance, we read the formula
p

>

¬p as the question whether or not p, and we abbreviate this formula as ?p.
Our language also contains two modalities, which are allowed to embed both
statements and questions. As we shall see, both these modalities coincide with
a standard Kripke box modality when applied to statements, but crucially differ
when applied to questions. In particular, under an epistemic interpretation �?p
expresses the fact that the agent knows whether p, while ⊞?p intuitively says,
roughly, that the agent is interested in the issue whether p.

3In [11, 2] the modalities �a and ⊞a are denoted Ka and Ea, and read as “know” and
“entertain” respectively.
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As mentioned above, the semantics of InqML is given in terms of support in
an information state, rather than truth at a possible world.4

Definition 2.6. [semantics of InqML]
Let M = (W,Σ, V ) be an inquisitive modal model, s ⊆W :

• M, s |= p ⇐⇒ s ⊆ V (p)
• M, s |= ⊥ ⇐⇒ s = ∅
• M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ
• M, s |= ϕ→ ψ ⇐⇒ ∀t ⊆ s : M, t |= ϕ⇒ M, t |= ψ
• M, s |= ϕ

>

ψ ⇐⇒ M, s |= ϕ or M, s |= ψ
• M, s |= �ϕ ⇐⇒ ∀w ∈ s : M, σ(w) |= ϕ
• M, s |= ⊞ϕ ⇐⇒ ∀w ∈ s ∀t ∈ Σ(w) : M, t |= ϕ

If a state s can be extended consistently to a state that supports a formula ϕ,
we say that s is compatible with ϕ:

s is compatible with ϕ iff ∃t ⊆ s : t 6= ∅ and M, t |= ϕ,

The derived clauses for the defined connectives ¬ and ∨ then read as follows:

• M, s |= ¬ϕ ⇐⇒ s is not compatible with ϕ
• M, s |= ϕ ∨ ψ ⇐⇒ ∀t ⊆ s, t 6= ∅ : t is compatible with ϕ or with ψ

As an illustration, consider the support conditions for the formula

?p := p

>

¬p.

This formula is supported by a state s in case p is true at all worlds in s (i.e.,
if the information available in s implies that p is true) or in case p is false at all
worlds in s (i.e., if the information available in s implies that p is false). Thus,
?p is supported by those information states that settle whether or not p is true.

Proposition 2.7. The following properties hold generally in InqML:

• persistency: if M, s |= ϕ and t ⊆ s, then M, t |= ϕ;
• semantic ex-falso: M, ∅ |= ϕ for all ϕ ∈ InqML.

The first principle says that support is preserved as information increases, i.e.,
as we move from a state to an extension of it. The second principle says that
the empty set of worlds—the inconsistent information state—vacuously supports
every formula. Together, these principles imply that the support set [ϕ]M :=
{s ⊆ W : M, s |= ϕ} of a formula is downward closed and non-empty, i.e., it is
an inquisitive state.
Although the primary notion of our semantics is support at an information

state, truth at a world is retrieved by defining it as support with respect to
singleton states.

Definition 2.8. [truth]
ϕ is true at a world w in a model M, denoted M, w |= ϕ, in case M, {w} |= ϕ.

Spelling out Definition 2.6 in the special case of singleton states, we see that
standard connectives have the usual truth-conditional behaviour. For modal
formulae, we find the following truth-conditions:

4This means that InqML fits within the quickly growing family of logics based on a team
semantics. See footnote 1 on page 4 and the references therein.
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• M, w |= �ϕ ⇐⇒ M, σ(w) |= ϕ
• M, w |= ⊞ϕ ⇐⇒ ∀t ∈ Σ(w) : M, t |= ϕ

Notice that truth in InqML cannot be given a direct recursive definition, as
the truth conditions for modal formulae �ϕ and ⊞ϕ depend on the support
conditions for ϕ—not just on its truth conditions.
For many formulae, support at a state just boils down to truth at each world.

We refer to these formulae as truth-conditional.5

Definition 2.9. [truth-conditional formulae]
We say that a formula ϕ is truth-conditional if for all models M and information
states s: M, s |= ϕ ⇐⇒ M, w |= ϕ for all w ∈ s.

Following [3], we view truth-conditional formulae as statements, and non-
truth-conditional formulae as questions. The next proposition identifies a large
class of formulae that are truth-conditional.

Proposition 2.10. Atomic formulae (including ⊥) and all formulae of the
form �ϕ and ⊞ϕ are truth-conditional. The class of truth-conditional formulae
is closed under all connectives except for

>

.

Using this fact, it is easy to see that all formulae of standard modal logic, i.e.,
formulae which do not contain

>

or ⊞, receive exactly the same truth-conditions
as in standard modal logic.

Proposition 2.11. If ϕ is a formula not containing

>

or ⊞, then we have
M, w |= ϕ if and only if K(M), w |= ϕ holds in standard Kripke semantics.

As long as questions are not around, the modality ⊞ also coincides with �,
and with the standard box modality. That is, if ϕ is truth-conditional, then

M,w |= �ϕ ⇐⇒ M,w |= ⊞ϕ ⇐⇒ M, v |= ϕ for all v ∈ σ(w).

Thus, the two modalities coincide on statements. However, they come apart
when they are applied to questions. For an illustration, consider the formulae
�?p and ⊞?p in the epistemic setting: �?p is true iff the knowledge state of the
agent, σ(w), settles the question ?p; thus, �?p expresses the fact that the agent
knows whether p. By contrast, ⊞?p is true iff any information state t ∈ Σ(w),
i.e., any state that settles the agent’s issues, also settles ?p; thus ⊞?p expresses
that finding out whether p is part of the agent’s goals.

Example 2.12. Consider again the model of Example 2.5. The agent’s knowl-
edge state at world wpq is σ(wpq) = {wpq, wpq}. Since {wpq, wpq} does not sup-
port ?q we have M, w |= ¬�?q. On the other hand, since the agent’s inquisitive
state is Σ(wpq) = {{wpq}, {wpq}}

↓, and since each element in this state supports
?q, we do have M, wpq |= ⊞?q. This witnesses that, at world wpq, the agent
does not know whether q (¬�?p), but she’s interested in finding out (⊞?q). By
contrast, one can check that at world wpq we have M, wpq |= ¬�?q ∧ ¬⊞?q,
witnessing that at this world, the agent is neither informed about whether q, nor
interested in finding out.

5In team semantic terminology (e.g., [32, 36]), truth-conditional formulae are called flat.
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2.4. Defining properties of worlds and states. Inquisitive modal for-
mulae can be interpreted both relative to information states and (derivatively)
relative to worlds. They can thus be seen both as expressing properties of state-
pointed models, and as expressing properties of world-pointed models. We can
identify these properties with the corresponding classes:

• Kw

ϕ = {(M,w) : M,w |= ϕ}
• Ks

ϕ = {(M, s) : M, s |= ϕ}

More generally, by a property of world- or state-pointed models we mean a class
of such objects. We say that a property K of world-pointed models is definable
in InqML if K = Kw

ϕ for some formula ϕ of InqML. Similarly, a property K of
state-pointed models is definable in InqML if K = Ks

ϕ for some ϕ.
We can now formulate the main question that we will adress in this paper:

which properties of world- or state-pointed models are definable in InqML?
For the case of state-pointed models, persistency and the semantic ex-falso con-

dition (Proposition 2.7) impose an immediate constraint: in order for a property
K of state-pointed models to be definable in InqML, K must be an inquisitive
property, in the following sense.

Definition 2.13. [inquisitive properties]
A property K of state-pointed models is an inquisitive property if the following
two conditions hold:
(i) if (M, s) ∈ K and t ⊆ s, then (M, t) ∈ K;
(ii) (M, ∅) ∈ K for any model M.

In the rest of the paper, when dealing with properties of state-pointed models,
we can restrict our attention to inquisitive properties.
What features must a world-property have in order to be InqML definable?

Similarly, what features must an inquisitive state-property have? The following
two sections provide a precise answer to this question.

§3. Inquisitive bisimulation. An inquisitive modal model can be seen as a
structure with two sorts of entities, worlds and information states, which interact
with each other. On one hand, an information state s is completely determined
by the worlds that it contains; on the other hand, a world w is determined by
the atoms it makes true and the information states which lie in Σ(w). Taking
a more behavioural perspective, we can look at an inquisitive modal model as a
model where two kinds of transitions are possible: from an information state s
we can make a transition to a world w ∈ s, and from a world w we can make
a transition to an information state s ∈ Σ(w). This suggests a natural notion
of bisimilarity, together with its natural finite approximations of n-bisimilarity
for n ∈ N. As usual, these notions can equivalently be defined either in terms of
back-and-forth systems or in terms of strategies in corresponding bisimulation
games. We start from the latter due to its more immediate and intuitive appeal
to the underlying dynamics of a “probing” of behavioural equivalence.
The inquisitive bisimulation game is played by two players, I and II, who

act as challenger and defender of a similarity claim involving a pair of worlds
w and w′ or information states s and s′ over two models M = (W,Σ, V ) and
M

′ = (W ′,Σ′, V ′). We denote world-positions as (w,w′) and state-positions as
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(s, s′), where w ∈ W,w′ ∈W ′ and s ∈ ℘(W ), s′ ∈ ℘(W ′), respectively. The game
proceeds in rounds that alternate between world-positions and state-positions.
Playing from a world-position (w,w′), I chooses an information state in the
inquisitive state associated to one of these worlds (s ∈ Σ(w) or s′ ∈ Σ′(w′)) and
II must respond by choosing an information state on the opposite side, which
results in a state-position (s, s′). Playing from a state-position (s, s′), I chooses
a world in either state (w ∈ s or w′ ∈ s′) and II must respond by choosing a
world from the other state, which results in a world-position (w,w′). A round
of the game consists of four moves leading from a world-position to another.
In the bounded version of the game, the number of rounds is fixed in advance.

In the unbounded version, the game is allowed to go on indefinitely. Either
player loses when stuck for a move. The game ends with a loss for II in any
world-position (w,w′) that shows a discrepancy at the atomic level, i.e., such
that w and w′ disagree on the truth of some p ∈ P . All other plays, and in
particular infinite runs of the unbounded game, are won by II.

Definition 3.1. [bisimulation equivalence]
Two world-pointed models M, w and M

′, w′ are n-bisimilar, M, w∼n
M

′, w′, if
II has a winning strategy in the n-round game starting from (w,w′). M, w and
M

′, w′ are bisimilar, denoted M, w ∼ M
′, w′, if II has a winning strategy in

the unbounded game starting from (w,w′). Two state-pointed models M, s and
M

′, s′ are (n-)bisimilar, denoted M, s∼M
′, s′ (or M, s∼n

M
′, s′), if every world

in s is (n-)bisimilar to some world in s′ and vice versa.6

These notions generalise naturally to the multi-modal setting with inquisitive
assignments (Σa)a∈A for a set A of agents; at a world-position, player I also gets
the choice of which agent to probe.
Now let us turn to the static perspective on inquisitive bisimulations. One

natural way to define a bisimulation between two models M and M
′ is as a

relation which pairs up both the worlds and the states of these two models in

6This definition of bisimilarity between states is reminiscent of the corresponding definition
given in [23] for modal team logic. Like inquisitive modal logic, modal team logic interprets
formulae with respect to sets of possible worlds, and thus can be seen as expressing properties of
state-pointed models. However, there are some major differences with the present setting. Most

importantly, the structures for modal team logic are standard Kripke models. By contrast,
InqML is interpreted on models having a richer structure; information states enter the picture
not just as evaluation points, but also in determining the structure of the model itself, since
each world is associated with a set Σ(w) of “successors” which are not worlds, but information
states. This difference is reflected in the respective notions of bisimulation. In modal team
logic, bisimilarity between worlds is the standard notion, and bisimilarity between states is a
simple derivative of it: two states are bisimilar if each world in the one is bisimilar to some
world in the other. By contrast, in our setting, world-bisimilarity and state-bisimilarity are
inextricably intertwined. It is helpful to view this in terms of the bisimulation game. The
game for modal team logic starts with a pair of information states; player I selects a world
from either state, and player II responds with a world in the other; after that, the standard
bisimulation game for modal logic is played. Thus, information states play a very limited
role: they only matter for the initial move, and moreover, there is no move where players have
to pick an information state. By contrast, in the case of inquisitive modal logic, the game
alternates indefinitely between world positions and state positions, and moves in which players
pick information states are a crucial part of the game.
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such a way as to guarantee a winning strategy in the unbounded bisimulation
game. This leads to the following definition.

Definition 3.2. [bisimulation relations]
Let M = (W,Σ, V ) and M ′ = (W ′,Σ′, V ′) be two inquisitive modal models. A
non-empty relation Z ⊆W ×W ′∪℘(W )×℘(W ′) is called a bisimulation in case
the following constraints are satisfied:

• atom equivalence: if wZw′ then for all p ∈ P , w ∈ V (p) ⇐⇒ w′ ∈ V ′(p)
• state-to-world back&forth: if sZs′ then

– for all w ∈ s there is some w′ ∈ s′ s.t. wZw′

– for all w′ ∈ s′ there is some w ∈ s s.t. wZw′

• world-to-state back&forth: if wZw′ then
– for all s ∈ Σ(w) there is some s′ ∈ Σ′(w′) s.t. sZs′

– for all s′ ∈ Σ′(w′) there is some s ∈ Σ(w) s.t. sZs′

It is then routine to check that bisimilarity can be characterised in terms of
the existence of a bisimulation relation.

Proposition 3.3. Let M, x and M
′, x′ be two world- or state-pointed models.

M, x ∼ M
′, x′ ⇐⇒ there exists a bisimulation Z such that xZx′.

Alternatively, we can view an inquisitive bisimulation as a relation which is
defined exclusively on the worlds of the two models. We will call such a relation
a world-bisimulation. In order to define it, let us first fix a way to lift a binary
relation between two sets to a relation between the corresponding powersets.

Definition 3.4. The lifting of a relation Y ⊆W ×W ′ to information states
is the relation Y ⊆ ℘(W )× ℘(W ′) linking information states s and s′ iff

– for all w ∈ s there is a w′ ∈ s′ s.t. wY w′

– for all w′ ∈ s′ there is a w ∈ s s.t. wY w′

Definition 3.5. [world-bisimulation]
Let M = (W,Σ, V ) and M ′ = (W ′,Σ′, V ′) be two inquisitive modal models.
A non-empty relation Y ⊆ W ×W ′ is called a world-bisimulation in case the
following constraints are satisfied whenever wY w′:

• atom equivalence:
– ∀p ∈ P : w ∈ V (p) ⇐⇒ w′ ∈ V ′(p)

• back&forth:
– for all s ∈ Σ(w) there is s′ ∈ Σ′(w′) s.t. sY s′

– for all s′ ∈ Σ′(w′) there is s ∈ Σ(w) s.t. sY s′

Bisimulations and world-bisimulations are tightly connected, as the following
proposition brings out. The straightforward proof is omitted.

Proposition 3.6. If Z is a bisimulation between two models M and M
′, then

its restriction to worlds, Zw := Z ∩ (W ×W ′), is a world-bisimulation. Con-
versely, if Y is a world-bisimulation, then Y ∪ Y is a bisimulation.

If Z is a bisimulation, then Z is included in Zw ∪ Zw, but not necessarily
identical to it. Thus, a bisimulation is not uniquely determined by its restriction
to worlds. Rather, given a world-bisimulation Y , the bisimulation Y ∪ Y is the
largest among the bisimulations Z with Zw = Y .
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Corollary 3.7. Two world-pointed models M, w and M
′, w′ are bisimilar iff

there is a world-bisimulation Y such that wY w′. Two state-pointed models M, s
and M

′, s′ are bisimilar iff there is a world-bisimulation Y such that sY s′.

We now turn to the finite levels of bisimilarity.

Definition 3.8. Let M and M
′ be two inquisitive modal models. A back-

and-forth system of height n is a family (Zi)i≤n of non-empty relations Zi ⊆
W ×W ′ ∪ ℘(W )× ℘(W ′) satisfying the following constraints for each i ≤ n:

• atom equivalence: if wZiw
′ then for all p ∈ P , w ∈ V (p) ⇐⇒ w′ ∈ V ′(p)

• state-to-world back&forth: if sZis
′ then

– for all w ∈ s there is some w ∈ s′ s.t. wZiw
′

– for all w′ ∈ s′ there is some w ∈ s s.t. wZiw
′

• world-to-state back&forth: if i > 0 and wZiw
′ then

– for all s ∈ Σ(w) there is some s′ ∈ Σ′(w′) s.t. sZi−1s
′

– for all s′ ∈ Σ′(w′) there is some s ∈ Σ(w) s.t. sZi−1s
′

It is straightforward to check that n-bisimilarity can be characterised in terms
of back&forth systems as follows.

Proposition 3.9. Let M, x and M
′, x′ be two world- or state-pointed models.

M, x∼n
M

′, x′ iff there exists a back&forth system (Zi)i6n such that xZnx
′.

Analogously to what we did for full bisimilarity, it is also possible to give a
purely world-based notion of back&forth-system of height n as a family of rela-
tions (Yi)i≤n ⊆ W ×W ′. As expected, n-bisimilarity can then be characterised
in terms of the existence of such a system, in a way analogous to the one given
by Corollary 3.7. We leave the details to the reader.

§4. An Ehrenfeucht–Fräıssé theorem. The crucial rôle of these notions
of equivalence for the model theory of inquisitive modal logic is brought out in
a corresponding Ehrenfeucht–Fräıssé theorem.
Using the standard notion of the modal depth of a formula, InqMLn denotes

the class of InqML-formulae of depth up to n. It is easy to see that the semantics
of any formula in InqMLn is preserved under n-bisimilarity; as a consequence,
all of inquisitive modal logic is preserved under full bisimilarity. The following
analogue of the classical Ehrenfeucht–Fräıssé theorem shows that, for finite sets
P of atomic propositions, n-bisimilarity coincides with logical indistinguishability
in InqMLn, which we denote as ≡n

InqML:

M, s ≡n
InqML M

′, s′ :⇐⇒

{
M, s |= ϕ ⇔ M

′, s′ |= ϕ
for all ϕ ∈ InqMLn.

Theorem 4.1 (Ehrenfeucht–Fráıssé theorem for InqML).
Over any finite set of atomic propositions P , for any n ∈ N and inquisitive
state-pointed modal models M, s and M

′, s′:
(i) M, s ∼n

M
′, s′ ⇐⇒ M, s ≡n

InqML M
′, s′

(ii) M, w ∼n
M

′, w′ ⇐⇒ M, w ≡n
InqML M

′, w′

Notice that item (ii) of the theorem follows from item (i) by taking s and s′

to be singleton states. As usual, the crucial implication of the theorem, from
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right to left, follows from the existence of characteristic formulae for ∼n-classes
of pointed models—and it is here that the finiteness of P is crucial. Notice,
however, that while we can expect a formula to uniquely characterise the ∼n

class of a world, we cannot expect a formula to uniquely define the ∼n-class
of an information state, for this would conflict with the persistency property
of the logic (Proposition 2.7): if a formula is supported at M, s, it must also
be supported at M, s′ for all s′ ⊆ s even when M, s′ 6∼n

M, s. However, the
next proposition shows that InqMLn-formulae characterise the ∼n-class of an
information state up to persistency.

Proposition 4.2 (characteristic formulae for ∼n-classes).
Let M, w be a world-pointed model and M, s a state-pointed model over a finite set
of atomic propositions P. There are InqML-formulae χn

M,w and χn
M,s of modal

depth n such that:
(i) M

′, w′ |= χn
M,w ⇐⇒ M

′, w′ ∼n
M, w

(ii) M
′, s′ |= χn

M,s ⇐⇒ M
′, s′ ∼n

M, t for some t ⊆ s

These results can be extended straightforwardly to a multi-modal inquisitive
setting with a finite set A of agents.

Proof. By simultaneous induction on n, we define formulae χn
M,w and χn

M,s

together with auxiliary formulae χn
M,Π for all worlds w, information states s and

inquisitive states Π over M. Given two inquisitive states Π and Π′ in models
M and M

′, we write M,Π ∼n
M

′,Π′ if every state s ∈ Π is n-bisimilar to some
state s′ ∈ Π′, and vice versa. Dropping reference to the fixed M, we let:

χ0
w =

∧

{p : w ∈ V (p)} ∧
∧

{¬p : w 6∈ V (p)}

χn
s =

∨

{χn
w : w ∈ s}

χn
Π =

>

{χn
s : s ∈ Π}

χn+1
w = χn

w ∧⊞χn
Σ(w)∧

∧

{¬⊞χn
Π : Π ⊆ Σ(w), Π 6∼nΣ(w)}

As a special case, we have χn
∅ = ⊥ (as

∨
∅ ≡ ⊥). These formulae are of the

required modal depth; the conjunctions and disjunctions in the definition are well
defined since, for a given n, there are only finitely many distinct formulae of the
form χn

w, and analogously for χn
s or χn

Π (indeed, it is easy to check that, for finite
P , InqMLn is finite up to logical equivalence). Note that, by Proposition 2.10,
the formulae χn

w and χn
s are truth-conditional for all n.

We show the following:

1. M
′, w′ |= χn

M,w ⇐⇒ M
′, w′ ∼n

M, w

2. M
′, s′ |= χn

M,s ⇐⇒ M
′, s′ ∼n

M, t for some t ⊆ s

3. M
′, s′ |= χn

M,Π ⇐⇒ M
′, s′ ∼n

M, s for some s ∈ Π

We first show that, for each individual n, (1) ⇒ (2) ⇒ (3). The three claims
are then established together by induction on n.
For (1) ⇒ (2), suppose M

′, s′ |= χn
M,s. By persistency (Proposition 2.7), χn

M,s

is true at each w′ ∈ s′; that is, for all w′ ∈ s′ we have M′, w′ |=
∨
{χn

M,w : w ∈ s}.
Since connectives have the standard behaviour in terms of truth-conditions, this
means that for any w′ ∈ s′ we have M

′, w′ |= χn
M,w for some w ∈ s. By (1), this
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means that any world in s′ is n-bisimilar to some world in s. Letting t be the
set of worlds in s that are n-bisimilar to some world in s′, we have t ⊆ s and
M

′, s′ ∼n M, t. Conversely, suppose M
′, s′ ∼n M, t for some t ⊆ s. Then every

w′ ∈ s′ is n-bisimilar to some w ∈ s. By (1), this means that M
′, w′ |= χn

M,w,

which implies M′, w′ |= χn
M,s. Since this holds for any w′ ∈ s′, and since χn

M,s is

a truth-conditional formula (by Proposition 2.10), it follows that M′, s′ |= χn
M,s.

For (2) ⇒ (3), suppose M
′, s′ |= χn

M,Π. This implies M
′, s′ |= χn

M,s for some

s ∈ Π. By claim (2) we have M′, s′ ∼n M, t for some t ⊆ s. Since Π is downward
closed, t ∈ Π. Conversely, suppose M

′, s′ ∼n M, t for some t ∈ Π. By (2),
M

′, s′ |= χn
M,t, and since t ∈ Π, also M

′, s′ |= χn
M,Π.

We can now show (1) (and thus (2) and (3)) for all n ∈ N by induction. The
claim M

′, w′ |= χ0
M,w ⇔ M

′, w′ ∼0M, w follows immediately from the definition

of χ0
M,w. Now assume that claim (1), and thus also claims (2) and (3), hold for n,

and let us consider the claim for n+ 1.
For the right-to-left direction, suppose M

′, w′ ∼n+1 M, w. We want to show
that M′, w′ |= χn+1

M,w. This amounts to showing that:

(i) M
′, w′ |= χn

M,w;

(ii) M
′, w′ |= ⊞χn

M,Σ(w);

(iii) M
′, w′ |= ¬⊞ χn

M,Π when Π ⊆ Σ(w) and Π 6∼n Σ(w).

For (i): M
′, w′ ∼n+1 M, w implies M

′, w′ ∼n M, w, so by the induction hy-
pothesis M′, w′ |= χn

M,w.

For (ii) take s′ ∈ Σ′(w′). Since M′, w′ ∼n+1 M, w we must have M′, s′ ∼n M, s
for some s ∈ Σ(w). By the induction hypothesis, M′, s′ |= χn

M,Σ(w). This holds

for all s′ ∈ Σ′(w′), and so M
′, w′ |= ⊞χn

M,Σ(w).

For (iii) suppose for a contradiction that for some Π ⊆ Σ(w), Π 6∼n Σ(w) and
M

′, w′ |= ⊞χn
M,Π. This means that every s′ ∈ Σ′(w′) supports χn

M,Π and thus,

by our induction hypothesis, is n-bisimilar to some s ∈ Π. Since Π ⊆ Σ(w) and
Π 6∼n Σ(w), there must be a state t ∈ Σ(w) which is not n-bisimilar to any
s ∈ Π. But since any state s′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Π, this means
that t is not n-bisimilar to any s′ ∈ Σ′(w′). Since t ∈ Σ(w), this contradicts the
assumption that M′, w′ ∼n+1 M, w.
This establishes the right-to-left direction of claim (1). For the converse, sup-

pose M
′, w′ |= χn+1

M,w. To prove M′, w′ ∼n+1 M, w, we must show that:

(i) w′ and w coincide on atomic formulae;
(ii) any s′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Σ(w);
(iii) any s ∈ Σ(w) is n-bisimilar to some s′ ∈ Σ′(w′).
For (i): Since χn

M,w is a conjunct of χn+1
M,w, by the induction hypothesis we have

M
′, w′ ∼n M, w, which implies that w and w′ satisfy the same atomic formulae.
For (ii): Since ⊞χn

M,Σ(w) is a conjunct of χn+1
M,w , M

′, w′ |= ⊞χn
M,Σ(w). This

implies that any s′ ∈ Σ′(w′) supports χn
M,Σ(w). By induction hypothesis, this

means that any s′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Σ(w).
In preparation for (iii), consider the set Π of states in Σ(w) that are n-bisimilar

to some s′ ∈ Σ′(w′). We have already seen that any s′ is n-bisimilar to some
state s ∈ Σ(w), which must then be in Π by definition. By induction hypothesis,
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the fact that s′ is n-bisimilar to some state in Π implies M′, s′ |= χn
M,Π. As this

holds for every s′ ∈ Σ′(w′), we have M
′, w′ |= ⊞χn

M,Π.

Now suppose towards a contradiction that, contrary to (iii), some s ∈ Σ(w)
were not n-bisimilar to any state in Σ′(w′). Then s could not be n-bisimilar to
any state in Π either. This implies that Π 6∼n Σ(w) so that ¬⊞χn

M,Π would be a

conjunct of χn+1
M,w. Then, sinceM

′, w′ |= χn+1
M,w, we should haveM′, w′ |= ¬⊞χn

M,Π,
contrary to what we found above. This completes the proof. ⊣

It is now easy to prove the non-trivial direction of Theorem 4.1.

Proof of Theorem 4.1. We focus on the left-to-right direction in claim (i)
of Theorem 4.1: the converse follows from the observation that InqML-formulae
of depth up to n are invariant under n-bisimilarity, and claim (ii) follows from (i)
by specialisation to singleton states. So suppose M, s 6∼n M

′, s′: then either of
the states s and s′ is not n-bisimilar to any subset of the other. Without loss
of generality, suppose it is s′. By the property of the formula χn

M,s we have

M, s |= χn
M,s but M′, s′ 6|= χn

M,s. Since the modal depth of χn
M,s is n, this shows

that M, s 6≡n
InqML M

′, s′. ⊣

As a corollary of Theorem 4.1, we have the following characterisation of prop-
erties definable in InqML.

Corollary 4.3. A property of world-pointed models (resp., an inquisitive
property of state-pointed models) over a finite set P of atomic propositions is
definable in InqML if and only if it is closed under ∼n for some n ∈ N.

Proof. If a property K of pointed models is defined by a formula ϕ of depth
n, then, since ϕ is invariant under n-bisimilarity, K is closed under ∼n.
Conversely, suppose that K is a property of world-pointed models closed under

∼n. Using Proposition 4.2 it is easy to show that K is defined by the formula
χK
n :=

∨
{χn

M,w : (M, w) ∈ K}. Notice that the disjunction is well defined, since
for a given n there are only finitely many distinct formulae of the form χn

M,w.
Similarly, if K is an inquisitive property of state-pointed models closed under

∼n, it follows from Proposition 4.2 that K is defined by the inquisitive disjunction
χK
n =

>

{χn
M,s : (M, s) ∈ K}. ⊣

Remark 4.4. Notice that the construction of characteristic formulae does not
use the modality �. This implies that � can be eliminated from the language
of InqML without loss of expressive power. This was proved in a more direct
way in [3], where it is shown that a formula �ϕ can always be turned into an
equivalent �-free formula. However, this translation is not schematic, i.e., there
is no �-free formula ψ(p) such that for every ϕ, �ϕ ≡ ψ(ϕ).

§5. Interlude: InqML and neighbourhood semantics. In neighbour-
hood semantics for modal logic (see [29] for a recent overview), modal formulae
are interpreted with respect to neighbourhood models, which are defined as triples
M = (W,Σ, V ) where W is a set of worlds, V : P → ℘(W ) is a propositional
valuation, and Σ :W → ℘℘(W ), called a neighbourhood map, is a function which
assigns to each world a set of information states. The standard language of modal
logic is interpreted on such models by means of the standard truth-conditional



16 IVANO CIARDELLI AND MARTIN OTTO

clauses for connectives, and the following clause for modalities:

M, w |=nhd �ϕ ⇐⇒ |ϕ|M ∈ Σ(w)

where |ϕ|M is the set of worlds in M where ϕ is true. A class of neighbourhood
models which is particularly well-studied is that of monotonic neighbourhood
models [18], which are characterised by the fact that, for all worlds w, the set
Σ(w) is upward-closed, i.e., closed under supersets.
Clearly, an inquisitive modal model is a special case of neighbourhood model:

it is a neighbourhood model such that Σ(w) is non-empty and downward closed,
i.e., closed under subsets. That is, inquisitive modal models are neighbourhood
models which have exactly the opposite monotonicity property than monotonic
neighbourhood models have.
In spite of this similarity in models, however, there are big differences between

InqML and neighbourhood semantics, in terms of the logics that arise from
these approaches, their expressive power and the induced notions of equivalence.
These differences arise from the way in which the neighbourhood function is

used to interpret modal formulae. In neighbourhood semantics, to interpret �ϕ
we check whether the interpretation of ϕ is a neighbourhood. The clause for the
main modality of InqML, ⊞, is very different: just as in Kripke semantics, we
have to check whether ϕ holds in all successors of the given world—only, these
successors are now information states rather than worlds. As a consequence of
this, whereas neighbourhood semantics gives rise to non-normal modal logics,
the logic of the ⊞ modality in InqML is normal: it validates the K axiom, as
well as distribution over conjunction and the necessitation rule.7

Besides giving rise to very different modal logics, InqML and neighbourhood
semantics are also different, and in fact incomparable, in terms of their expres-
sive power. To see that neighbourhood semantics can draw distinctions that
InqML cannot draw, consider the formula �⊤. In neighbourhood semantics,
this expresses the property of having the whole universe as a neighbourhood:

M, w |=nhd �⊤ ⇐⇒ W ∈ Σ(w)

This property is clearly not invariant under inquisitive bisimulations (indeed, it
is not preserved under disjoint unions!). Thus, it is not expressible in InqML.
To see that InqML can also draw distinctions that neighbourhood semantics

cannot draw, consider the formula ⊞?p. This formula expresses the fact that at
every neighbourhood of the evaluation world, the truth-value of p is constant.

M, w |= ⊞?p ⇐⇒ ∀s ∈ Σ(w) : s ⊆ |p|M or s ⊆ |¬p|M

We claim that this property is not expressible in neighbourhood semantics.
To see this, consider two models M1 and M2 with the same universe W =
{v, u, u′} and the same valuation V (p) = {v}. The two models differ in their
neighbourhood map, which are both constant, with values

{{v}, {u}}↓ for Σ1 in M1 versus {{v, u}}↓ for Σ2 in M2.

7In this discussion, we have set aside the modality � of InqML for simplicity since, as
remarked above, this modality is definable from ⊞ and the connectives. However, as shown
in [3], � is also a normal modality in InqML.
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Given any w ∈ W , we have M1, w |= ⊞?p but M2, w 6|= ⊞?p. However, the
set {v, u} is not the truth-set of any formula in neighbourhood semantics: the
reason is that u and u′ are indistinguishable, and so a truth-set always contains
either both of them, or neither. Using this fact, we can show by induction that
M1, w |=nhd ϕ ⇐⇒ M2, w |=nhd ϕ for all formulae ϕ. Hence, the property
expressed by ⊞?p is not expressed by any formula in neighbourhood semantics.
Clearly, since InqML and neighbourhood semantics are sensitive to different

features of a model, the appropriate notion of bisimilarity is also different in
these two contexts. For instance, consider again the above models M1 and M2:
according to the notion of bisimilarity ∼N appropriate for neighbourhood seman-
tics [19], the relation R = {(v, v), (u, u), (u, u′), (u′, u), (u′, u′)} is a bisimulation.
This implies that M1, v ∼N

M2, v. By contrast, a single round of the inquisitive
bisimulation game suffices to show that M1, v 6∼ M2, v in our setting.
Conversely, under our notion of bisimulation, a point w in a model M is always

fully bisimilar to its copy in the disjoint union M⊎M
′. Clearly, the same cannot

be true in neighbourhood semantics, given that in this semantics modal formulae
are not in general preserved under disjoint unions.
A notion of bisimulation which is much closer to the one we study here is

found in the literature on monotonic neighbourhood models [18]. In terms of the
bisimulation game, the difference between the two notions can be described as
follows. Starting from a world-position (w,w′), Player I picks a state s in either
Σ(w) or Σ′(w′); Player II responds with a state s′ on the opposite side. At this
point, the two games come apart: in our version of the game, I can choose a
world from either s or s′, while in the version given in [18], I is required to pick
a world from s′. Imposing such a restriction in our setting would trivialise the
game, providing II with a universal winning strategy: always pick s′ = ∅.
Interestingly, however, one can show that due to the downward-closure of

Σ(w), in our setting it would not make a difference (in terms of the resulting
notion of bisimilarity) if Player I were required to pick a world from the state s
that he himself selected in the world-to-state phase. Thus, we could equivalently
have presented the game in a form which is the mirror image of the game used in
monotonic neighbourhood frames. Clearly, this symmetry reflects the opposite
monotonicity constraints that these two logics place on the neighbourhood map.

§6. Relational inquisitive models. In the remainder of this paper we com-
pare the expressive power of inquisitive modal logic with that of first-order logic.
This is not quite as straightforward as for ordinary modal logic. A standard
Kripke model can be identified naturally with a relational structure with a bi-
nary accessibility relation R and a unary predicate for the interpretation of each
atomic proposition p ∈ P . By contrast, an inquisitive modal model also needs to
encode the inquisitive state map Σ : W → ℘℘(W ). This map can be identified
with a binary relation E ⊆W×℘(W ). In order to view this as part of a relational
structure, however, we need to adopt a two-sorted perspective, and view W and
℘(W ) as domains of two distinct sorts. We thus turn to two-sorted structures.
In order to capture the fact that the second sort contains sets of elements of
the first sort, our relational structures include a relation ǫ between these sorts,
which simulates set-theoretic membership. This leads to the following notion.
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6.1. Relational inquisitive modal models.

Definition 6.1. [relational models]
A relational inquisitive modal model over atomic propositions P = {pi : i ∈ I} is
a relational structure

M = (W,S,E, ε, (Pi)i∈I)

where W,S are non-empty sets related by E, ε ⊆W × S, and Pi ⊆W for i ∈ I.
With s ∈ S we associate the set s := {w ∈W : (w, s) ∈ ε} ⊆W and require the

following conditions, which enforce resemblance with inquisitive modal models:

• extensionality: for s, s′ ∈ S, s = s′ implies s = s′.
• local powerset: if s ∈ S and t ⊆ s, there is an s′ ∈ S such that s′ = t.
• non-emptiness: E[w] 6= ∅ for all w ∈W .
• downward closure: for s, s′ ∈ S with s′ ⊆ s, s ∈ E[w] implies s′ ∈ E[w].

Multi-modal variants are analogously defined, with a relation Ea ⊆ W × S to
encode the inquisitive assignments Σa for agent a ∈ A.
By a world (resp. state)-pointed relational model we mean a pair (M, x) where

x is an element in the first (resp. second) sort of M.

By extensionality, the second sort S of such a relational model can always be
identified with a domain of sets over the first sort, namely, {s : s ∈ S} ⊆ ℘(W ).
In the following, we will assume this identification and view a relational model
as a structure M = (W,S,E,∈, (Pi)) where S ⊆ ℘(W ) and ∈ is the actual
membership relation. We shall therefore also specify relational models by just
M = (W,S,E, (Pi)) when the fact that S ⊆ ℘(W ) and the natural interpretation
of ε are understood. Notice that, given this identification, the downward closure
condition can be stated more simply as: if s ∈ E[w] and t ⊆ s, then t ∈ E[w].
Notice that a relational model M induces a corresponding Kripke structure

K(M) = (W,R, (Pi)i∈I), where R ⊆W ×W is the relation defined as follows:

wRw′ ⇐⇒ for some s ∈ S : wEs and w′ ∈ s,

so that R[w] := {w′ : wRw′} =
⋃
E[w] as the natural relational encoding of the

map σ : w 7→
⋃
Σ(w).

In addition to the above conditions, we might impose other constraints on a
relational model M: in particular, we may require S to be the full powerset of
W , or to resemble the powerset from the local perspective of each world w ∈ W .

Definition 6.2. A relational model M = (W,S,E, (Pi)) is
– full if S = ℘(W );
– locally full if ℘(R[w]) ⊆ S for all w ∈ W .

Note that, by local powerset, the condition of local fullness is equivalent to
the condition that the information states R[w] =

⋃
E[w] are represented in S

for all w ∈W .

6.2. Relational encoding of inquisitive modal models. The connection
between inquisitive modal models and their relational counterparts is not one-to-
one. In one direction, a relational modelM = (W,S,E, (Pi)) uniquely determines
an inquisitive modal model

M
∗ = (W,Σ, V ) where Σ(w) = E[w], V (pi) = Pi.
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Notice that the non-emptiness and downward closure conditions on E guar-
antee that M

∗ is indeed an inquisitive modal model. Since the passage from
M to M

∗ obliterates information about the second sort S, there are in general
many different relational models M that determine the same inquisitive modal
model M. That is, a given inquisitive modal model may have different relational
counterparts. Let us call such counterparts the relational encodings of M.

Definition 6.3. A relational encoding of an inquisitive modal model M is a
relational model M with M

∗ = M.

Clearly, two relational counterparts of M must coincide in terms of W , E and
the Pi. But this leaves quite some choice with respect to the richness of the
second sort. The following isolates some immediate choices.

Definition 6.4. [relational encodings]
Given an inquisitive modal model M = (W,Σ, V ), we define three relational
encodings M[··· ](M) of M, each based onW , and with wEs ⇔ s ∈ Σ(w), w ε s⇔
w ∈ s and Pi = V (pi). The encodings differ in the second sort domain S:

• for Mrel(M), the minimal encoding of M:
S := image(Σ);

• for Mlf(M), the minimal locally full encoding of M:
S := {s ⊆ σ(w) : w ∈ W};

• for Mfull(M), the unique full encoding of M:
S := ℘(W ).

To encode state-pointed models M, s we augment the corresponding S by ℘(s).
These definitions generalise in a natural way to the multi-modal case.

6.3. Relational models and InqML. The notions of (n-)bisimilarity de-
fined in Section 3 naturally lifts to relational models as follows.

Definition 6.5. [(n-)bisimilarity for relational models]
Two state- or world-pointed relational models M1, x1 and M2, x2 are bisimi-
lar, M1, x1 ∼ M2, x2, if they encode bisimilar pointed models, i.e. if M∗

1, x1 ∼
M

∗
2, x2. Similarly for n-bisimilarity: M1, x1 ∼n M2, x2 if M∗

1, x1 ∼n M
∗
2, x2.

In particular, any two encodings of the same pointed inquisitive model are
bisimilar. We similarly lift the interpretation of InqML to relational models.

Definition 6.6. Let M, x be a (world- or state-)pointed relational model and
ϕ a formula of InqML. We define M, x |= ϕ to mean M

∗, x |= ϕ.

By a property of world-pointed relational models we mean a class of world-
pointed relational models. Similarly, by an inquisitive property of state-pointed
relational models we mean a class of state-pointed relational modes which sat-
isfies the analogues of the conditions in Definition 2.13. By a world- or state-
property over a class of relational models C we mean a class of pointed models
(M, x) with M ∈ C. We can then translate Corollary 4.3 into a characterisation
of the properties of pointed relational models that are definable in InqML.

Corollary 6.7. Let K be a property of world-pointed relational models, or
an inquisitive property of state-pointed relational models, over a finite set P of
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atomic propositions. Then K is definable in InqML if and only if it is closed
under ∼n for some n ∈ N. More generally, if K is a world property or an
inquisitive state property over a class C of relational models, K is definable in
InqML over C iff it is closed under ∼n within C for some n ∈ N.

Proof. It follows from Theorem 4.1 that if a class K is defined by an InqML

formula ϕ, then K is closed under ∼n where n is the modal depth of ϕ.
Conversely, suppose K is a property of world-pointed relational models closed

under ∼n for some n ∈ N. Then K∗ := {(M∗, w) : (M, w) ∈ K} is also closed
under ∼n, so by Corollary 4.3 it is definable by a formula ϕ of InqML. It is
easy to check that ϕ defines K (note that ∼n-closure of K implies that (M, w) ∈
K ⇐⇒ (M∗, w) ∈ K∗). If K ⊆ C is closed under ∼n in restriction to C, we may
similarly work with K∗ := {(M∗, w) : M, w∼n

M
′, w′ for some (M′, w′) ∈ K}.

The reasoning for inquisitive state-pointed properties is exactly analogous, using
the second part of Corollary 4.3. ⊣

6.4. Relational models and first-order logic. A relational inquisitive
model supports a two-sorted first-order language having two relation symbols
E and ǫ corresponding to the relations E and ε, respectively, and predicate sym-
bols Pi for i ∈ I. We use w, v, u as variables for the first sort, and s, t as variables
for the second sort.8 Moreover, we make use of two defined binary predicates.
The first is simply inclusion, defined in the natural way in terms of ǫ:

s ⊆ t := ∀w(ǫ(w, s) → ǫ(w, t)).

The second defined predicate, e(w, t), corresponds to the relation R[w] = t
(i.e., the relational encoding of the graph of the map σ):

e(w, t) := ∀v(ǫ(v, t) ↔ ∃s(E(w, s) ∧ ǫ(v, s))).

In terms of this language we can define a pair of standard translations STw(ϕ)
of STs(ϕ) of a formula, which capture its truth conditions in a world and its sup-
port conditions in an information state, respectively. Correspondingly, STw(ϕ)
has a single free variable w of the first sort while STs(ϕ) has the free variable s
of the second sort. Of STs(ϕ) we also use a substitution variant STt(ϕ) which
is just like STs(ϕ) except that the roles of variables s and t are exchanged. The
following define these standard translations by simultaneous induction:

• STw(pi) = Pi(w)
STs(pi) = ∀w(ǫ(w, s) → STw(pi))

• STw(⊥) = ⊥
STs(⊥) = ∀w(ǫ(w, s) → STw(⊥))

(
≡ ¬∃w ǫ(w, s)

)

• STw(ϕ ∧ ψ) = STw(ϕ) ∧ STw(ψ)
STs(ϕ ∧ ψ) = STs(ϕ) ∧ STs(ψ)

• STw(ϕ

>

ψ) = STw(ϕ) ∨ STw(ψ)
STs(ϕ

>

ψ) = STs(ϕ) ∨ STs(ψ)
• STw(ϕ→ ψ) = STw(ϕ) → STw(ψ)
STs(ϕ→ ψ) = ∀t(t ⊆ s → (STt(ϕ) → STt(ψ)))

8We use different fonts to distinguish object language symbols (E, w, s, . . . ), in typewriter
font, from the corresponding notation for semantic objects (E,w, s, . . . ), in regular font.
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• STw(⊞ϕ) = ∀s(E(w, s) → STs(ϕ))
STs(⊞ϕ) = ∀w(ǫ(w, s) → STw(⊞ϕ))

• STw(�ϕ) = ∀s(e(w, s) → STs(ϕ))
STs(�ϕ) = ∀w(ǫ(w, s) → STw(�ϕ))

It is straightforward to verify that the truth-conditions and support-conditions
of ϕ in a model M correspond, respectively, to the satisfaction conditions for
STw(ϕ) and STs(ϕ) in any locally full relational encoding of M.

Proposition 6.8. Let M be a locally full relational inquisitive model, ϕ ∈
InqML. For all worlds w ∈W and all states s ∈ S:
(i) M, w |= ϕ ⇐⇒ M, w |= STw(ϕ)
(ii) M, s |= ϕ ⇐⇒ M, s |= STs(ϕ)

The assumption that M be locally full is crucial for this result. This is because,
if a model is not locally full, then for some w ∈ W it could be that the state
σ(w) =

⋃
Σ(w) which is involved in determining the truth condition of �ϕ is

not represented in M. If so, there will be no state s ∈ S satisfying ǫ(w, s), which
means that STw(�ϕ) will come out as vacuously true at w, regardless of whether
or not M∗, w |= �ϕ. However, even when M is not locally full, preservation still
holds for all �-free formulae, as one can easily verify.

Proposition 6.9. Let M be a relational inquisitive model, ϕ ∈ InqML a
�-free formula. Then for all worlds w ∈W and all states s ∈ S:
(i) M, w |= ϕ ⇐⇒ M, w |= STw(ϕ)
(ii) M, s |= ϕ ⇐⇒ M, s |= STs(ϕ)

Recall that, by Remark 4.4, any formula ϕ of InqML is equivalent to some
�-free formula ϕ∗. Combining this with the previous proposition, we have the
following corollary.

Corollary 6.10. For any ϕ ∈ InqML there exist first-order formulae ϕ⋆
w
:=

STw(ϕ
∗) and ϕ⋆

s
:= STs(ϕ

∗) such that for any relational inquisitive model M,
world w ∈ W and s ∈ S:
(i) M, w |= ϕ ⇐⇒ M, w |= ϕ⋆

w

(ii) M, s |= ϕ ⇐⇒ M, s |= ϕ⋆
s

The corollary allows us to view InqML as a syntactic fragment of first-order
logic, InqML ⊆ FO, over the class of all relational inquisitive models, just as
standard modal logic ML may be regarded as a fragment ML ⊆ FO over Kripke
models. Importantly, however, the class of relational inquisitive modal models
is not first-order definable in this framework, since the local powerset condition
involves a second-order quantification. In other words, we are dealing with first-
order logic over non-elementary classes of intended models. In fact, first-order
logic is not compact over this class, as the following example shows.

Example 6.11. There is a first-order formula ϕ(s) in a single free variable s of
the second sort (information state) which over any relational inquisitive model
says of an element s that there are no infinite R-paths inside s. Combining
this, for instance, with a formula that says that R in restriction to s defines a
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discrete linear ordering with a minimal element, and formuale ψn(s) saying that
s comprises at least n distinct worlds, we get a violation of compactess.

Proof. The induced modal accessibility relation R is definable according to

R(u, v) ↔ ∃s(E(u, s) ∧ ǫ(v, s)).

The local power set condition implies that the entire power set ℘(s) of the
designated state s is represented in the second sort of the relational model.
So the following formula faithfully emulates the standard monadic second-order
formalisation of the relevant property:

ϕ(s) := ¬∃t
(
t ⊆ s ∧ ∃u ǫ(u, t) ∧ ∀u

(
ǫ(u, t) → ∃v(ǫ(v, t) ∧R(u, v))

))
.

where again t ⊆ s abbreviates ∀v(ǫ(v, t) → ǫ(v, s)). ⊣

We remark that all the considerations of this section admit straightforward
variations for the multi-modal inquisitive setting, where models are equipped
with a family (Σa)a∈A of inquisitive assignments, indexed by a set A of agents.
In an extension and variation of the above, Silke Meißner [24] has proposed an

alternative standard translation, which in some way is more uniform as it allows
for a direct treatment of ✷. As outlined in [25], it also relaxes the constraints
on relational encodings so as to extend the scope of the standard translation to
an elementary class of relational structures, which in turns gives rise to a model-
theoretic compactness proof for InqML. While our translation could in principle
be replaced by the more recent one from [25], adherence to our narrower classes
of natural relational encodings of the intended inquisitive models can be seen as
a strength of our characterisation theorems.

§7. Bisimulation invariance.

7.1. Bisimulation invariance as a semantic constraint. As discussed
above, InqML can be thought of as a fragment of first-order logic when inter-
preted over relational models. We may think of ∼-invariance as a characteristic
semantic feature of this fragment. The question we are interested in is: with
respect to what classes C of relational models can InqML be characterised as
being exactly the ∼-invariant fragment of first-order logic? Let us first make
precise what this means.

Definition 7.1. We say that InqML is the ∼-invariant fragment of FO for
world-properties with respect to a class C of relational models, in symbols

InqML ≡w

C FO/∼,

if for every property K of state-pointed models over C, K is definable in InqML

if and only if it is both definable in FO and ∼-invariant.
Similarly, we say that InqML is the ∼-invariant fragment of FO for inquisitive

state-properties with respect to C, in symbols

InqML ≡s

C FO/∼,

if for any inquisitive property K of state-pointed models over C, K is definable
in InqML if and only if it is definable in FO and ∼-invariant.

Remark 7.2. For any class C, InqML ≡s

C FO/∼ implies InqML ≡w

C FO/∼.
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Proof. With the ∼-invariant world property defined by ϕ(w) ∈ FO associate
the property defined by ϕ′(s) = ∀w(w ∈ s → ϕ(w)). This property is inquisitive
and ∼-invariant. From InqML ≡s

C FO/∼ we obtain a formula ψ ∈ InqML

expressing this property. Then the same formula ψ, on the level of worlds,
defines the world-property defined by ϕ(w). ⊣

Our question then can be formulated succinctly as follows: over which classes
C do we have InqML ≡s

C FO/∼ (and thus also InqML ≡w

C FO/∼)? Equivalently,
the question is: over which classes C is InqML sufficiently expressive to capture
all first-order definable properties of world- or state-pointed relational models
that are invariant under inquisitive bisimulation?
Section 8 will establish that InqML is expressively complete for ∼-invariant

first-order properties in this sense over each of the following classes of relational
modles: the class of all relational models, the class of all finite relational mod-
els, the class of all locally full models, and the class of all finite locally full
models. Before delving into the proof, however, we discuss some underlying
model-theoretic concerns and limitations. In particular we stress the connection
with the all-important classical rôle of first-order compactness, as well as the
rôle of non-classical model-theoretic techniques in dealing with first-order logic
over non-elementary classes of models.

7.2. Bisimulation invariance and compactness. Let K be a property of
world-pointed relational models over a class C. Suppose K is InqML-definable by
a formula ϕ: then K is both FO-definable (by the standard translation ϕ⋆) and∼-
invariant (as it is ∼n invariant, with n the modal depth of ϕ). Thus, one direction
of the equivalence InqML ≡w

C FO/∼ holds for any class C. By Corollary 6.7,
the converse direction amounts to the claim that if K is FO-definable and ∼-
invariant, then it is in fact ∼n-invariant for some n.9 That is, it amounts to
the claim that, for every FO-definable property K over C, ∼-invariance implies
∼n-invariance for some n.
Analogous reasoning establishes the same connection w.r.t. inquisitive state-

properties. We summarise these in the following, where a first-order formula
ϕ(s) in a free variable of the second sort is called inquisitive over the class C
if the state-property expressed by ϕ(s) over C is an inquisitive property, i.e. is
downward closed and always holds of the empty state.

Observation 7.3. For any class C of relational inquisitive models, the follow-
ing are equivalent:
(i) InqML ≡w

C FO/∼,
(ii) for any formula ϕ(w) ∈ FO in a single free variable of the first sort, ∼-

invariance over C implies ∼n-invariance over C for some finite n.
Similarly, the following are equivalent:
(i) InqML ≡s

C FO/∼,
(ii) for any formula ϕ(s) ∈ FO in a single free variable of the second sort that

is inquisitive over the class C, ∼-invariance over C implies ∼n-invariance
over C for some finite n.

9Notice that if K is FO-definable, the defining formula contains only finitely many atoms.
Thus, the property K depends only on the restriction of a model to a finite set P of atoms, and
we can use Corollary 6.7 to conclude that if K is ∼n-invariant for some n, it is InqML-definable.



24 IVANO CIARDELLI AND MARTIN OTTO

In both contexts, condition (ii) may be viewed as a compactness principle for
∼-invariance of first-order properties, which is non-trivial in the non-elementary
setting of relational inquisitive models. Interestingly, this compactness princi-
ple for ∼-invariance of FO-properties of worlds fails relative to the class of full
relational models.

Proposition 7.4. There is a first-order formula ϕ(w) in a single free variable
w of the first sort that, relative to the class of full relational models, is ∼-invariant
but not ∼n-invariant for any n.

Proof. Compare Example 6.11 for the following well-foundedness property:

P(w) := there is no infinite R-path from w.

On one hand P clearly is ∼ invariant but not ∼n-invariant for any n. On
the other hand P is first-order definable over the class of full relational inquisi-
tive models since, over these models, first-order logic affords the full expressive
power of monadic second-order quantification over the first sort W : first-order
quantification over the second sort S = ℘(W ) is quantification over subsets of
the first sort. The formula

ϕ(w) := ¬∃s
(
ǫ(w, s) ∧ ∀u

(
ǫ(u, s) → ∃v(ǫ(v, s) ∧R(u, v))

))
.

defines the world-property P over any full relational model. ⊣

A similar well-foundedness property can also be captured in first-order logic
over full relational inquisitive epistemic models for two agents and using one
basic proposition. It suffices to describe analogous path properties for paths
formed by a strict alternation of Ra- and Rb-edges on a path that alternates
between worlds where p is true and where p is false, for some atomic proposition
p and distinct agents a, b ∈ A. This shows that InqML 6≡w

C FO/∼ when C
is the class of full relational models or full relational epistemic models. Over
these classes, there are FO-definable, ∼-invariant world properties that are not
InqML-definable. Although this is in sharp contrast with our Theorem 1.2,
the fact that the analogue of the theorem fails over full relational models is not
too surprising: over such models, FO, unlike InqML, has access to full-fledged
monadic second-order quantification.

7.3. A non-classical route to expressive completeness. In all our char-
acterisation theorems to be treated in the following section, we establish semantic
correspondences:

InqML ≡w

C FO/∼ InqML ≡s

C FO/∼

These are assertions about equal expressive power between two systems pre-
sented in very different style: while InqML is based on concrete syntax with
clearly defined semantics, FO/∼ is defined in terms of the semantic constraint of
∼-invariance. In fact, ∼-invariance is easily seen to be undecidable as a property
of first-order formulae, so that FO/∼ itself cannot be regarded as a syntactic frag-
ment. As discussed in the previous subsection, proving one of these equivalences
boils down to establishing a compactness principle relating ∼-invariance to ∼n-
invariance for some finite level n, in the non-classical context of non-elementary
classes of relational inquisitive models.
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M, w

∼

∼n M
′, w′

∼

M̂, ŵ ≡q M̂
′, ŵ′

M, s

∼

∼n M
′, s′

∼

M̂, ŝ ≡q M̂
′, ŝ′

Figure 2. Generic upgrading patterns.

For this there is a general approach that has been successful in a number of
similar investigations, starting from an elementary and constructive proof in [26]
of van Benthem’s characterisation theorem [34] and its finite model theory ver-
sion due to Rosen [31] (for ramifications of this method, see also [27, 13] and [28]).
This approach involves an upgrading of a sufficiently high finite level ∼n of bisim-
ulation equivalence to a finite target level ≡q of elementary equivalence, where
q is the quantifier rank of ϕ. Concretely, and in the case of properties of worlds,
this amounts to providing, for any world-pointed relational model M, w a fully
bisimilar pointed model M̂, ŵ with the property that, if M, w ∼n

M
′, w′, then

M̂, ŵ ≡q M̂
′, ŵ′. The diagram on the left in Figure 2 shows how ∼-invariance

of ϕ, together with its nature as a first-order formula of quantifier rank q, entails
its ∼n-invariance: one chases the diagram through its lower rung to check that,
for ϕ that is preserved under both ∼ and ≡q, we have M, w |= ϕ iff M

′, w′ |= ϕ.
The reasoning for inquisitive properties of information states is analogous,

using a corresponding upgrading for state-pointed models (cf. the right hand
side in Figure 2). At the technical level we shall mostly restrict the explicit
discussion to the more familiar world-pointed scenario, and only mention the
necessary variations for the state-pointed case where relevant.
Any upgrading of the kind we just discussed involves an interesting tension

between the very distinct levels of expressiveness of InqML-formulae and FO-
formulae. While the latter can, for instance, distinguish worlds w.r.t. finite
branching degrees of the accessibility relation R or w.r.t. short cycles that R
may form in the vicinity of a world, no ∼-invariant logic can. The challenge
is to overcome this discrepancy in bisimilar companion structures, using the
malleability up to ∼ of relational inquisitive models (within the respective class
C!)—and, for instance, to boost all multiplicities and lengths of all cycles beyond
what can be distinguished in FOq (FO up to quantifier rank q).
We show how to achieve the required upgradings for various classes C of models

in the next section, and thus establish our characterisation theorems.
We use a variation of the upgrading technique from [26] to instantiate the above

idea. In effect we shall deviate slightly from the generic picture in Figure 2 by
interleaving ∼-preserving pre-processing steps and ≡q-preserving steps as shown
in Figure 4. The upgrading itself is based on an inquisitive analogue of partial
tree unfoldings, combined with locality arguments for first-order Ehrenfeucht–
Fräıssé games. We start with two technical remarks.

Essentially disjoint unions and essential parts. Inquisitive bisimulation be-
tween world- or state-pointed inquisitive models is robust under the augmenta-
tion of the set of worlds by disconnected sets of new worlds. This phenomenon is
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well known from ordinary bisimulation between Kripke structures. But whereas
the disjoint union of two Kripke models is again a Kripke model, the disjoint
union of two relational inquisitive models would fail to satisfy extensionality (and
thus fail to be a relational inquisitive model) unless we take care of identifying
the respective empty states. In the following, if M and M

′ are relational models,
we denote by M ⊕M

′ their essentially disjoint union, i.e., the model obtained
from the disjoint union by identifying the empty information states of M and
M

′. Indeed, the the empty information state plays a special, albeit somewhat
trivial rôle for various purposes. To isolate the structurally distinctive part of a
relational inquisitive model M = (W,S,E,∈, (Pi)) we may consider its essential
part as obtained by removal of the empty information state:

M
◦ := M↾(W ∪ S◦) = (W,S◦, E◦,∈◦, (Pi))

where S◦ := S \ {∅} and E◦,∈◦ ⊆W ×S◦ are corresponding restrictions. While
M

◦ is not itself a relational inquisitive model, it uniquely determines the original
model. Writing M

◦ ∗ {∅} for the unique extension by re-insertion of ∅, which
reproduces M, we have the one-to-one correspondence

(†) M
◦ = M↾(W ∪ S◦) ! M = M

◦ ∗ {∅}

Moreover, essentially disjoint unions of models (or of subsets of their domains)
are disjoint unions at the level of the essential parts.

Locality and truncation of models. Towards the assessment of the expressive
power of FO over relevant classes of relational inquisitive models, which are
not elementary, we cannot rely on classical compactness arguments. Instead
we invoke locality arguments based on the local nature of first-order logic over
relational structures, in terms of Gaifman distance. In the setting of inquisitive
relational models, Gaifman distance is graph distance in the undirected bi-partite
graph on the setsW of worlds and S of states with edges between any pair linked
by E or ε; the ℓ-neighbourhood N ℓ(w) of a world w consists of all worlds or states
at distance up to ℓ from w in this sense, and N ℓ(s) is similarly defined. But the
presence of the empty information state ∅ ∈ S might seem to spoil any locality-
based arguments because it trivialises the distance measure in M.10 Passage to
the essential part M◦, however, overcomes this obstacle. The empty state plays
a trivial rôle not just w.r.t. bisimulation, where it only occurs as a dead end, but
also w.r.t. FO expressiveness: the relational model M is uniformly quantifier-
free FO-interpretable in its essential part M

◦. It follows that ≡q between the
essential parts of (pointed) relational inquisitive models implies ≡q between the
actual models.11 So the correspondence in (†) is compatible with individual levels
of FO-equivalence. Meaningful locality arguments can therefore be based on ℓ-
neighbourhoods w.r.t. essential parts, where Gaifman distance is not trivialised
by ∅. If M is a relational inquisitive model, w a world in M, and ℓ an even

10In fact, the Gaifman diameter of any relational inquisitive model is easily seen to be
bounded by 4, as ∅ ∈ S is E-related to every world, so that also every information state has
distance at most 2 from ∅.

11Uniform syntactic rewriting provides for every ϕ(x) ∈ FO a translation ϕ◦(x) ∈ FO of the
same quantifier rank such that M, w |= ϕ iff M

◦, w |= ϕ◦.
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number, we define truncation of M to depth ℓ as

M
ℓ
w := (M◦ ↾N ℓ(w)) ∗ {∅},

where N ℓ(w) consists of those worlds or states at Gaifman distance at most ℓ
from w in M

◦ (!). It is easy to see that M
ℓ
w is a relational inquisitive model.

Similarly, for a state s 6= ∅ and even ℓ, we define M
ℓ
s := (M◦ ↾N ℓ+1(s)) ∗ {∅},

which again is a relational inquisitive model.

§8. Characterisation theorem for InqML. Our aim is to show the fol-
lowing main characterisation theorem.

Theorem 1.2. Let C be any of the following classes of relational models: the
class of all models; of finite models; of locally full models; of finite locally full
models. Then InqML ≡w

C FO/∼ and InqML ≡s

C FO/∼.

By Observation 7.3 it suffices to establish the following.

Proposition 8.1. Let C be any of the above classes. Any first-order formula
which is ∼-invariant over C is ∼n-invariant over C for some finite level n ∈ N.

8.1. Partial unfolding and stratification. To establish the compactness
principle for ∼-invariance expressed in Proposition 8.1 for the relevant classes of
relational models we make use of a process of stratification. This is similar to
tree-like unfoldings in standard modal logic.

Definition 8.2. A relational inquisitive model M is stratified if its two do-
mains W and S consist of essentially disjoint strata, i.e., of two families (Wi)i∈N

and (Si)i∈N such that:
(i) W =

⋃
Wi and S =

⋃
Si;

(ii) for each i, j ∈ N :Wi ∩Wj = ∅ and Si ∩ Sj = {∅};
(iii) E[w] ⊆ Si for all w ∈ Wi and Si ⊆ ℘(Wi+1).
For an even ℓ 6= 0 and a world w, we say that M is stratified to depth ℓ from
w if its truncation M

ℓ
w (see the definition at the end of Section 7.3) is stratified

with W0 = {w}. M is stratified to depth ℓ from a non-empty state s ∈ S, if its
truncation M

ℓ
s is stratified with W0 = ∅, S0 = ℘(s).

We note that no non-trivial stratified model can be full.

Proposition 8.3. Any world-pointed relational inquisitive model M, w is bisim-
ilar to a stratified one. For even ℓ 6= 0, any finite M, w is bisimilar to a finite
model that is stratified to depth ℓ from w. An analogous result holds for state-
pointed relational inquisitive models M, s. If M is locally full, the (ℓ-)stratified
target model can be chosen to be locally full, too.

Proof Sketch. The underlying process of partial unfolding is similar to the
well-known tree unfolding of Kripke structures, but leaves quite some flexibility
as to the choice of the second sort. Starting from a modelM, we define a stratified
model M′, whose essential part M

′◦ consists of N-tagged copies of worlds and
non-empty information states from M, so that W ′ ⊆W × N and S′◦ ⊆ S◦ × N.
In the world-pointed case, let w′ := (w, 0). We take W ′

0 := {(w, 0)}. For any
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n ∈ N, we choose a downward closed set Sn ⊇
⋃

(u,n)∈W ′

n

E[u] and put

S′
n
◦ := S◦

n × {n},
W ′

n+1 :=
⋃

s∈S◦

n

s× {n+ 1},

and define E′◦ := {((u, n), (s, n)) : (u, s) ∈ E},
ε′◦ := {((u, n+ 1), (s, n)) : u ∈ s},
P ′
i := {(u, n) : u ∈ Pi}.

This uniquely determinesM′ = M
′◦∗ {∅}. It is easy to check thatM′, w′ ∼ M, w.

In order to maintain finiteness, the unfolding process can be truncated at any
stage n if we replace the above W ′

n+1 by W and correspondingly put S◦ instead
of S′

n+1
◦ and augment E′◦ by all of E◦. The resulting M

′, w′ is fully bisimilar to
M, w, is finite if M is, and is stratified to depth 2n. With the straightforward
maximal choice for the S′◦

n, viz. S
′◦
n := S◦×{n}, the (full or truncated) unfolding

process preserves local fullness, too. In the state-pointed case we start out by
setting W ′

0 := ∅, S′
0 := ℘(s)× {0} and proceed inductively as above. ⊣

Observation 8.4. Let M, w and M
′, w′ be world-pointed relational models

that are stratified to depth ℓ for some even ℓ from their respective worlds. Let
M

ℓ
w, w and M

′ℓ
w′ , w′ be their ℓ-truncations. Then, for n > ℓ/2:

M
ℓ
w, w ∼n

M
′ℓ
w′ , w′ =⇒ M

ℓ
w, w ∼ M

′ℓ
w′ , w′.

Analogously for state-pointed models that are stratified to depth ℓ from their
distinguished states.

This is because, due to stratification and cut-off, the n-round game exhausts all
possibilities in the unbounded game. After m rounds of the bisimulation game,
which starts from the pairing of the roots w and w′ of the stratified models, the
position is a pairing of worlds from strata Wm and W ′

m. So player II wins the
unbounded game if she does not lose within n rounds.

Proof of Theorem 1.2. We first present the upgrading argument for the
case of world-pointed models, which is closer to the classical intuition. The
version for state-pointed models, which is formally the stronger, will be discussed
below. Let C be any one of the classes in the theorem and let ϕ(x) ∈ FOq be
∼-invariant as a world property over C. We want to show that ϕ is ∼n-invariant
over C for n = 2q, where q is the quantifier rank of ϕ. The upgrading argument is
sketched in Figure 4. Towards its ingredients, consider a world-pointed relational
model M, w in C. Since ϕ is ∼-invariant, we can, by Proposition 8.3, assume
w.l.o.g. thatM, w is stratified to depth ℓ = n from w. LetMℓ

w be its ℓ-truncation,
which is then fully stratified. We define two world-pointed models M0, w and
M1, w as follows. Each of the Mi consists of an essentially disjoint union of the
following constituents: both models contain q distinct isomorphic copies of M
as well as of Mℓ

w. In addition, M0 contains a copy of Mℓ
w with the distinguished

world w, while M1 contains a copy of M with the distinguished world w.

M0, w := q ⊗M ⊕ M
ℓ
w, w ⊕ q ⊗M

ℓ
w

M1, w := q ⊗M ⊕ M, w ⊕ q ⊗M
ℓ
w

Using a locality-based Ehrenfeucht-Fräıssé game argument for FO we can show:

(∗) M0, w ≡q M1, w.
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◦

✱✱✱✱✱✱✱✱✱✱✱✱

✒✒✒✒✒✒✒✒✒✒✒✒ ◦

✱✱✱✱✱✱✱✱✱✱✱✱

✒✒✒✒✒✒✒✒✒✒✒✒
︸ ︷︷ ︸

q copies
w
•

✱✱✱✱✱✱✱

✒✒✒✒✒✒✒ ◦

✱✱✱✱✱✱
◦

✒✒✒✒✒✒ ◦

✱✱✱✱✱✱
◦

✒✒✒✒✒✒
︸ ︷︷ ︸

q copies

≡q ◦

✱✱✱✱✱✱✱✱✱✱✱✱

✒✒✒✒✒✒✒✒✒✒✒✒ ◦

✱✱✱✱✱✱✱✱✱✱✱✱

✒✒✒✒✒✒✒✒✒✒✒✒
︸ ︷︷ ︸

q copies
w
•

✱✱✱✱✱✱✱✱✱✱✱✱

✒✒✒✒✒✒✒✒✒✒✒✒ ◦

✱✱✱✱✱✱
◦

✒✒✒✒✒✒ ◦

✱✱✱✱✱✱
◦

✒✒✒✒✒✒
︸ ︷︷ ︸

q copies

Figure 3. The structures M◦
0, w and M

◦
1, w in the game argument.

As argued in connection with the correspondence (†) at the end of Section 7,
due to quantifier-free interpretability of Mi, w in M

◦
i , w, (∗) is equivalent to

(∗∗) M
◦
0, w ≡q M

◦
1, w

The diagram in Figure 3 suggests the arrangement, with open cones for copies
of M◦ and truncated cones for M◦ ↾N ℓ(w) (the essential part of Mℓ

w), and with
filled circles for the distinguished worlds.
We argue that the second player has a winning strategy in the classical q-round

Ehrenfeucht–Fräıssé game over the two structures in (∗∗) starting in the position
with a single pebble on the distinguished world w on either side. Indeed, player II
can force a win by maintaining the following invariant w.r.t. the game positions
(u;u′) for u = (u0, u1, . . . , um) with u0 = w in M

◦
0 and u′ = (u′0, u

′
1, . . . , u

′
m)

with u′0 = w in M
◦
1 after round m, for m = 0, . . . , q, for ℓm := 2q−m:

u and u′ are partitioned into clusters of matching sub-tuples such that
the distance between separate clusters is greater than ℓm and corre-
sponding clusters are in isomorphic configurations of isomorphic com-
ponent structures of M

◦
0 and M

◦
1 or in isomorphic configurations in

M
◦
0 ↾N

ℓ(w) and M
◦
1 ↾N

ℓ(w).

This condition is satisfied at the start of the game, for m = 0 (ℓ0 = 2q = n).
The second player can maintain this condition through a round, say in the step
from m to m+ 1, as follows. Suppose the first player puts a pebble in position
u = um+1 in M

◦
0 or u′ = u′m+1 in M

◦
1 at distance up to ℓm+1 of one of the level

m clusters (it cannot fall within distance ℓm+1 of two distinct clusters, since the
distance between two distinct clusters from the previous level is greater than
ℓm = 2ℓm+1); then this new position joins a sub-cluster of that cluster and its
match is found in an isomorphic position relative to the matching cluster. If the
first player puts the new pebble in a position u = um+1 in M

◦
0 or u′ = u′m+1 in

M
◦
1 at distance greater than ℓm+1 of each one of the levelm clusters, this position

will form a new cluster and can be matched with an isomorphic position in one
of the as yet unused component structures on the opposite side.
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M, w

∼

∼n M
′, w′

∼

M1, w

≡q

∼n M
′
1, w

′

≡q

M0, w

∼

∼n M
′
0, w

′

∼

M
ℓ
w, w ∼ M

′
w′

ℓ, w′

Figure 4. Upgrading pattern for Theorem 1.2/Proposition 8.1.

This argument restricts naturally to the scenarios of (finite or general) locally
full relational inquisitive structures, because stratification (to some depth) ac-
cording to Proposition 8.3 preserves local fullness, and so does restriction to
some even depth and the formation of essentially disjoint sums.
Given any two pointed models M, w∼n

M
′, w′ in any of the relevant classes

C, we see that a first-order formula ϕ of quantifier rank q that is preserved
under ∼, is preserved by chasing the diagram in Figure 4 along the path through
the auxiliary models, which are all in C. The expressive completeness claim
for Theorem 1.2, i.e. expressibility of ϕ in InqML over C, now follows from
Corollary 6.7: indeed, ϕ is logically equivalent over C to the disjunction over the
characteristic formulae χn

M,w for all M, w ∈ C that satisfy ϕ. ⊣

The case of state properties. To show Proposition 8.1 for state properties, we
can similarly upgrade the situation M, s∼n

M
′, s′ for non-empty s, s′ in com-

panion structures through passage to truncations of fully bisimilar models that
are stratified to depth ℓ from their distinguished states.12 Assuming w.l.o.g. that
M, s is itself stratified to depth ℓ = 2q with stratified restriction M

ℓ
s we define

as before the following essentially disjoint unions

M0, s := q ⊗M ⊕ M
ℓ
s, s ⊕ q ⊗M

ℓ
s

M1, s := q ⊗M ⊕ M, s ⊕ q ⊗M
ℓ
s

and we find that M0, s ≡q M1, s. We do the same for M
′, s′. The rest of the

argument for Proposition 8.1 is completed with the straightforward analogue of
Figure 4 for the relevant state-pointed models.

§9. Conclusion. We have seen the beginnings of a model theory for inquis-
itive modal logic. Our contribution started in Section 3, where we described a
natural notion of bisimulation for inquisitive modal structures. From a game-
theoretic perspective, bisimilarity and its approximations can be characterised

12Note that the upgrading argument trivialises for ϕ(s) ∈ FO in the case of state-pointed
models M, s with s = ∅: For any n, M, ∅ ∼n M′, s′ iff M, ∅ ∼ M′, s′ iff s′ = ∅. If ϕ(s) is ∼-

invariant over C, it must be satisfied by s = ∅ across all of C or nowhere; and being inquisitive
over C, the former must in fact be true.
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in terms of a game which interleaves two kinds of moves: world-to-state moves
(from w to some s ∈ Σ(w)) and state-to-world moves (from s to some w ∈ s).
In Section 4 we saw that bisimilarity relates to modal equivalence in the usual

way: two pointed models over a finite vocabulary are distinguishable in the n-
round bisimulation game iff they are distinguished by a formula of modal depth n.
In Section 5 we compared inquisitive modal logic to neighbourhood semantics

for modal logic, showing that, although these two logics are interpreted over
similar structures, they are very different in terms of their expressive power, and
are invariant under different notions of bisimulation equivalence.
In Section 6 we discussed how inquisitive modal models can be encoded as

two-sorted relational structures on which we can naturally interpret first-order
formulae of a suitable relational signature. This enabled us to define a standard
translation from InqML to first-order logic, and to view InqML as a syntactic
fragment of first-order logic with respect to those relational structures.
We then asked over what classes of structures this syntactic fragment coin-

cides, up to logical equivalence, with the fragment determined by the semantic
property of bisimulation invariance. Using an inquisitive analogue of partial tree
unfoldings in Section 8, we established a positive answer to this question for
several natural classes, including the class of all relational inquisitive models,
and the class of all finite models.
The results obtained in this paper provide us with a better understanding of

inquisitive modal logic in at least two ways. From a more concrete perspective,
we have given a characterisation of the expressive power of InqML which is
very helpful in order to tell what properties of pointed models can and cannot
be expressed in the language: for instance, it is easy to see that properties like
P(w) := “W ∈ Σ(w)” or P(w) := “{w} ∈ Σ(w)” are not bisimulation invari-
ant, and thus not expressible in InqML. From a more abstract perspective, we
have looked at a natural notion of behavioural equivalence for inquisitive modal
structures, whose main constituent is a map Σ : W → ℘℘(W ), rather than
σ : W → ℘(W ) as in Kripke structures. We saw that, in terms of expressive
power, InqML is a natural choice for a language designed to talk about prop-
erties which are invariant under this notion of equivalence: over various classes
of structures, InqML expresses all and only the first-order properties that are
invariant in this sense.
In a separate paper, we will tackle the case of inquisitive epistemic models—the

inquisitive version of multi-modal S5 models. Conceptually, this class of models
is interesting in light of the natural interpretation of inquisitive modalities in the
epistemic setting, as described in Section 2. Technically, it presents interesting
challenges as the stratifications used in Section 8 are incompatible with the S5
frame conditions. Nevertheless, it can be shown that the counterpart of our
characterisation result still holds in this setting—again, both in general and in
restriction to finite models. A preliminary account is given in [9].
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