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Abstract. The Gödel translation provides an embedding of the intuitionistic logic IPC into the modal
logic Grz, which then embeds into the modal logic GL via the splitting translation. Combined with Solovay’s
theorem that GL is the modal logic of the provability predicate of Peano Arithmetic PA, both IPC and Grz
admit arithmetical interpretations. When attempting to ‘lift’ these results to the monadic extensions MIPC,
MGrz, and MGL of these logics, the same techniques no longer work. Following a conjecture made by Esakia,
we add an appropriate version of Casari’s formula to these monadic extensions (denoted by a ‘+’), obtaining
that the Gödel translation embeds M+IPC into M+Grz and the splitting translation embeds M+Grz into
MGL. As proven by Japaridze, Solovay’s result extends to the monadic system MGL, which leads us to an
arithmetical interpretation of both M+IPC and M+Grz.
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1. Introduction

1.1. Propositional case. It is well known that the Gödel translation embeds Intuitionistic Propositional
Calculus IPC into the modal logic S4. We recall that the Gödel translation is defined as follows:

1

ar
X

iv
:2

10
3.

11
48

0v
1 

 [
m

at
h.

L
O

] 
 2

1 
M

ar
 2

02
1



MONADIC INTUITIONISTIC AND MODAL LOGICS ADMITTING PROVABILITY INTERPRETATIONS 2

• pt = �p for a propositional letter p;
• (ϕ ∨ ψ)t = ϕt ∨ ψt;
• (ϕ ∧ ψ)t = ϕt ∧ ψt;
• (ϕ→ ψ)t = �(ϕt → ψt);
• (¬ϕ)t = �(¬ϕt).

McKinsey and Tarski [26] proved that this translation is full and faithful; that is,

IPC ` ϕ iff S4 ` ϕt.

There are many other normal extensions of S4, called modal companions of IPC, in which IPC is embedded
fully and faithfully. Esakia [12] showed that the largest such companion is Grzegorczyk’s logic Grz, which is
the normal extension of S4 with the Grzegorczyk axiom

grz =: �(�(p→ �p)→ p)→ p.

Thus, we have
IPC ` ϕ iff Grz ` ϕt.

Goldblatt [21], Boolos [6], and Kuznetsov and Muravitsky [25] showed that the splitting translation embeds
Grz into the Gödel-Löb logic GL which is the normal extension of the least normal modal logic K with the
axiom

gl := �(�p→ p)→ �p.

We recall that the splitting translation is defined by “splitting boxes” in formulas (see, e.g., [7, p. 8]); that
is, for a modal formula ϕ, let �+ϕ be the abbreviation of the formula ϕ∧�ϕ. Then the splitting translation
is defined by letting ϕs be the result of replacing all occurrences of � in ϕ by �+. We then have

Grz ` ϕ iff GL ` ϕs.

Combining these results yields

IPC ` ϕ iff Grz ` ϕt iff GL ` (ϕt)s.

By Solovay’s theorem [34], GL can be thought of as the modal logic of the provability predicate in Peano
Arithmetic PA. Thus, both IPC and Grz admit provability interpretations.

1.2. Predicate case. The Gödel translation extends to the predicate case by setting
• (∀xϕ)t = �∀x(ϕt);
• (∃xϕ)t = ∃x(ϕt).

Let IQC be the intuitionistic predicate calculus and QS4 the predicate S4. Then

IQC ` ϕ iff QS4 ` ϕt,

so the extension of the Gödel translation to the predicate case remains full and faithful (see, e.g., [33]).
However, this is virtually the only positive result. Let QGrz be the predicate Grz and let QGL be the
predicate GL. Montagna [27] showed that Solovay’s theorem no longer holds for QGL. Moreover, the splitting
translation does not embed QGrz fully and faithfully into QGL (see below), and as far as we know, it remains
an open problem whether the Gödel translation embeds IQC fully and faithfully into QGrz.

1.3. Monadic case. In view of the above, Esakia [15] suggested to study these translations for the monadic
(one-variable) fragments of IQC, QGrz, and QGL. The monadic fragment of IQC was introduced by Prior [32]
under the name of MIPC. The monadic fragment of QS4 was studied by Fischer-Servi [17], and the monadic
fragments of QGrz and QGL by Esakia [15]. We denote them by MS4, MGrz, and MGL, respectively.

Fischer-Servi [17] proved that the Gödel translation embeds MIPC into MS4 fully and faithfully. As we
will see, the Gödel translation also embeds MIPC fully and faithfully into MGrz. Japaridze [23, 24] proved
that Solovay’s result extends to MGL. Therefore, to complete the picture, it would be sufficient to show that
the splitting translation embeds MGrz into MGL fully and faithfully. However, as was observed by Esakia,
this is no longer true. To see this, we recall (see, e.g., [30]) that Casari’s formula

Cas : ∀x((P (x)→ ∀yP (y))→ ∀yP (y))→ ∀xP (x)
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is valid in an intuitionistic predicate Kripke frame provided the underlying poset is Noetherian. Consider
the monadic version of Casari’s formula

MCas : ∀ ((p→ ∀p)→ ∀p)→ ∀p.
Using the same notation for the Gödel and splitting translations in the monadic setting, we have that
MGrz 6` (MCas)t but MGL ` ((MCas)t)s. This yields that MGrz does not embed into MGL faithfully.

Let
M+IPC = MIPC + MCas

be the extension of MIPC by MCas, and let

M+Grz = MGrz + (MCas)t

be the extension of MGrz by (MCas)t. Esakia claimed that the translations

IPC→ Grz→ GL

are lifted to
M+IPC→ M+Grz→ MGL.

Verifying this claim will be our main goal.

1.4. Main contribution and organization. Our main result is the following theorem.

Theorem. M+IPC ` ϕ iff M+Grz ` ϕt iff MGL ` (ϕt)s.

We will prove the theorem semantically. The most challenging part of our argument is in establishing the
finite model property for M+IPC and M+Grz (see Sections 5 and 6). It was established by Japaridze [23]
that MGL also has the finite model property. In fact, our technique of proving the finite model property for
M+Grz can be adapted to provide an alternative proof of Japaridze’s result for MGL, but this is not needed
for the above theorem.

The paper is organized as follows. Section 2 provides a brief overview of monadic logics and their corre-
sponding algebraic and relational semantics. Section 3 discusses the Gödel and splitting translations in the
monadic setting. In Section 4 we investigate how the addition of the adapted variations of Casari’s formula
affect the semantics. In Sections 5 and 6 we establish the finite model property for M+IPC and M+Grz,
respectively, using a modified selective filtration, which allows us to conclude the main result stated above.

We use [10] as our standard reference for intuitionistic and modal propositional logic, and [20] as our
standard reference for intuitionistic modal logics and classical bi-modal systems.

2. Monadic logics

In this section we recall the notion of monadic intuitionistic and modal logics and discuss their algebraic
and frame-based semantics.

2.1. Monadic intuitionistic logic. The monadic intuitionistic propositional calculus MIPC was defined
by Prior [32] and it was shown by Bull [9] that MIPC axiomatizes the monadic fragment of the predicate
intuitionistic logic. To define MIPC, let L be the language of propositional intuitionistic logic, and let L∀∃
be the enrichment of L with the quantifier modalities ∀ and ∃.1

Definition 2.1. MIPC is the smallest set of L∀∃-formulas containing
• all axioms of IPC,
• the S4-axioms for ∀,2
• the S5-axioms for ∃,3
• the connecting axioms ∃p→ ∀∃p and ∃∀p→ ∀p,

and closed under the inference rules of substitution, modus ponens, and ∀-necessitation ϕ
∀ϕ .

Remark 2.2. The non-symmetric feature of intuitionistic quantifiers is captured in the fact that while ∃ is an
S5-modality, ∀ is merely an S4-modality, and the ∀-counterpart ∀(∀p∨q)↔ (∀p∨∀q) of ∃(∃p∧q)↔ (∃p∧∃q)
is not provable in MIPC.

1� and ♦ are also frequently used in place of ∀ and ∃, respectively.
2∀p→ p, ∀p→ ∀∀p, and ∀(p ∧ q)↔ (∀p ∧ ∀q).
3p→ ∃p, ∃∃p→ ∃p, ∃(p ∨ q)↔ (∃p ∨ ∃q), and ∃(∃p ∧ q)↔ (∃p ∧ ∃q).
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Algebraic semantics for MIPC is given by monadic Heyting algebras [28, 2].

Definition 2.3. A monadic Heyting algebra is a triple (H,∀,∃) where
• H is a Heyting algebra,
• ∀ : H → H is an S4-operator,4

• ∃ : H → H is an S5-operator,5

• ∃a ≤ ∀∃a and ∃∀a ≤ ∀a.

Remark 2.4. This in particular implies that the fixpoints of ∀ and ∃ are equal and form a Heyting subalgebra
of H. In fact, every monadic Heyting algebra can be represented as a pair (H,H0) where H0 is a Heyting
subalgebra of H and the inclusion has both the right (∀) and left (∃) adjoint.

As usual, propositional letters of L∀∃ are evaluated as elements of H, the connectives as the corresponding
operations of H, and the quantifier modalities as the corresponding modal operators of H. The standard
Lindenbaum-Tarski construction then yields:

Theorem 2.5. MIPC ` ϕ⇔ H � ϕ for each monadic Heyting algebra H.

Kripke semantics for MIPC is an extension of Kripke semantics for IPC [29, 19, 15].

Definition 2.6. An MIPC-frame is a triple F = (W,R,E) where (W,R) is an IPC-frame,6 and E is an
equivalence relation on W satisfying (R ◦ E)(x) ⊆ (E ◦ R)(x) for all x ∈ W ; that is, if xEy and yRz, then
there is w ∈W such that xRw and wEz.

•
w
oo E // •

z

•
x
oo E //

R

OO

•
y

R

OO

We refer to this condition as commutativity. We will sometimes refer to R as a ‘vertical relation’, and to E
as a ‘horizontal relation’, as depicted in the diagram above.

Valuations on MIPC-frames are defined as for IPC-frames; that is, a valuation on F = (W,R,E) is an
assignment ν of propositional letters to R-upsets of F.7 As usual, the truth relation in F is defined by
induction. The clauses for the connectives ∧,∨,→,¬ are the same as for IPC-frames:

w �ν p iff w ∈ ν(p);

w �ν ϕ ∧ ψ iff w �ν ϕ and w �ν ψ;

w �ν ϕ ∨ ψ iff w �ν ϕ or w �ν ψ;

w �ν ϕ→ ψ iff (for all v)(wRv and v �ν ϕ implies v �ν ψ);

w �ν ¬ϕ iff (for all v)(wRv implies v 6�ν ϕ).

To extend this to the truth relation for quantifier modalities, we first define a new relation Q as the compo-
sition R ◦ E on W ; that is, xQy iff there is z ∈W such that xRz and zEy.

•
z
oo E // •

y

•
x

R

OO

Q

BB

Then Q is a quasi-order (reflexive and transitive) and ∀,∃ are interpreted in F as follows:

w �ν ∀ϕ iff (for all v)(wQv implies v �ν ϕ);

w �ν ∃ϕ iff (there exists v)(wEv and v �ν ϕ).

4∀a ≤ a, ∀a ≤ ∀∀a, ∀(a ∧ b) = ∀a ∧ ∀b, and ∀1 = 1.
5a ≤ ∃a, ∃∃a ≤ ∃a, ∃(a ∨ b) = ∃a ∨ ∃b, ∃0 = 0, and ∃(∃a ∧ b) = ∃a ∧ ∃b.
6A nonempty partially ordered set.
7Recall that U ⊆W is an R-upset if u ∈ U and uRv imply v ∈ U .
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Sometimes we also write (F, w) �ν ϕ to emphasize the underlying frame F or simply w � ϕ in case F and ν
are clear from the context.

There is a close connection between algebraic and relational semantics for MIPC. To see this, let F =
(W,R,E) be an MIPC-frame. For x ∈W , let

Q(x) = {y ∈W | xQy} and E(x) = {y ∈W | xEy}.
Set F+ = (Up(F),∀,∃) where Up(F) is the Heyting algebra of R-upsets of F, and for U ∈ Up(F),

∀U = {x ∈W | Q(x) ⊆ U} and ∃U = {x ∈W | E(x) ∩ U 6= ∅}.
Then F+ is a monadic Heyting algebra, and every monadic Heyting algebra is represented as a subalgebra
of such. To see this, for a monadic Heyting algebra H = (H,∀,∃), let W be the set of prime filters of H, let
R be the inclusion, and let E be defined by ηEζ iff η ∩H0 = ζ ∩H0, where we recall that H0 is the fixpoint
subalgebra of H (see Remark 2.4). Then H+ = (W,R,E) is an MIPC-frame (where ηQζ iff η ∩H0 ⊆ ζ ∩H0)
and there is an embedding e : H→ (H+)+ given by

e(a) = {η ∈ H+ | a ∈ η}.
In general, the embedding e is not onto, so to recognize the e-image of H in the Heyting algebra of upsets,

we introduce the concept of a descriptive MIPC-frame. One way to do this is to introduce topology on an
MIPC-frame.

We recall that a topological space is a Stone space if it is compact Hausdorff and zero-dimensional8. A
relation R on a Stone space W is continuous if (i) R(x) is closed for each x ∈ W and (ii) U clopen implies
R−1(U) is clopen, where

R−1(U) = {x ∈W | xRu for some u ∈ U}.

Definition 2.7. An MIPC-frame F = (W,R,E) is a descriptive MIPC-frame if
• W is a Stone space,
• R and Q are continuous relations,
• A clopen R-upset implies E(A) is a clopen R-upset.

Remark 2.8. This does not imply that A clopen implies E(A) is clopen; see [3, p. 32]. However, we do
have that A closed implies E(A) is closed; see [3, Lem. 7].

As follows from Esakia’s representation of Heyting algebras [11], for a Heyting algebra H, there is a Stone
topology on the set W of prime filters of H generated by the basis

{e(a) \ e(b) | a, b ∈ H},
the inclusion relation R on W is continuous, and e is a Heyting isomorphism from H onto the Heyting
algebra of clopen R-upsets of W .

By [3, Thm. 13], if H = (H,∀,∃) is a monadic Heyting algebra, then (W,R,E) is a descriptive MIPC-frame,
which we denote by H∗, and e is an isomorphism from H onto the monadic Heyting algebra (H∗)

∗ of clopen
R-upsets of H∗. Thus, every monadic Heyting algebra can be thought of as the algebra of clopen R-upsets
of some descriptive MIPC-frame. This representation together with Theorem 2.5 yields:

Theorem 2.9. MIPC ` ϕ⇔ F � ϕ for each descriptive MIPC-frame F.

If the descriptive MIPC-frame is finite, then the topology is discrete, and hence finite descriptive MIPC-
frames are simply finite MIPC-frames. It is well known that MIPC has the finite model property:

Theorem 2.10. MIPC ` ϕ⇔ F � ϕ for each finite MIPC-frame F.

This was first proved by Bull [8] using algebraic semantics. However, Bull’s proof contained a gap, which
was later filled by Fischer-Servi [18] and Ono [29] independently of each other. For a more frame-theoretic
proof, using the technique of selective filtration, see [20, §10.3].

We finish §2.1 by recalling an important property of descriptive MIPC-frames, which will be useful later
on.

Definition 2.11. Let F = (W,R,E) be a descriptive MIPC-frame and let A ⊆W .
(1) We say x ∈ A is R-maximal in A if xRy and y ∈ A imply x = y.

8Clopen (closed and open) sets form a basis for the topology.
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(2) The R-maximum of A is the set of all R-maximal points of A, i.e.,

maxA = {x ∈ A | xRy and y ∈ A imply x = y}.

The next lemma states that every point in the E-saturation of clopen A sees a point that is maximal in
the E-saturation of A. The proof follows from the result of Fine [16] and Esakia [14] that can be phrased
as follows: If A is a closed subset of a descriptive IPC-frame, then for each x ∈ A there is y ∈ maxA such
that xRy. Since A clopen implies that E(A) is closed (see Remark 2.8), the proof is a consequence of the
Fine-Esakia lemma.

Lemma 2.12. Let F = (W,R,E) be a descriptive MIPC-frame. For each clopen A and x ∈ E(A), there is
y ∈ maxE(A) such that xRy.

2.2. Monadic modal logics. LetML be the basic propositional modal language (with one modality �).
As usual, the least normal modal logic will be denoted by K, and normal modal logics are normal extensions
of K.

LetML∀ be the bimodal language which enrichesML with the modality ∀. We use the abbreviation ∃ϕ
for ¬∀¬ϕ.

Definition 2.13.
(1) The monadic K is the least set ofML∀-formulas containing

• the K-axiom for �,9

• the S5-axioms for ∀,10
• the bridge axiom �∀p→ ∀�p,

and closed under ∀-necessitation ϕ
∀ϕ as well as under the usual rules of substitution, modus ponens,

and �-necessitation. We denote the monadic K by MK.
(2) A normal extension of MK is an extension of MK which is closed under both �- and ∀-necessitation.

We call normal extensions of MK normal monadic modal logics or simply mm-logics.
(3) Let L be a normal modal logic (in ML). The least monadic extension ML of L is the smallest

mm-logic containing MK ∪ L.

Remark 2.14.
(1) Monadic modal logics are bimodal logics in the language with two modalities �,∀, where ∀ is an

S5-modality. They correspond to expanding relativized products discussed in [20, §9].
(2) The axiom ∀�p → �∀p, which is the converse of the bridge axiom, and is the monadic version of

Barcan’s formula, is not provable in MK.

Algebraic semantics for monadic modal logics is given by monadic modal algebras.

Definition 2.15. A monadic modal algebra or simply an mm-algebra is a triple (B,�,∀) where
• (B,�) is a modal algebra,11

• (B, ∀) is an S5-algebra,12

• �∀a ≤ ∀�a.

Remark 2.16. As with monadic Heyting algebras, the ∀-fixpoints of an mm-algebra (B,�,∀) form a
subalgebra of the modal algebra (B,�), and each mm-algebra is represented as a pair (B,B0) of modal
algebras such that the embedding of B0 into B has a right adjoint (∀).

Kripke semantics for mm-logics is given by augmented Kripke frames of Esakia [15].

Definition 2.17. An augmented Kripke frame is a triple F = (W,R,E) where (W,R) is a Kripke frame13

and E is an equivalence relation on W satisfying commutativity, i.e., (R ◦E)(x) ⊆ (E ◦R)(x) for all x ∈W ;

9�(p→ q)→ (�p→ �q).
10∀p→ p, ∀p→ ∀∀p, ¬∀p→ ∀¬∀p, and ∀(p→ q)→ (∀p→ ∀q).
11That is, B is a boolean algebra and � : B → B satisfies �1 = 1 and �(a ∧ b) = �a ∧ �b.
12That is, (B, ∀) is a modal algebra satisfying ∀a ≤ a, ∀a ≤ ∀∀a, and ¬∀a ≤ ∀¬∀a.
13W is nonempty and R is a binary relation on W .
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that is, if xEy and yRz, then there is w ∈W such that xRw and wEz.

•
w
oo E // •

z

•
x
oo E //

R

OO

•
y

R

OO

As with MIPC-frames, we may refer to R as a ‘vertical relation,’ and to E as a ‘horizontal relation,’ as
depicted in the diagram above.

Valuations on augmented Kripke frames are defined analogously to Kripke frames; that is, a valuation
ν on an augmented Kripke frame F = (W,R,E) assigns propositional letters to subsets of W . The truth
relation clauses for the connectives ∨,¬, the modality �, and its dual ♦ are defined as for Kripke frames:

x �ν p iff x ∈ ν(p);

x �ν ψ ∨ χ iff x �ν ψ or x �ν χ;

x �ν ¬ψ iff x 6�ν ψ;

x �ν �ψ iff (for all y ∈W )(xRy ⇒ y �ν ψ);

x �ν ♦ψ iff (there exists y ∈W )(xRy and y �ν ψ).

The modality ∀ and its dual ∃ are interpreted via the relation E as follows:

x �ν ∀ϕ iff (for all y ∈W )(xEy ⇒ y �ν ϕ)

x �ν ∃ϕ iff (there exists y ∈W )(xEy and y �ν ϕ).

As in the case of MIPC-frames, we also use the notation (F, w) �ν ϕ or w � ϕ.
As in the case of MIPC, there is a close connection between algebraic and relational semantics for mm-

logics. For an augmented Kripke frame F = (W,R,E), set F+ = (℘(F),�,∀) where ℘(F) is the powerset of
F, and for U ∈ Up(F),

�U = {x ∈W | R(x) ⊆ U} and ∀U = {x ∈W | E(x) ⊆ U}.

Then F+ is an mm-algebra, and every mm-algebra is represented as a subalgebra of such. To see this, for
an mm-algebra B = (B,�,∀), let W be the set of ultrafilters of B, and let R and E be defined by

ηRζ iff �a ∈ η implies a ∈ ζ and ηEζ iff η ∩B0 = ζ ∩B0.

Then B+ = (W,R,E) is an augmented Kripke frame and there is an embedding e : B→ (B+)+ given by

e(a) = {η ∈ B+ | a ∈ η}.

In general, the embedding e is not onto, so to recognize the e-image of B in the powerset, we introduce
the concept of a descriptive augmented Kripke frame. As in the case of MIPC, we do this by introducing
topology on augmented Kripke frames.

Definition 2.18. An augmented Kripke frame F = (W,R,E) is a descriptive augmented Kripke frame if W
is a Stone space and R and E are continuous relations.

As follows from the representation of modal algebras, for a modal algebra B, there is a Stone topology
on the set W of ultrafilters of B generated by the basis {e(a) | a ∈ B}, the relation R on W is continuous,
and e is a modal isomorphism from B onto the modal algebra of clopen subsets of W .

If B = (B,�,∀) is an mm-algebra, then (W,R,E) is a descriptive augmented Kripke frame, which we
denote by B∗, and e is an isomorphism from B onto the mm-algebra (B∗)

∗ of clopen subsets of B∗. Thus,
every mm-algebra can be thought of as the algebra of clopen subsets of some descriptive augmented Kripke
frame.
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2.3. MS4, MGrz, and MGL. We next focus on the least monadic extension MS4 of the modal logic S4.

Definition 2.19.
(1) An MS4-algebra is an mm-algebra (B,�,∀) such that (B,�) is an S4-algebra.
(2) An MS4-frame is an augmented Kripke frame F = (W,R,E) such that (W,R) is an S4-frame.
(3) A descriptive MS4-frame is a descriptive augmented Kripke frame F = (W,R,E) such that (W,R,E)

is an MS4-frame.

As in the case of MIPC, we have the following standard completeness results:

Theorem 2.20.
(1) MS4 ` ϕ⇔ B � ϕ for each MS4-algebra B.
(2) MS4 ` ϕ⇔ F � ϕ for each descriptive MS4-frame F.

We also have that MS4 has the finite model property. This can be proved by adopting the algebraic proof
of the finite model property of MIPC to the setting of MS4 (see [5]).

Theorem 2.21. MS4 ` ϕ⇔ F � ϕ for each finite MS4-frame F.

Let F = (W,R,E) be a descriptive MS4-frame and A ⊆ W . The R-maximal points of A and the R-
maximum of A are defined as in Definition 2.11. In the context of MS4-frames, we also need the notion of
quasi-R-maximal points.

Definition 2.22. Let F = (W,R,E) be a descriptive MS4-frame and A ⊆W .
(1) We say x ∈ A is quasi-R-maximal in A if xRy and y ∈ A imply yRx.
(2) The quasi-R-maximum of A is the set of all quasi-R-maximal points of A, i.e.,

qmaxA = {x ∈ A | xRy and y ∈ A imply yRx}.

Note that maxA ⊆ qmaxA as R is reflexive, but not conversely. The following lemma is a consequence
of the Fine-Esakia lemma [16, 14] for descriptive S4-frames.

Lemma 2.23. Let F = (W,R,E) be a descriptive MS4-frame. For each closed A ⊆ W we have A ⊆
R−1qmaxA.

Definition 2.24.
(1) The monadic Grz is the least monadic extension MGrz of Grzegorczyk’s logic Grz.
(2) An MGrz-algebra is an mm-algebra (B,�,∀) such that (B,�) is a Grz-algebra.
(3) An MGrz-frame is an augmented Kripke frame F = (W,R,E) such that (W,R) is a Grz-frame.
(4) A descriptive MGrz-frame is a descriptive S4-frame F = (W,R,E) validating Grzegorczyk’s axiom

grz.

Again, we have the following standard completeness results:

Theorem 2.25.
(1) MGrz ` ϕ⇔ B � ϕ for each MGrz-algebra B.
(2) MGrz ` ϕ⇔ F � ϕ for each descriptive MGrz-frame F.

It is well known that an S4-frame F = (W,R) is a Grz-frame iff R is a Noetherian partial order ; that is, a
partial order with no infinite ascending chains (of distinct points). Thus, if F is finite, then F is a Grz-frame
iff R is a partial order.

It is a result of Esakia that a descriptive S4-frame F = (W,R) is a descriptive Grz-frame iff for each clopen
A ⊆ W the R-maximal and quasi-R-maximal points of A coincide. These results clearly hold for MGrz as
well.

Lemma 2.26 ([13]).
(1) Let F = (W,R,E) be a descriptive MS4-frame. Then F � grz iff for each clopen A we have qmaxA =

maxA.
(2) Let F = (W,R,E) be a descriptive MGrz-frame. For each clopen A we have A ⊆ R−1 maxA.

Definition 2.27.
(1) The monadic GL is the least monadic extension MGL of the Gödel-Löb logic GL.
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(2) An MGL-algebra is an mm-algebra (B,�,∀) such that (B,�) is a GL-algebra.
(3) An MGL-frame is an augmented Kripke frame F = (W,R,E) such that (W,R) is a GL-frame.
(4) A descriptive MGL-frame is a descriptive augmented Kripke frame F = (W,R,E) validating gl.

As before, we have the following standard completeness results:

Theorem 2.28.
(1) MGL ` ϕ⇔ B � ϕ for each MGL-algebra B.
(2) MGL ` ϕ⇔ F � ϕ for each descriptive MGL-frame F.

It is well known that a Kripke frame F = (W,R) is a GL-frame iff R is transitive and dually well founded
(no infinite ascending chains). Call R a strict partial order if R is irreflexive, antisymmetric, and transitive.
If W is finite, then F is a GL-frame iff R is a strict partial order.

A characterization of descriptive GL-frames was originally established by Esakia and given in [1]. It
generalizes directly to descriptive MGL-frames. For a transitive frame F = (W,R) and A ⊆ W , define the
irreflexive maximum of A by

µ(A) = {x ∈ A | R(x) ∩A = ∅}.

Lemma 2.29 ([1]). Let F = (W,R,E) be a descriptive augmented Kripke frame. Then F is a descriptive
MGL-frame iff F is transitive and A ⊆ µ(A) ∪R−1µ(A) for each clopen A.

Thus, a descriptive augmented Kripke frame is a descriptive MGL-frame iff it is transitive and each point
in a clopen set is either in the irreflexive maximum of the clopen or sees a point in the irreflexive maximum.
It was observed by Japaridze [23, 24] that MGL has the finite model property.

Theorem 2.30 (Japaridze). MGL ` ϕ⇔ F � ϕ for all finite MGL-frames F.

3. The Gödel and splitting translations in the monadic setting

In this section we discuss the Gödel and splitting translations in the monadic setting. While the Gödel
translation embeds MIPC fully and faithfully into MGrz, the splitting translation from MGrz into MGL does
not yield a faithful embedding.

3.1. Gödel translation. The Gödel translation extends to the monadic setting by defining

(∀ϕ)t = �∀ϕt

(∃ϕ)t = ∃ϕt.

Using algebraic semantics, Fisher-Servi [17, 18] proved that this provides a full and faithful embedding of
MIPC into MS4. The proof also yields a full and faithful embedding of MIPC into MGrz. Below we give an
alternate proof of this result, using relational semantics. The proof extends a semantical proof that IPC ` ϕ
iff S4 ` ϕt as given, e.g., in [10, pp. 96-97].

For notational simplicity, we abbreviate the formula �∀ψ as �ψ and the formula ♦∃ψ as �ψ. Observe
that this keeps the duality between box and diamond since �ψ = ¬�¬ψ as �ψ = �∀ψ = ¬♦¬¬∃¬ψ, which
is provably equivalent to ¬♦∃¬ψ = ¬�¬ψ.

Remark 3.1. The modalities �,� are S4-modalities which can be modeled using the relation Q = R ◦ E,
i.e., we have

w � �ϕ iff (for all v)(wQv implies v � ϕ);

w � �ϕ iff (there exists v)(wQv and v � ϕ).

Using this notation, the ∀-step in the Gödel translation is

(∀ϕ)t = �ϕt.

For an MS4-frame F = (W,R,E) define an equivalence relation ∼ on F by

x ∼ y iff xRy and yRx.
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Let [x] denote the equivalence class of x, and let W∼ = W/∼ be the set of all equivalence classes. Define
R∼ and E∼ on W∼ by

[x]R∼[y] iff xRy;

[x]E∼[y] iff xQy and yQx.

That E∼ is well defined follows from R ◦Q ◦R ⊆ Q which is true by commutativity in F and transitivity of
R. Let F∼ = (W∼, R∼, E∼). Set Q∼ = E∼ ◦R∼.

Lemma 3.2. Let F = (W,R,E) be an MS4-frame and x, y ∈W .
(1) xEy implies [x]E∼[y];
(2) xQy iff [x]Q∼[y].

Proof. (1) If xEy, then xQy and yQx, so [x]E∼[y] by definition of E∼.
(2) Suppose that xQy. Then there is y′ with xRy′ and y′Ey. Therefore, [x]R[y′] by definition of R and

[y′]E∼[y] by (1). Thus, [x]Q∼[y]. Conversely, if [x]Q∼[y], then there is [y′] with [x]R∼[y′] and [y′]E∼[x]. By
the definitions of R∼ and E∼, we have xRy′ and y′Qy. Thus, xQy. �

Lemma 3.3. F∼ is an MIPC-frame.

Proof. It is well known (and easy to verify) that R∼ is a partial order (see, e.g., [10, p. 68]). Transitivity
and reflexivity of E∼ easily follow from transitivity and reflexivity of Q, and E∼ is symmetric by definition.
To see that F∼ satisfies commutativity, let [x], [y], [z] ∈W∼ with [x]E∼[y] and [y]R∼[z]. Then xQy and yRz,
so xQz. Therefore, there is z′ with xRz′ and z′Ez. From xRz′ it follows that [x]R[z′], and z′Ez implies
[z′]E∼[z] by Lemma 3.2(1). Thus, F∼ satisfies commutativity. �

Given a valuation ν on F, define a valuation ν∼ on F∼ by

ν∼(p) = {[x] | x ∈ ν(�p)}.
Clearly ν∼(p) is an upset. We call F∼ the skeleton of F and (F∼, ν∼) the skeleton of (F, ν).

Conversely, given an MIPC-frame F, we regard it as an MS4-frame. In addition, if F is finite, then we
regard it as a finite MGrz-frame. If ν is a valuation on the MIPC-frame F, then we regard it as a valuation
on the MGrz-frame F.

The following lemma describes how the above frame transformations behave with respect to the Gödel
translation. It is proved by induction on the complexity of ϕ.

Lemma 3.4. Let ϕ be a formula of L∀∃.
(1) For an MIPC-frame F with a valuation ν and x ∈ F we have

(F, x) �ν ϕ⇔ (F, x) �ν ϕ
t.

(2) For an MS4-frame F with a valuation ν and x ∈ F, we have

(F, x) �ν ϕ
t ⇔ (F∼, [x]) |=ν∼ ϕ.

Proof. If F is an MIPC-frame, then F∼ is isomorphic to F. Therefore, (1) follows from (2). To prove (2), by
[10, Lem. 3.81], it is sufficient to only consider the case for the modalities ∀ and ∃. Let ϕ = ∀ψ. Then

[x] � ∀ψ ⇔ (for all [y])([x]Q∼[y]⇒ [y] � ψ)

⇔ (for all [y])([x]Q∼[y]⇒ y � ψt) (Inductive Hypothesis)

⇔ (for all y)(xQy ⇒ y � ψt) (Lemma 3.2(2))

⇔ x � �ψt

⇔ x � (∀ψ)t.

Next let ϕ = ∃ψ. If x |= (∃ψ)t, then there is y with xEy and y |= ψt. Therefore, [y] |= ψ by the inductive
hypothesis, and [x]E[y] by Lemma 3.2(1). Thus, [x] |= ∃ψ. Conversely, suppose that [x] |= ∃ψ. Then there
is [y] with [x]E∼[y] and [y] |= ψ. Therefore, yQx by the definition of E∼. Thus, there is x′ with yRx′ and
x′Ex. By the definition of R∼, we have [y]R∼[x′]. So [x′] |= ψ by the persistence in F∼. Consequently,
x′ |= ψt by the inductive hypothesis, and hence x |= ∃ψt = (∃ψ)t. �

Theorem 3.5. MIPC ` ϕ iff MS4 ` ϕt iff MGrz ` ϕt.
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Proof. Suppose that MIPC 6` ϕ. Since MIPC has the FMP (Theorem 2.10), there exists a finite MIPC-frame
F, a valuation ν on F, and x ∈ F such that x 6|=ν ϕ. By regarding F as an MGrz-frame, x 6|=ν ϕt by
Lemma 3.4(1). Therefore, MGrz 6` ϕt. Also, as MS4 ⊆ MGrz, it follows that MS4 6` ϕt.

Conversely, if MGrz 6` ϕt, then MS4 6` ϕt. By the FMP for MS4, there is a finite MS4-frame F, a valuation
ν on F, and x ∈ F such that (F, x) 6|=ν ϕ

t. By Lemma 3.4(2), (F∼, [x]) 6|=ν∼ ϕ. Thus, MIPC 6` ϕ. �

3.2. Splitting translation. Next we discuss the splitting translation in the monadic setting. The key here
is Esakia’s observation that the splitting translation does not yield a faithful embedding of MGrz into MGL.
Since this result is unpublished, we give a proof of it.

Definition 3.6. Let F = (W,R,E) be an augmented Kripke frame (modal or intuitionistic), and let x ∈W .
(1) An E-cluster (or cluster) is a subset of W of the form E(x) = {w ∈W : xEw} (it is the equivalence

class of x ∈W with respect to E).
(2) We say that the E-cluster E(x) is dirty if there are u, v ∈ E(x) with u 6= v and uRv.
(3) We say that the cluster is clean otherwise; that is, u, v ∈ E(x) and uRv imply u = v.

•
v

•
v
oo E // •

u

R

OO

Dirty cluster

•
v

•
u

R

OO

Dirty cluster (alternate depiction - oval
represents E -cluster)

Descriptive MGL-frames have the property that clusters in the irreflexive maximum of an E-saturated
clopen are clean.

Lemma 3.7. Let F = (W,R,E) be a descriptive MGL-frame. For clopen A and m ∈ µ(E(A)) we have that
E(m) is clean.

Proof. Suppose there exist clopen A and m ∈ µ(E(A)) with E(m) dirty. Then there are x, y ∈ E(m) with
xRy, xEy, and x 6= y. By commutativity, there is w such that mRw and wEy, as shown below.

•
w
oo E // •

y

•
m

R

OO

oo E // •
x

R

OO

Since y ∈ E(A) we have w ∈ E(A). But this contradicts R(m) ∩ E(A) = ∅. Thus, we cannot have a dirty
cluster in µ(E(A)). �

As a consequence of Lemma 3.7, we obtain:

Lemma 3.8. Finite MGL-frames are finite strict partial orders in which all clusters are clean.

We next show that the splitting of the Gödel translation of the monadic version of Casari’s formula

MCas : ∀ ((p→ ∀p)→ ∀p)→ ∀p

is provable in MGL.
Since �∀p↔ �∀�p is provable in MS4, it is straightforward to check that (MCas)t is provably equivalent

to �∀
(
�(�p→ �∀p)→ �∀p

)
→ �∀p. Using the notation � introduced above, we have that (MCas)t is:

M�Cas : �
(
�(�p→ �p)→ �p

)
→ �p.

Note that (�ψ)s = (�∀ψ)s = �+∀ψ = ∀ψ ∧ �∀ψ = ∀ψ ∧ �ψ. So we can use �+ψ to abbreviate
∀ψ ∧�∀ψ = �+∀ψ, and so the splitting translation of M�Cas is

(M�Cas)
s = �+

(
�+(�+p→ �+p)→ �+p

)
→ �+p.
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Theorem 3.9. MGL ` (M�Cas)
s.

Proof. Suppose F = (W,R,E) is a descriptive MGL-frame. We will prove that F � (M�Cas)
s. Let ν

be a valuation on F, x ∈ F, and x 6�ν �+p. We show that x 6� �+(�+(�+p → �+p) → �+p). Let
A = W \ ν(�+p). Then x ∈ A and so by Lemma 2.29, x ∈ µ(A) ∪ R−1µ(A). If x ∈ R−1µ(A), then
there is x′ ∈ µ(A) with xRx′. If x ∈ µ(A), we let x′ = x. From x′ ∈ µ(A) it follows that x′ ∈ A, so
x′ 6|= �+p = ∀p ∧ �∀p. We show that x′ 6|= ∀p. If x′ 6|= �∀p, then there is y with x′Ry and y 6|= ∀p.
Therefore, y 6|= �+p, so y ∈ A. But this contradicts x′ ∈ µ(A). Thus, x′ 6|= ∀p. So there is w with wEx′ and
w 6|= p. We show that w 6|= �+(�+p→ �+p)→ �+p.

Since w 6� p, we have w 6� p∧�p, so w 6� �+p, and hence w � �+p→ �+p. Let wRz. By commutativity,
there is y such that x′Ry and yEz. Since x′ ∈ µ(A), we have y 6∈ A. Therefore, y � �+p, so y � ∀p, and
hence z � ∀p.

� �+p •
y
oo E // •

z
� ∀p

•
x′
oo E //

R

OO

•
w

R

OO

6� p

In fact, if zRt, then wRt by transitivity, and so by the same reasoning as above we have t � ∀p. It follows
that z � �∀p, and so z � �+p. Thus, z � �+p→ �+p, and hence w � �(�+p→ �+p). This together with
w � �+p→ �+p yields w � �+(�+p→ �+p). Since w 6� �+p, we obtain w 6� �+(�+p→ �+p)→ �+p.

If x = x′, then xEw, and so x 6� ∀(�+(�+p → �+p) → �+p). Otherwise, xRx′ and x′Ew imply xQw,
so x 6|= �(�+(�+p → �+p) → �+p). Thus, in either case, x 6|= �+(�+(�+p → �+p) → �+p) as desired.
This yields x � (M�Cas)

s. Since x was arbitrary, F � (M�Cas)
s. Because F is an arbitrary descriptive

MGL-frame, by Theorem 2.28(2), MGL ` (M�Cas)
s. �

Theorem 3.10. MGrz 6` M�Cas.

Proof. Consider the MGrz-frame F = (W,R,E) where W = {x, y}, R = {(x, x), (y, y), (x, y)}, and E =
W 2 = {(x, x), (y, y), (x, y), (y, x)}, as shown below.

•
y

� p

•
x

R

OO

6� p

The arrow represents the nontrivial R-relation and the circle represents that both points are in the same
E-equivalence class. It is easy to see that this is an MGrz-frame. Let ν be a valuation on F with ν(p) = {y}.

First, we claim that x � �(�(�p→ �p)→ �p). To see this, note that both x 6� �p and y 6� �p, but since
y � p and y only sees itself (with respect to R), we have y � �p. Thus, y 6� �p→ �p, so x 6� �(�p→ �p),
and hence x � �(�p → �p) → �p. Moreover, y 6� �(�p → �p), so y � �(�p → �p) → �p, and hence
x � �(�(�p → �p) → �p). However, x 6� �p as xQx and x 6� p. Thus, x 6� �(�(�p → �p) → �p) → �p,
hence F 6�MGrz M�Cas, and so MGrz 6` M�Cas. �

Corollary 3.11. (Esakia) The splitting translation does not embed MGrz into MGL faithfully.

4. The logics M+IPC and M+Grz

In the previous section we saw that the splitting translation does not embed MGrz into MGL faithfully.
In fact, while the Gödel translation of MCas is not provable in MGrz, the splitting translation of the Gödel
translation of MCas is provable in MGL. Esakia suggested to strengthen MIPC with MCas and MGrz with the
Gödel translation of MCas, and see whether this repairs the disbalance. This is what we do in this section.
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4.1. M+IPC.

Definition 4.1. The logic M+IPC is defined as the extension of MIPC by MCas:

M+IPC = MIPC + MCas.

Recall from Definition 3.6 that a cluster of an MIPC-frame is called clean if no distinct points in the cluster
are R-related. The following semantic characterization of M+IPC-frames was established by Esakia. For a
proof see [4, Lem. 38]. It states that a descriptive MIPC-frame is a descriptive M+IPC-frame iff the cluster
of each point in the R-maximum of the E-saturation of clopen is clean.

Lemma 4.2. [4, Lem. 38] Let F = (W,R,E) be a descriptive MIPC-frame. Then F � MCas iff for each
clopen A, if m ∈ maxE(A), then E(m) is clean.

Remark 4.3. The condition in [4, Lem. 38] is that F � MCas iff for each clopen A we have A ⊆ Q−1(maxA∩
maxQ−1A). But, as discussed after the proof of [4, Lem. 38], this statement is equivalent to the statement
in Lemma 4.2.

As a consequence of Lemma 4.2, we obtain:

Lemma 4.4. Finite M+IPC-frames are finite MIPC-frames in which all clusters are clean.

4.2. M+Grz.

Definition 4.5. The logic M+Grz is the extension of MGrz by M�Cas:

M+Grz = MGrz + M�Cas.

Remark 4.6. As we pointed out in the previous section, M�Cas is provably equivalent to the Gödel trans-
lation of MCas.

In order to obtain a semantic characterization of M+Grz, which is an analogue of Lemma 4.2, we require
the following lemma.

Lemma 4.7. Let F = (W,R,E) be a descriptive MGrz-frame, A ⊆ W clopen, and y ∈ maxE(A). If E(y)
is clean, then:

(1) E(y) ⊆ maxE(A);
(2) for all z ∈W , from yRz and zRy it follows that y = z.

Proof. (1) Let z ∈ E(y) and w ∈ E(A) with zRw. By commutativity, there is w′ with yRw′ and w′Ew.
Therefore, w′ ∈ E(A). Since y ∈ maxE(A), we have y = w′. Thus, z, w ∈ E(y) and zRw. As E(y) is clean,
z = w. This shows that z ∈ maxE(A).

(2) Suppose yRz and zRy. From y ∈ E(A) and yRy, we have y ∈ R−1E(A). We show that y ∈
qmaxR−1E(A). Let yRw and w ∈ R−1E(A), so wRu for some u ∈ E(A). Then yRu by transitivity, and
y ∈ maxE(A) implies y = u, hence wRy, and so y ∈ qmaxR−1E(A). By Lemma 2.26(1), this means
y ∈ maxR−1E(A). Since zRy, we have z ∈ R−1E(A), so yRz implies z = y. �

We now have the necessary machinery to prove a semantic characterization of M+Grz, which states that
a descriptive MGrz-frame is a descriptive M+Grz-frame iff the cluster of every point in the maximum of the
E-saturation of a clopen set is clean.

Lemma 4.8. Let F = (W,R,E) be a descriptive MGrz-frame. Then F � M�Cas iff for each clopen A and
m ∈ maxE(A) we have E(m) is clean.

Proof. First suppose F 6� M�Cas. Then there is x ∈ W such that x 6� �(�(�p → �p) → �p) → �p, and
hence x � �(�(�p→ �p)→ �p) but x 6� �p. Since x 6� �p, there is x′ ∈W such that xQx′ and x′ 6� p. Let
A = {w ∈W | w 6� p}. Then x′ ∈ A, and as x′Ex′, we have x′ ∈ E(A). Because A is clopen, so is E(A). By
Lemma 2.26(2), there is y ∈ maxE(A) with x′Ry. If E(y) is dirty, then we are done. So assume that E(y)
is clean. We show that this leads to a contradiction. Since y ∈ E(A), there is y′ ∈ A with yEy′. By Lemma
4.7(1), y′ ∈ maxE(A). Because xQy′ and x � �(�(�p→ �p)→ �p), we have y′ � �(�p→ �p)→ �p. As
y′ ∈ A, we have y′ 6� p and since y′Qy′, we have y′ 6� �p, so we must have y′ 6� �(�p → �p). Thus, there
is z ∈ W such that y′Rz and z 6� �p → �p, which means z � �p but z 6� �p. Because z 6� �p, there exist
w′, w ∈W such that zRw′Ew and w 6� p (see the diagram below).
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•
w′
oo E // •

w
6� p

•
z

R

OO

� �p, 6� �p

•
y
oo E // •

y′

R

OO

6� p

• oo E // •
x′

R

OO

•
x

R

OO

Now, since w 6� p, we have w ∈ A and hence w′ ∈ E(A). Thus, y′Rw′ and w′ ∈ E(A), so by R-maximality
of y′ in E(A), we must have y′ = w′. But then y′Rz and zRy′, and so by Lemma 4.7(2), y′ = z. This,
however, is a contradiction since z � �p, hence z � p, whereas y′ 6� p.

For the converse, suppose that A is clopen and m ∈ maxE(A) with E(m) dirty. First observe that since
m is maximal in E(A), from mQt it follows that t ∈ E(m) for all t ∈ E(A). Indeed, if mQt for t ∈ E(A),
then there is t′ with mRt′ and t′Et. Since t′ ∈ E(A), we have t′ = m by maximality of m in E(A). Thus,
t ∈ E(m).

Now, since E(m) is dirty, there are x, x′ ∈ E(m) with xRx′ and x 6= x′. In particular, x 6∈ maxE(A).
Since E(A) is clopen, maxE(A) is closed (see, e.g., [14, Sec. III.2]). Thus, we can find clopen B such that
x ∈ B but B ∩maxE(A) = ∅, as shown below.

E(A)

•
x

maxE(A)

B

Choose a valuation ν with ν(p) = W \ (B ∩E(A)). Note that ν is well-defined as B and E(A) are clopen.
We aim to show that x � �(�(�p → �p) → �p) but x 6� �p. Since x ∈ B ∩ E(A), we have x 6|= p. This
implies that x 6|= �p because xQx. To finish the argument it suffices to show that y |= �(�p→ �p)→ �p
for all y with xQy. So let xQy and assume that y 6|= �p. Then there is z with yQz and z 6|= p. Therefore,
z ∈ B ∩ E(A) and there is z′ with yRz′ and z′Ez. Clearly z′ ∈ E(A). By Lemma 2.26(2), there is
t ∈ maxE(A) with z′Rt.
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•
t
∈ maxE(A)

•
z′

R

OO

oo E // •
z
6|= p, ∈ E(A)

• oo E // •
y

R

OO

•
m
oo E // •

x

R

OO

Since t ∈ maxE(A), we have t 6∈ B, so t |= p and if tRv for t 6= v, then v 6∈ E(A) by maximality of t, so
v |= p. Thus, t |= �p. On the other hand, xQy, yRz′, and z′Rt imply mQt. As we saw above, this means
t ∈ E(m), and so tEx. Since x 6|= p, we have t 6|= �p. This implies that t 6|= �p→ �p, so y 6|= �(�p→ �p),
and hence y |= �(�p→ �p)→ �p as desired. �

As a consequence of Lemma 4.8, we obtain:

Lemma 4.9. Finite M+Grz-frames are finite MGrz-frames in which all clusters are clean.

4.3. The translations M+IPC → M+Grz → MGL. As we pointed out, the remaining part of the paper
establishes the finite model property for the logics M+IPC and M+Grz. We finish this section by explaining
how a proof of Esakia’s claim is then obtained.

Let R be a binary relation. We recall that the irreflexive reduction of R, denoted Ri, is defined by

aRib iff aRb and a 6= b;

and the reflexive closure of R, denoted Rr, is defined by

aRrb iff aRb or a = b.

For an augmented Kripke frame F = (W,R,E), let Fi = (W,Ri, E) and Fr = (W,Rr, E). Following the
terminology of [10, pp. 98-99], we call Fi the irreflexive reduction and Fr the reflexive closure of F.

Lemma 4.10.
(1) If F is a finite M+Grz-frame, then Fi is a finite MGL-frame.
(2) If F is a finite MGL-frame, then Fr is a finite M+Grz-frame.

Proof. Since finite M+Grz-frames are finite partial orders with clean clusters (Lemma 4.9) and finite MGL-
frames are finite strict partial orders with clean clusters (Lemma 3.8), this is an immediate consequence of
[10, pp. 98-99]. �

Lemma 4.11. Let ϕ be a formula ofML∀.
(1) For a finite M+Grz-frame F, a valuation ν on F, and x ∈ F we have

(F, x) �ν ϕ⇔ (Fi, x) �ν ϕ
s.

(2) For a finite MGL-frame F, a valuation ν on F, and x ∈ F we have

(F, x) �ν ϕ
s ⇔ (Fr, x) |=ν ϕ.

Proof. The proof is an immediate consequence of [10, pp. 98-99] since the quantifier modalities are not
changed by the translation (−)s, nor is the relation E altered going from F to Fi or Fr. �

Finally, we are ready to provide a proof of Esakia’s claim.

Theorem 4.12. M+IPC ` ϕ iff M+Grz ` ϕt iff MGL ` (ϕt)s.
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Proof. The first equivalence is proved exactly as Theorem 3.5 using the fact that finite M+IPC-frames and
finite M+Grz-frames coincide.

For the second equivalence, suppose MGL 6` (ϕt)s. Since MGL has the FMP, there exist a finite MGL-frame
F, a valuation ν on F, and x ∈ F such that (F, x) 6�ν (ϕt)s. By Lemma 4.11(2), (Fr, x) 6�ν ϕt, and since Fr

is an M+Grz-frame by Lemma 4.10(2), M+Grz 6` ϕt. For the converse, suppose M+Grz 6` ϕt. Since M+Grz
has the FMP, there exist a finite M+Grz-frame F, a valuation ν on F, and x ∈ F such that (F, x) 6|=ν ϕ

t.
By Lemma 4.11(1), (Fi, x) 6�ν (ϕt)s, and since Fi is an MGL-frame by Lemma 4.10(1), we conclude that
MGL 6` (ϕt)s. �

We now have succeeded in lifting the original correspondences given by Goldblatt, Boolos, Kuznetsov and
Muravitsky from the propositional setting to the monadic setting, verifying Esakia’s claim. Combining this
with Japaridze’s result of arithmetical completeness for MGL yields arithmetic interpretations of M+IPC and
M+Grz.

5. The finite model property of M+IPC

This section is dedicated to the proof of the finite model property of M+IPC. We do this by modifying the
selective filtration technique originally developed by Grefe [22] to prove the finite model property of Fisher
Servi’s intuitionistic modal logic FS. In [20, §10.3] it was used to give an alternative proof of the finite model
property of MIPC.

We start by collecting some properties of descriptive M+IPC-frames that will be useful in what follows.
The following lemma is the M+IPC-version of Lemma 4.7(1).

Lemma 5.1. Let F = (W,R,E) be a descriptive M+IPC-frame, A ⊆ W clopen, y ∈ maxE(A), and E(y)
clean. Then E(y) ⊆ maxE(A).

Proof. If E(y) 6⊆ maxE(A), then there are distinct t ∈ E(y) and u ∈ E(A) with tRu. By commutativity,
there is u′ with yRu′ and u′Eu. Therefore, u′ ∈ E(A), so by maximality of y in E(A) we have y = u′. This
implies that tEu, contradicting that E(y) is a clean cluster. �

We say a point x is maximal with respect to a formula ψ if x 6� ψ and for each y with xRy and x 6= y we
have y � ψ (that is, x refutes ψ and every point strictly above x validates ψ).

Lemma 5.2. Let F = (W,R,E) be a descriptive M+IPC-frame, t ∈W , and ν a valuation on F.
(1) Let A ⊆W be clopen. If t ∈ E(A), then there is x ∈ maxE(A) such that tRx and E(x) is clean.
(2) If t 6|= ∀ϕ, then there is x such that tRx, x is maximal with respect to ∀ϕ, and E(x) is clean.
(3) Let A ⊆W be clopen. If t ∈ A, then there is x ∈ A ∩maxE(A) such that tQx and E(x) is clean.
(4) If t 6|= ϕ, then there is x such that tQx, x is maximal with respect to ϕ, and E(x) is clean.

Proof. (1) Let t ∈ E(A). By Lemma 2.12, there is x ∈ maxE(A) such that tRx. By Lemma 4.2, E(x) is
clean.

(2) Suppose that t 6|= ∀ϕ. Let A = ν(∀ϕ)c. Then A is clopen, E(A) = A, and t ∈ E(A). By (1), there is
x ∈ maxE(A) such that tRx and E(x) is clean. Since E(A) = A, it immediately follows that x is maximal
with respect to ∀ϕ.

(3) Let t ∈ A. Then t ∈ E(A). By (1), there is x′ ∈ maxE(A) such that tRx′ and E(x′) is clean. Since
x′ ∈ E(A), there is x ∈ A with x′Ex. Therefore, tQx, and because E(x′) is clean, we have that x ∈ maxE(A)
by Lemma 5.1.

(4) Suppose that t 6|= ϕ. Let A = ν(ϕ)c. Then A is clopen and t ∈ A. By (3), there is x ∈ A ∩maxE(A)
such that tQx and E(x) is clean. Since x ∈ A, we also have x ∈ maxA. But the latter means that x is
maximal with respect to ϕ. Thus, x is as desired. �

5.1. The construction. We start with a formula ϕ, a descriptive M+IPC-frame F = (W,R,E), and a
valuation ν on F such that F 6|= ϕ. By modifying the construction in [20, §10.3], we will construct a sequence
of finite M+IPC-frames Fh = (Wh, Rh, Eh) such that Fh ⊆ Fh+1 for all h < ω. For each point t ∈ Wh that
we select, we will be creating a copy of some original point in W . We give each added point a new name,
say t, and let t̂ denote the original point in W that t was copied from and will behave similar to. Thus, it
is possible to have two different points x1 and x2 in our new frame, where x̂1 = x̂2. The main difference
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between our construction and the construction given in [20, §10.3] will be seen in the→-step, which requires
a more careful selection of new points.

To start the construction, let F0 = (W0, R0, E0) where

W0 = {t0}, R0 = W 2
0 , E0 = W 2

0 ,

and t̂0 is a point in W such that t̂0 is from a clean cluster and is maximal with respect to ϕ. The existence
of such t̂0 follows from Lemma 5.2(4). Moreover, let W ∀H−1 = ∅.

Let Sub(ϕ) be the set of subformulas of ϕ, and let (W ′, R′, E′) be any of our frames in the construction.
To each t ∈W ′ we associate the following subsets of Sub(ϕ):

Σ∃(t) = {∃δ ∈ Sub(ϕ) : t̂ � ∃δ}

Σ∀H(t) = {∀β ∈ Sub(ϕ) : t̂ is maximal wrt ∀β}

Σ∀V (t) = {∀γ ∈ Sub(ϕ) : t̂ 6� ∀γ but is not maximal wrt ∀γ}

Σ→(t) = {α→ σ ∈ Sub(ϕ) : t̂ 6� α→ σ but is not maximal wrt α→ σ}.

These are precisely the subformulas of ϕ whose truth-value at t̂ is relevant for constructing our countermodel.
Suppose Fh−1 = (Wh−1, Rh−1, Eh−1) has already been constructed so that Fh−1 is a finite M+IPC-frame

and E(ŵ) is a clean cluster for each w ∈ Wh−1. We construct Fh applying the four steps described below.
They are designed to add the necessary witnesses required by the formulas in the sets Σ∃(t), Σ∀H(t), Σ∀V (t),
and Σ→(t), respectively. In the ∃-step we ensure that for each formula in Σ∃(t) the point t has an E-successor
that witnesses the existential statement. In the ∀H-step we ensure that for each formula in Σ∀H(t) the point
t has an E-successor that witnesses the refutation of the universal statement. In the vertical steps ∀V and→
we make sure that t has the necessary R-successors that are maximal with respect to the formulas in Σ∀V (t)
and Σ→(t), respectively. In each step of the construction we add also points to witness commutativity. Note
that the first three of the following four steps are only done once per cluster. This is enough since all points
of a cluster in F agree on refuting an ∀- or ∃-formula and points from a clean cluster agree whether such a
refutation is maximal.

Roughly speaking, points are added to the construction in the following order: In the first round the
cluster of the starting point t0 is built by adding points for formulas in Σ∃(t0) and Σ∀H(t0). After this, no
more points are added to this cluster. We call this the ‘bottom cluster’ of our frame. The first round of the
construction proceeds by adding vertical witnesses for each formula in Σ∀V (t0) and closing each such cluster
by adding points for commutativity. The first round then finishes by adding for each point t in the ‘bottom
cluster’ vertical witnesses for the formulas in Σ→(t) and closing under commutativity. In the next round all
these newly build clusters will possibly be enlarged in the horizontal steps and then new vertical clusters
will be added in the ∀V - and →-steps.

∃-step (Horizontal): Let W ∃h = Wh−1, R∃h = Rh−1, and E∃h = Eh−1. For each E∃h(t) ⊆ W ∃h \W ∀Hh−1, if
∃δ ∈ Σ∃(t) but there is no s ∈ W ∃h already such that tE∃hs and ŝ � δ, then we add a point s to W ∃h with
ŝ |= δ and t̂Eŝ. Such a point ŝ exists in W since t̂ |= ∃δ. We then add the ordered pairs (s, s) to R∃h, the
ordered pairs (t, s) to E∃h , and generate the least equivalence relation.

∀H-step (Horizontal): Let W ∀Hh = W ∃h , R
∀H
h = R∃h, and E

∀H
h = E∃h . For each E∀Hh (t) ⊆ W ∀Hh \W ∀Hh−1, if

∀β ∈ Σ∀H(t) but there is no s ∈ W ∀Hh already such that tE∀Hh s and ŝ 6� β, then we add a point s to W ∀Hh
with ŝ 6|= β and t̂Eŝ. Such a point ŝ exists in W since t̂ is maximal with respect to ∀β. We then add the
ordered pairs (s, s) to R∀Hh , the ordered pairs (t, s) to E∀Hh , and generate the least equivalence relation.

∀V-step (Vertical): Let W ∀Vh = W ∀Hh , R∀Vh = R∀Hh , and E∀Vh = E∀Hh . For each E∀Vh (t) ⊆ W ∀Vh \W ∀Hh−1,
consider ∀γ ∈ Σ∀V (t). Since t̂ 6� ∀γ, we can pick a point ŝ ∈ W as in Lemma 5.2(2). We add the point s to
W ∀Vh and (t, s) to R∀Vh .

Since W satisfies commutativity, for each w ∈ E∀Vh (t), there is zw ∈ W such that ŵRzw and zwEŝ. To
ensure commutativity is satisfied in our new frame, we add the points sw to W ∀Vh where ŝw = zw. We then
add (w, sw) to R∀Vh and take the reflexive and transitive closure. We also add (sw, s) to E∀Vh and generate
the least equivalence relation.
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→-step (Vertical): Let W→h = W ∀Vh , R→h = R∀Vh , and E→h = E∀Vh . For each t ∈ W ∀Hh \W ∀Hh−1 (hence
including any points added in the horizontal steps above, but not in the previous vertical step), consider all
α→ σ ∈ Σ→(t) such that there is no s ∈W→h already such that tR→h s and ŝ 6� α→ σ maximally. Consider

A = [W \ ν(α→ σ)] ∩
⋂

ψ∈Sub(ϕ)

{ν(ψ) : t̂ � ψ}.

Then A is clopen and t̂ ∈ A, so by Lemma 5.2(3) there is z ∈ A with z ∈ maxE(A), t̂Qz, and E(z) clean.
We add the point s to W→h where ŝ = z (s is a distinct new copy of z) and (t, s) to R→h .

Remark 5.3. It is at this step that we have altered the construction given in [20, §10.3], in which witnesses
for implications are added in the same manner as in the ∀V -step. In our version, we took an original Q-
relation and turned it into an R-relation. The reason for this is that we cannot guarantee the existence of
an R-successor of t that is maximal with respect to α→ σ and at the same time belongs to a clean cluster.

Before wrapping up the step, we show two properties of the chosen points.

Lemma 5.4. The point ŝ = z, as chosen above, is maximal with respect to α→ σ.

Proof. Suppose zRu for some u 6� α → σ. Since zRu and each ν(ψ) in {ν(ψ) : t̂ � ψ} is an upset, we have
u ∈ A. Because z ∈ maxA, we obtain z = u. Thus, z is maximal with respect to α→ σ. �

Lemma 5.5. E(t̂) 6= E(ŝ).

Proof. If E(t̂) = E(ŝ), then t̂ ∈ maxE(A) by Lemma 5.1. Since t̂ ∈ A, we have t̂ ∈ maxA. Therefore, the
same argument as in the proof of the previous lemma yields that t̂ is maximal with respect to α→ σ. This
contradicts α→ σ ∈ Σ→(t). �

We wrap up the →-step the same way as the ∀V -step. Since W satisfies commutativity, for each w ∈
E∀Vh (t) there is zw ∈ W with ŵRzw and zwEŝ. We add the points sw to W ∀Vh where ŝw = zw. We then
add (w, sw) to R→h and take the reflexive and transitive closure. We also add (sw, s) to E→h and generate
the least equivalence relation.

To end this stage of the construction, we let Fh = (Wh, Rh, Eh) where

Wh = W→h , Rh = R→h , Eh = E→h .

Lemma 5.6. Fh is a finite M+IPC-frame.

Proof. First we show that Rh is a partial order. Since in the ∃- and ∀H-steps we only added reflexive arrows
to Rh−1, the relation R∀Hh is a partial order. By moving from R∀Hh to Rh we finished by taking the reflexive
and transitive closure, hence Rh is clearly reflexive and transitive. Antisymmetry of Rh follows from the
fact that every R-arrow added in the ∀V -step and →-step is either reflexive or an arrow from a previously
existing point into a freshly added point.

That Eh is an equivalence relation is clear from the construction. Moreover, the extra points added
in the ∀V -step and →-step make sure that commutativity is satisfied. In fact, the added points assure
commutativity for immediate successors and by transitivity this implies commutativity for the whole frame.
Therefore, Fh is an MIPC-frame.

It follows from the construction that Fh is finite. Thus, by Lemma 4.4, it is left to show that Fh has
clean clusters. Note that in the ∃-step and ∀H-step all freshly introduced Eh-relations are of the shape (s, t)
where either s ∈ Wh and t ∈ W ∀Hh \Wh−1 or s, t ∈ W ∀Hh . Since no non-reflexive Rh-arrows are introduced
in these steps, no dirty cluster could have been built. We have already discussed the shape of the Rh arrows
introduced in the ∀V -step and →-step. This guarantees that no cluster in W ∀Hh is made dirty. The freshly
introduced Eh-relations in these steps are of the shape (s, t) where s, t ∈Wh \W ∀Hh . Since no non-reflexive
Rh relations exist between these points, we infer that all clusters are clean. �

5.2. Auxiliary lemmas. To prove that our construction terminates after finitely many steps, we require
several auxiliary lemmas.

Lemma 5.7. Let x, y ∈Wh.
(1) If xRhy and x 6= y, then x̂Qŷ and E(x̂) 6= E(ŷ).
(2) If xEhy, then x̂Eŷ.
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(3) If xQhy, then x̂Qŷ.

Proof. (1) Observe that in the construction each non-trivial Rh-relation between immediate successors comes
from either a non-trivial R-relation (as in the case of points added for commutativity or in the ∀V -step)
or a non-trivial Q-relation (as in the case of points added in the →-step), in which case there is w ∈ W
with x̂ 6= w, x̂Rw, and wEŷ. In that case we obviously have x̂Qŷ and by Lemma 5.5, E(x̂) 6= E(ŷ) in W .
Otherwise the relation xRhy was added by transitivity, so there is a chain x = x0Rhx1Rh . . . Rhxn = y of
immediate Rh-successors to which the previous applies. In particular, by transitivity of Q we have x̂iQŷ for
all i ≤ n, so x̂Qŷ. Moreover, there is z1 ∈W with z1 6= x, x̂Rz1 and z1Ex̂1. Since x̂1Qŷ, by commutativity
there is y′ in W with z1Ry

′ and y′Eŷ. If x̂Eŷ, then also x̂Ey′ and x̂Ry′ by transitivity of R. Since x̂ is
from a clean cluster, this implies x̂ = y′. Therefore, x̂Rz1Rx̂, and so x̂ = z1 by antisymmetry of R. This is
a contradiction since x̂ 6= z1. Thus, E(x̂) 6= E(ŷ).

(2) It is obvious that each Eh-relation in Wh comes from a pre-existing E-relation in W .
(3) If xQhy, then there is z with xRhz and zEhy. If x = z, then xEhy, so x̂Eŷ by (2), and hence x̂Qŷ.

If x 6= z, then x̂Qẑ by (1). Also, zEhy implies ẑEŷ by (2). Thus, x̂Qŷ. �

Lemma 5.8 (Persistence). If uRhw, then û � ψ implies ŵ � ψ for all ψ ∈ Sub(ϕ).

Proof. Suppose uRhw, ψ ∈ Sub(ϕ), and û � ψ. It suffices to show the result for an immediate Rh-successor
w of u, the general result then follows by induction. We consider how the Rh-arrow from u to w was added.
By construction, either ûRŵ or w was added to witness some implication in Σ→(u). If ûRŵ, then clearly
û � ψ implies ŵ � ψ. If w was added in a →-step, then w is specifically chosen so that ŵ ∈ ν(γ) for all
γ ∈ Sub(ϕ) such that û � γ. Thus, û � ψ implies ŵ � ψ. �

Lemma 5.9.
(1) If tEhu, then Σ∃(t) = Σ∃(u), Σ∀H(t) = Σ∀H(u), and Σ∀V (t) = Σ∀V (u).
(2) If tRhv and ∃γ ∈ Σ∃(t) ∩ Σ∃(v), then there are u,w such that tEhu, uRhw, wEhv, û |= γ, and

ŵ |= γ.
(3) If tRhv and t 6= v, then Σ∀H(t) ∩ Σ∀H(v) = ∅.
(4) Along an Rh-chain, each formula in {∀ψ : ∀ψ ∈ Sub(ϕ)} ∪ {∃ψ : ∃ψ ∈ Sub(ϕ)} can serve at most

once as a reason to enlarge a cluster in a horizontal step.
(5) If tRhu, then Σ∀V (u) ⊆ Σ∀V (t) and if u was added as an immediate Rh-successor to t because of
∀α ∈ Σ∀V (t), then Σ∀V (u) ⊂ Σ∀V (t).

(6) If tRhu, then Σ→(u) ⊆ Σ→(t) and if u was added as an immediate Rh-successor to t because of
α→ β ∈ Σ→(t), then Σ→(u) ⊂ Σ→(t).

Proof. (1) Suppose tEhu. Then t̂Eû by Lemma 5.7(2). Therefore, E(t̂) = E(û) and Q(t̂) = Q(û). Thus,
t̂ � ∃γ iff û � ∃γ, and t̂ � ∀γ iff û � ∀γ. Moreover, since E(t̂) is a clean cluster, t̂ is not maximal wrt ∀γ iff û
is not maximal wrt ∀γ. Consequently, Σ∃(t) = Σ∃(u), Σ∀H(t) = Σ∀H(u), and Σ∀V (t) = Σ∀V (u).

(2) Suppose tRhv and ∃γ ∈ Σ∃(t) ∩ Σ∃(v). By the construction, there is u with tEhu and û � γ. Since
Fh satisfies commutativity, there is w with uRhw and wEhv. By Lemma 5.8, ŵ � γ.

(3) Suppose tRhv and t 6= v. Then t̂Qv̂ and E(t̂) 6= E(v̂) by Lemma 5.7(1), so t̂ 6= v̂. Thus, if ∀ψ ∈ Σ∀H(t),
then v̂ � ∀ψ by maximality of t̂, so ∀ψ 6∈ Σ∀H(v). Conversely, if ∀ψ ∈ Σ∀H(v), then t̂ cannot be maximal
with respect to ∀ψ, so ∀ψ 6∈ Σ∀H(t).

(4) Let {vi | i ∈ N} be an Rh-chain in Wh, i.e. viRhvi+1 for all i ∈ N. Suppose ∃ψ ∈ Sub(ϕ). Let k be
the least stage at which the formula ∃ψ has been used to enlarge the cluster Eh(vk) in a horizontal step.
By (2), all Eh(vl) for l > k already contain a witness for ψ, so no cluster above will need to be enlarged
in a horizontal step to witness the formula ∃ψ. Now suppose ∀ψ ∈ Sub(ϕ). Let l be a stage at which the
formula ∀ψ has been used to enlarge the cluster Eh(vl) in a horizontal step. Then ∀ψ ∈ Σ∀H(vl). By (3),
∀ψ 6∈ Σ∀H(vk) for k 6= l. Thus, ∀ψ is responsible for enlarging a cluster at most once in a horizontal step.

(5) We show the statement for immediate Rh-successors only, the general case follows by induction.
Suppose tRhu and ∀ψ ∈ Σ∀V (u). If t = u, then the result is clear. Suppose t 6= u. Since tRhu, either
t̂Rû in W or u was added as a successor of t in some →-step. If t̂Rû, then ∀ψ ∈ Σ∀V (t) by persistence
(see Lemma 5.8). Suppose u was added as an Rh-successor to t as a witness to some implication. By the
choice of u, we have û � χ for all χ ∈ Sub(ϕ) with t̂ � χ. Therefore, if t̂ � ∀ψ, then we would have û � ∀ψ,
contradicting ∀ψ ∈ Σ∀V (u). Thus, we must have t̂ 6|= ∀ψ. Moreover, since t̂Rû, t̂ 6= û, and û 6� ∀ψ, we
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have that t̂ is not maximal with respect to ∀ψ, so ∀ψ ∈ Σ∀V (t). Consequently, in either case we have
Σ∀V (u) ⊆ Σ∀V (t).

Suppose that u was added as an immediate Rh-successor to t because of ∀α ∈ Σ∀V (t). Since ∀α ∈ Σ∀V (t),
we have t̂ 6� ∀α but t̂ is not maximal with respect to ∀α. Since u was added as an immediate Rh-successor
of t because of ∀α, we specifically chose u so that û 6� ∀α maximally, hence ∀α 6∈ Σ∀V (u).

(6) We show the statement for immediate Rh-successors only, the general case follows by induction.
Suppose tRhu and α→ β ∈ Σ→(u). Then û 6� α→ β and û 6� α. If t = u, then the result is clear. Suppose
t 6= u. Since tRhu, either t̂Rû in W or u was added as a successor of t in some →-step. If t̂Rû, then
α→ β ∈ Σ→(t) by persistence (see Lemma 5.8). Suppose u was added as an Rh-successor to t as a witness
to some implication. By the choice of u, we have û � ψ for all ψ ∈ Sub(ϕ) with t̂ � ψ. Therefore, we must
have t̂ 6|= α → β and t̂ 6|= α, so Σ→(u) ⊆ Σ→(t). Moreover, by construction, û refutes α → β maximally
(Lemma 5.4), and hence û � α. Thus, α→ β 6∈ Σ→(u). �

5.3. Termination of the construction. With the aid of the auxiliary lemmas of the previous section, we
will now prove that the end result of our construction is a finite frame. We will do this by looking at three
important parameters of our frame: cluster size, R-branching, and R-depth.

Definition 5.10.
(1) A frame F has bounded cluster size if there exists k ∈ N such that |E(t)| ≤ k for all t ∈W .
(2) A frame F has bounded R-branching if there exists m ∈ N such that t has at most m distinct

immediate R-successors for all t ∈W .
(3) A frame F has bounded R-depth if there exists n ∈ N such that there is no R-chain in F with more

than n distinct elements.

Lemma 5.11. Let F = (W,R,E) be a partially ordered rooted augmented Kripke frame. If F has bounded
cluster size, bounded R-branching, and bounded R-depth, then F is finite.

Proof. Suppose F = (W,R,E) is a partially ordered rooted augmented Kripke frame with bounded cluster
size, R-branching, and R-depth. Consider the quotient (W/E,RE) whose worlds are the clusters E(x) where
x ∈ W and E(x)REE(y) iff xQy. To see that RE is well defined, suppose xQy, x′ ∈ E(x), and y′ ∈ E(y).
Then x′ExQyEy′, so x′Qy′, and hence RE is well defined.

Because Q is reflexive and transitive, so is RE . Since R is a partial order and F has bounded R-depth,
from xQy and yQx it follows that xEy by [3, Lem. 3(b)]. This shows that RE is anti-symmetric, and hence
a partial order. Clearly (W/E,RE) is rooted since so is F. Using commutativity in F it is easy to verify that
(W/E,RE) inherits bounded depth and bounded branching from F. Since every rooted partial order with
the latter properties is finite, we have that W/E is finite. Because W has bounded cluster size, we conclude
that W is finite too. �

Let m1,m2,m3 be the non-negative integers

m1 = |{∃ψ : ∃ψ ∈ Sub(ϕ)}|
m2 = |{∀ψ : ∀ψ ∈ Sub(ϕ)}|
m3 = |{ψ → χ : ψ → χ ∈ Sub(ϕ)}|.

Lemma 5.12. Fh = (Wh, Rh, Eh) has cluster size bounded by 1 +m1 +m2 for all h < ω.

Proof. Recall how the clusters of our frame are built. The ‘bottom cluster’ of the starting point t0 contains
points added via the horizontal ∃- and ∀H-steps. After this, no more points are added to this cluster.

All other clusters are constructed as follows. First points of a new cluster are added via the vertical ∀V -
or→-steps, and then the cluster is enlarged by the points added for commutativity. We refer to this stage as
the ‘building phase’ of the cluster. In the next round of the construction, the cluster is (possibly) enlarged
via the two horizontal steps. After this, no more points are added to the cluster. In the horizontal steps, we
enlarge the cluster for only two different reasons:

∃γ ∈ Σ∃(t) or ∀γ ∈ Σ∀H(t).

Thus, each enlargement of a cluster after its building phase is due to a formula in

{∀ψ : ∀ψ ∈ Sub(ϕ)} ∪ {∃ψ : ∃ψ ∈ Sub(ϕ)}.
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At the end of its building phase, the bottom cluster contains just one point. Observe that every cluster
can be reached from the bottom cluster by an Rh-chain. By Lemma 5.9(4), every formula in {∀ψ : ∀ψ ∈
Sub(ϕ)}∪{∃ψ : ∃ψ ∈ Sub(ϕ)} can serve at most once as a reason to enlarge a cluster after its building phase
along an Rh-chain. This entails that every cluster has size at most 1 +m1 +m2. �

Lemma 5.13. Fh = (Wh, Rh, Eh) has Rh-branching bounded by (1 +m1 +m2) ·m3 +m2 for all h < ω.

Proof. Immediate Rh-successors are added in the ∀V -step and→-step. First observe that since we are adding
points to witness commutativity, every point in a cluster has the same number of immediate Rh-successors
by the end of a stage. Thus, it is enough to count the immediate successors of a point t that we picked in
the ∀V -step.

To such a point t we add immediate Rh-successors for three different reasons:

(1) ∀γ ∈ Σ∀V (t),
(2) α→ σ ∈ Σ→(t), or
(3) α→ σ ∈ Σ→(y) for some y ∈ Eh(t) with y 6= t.

The last reason covers the case where we add an Rh-successor to t to witness commutativity. Note that all
reasons occur at most once for each formula in the respective sets. Therefore, reason (1) occurs at most
m2-times and reason (2) at most m3-times. Finally, reason (3) occurs at most (m1 + m2) ·m3 times since
by Lemma 5.12 there are at most m1 +m2 points apart from t in the cluster of t. Thus, the Rh-branching
of F is bounded by

m2 +m3 + (m1 +m2) ·m3 = m2 + (1 +m1 +m2) ·m3.

y t

|Eh(t)| ≤ 1 +m1 +m2
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Lemma 5.14. Fh = (Wh, Rh, Eh) has Rh-depth bounded by (1 +m1 +m2) · (m2 +m3) for all h < ω.

Proof. The reason for adding an immediate successor to t ∈Wh via an Rh-relation is due to either a formula
in Σ∀V (t) or a formula in Σ→(y) for some y ∈ Eh(t) (as discussed in the proof of Lemma 5.13). Let s be a
(not necessarily immediate) Rh-successor of t. Then s could have been added via direct formula witnessing,
i.e. there is an immediate predecessor t′ of s with tRht′Rhs and s was added due to a formula in Σ∀V (t′) or
Σ→(t′), or else s was added to satisfy commutativity.

As we saw in Lemma 5.9, moving up along an Rh-chain, the cardinality of the sets Σ∀V (t) and Σ→(t)
does not increase, and it in fact decreases whenever an Rh-successor is added by direct formula witnessing.
In particular, each point can have at most m2 +m3 Rh-successors that have been added via direct formula
witnessing and since in each cluster there are at most 1 +m1 +m2 points (Lemma 5.12), we have that the
total Rh-depth cannot exceed (1 +m1 +m2) · (m2 +m3).
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Lemma 5.15. There is h ∈ N such that Fh′ = Fh for all h′ ≥ h.

Proof. All points in the bottom cluster are added in round 1 and in each round we enlarge the Rh-length of a
path by at most one. Thus, in stage k of the construction, all Rh-chains are bounded by k. The construction
continues only until vertical witnesses are required. Since, by Lemma 5.14, the Rh-depth of Fk is bounded
by m = (1 +m1 +m2) · (m2 +m3), we have Fh′ = Fm+1 for all h′ ≥ m+ 1. �

Set F′ = (W ′, R′, E′) where
W ′ = Wh, R′ = h, E′ = Eh,

and h is as in Lemma 5.15. Then F′ is a finite M+IPC-frame by Lemma 5.6.

5.4. Truth lemma. Define a valuation ν′ on W ′ by ν′(p) = {t ∈ W ′ : t̂ ∈ ν(p)} for p ∈ Sub(ϕ) and
ν′(q) = ∅ for variables q not occurring in ϕ. That ν′ is well defined follows from Lemma 5.8, which ensures
that the sets ν′(ψ) are in Up(F′) for each ψ ∈ Sub(ϕ).

Lemma 5.16 (Truth Lemma). For all t ∈W ′ and ψ ∈ Sub(ϕ), we have t �′ ψ iff t̂ � ψ.

Proof. The proof is by induction on the complexity of ψ. The base cases ψ = ⊥ and ψ = p (p a propositional
variable) follow from the definition, and the cases ψ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2 are easily verified. So we
focus on the cases ψ = ψ1 → ψ2 (and hence ψ = ¬ψ1 = ψ1 → ⊥), ψ = ∃ψ1, and ψ = ∀ψ1.

→ case: Let ψ = ψ1 → ψ2 and t ∈ W ′. Suppose t 6�′ ψ1 → ψ2. Then tR′s for some s ∈ W ′ with s �′ ψ1

and s 6�′ ψ2. By the inductive hypothesis, ŝ � ψ1 and ŝ 6� ψ2. Thus, ŝ 6� ψ1 → ψ2. Since tR′s, we have
t̂ 6� ψ1 → ψ2 by persistence (Lemma 5.8).

Conversely, suppose t̂ 6� ψ1 → ψ2. If t̂ � ψ1, then we have t̂ � ψ1 but t̂ 6� ψ2. By the inductive hypothesis,
t �′ ψ1 but t 6�′ ψ2. By construction, tR′t, so t 6�′ ψ1 → ψ2. If t̂ 6� ψ1, then in the →-step of the stage
immediately after t is added to W ′, we add s to W ′ and tR′s where ŝ 6� ψ1 → ψ2 maximally (Lemma 5.4).
Thus, ŝ � ψ1 and ŝ 6� ψ2, so by the inductive hypothesis, s �′ ψ1 and s 6�′ ψ2. Since tR′s, we conclude that
t 6�′ ψ1 → ψ2.

∃ case: Let ψ = ∃ψ1 and t ∈ W ′. Suppose t �′ ∃ψ1. Then tE′s for some s ∈ W ′ with s �′ ψ1. By the
inductive hypothesis, ŝ � ψ1, and tE′s implies t̂Eŝ by Lemma 5.7(2). Thus, t̂ � ∃ψ1.

Conversely, suppose t̂ � ∃ψ1. Then ∃ψ1 ∈ Σ∃(t), so in the ∃-step of the next stage of the construction
after t is added, we add s to W ′ and (t, s) to E′ where s is a copy of some ŝ ∈W with t̂Eŝ and ŝ � ψ1. By
the inductive hypothesis, s �′ ψ1. Since tE′s, we conclude that t �′ ∃ψ1.

∀ case: Let ψ = ∀ψ1 and t ∈ W ′. Suppose t 6�′ ∀ψ1. Then tQ′w for some w ∈ W ′ with w 6�′ ψ1. By the
inductive hypothesis, ŵ 6� ψ1, and tQ′w implies t̂Qŵ by Lemma 5.7(3). Thus, t̂ 6� ∀ψ1.



MONADIC INTUITIONISTIC AND MODAL LOGICS ADMITTING PROVABILITY INTERPRETATIONS 23

Conversely, suppose t̂ 6� ∀ψ1. If t̂ is maximal with respect to ∀ψ1, then ∀ψ1 ∈ Σ∀H(t), so at some point
in the construction of the next stage after t is added, we add s to W ′ and (t, s) to E′ where s is a copy of
some ŝ ∈ W with t̂Eŝ and ŝ 6� ψ1. By the inductive hypothesis, s 6�′ ψ1, so t 6�′ ψ1. If t̂ is not maximal,
then we add s to W ′ and (t, s) to R′ where s is a copy of some ŝ ∈W and ŝ is maximal with respect to ∀ψ1.
Therefore, ∀ψ1 ∈ Σ∀H(s), and in the next stage we add w to W ′ and (s, w) to E′ where ŵ ∈W and ŵ 6� ψ1.
But then tQ′w, hence t̂Qŵ (see Lemma 5.7), and by the inductive hypothesis, w 6�′ ψ1. Thus, t 6�′ ∀ψ1. �

The FMP of M+IPC is now an immediate consequence of the above.

Theorem 5.17. M+IPC has the finite model property.

Proof. Suppose M+IPC 6` ϕ. By completeness of M+IPC with respect to descriptive frames, there are a
descriptive M+IPC-frame F and a valuation ν on F such that (F, ν) 6|= ϕ. Let F′ be the finite M+IPC-frame
constructed above. Since t0 was chosen so that t̂0 refutes ϕ in F, by Lemma 5.16, t0 refutes ϕ in F′. We thus
found a finite M+IPC-frame refuting ϕ. �

Since M+IPC is finitely axiomatizable and has the finite model property, as an immediate corollary to
Theorem 5.17, we obtain decidability of M+IPC, meaning that there is an effective method for determining
whether an arbitrary formula is a theorem of M+IPC.

Corollary 5.18. M+IPC is decidable.

Remark 5.19. Another consequence of Theorem 5.17 is that M+IPC is the monadic fragment of the inter-
mediate predicate logic of Casari, which is obtained by adding to IQC the Casari formula Cas. This can be
seen by utilizing the Translation Theorem of Ono and Suzuki (see [31, Thm. 3.5]).

6. The finite model property of M+Grz

In this section we prove that M+Grz has the finite model property. Our proof, which consists of three
steps, is a mixture of selective and standard filtration techniques. The main reasons why the same technique
as for M+IPC does not work is the lack of persistence in M+Grz-models and the fact that witnesses for
∀-formulas cannot be chosen maximally wrt Q-relations. A rough structure of the proof is as follows.

Suppose M+Grz 6` ϕ. Then there is a descriptive M+Grz-frame F0 = (W0, R0, E0, P0) and a valuation ν0
on W0 such that F0 6�0 ϕ. We build a finite M+Grz-frame from F0 in three steps:

(1) First we select a (possibly infinite) partially ordered MS4-frame F1 = (W1, R1, E1) from F0, in which
all clusters are clean and ϕ is refuted. An important feature of this step is that R1 is not simply the
restriction of R0 to W1, but rather its strengthening. Its construction resembles the construction of
R-relations from Q-relations in the →-step of the M+IPC-construction.

(2) Next we construct a (possibly infinite) partially ordered MS4-frame F2 from F1, in which all clusters
are both clean and finite and ϕ is refuted. In this step we use standard filtration to collapse E1-
clusters of F1 so that each cluster contains only one point representing all points that satisfy the
same formulas of Sub(ϕ).

(3) Finally, as in Step 1, we use selective filtration to construct a finite partially ordered MS4-frame F3

from F2, in which all clusters are clean (hence F3 is an M+Grz-frame) and ϕ is refuted. This step
resembles the M+IPC-construction, but in order for F3 to inherit the bounded cluster size from F2,
we need to add only a single copy of an original point in F2 to a cluster.

6.1. Step 1: Constructing F1. Let F0 = (W0, R0, E0) be as above. For x, y ∈W0 let

x
⇀

Q0y iff there is w ∈W0 such that w 6= x, xR0w, and wE0y.

We construct F1 = (W1, R1, E1) as follows:
• W1 = {x ∈W0 | x ∈ maxR0

E0(A) for some clopen A of F0}.
• xR1y ⇔ x = y or x

⇀

Q0y and x �0 �ψ ⇒ y �0 �ψ for all �ψ ∈ Sub(ϕ).
• xE1y ⇔ xE0y.
• We define a valuation ν1 on F1 by ν1(p) = {x : x ∈ ν0(p)} for all p ∈ Sub(ϕ), and ν1(q) = ∅ for all

other propositional variables q.
We first show that there is a point in W1 which refutes ϕ (in F0).
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Lemma 6.1. There is v ∈ W0 such that v 6�0 ϕ (R0-maximally) and v ∈ maxR0 E0(ν(¬ϕ)) (hence E0(v) is
clean and v ∈W1).

Proof. Since F0 6�0 ϕ, there is t ∈ W0 such that t 6�0 ϕ. Then t ∈ ν0(¬ϕ), so t ∈ E0(ν0(¬ϕ)). Because
descriptive augmented Kripke frames satisfy A ∈ P0 ⇒ E0(A) ∈ P0, we have E0(ν0(¬ϕ)) ∈ P0. Thus,
Lemma 2.23 yields u ∈ W0 with tR0u and u ∈ maxR0

E0(ν0(¬ϕ)). Since u ∈ E0(ν0(¬ϕ)), there is v ∈ W0

with uE0v and v 6�0 ϕ. We now show that v is our desired point. Because u ∈ maxR0
E0(ν0(¬ϕ)), the

cluster E0(u) = E0(v) is clean (Lemma 4.8). We show that v ∈ maxR0
E0(ν0(¬ϕ)). Suppose vR0w for some

w ∈ E0(ν0(¬ϕ)). By commutativity, there is u′ such that uR0u
′ and u′E0w. Then u′ ∈ E0(ν0(¬ϕ)), so

u ∈ maxR0 E0(ν0(¬ϕ)) implies u = u′. Thus, vR0w and vE0w, yielding that v = w as v is in a clean cluster.
Now, since v ∈ maxR0

E0(ν0(¬ϕ)) and v ∈ ν0(¬ϕ), it is easy to see that v is R0-maximal with respect to ϕ,
hence is our desired point. �

We next highlight some fundamental properties of F1.

Lemma 6.2.
(1) E0(x) ⊆W0 is a clean cluster in F0 for all x ∈W1.
(2) If x ∈W1, then E0(x) ⊆W1.

(3) x
⇀

Q0y iff xQ0y but xE/0y for all x, y ∈W1.

(4) The restriction of
⇀

Q0 to W1 is a strict partial order.
(5) R1 is a partial order.
(6) E1 is an equivalence relation.
(7) R1 and E1 satisfy commutativity.
(8) F1 has clean clusters.
(9) For x ∈W1 and �γ ∈ Sub(ϕ), if x 6�0 �γ, then there is y ∈W1 such that xR1y, y ∈ A∩maxR0

E0(A),
where

A = ν0(¬�γ) ∩
⋂
{ν0(�ψ) | �ψ ∈ Sub(ϕ) and x �0 �ψ},

and y 6�0 �γ R0-maximally, hence y 6�0 γ.

Proof. (1) This is an immediate consequence of Lemma 4.8.
(2) Let x ∈W1 and y ∈ E0(x). Then x ∈ maxR0

E(A) for some clopen A ⊆W0. Therefore, E0(x) is clean
by (1), and so y ∈ maxR0

E(A) by Lemma 4.7(1). Thus, y ∈W1.
(3) The implication from right to left is obvious. For the converse, suppose that x, y ∈ W1 and there is

w ∈W0 such that w 6= x, xR0w, and wE0y. Then clearly xQ0y. Also, since x is from a clean cluster, xE/0w.
Thus, xE/0y.

(4) Irreflexivity of
⇀

Q0 on W1 follows from the reflexivity of E0 and (3). We show that
⇀

Q0 is transitive on

W1. Suppose x
⇀

Q0y
⇀

Q0z for x, y, z ∈ W1. Then there are y′ 6= x and z′ 6= y with xR0y
′, y′E0y and yR0z

′

and z′E0z. By commutativity, there is z′′ with y′R0z
′′ and z′′E0z. Therefore, xR0z

′′ and z′′E0z. If we had
x = z′′, then we would obtain xR0y

′R0x, and so x = y′ by Lemma 4.7(2). The latter contradicts the choice

of y′. Thus, z′′ 6= x and so x
⇀

Q0z.
(5) R1 is reflexive by definition. To see that R1 is transitive, suppose x, y, z ∈W1 with xR1yR1z. Without

loss of generality we may assume that x, y, z are pairwise distinct. Then x
⇀

Q0y and y
⇀

Q0z, so x
⇀

Q0z by (3).
Moreover, if x |= �ψ for �ψ ∈ Sub(ϕ), then since xR1yR1z, we have y |= �ψ and so z |= �ψ. Therefore,

R1 is transitive. Finally, if xR1yR1x and x 6= y, then x
⇀

Q0y
⇀

Q0x. The latter implies x
⇀

Q0x by transitivity of
⇀

Q0, which contradicts irreflexivity of
⇀

Q0. Thus, R1 is anti-symmetric.
(6) This is immediate since E1 is an equivalence relation.
(7) Suppose that xR1y and xE1z. Without loss of generality we may assume that x 6= y and x 6= z. Then

x
⇀

Q0y, so there is u ∈ W0 such that x 6= u, xR0u, and uE0y. By commutativity in W0, there is v such that
zR0v and vE0u. We show that v is the required witness for commutativity in W1. From vE0u and uE0y we
have vE0y, so v ∈ W1 by (2). Because x 6= u, xR0u, and x is from a clean cluster, we have xE/0u . Thus,

zE/0v. In particular, z 6= v, and so z
⇀

Q0v. Moreover, zR0v gives that if z �0 �γ, then v �0 �γ, so zR1v.
From vE0y we have vE1y, yielding commutativity in W1.
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(8) Suppose there are x, y ∈ W1 with x 6= y, xE1y, and xR1y. Since xE1y, we have xE0y, and because

xR1y and x 6= y, we have x
⇀

Q0y. Thus, there is w ∈ W0 with x 6= w, xR0w, and wE0y. From xE0y and
yE0w we have xE0w. By (1), x is chosen from a clean cluster in W0, so xR0w and xE0w imply x = w, a
contradiction.

(9) Suppose x 6�0 �γ. Consider

A = ν0(¬�γ) ∩
⋂
{ν0(�ψ) | �ψ ∈ Sub(ϕ) and x �0 �ψ}.

Clearly x ∈ A, so x ∈ E0(A). We have x ∈ maxR0
E0(A) or x 6∈ maxR0

E0(A).
Case 1: x ∈ maxR0 E0(A)

If x ∈ maxR0 E0(A), then from xR0w and x 6= w it follows that w 6∈ E0(A), so w 6∈ A. But xR0w implies
w ∈

⋂
{ν0(�ψ) | �ψ ∈ Sub(ϕ) and x �0 �ψ}, so we must have w 6∈ ν0(¬�γ). Therefore, w �0 �γ. Since

x 6�0 �γ but w �0 �γ for all w 6= x with xR0w, we must have x 6�0 �γ R0-maximally. Thus, x 6�0 γ, and x
is our desired point.
Case 2: x 6∈ maxR0

E0(A)

If x 6∈ maxR0 E0(A), then Lemma 2.26(2) yields t ∈ maxR0 E0(A) such that x 6= t and xR0t. But then
tE0y for some y ∈ A. Since t ∈ maxR0

E0(A), we have t ∈ W1, so y ∈ W1 by (2). From x 6= t and xR0t it

follows that x
⇀

Q0y. By the choice of y ∈ A, if x �0 �ψ then y �0 �ψ for all �ψ ∈ Sub(ϕ), so xR1y. Since
y ∈ A, we have y 6�0 �γ. To see that y 6�0 �γ R0-maximally, suppose yR0z and z 6�0 �γ. If x �0 �ψ, then
y �0 �ψ (as y ∈ A), so yR0z implies z �0 �ψ. Thus, z ∈ A, hence z ∈ E0(A), and maximality of y in E0(A)
yields y = z. Consequently, y is R0-maximal with respect to �γ. �

We conclude Step 1 by proving the truth lemma for F1.

Lemma 6.3 (Truth Lemma). For x ∈W1 and ψ ∈ Sub(ϕ),

(F0, x) �0 ψ ⇔ (F1, x) �1 ψ.

Proof. The proof is by induction on the complexity of ψ. The base case ψ = p is clear from the definition
of ν1. The cases of ψ = ψ1 ∧ ψ2 and ψ = ¬ψ1 are straightforward, so we focus on the cases ψ = ∀ψ1 and
ψ = �ψ1.

Suppose ψ = ∀ψ1. If x 6�0 ∀ψ1, then xE0y for some y 6�0 ψ1. By Lemma 6.2(2), y ∈ W1, so y 6�1 ψ1 by
the inductive hypothesis. From xE0y we have xE1y by the definition of E1. Thus, x 6�1 ∀ψ1. The proof of
the converse implication is immediate.

Suppose ψ = �ψ1. If x 6�0 �ψ1, then by Lemma 6.2(9), there is y ∈ W1 such that xR1y and y 6�0 ψ1.
By the inductive hypothesis, y 6�1 ψ1, hence x 6�1 �ψ1. Conversely, if x 6�1 �ψ1, then there is y ∈ W1 such
that xR1y and y 6�1 ψ1. By the inductive hypothesis, y 6�0 ψ1. If x = y, then x 6�0 ψ1, hence x 6�0 �ψ1. If
x 6= y, then as xR1y, we have x

⇀

Q0y and x �0 �γ implies y �0 �γ for all �γ ∈ Sub(ϕ). Since y 6�0 ψ1, we
have y 6�0 �ψ1. Thus, x 6�0 �ψ1. �

6.2. Step 2: Constructing F2. In this step we use the standard filtration technique to construct F2 from
F1 by ‘collapsing’ E1-clusters into finitely many classes. Thus, F2 will have finitely many clusters.

Define an equivalence relation ∼ on W1 by

x ∼ y ⇔ (xE1y and x �1 γ ⇔ y �1 γ for all γ ∈ Sub(ϕ)) .

We construct F2 = (W2, R2, E2) as follows:
• W2 = W1/∼ = {[x] : x ∈W1} where [x] denotes the ∼-equivalence class of x.
• For [x], [y] ∈W2, [x]R2[y]⇔ [x] = [y] or xR1y.
• For [x], [y] ∈W2, [x]E2[y]⇔ xE1y.
• ν2(p) = {[x] : x ∈ ν1(p)} for all p ∈ Sub(ϕ), and ν2(q) = ∅ for all other propositional variables q.

Lemma 6.4. The relations E2 and R2 are well defined, and so is the valuation v2.

Proof. It is easy to see that E2 and v2 are well defined. We show that R2 is well defined. Let x, y, x′, y′ ∈W1

with x ∼ x′, y ∼ y′, and [x]R2[y]. Then [x] = [y] or xR1y. If [x] = [y], we have [x′] = [x] = [y] = [y′],

and so [x′]R2[y′]. If xR1y, then x = y or x
⇀

Q0y and x �0 �γ implies y �0 �γ for all �γ ∈ Sub(ϕ). The

former case implies [x] = [y] which we have already considered. In the latter case, from x
⇀

Q0y it follows that
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xQ0y and xE/0y by Lemma 6.2(3). Note that x′ ∼ x implies x′E1x and so x′E0x. Similarly, y′E0y. By

transitivity of Q0 we thus have x′Q0y
′. Moreover, x′E0x, y′E0y, and xE/0y imply that x′E/0y′. Thus, x′

⇀

Q0y
′

by Lemma 6.2(3). If �γ ∈ Sub(ϕ) and x′ �0 �γ, then x �0 �γ since x′ ∼ x. So y �0 �γ by assumption.
But then y′ �0 �γ since y′ ∼ y. This shows that x′R1y

′, so [x′]R2[y′]. �

In the following lemma we highlight some properties of F2.

Lemma 6.5.
(1) R2 is a partial order.
(2) E2 is an equivalence relation.
(3) R2 and E2 satisfy commutativity.
(4) F2 has clean clusters.
(5) For [x] ∈W2, |E2([x])| ≤ 2n, where n = |Sub(ϕ)|.
(6) For [x] ∈ W2 and �γ ∈ Sub(ϕ), if x 6�1 �γ, then there is [y] ∈ W2 such that [x]R2[y] and y 6�1 �γ

R1-maximally.

Proof. (1) Reflexivity of R2 is immediate from the definition, and transitivity and antisymmetry follow from
transitivity and antisymmetry of R1.

(2) This follows from E1 being an equivalence relation.
(3) This follows from R1 and E1 satisfying commutativity.
(4) Suppose there are [x] 6= [y] in W2 with [x]R2[y] and [x]E2[y]. Then x 6= y, so by the definition of R2

and E2, we have xR1y and xE1y which yields a dirty cluster in F1, contradicting Lemma 6.2(8).
(5) This follows from the fact that there are at most 2n ∼-equivalence classes in each cluster (see, e.g.,

[10, Prop. 5.24]).
(6) Suppose x 6�1 �γ. By Lemma 6.3, x 6�0 �γ, so by Lemma 6.2(9), there is y ∈ W1 such that xR1y,

y ∈ A ∩maxR0
E0(A), and y 6�0 �γ R0-maximally, where

A = ν0(¬�γ) ∩
⋂
{ν0(�ψ) | �ψ ∈ Sub(ϕ) and x �0 �ψ}.

Then [x]R2[y] and by Lemma 6.3, y 6�1 �γ. We show that y is R1-maximal with respect to �γ. Suppose

yR1z and z 6�1 �γ. By Lemma 6.3, z 6�0 �γ, and from yR1z it follows that y = z or y
⇀

Q0z and y �0 �ψ
implies z �0 �ψ for all �ψ ∈ Sub(ϕ). Suppose the latter. Since z 6�0 �γ, we have z ∈ ν0(¬�γ). If
x �0 �ψ for �ψ ∈ Sub(ϕ), then y ∈ A implies y �0 �ψ. So yR1z then gives z �0 �ψ. Therefore,

z ∈
⋂
{ν0(�ψ) | �ψ ∈ Sub(ϕ) and x �0 �ψ}, and hence z ∈ A. As y

⇀

Q0z, there is w ∈ W0 such that y 6= w,
yR0w, and wE0z. Then w ∈ E0(A), and maximality of y in E0(A) yields y = w, contradicting y 6= w. Thus,
y = z, and so y is R1-maximal with respect to �γ. �

We conclude Step 2 by showing the truth lemma for F2.

Lemma 6.6 (Truth Lemma). For [x] ∈W2 and ψ ∈ Sub(ϕ),

(F1, x) �1 ψ ⇔ (F2, [x]) �2 ψ.

Proof. The proof is by induction on the complexity of ψ. The base case ψ = p follows from the definition of
ν2. The cases of ψ = ψ1 ∧ψ2 and ψ = ¬ψ1 are straightforward, and the ∀-case follows from the definition of
E2. Suppose that ψ = �ψ1. If x 6�1 �ψ1, then there is y ∈ W1 with xR1y and y 6�1 ψ1. Therefore, [x]R2[y]
and [y] 6�2 ψ1 by the inductive hypothesis. Thus, [x] 6�2 �ψ1. Conversely, if [x] 6�2 �ψ1, then there is y ∈W1

with [x]R2[y] and [y] 6�2 ψ1. By the inductive hypothesis, y 6�1 ψ1. If [x] = [y], then x 6�1 �ψ1 by definition
of ∼. If [x] 6= [y], then xR1y and again x 6�1 �ψ1. �

6.3. Step 3: Constructing F3. We are ready for our final step, in which we construct F3 = (W3, R3, E3)
by selective filtration from F2. This is done by constructing a sequence of finite partially ordered MS4-frames
F3.h = (W3.h, R3.h, E3.h) with clean clusters so that F3.h ⊆ F3.h+1 for all h < ω. We then show that this
construction eventually terminates.

Similar to the construction for M+IPC, for each point [x] ∈ W2 that we select, we create a copy of the
point, give it a new name, say t, and let t̂ = [x] denote the original point in W2 that t represents and
will behave similar to. However, we take a bit more care with the copies in this construction than in the
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construction for M+IPC. In particular, we will never create two copies of the same original point within one
cluster. This will ensure that the cluster size in F3 has the same bound as the cluster size in F2.

Before we begin the construction, we highlight an important property we will need for selecting our points.

Lemma 6.7. For [x] ∈ W2 and �γ ∈ Sub(ϕ), if [x] 6�2 �γ, then there is [y] ∈ W2 such that [x]R2[y] and
[y] 6�2 �γ R2-maximally.

Proof. Suppose [x] 6�2 �γ. By Lemma 6.6, x 6�1 �γ, and by Lemma 6.5(6), there is [y] ∈ W2 such that
[x]R2[y] and y 6�1 �γ R1-maximally. Applying Lemma 6.6 again yields [y] 6�2 �γ. To see that [y] is R2-
maximal with respect to �γ, suppose [y]R2[z] and [z] 6�2 �γ. By definition of R2, either [y] = [z] or yR1z.
If yR1z, then by R1-maximality of y, we have y = z, so [y] = [z], and hence [y] must be R2-maximal with
respect to �γ. �

Throughout the construction, for each t ∈W3.h, we associate the following sets of subformulas:

Σ∀(t) = {∀δ ∈ Sub(ϕ) | t̂ 6�2 ∀δ}

Σ�(t) = {�γ ∈ Sub(ϕ) | t̂ 6�2 �γ, t̂ �2 γ}.

We start with F3.0 = (W3.0, R3.0, E3.0) where

W3.0 = {t0}, R3.0 = W 2
3.0, E3.0 = W 2

3.0

and t̂0 = [x0] ∈ W2 is a point with [x0] 6�2 ϕ. This will be a root of our frame and has Q3-depth 1. Let
W3.−1 = R3.−1 = E3.−1 = ∅. Suppose F3.h−1 = (W3.h−1, R3.h−1, E3.h−1) has already been constructed and
is a partially ordered MS4-frame with clean clusters. We construct F3.h by the following steps.

Step ∀ (Horizontal): Let W ∀3.h = W3.h−1, R∀3.h = R3.h−1, and E∀3.h = E3.h−1. For each cluster E3.h(t) ⊆
W3.h−1\W ∀3.h−1, consider ∀δ ∈ Σ∀(t). If there is no s ∈ W ∀3.h already such that tE∀3.hs and ŝ 6�2 δ, we add
a witness to our new frame as follows. Since t̂ 6�2 ∀δ, there exists [x] ∈ W2 such that t̂E2[x] and [x] 6�2 δ.
We add the point s to W ∀3.h where ŝ = [x] (s is a distinct new copy of [x]), the relations (s, s) to R∀3.h, the
relations (t, s) to E∀3.h and generate the least equivalence relation.

Step � (Vertical): Let W�
3.h = W ∀3.h, R

�
3.h = R∀3.h, and E

�
3.h = E∀3.h. For t ∈ W ∀3.h\W ∀3.h−1 (hence including

any points added in the horizontal step), consider �γ ∈ Σ�(t) where t̂ 6�2 �γ, but t̂ �2 γ (thus, t isn’t
witnessing the formula �γ itself), and there is no s ∈ W�

3.h already such that tR�
3.hs and ŝ 6�2 �γ R2-

maximally (such an s could have been added in a previous stage to satisfy commutativity). For each such
�γ, since t̂ 6�2 �γ and t̂ = [w] for some [w] ∈ W2, we have [w] 6�2 �γ. By Lemma 6.7, there is [x] ∈ W2

such that [w]R2[x] and [x] is R2-maximal with respect to �γ. We add the point s to W�
3.h where ŝ = [x],

(t, s) and (s, s) to R�
3.h and close under transitivity, and add (s, s) to E�

3.h. To make sure commutativity is
satisfied, for each w ∈ E�

3.h(t), if there is already sw ∈ E�
3.h(s) such that ŵR2ŝw, we simply add the relation

(w, sw) to R�
3.h. If there is no such sw, then by commutativity in W2, there is [xw] ∈W2 such that ŵR2[xw]

and [xw]E2[x], so we add sw to W�
3.h, where ŝw = [xw]. We then add (w, sw) to R�

3.h and close it under
reflexivity and transitivity, and add (sw, s) to E�

3.h and generate the smallest equivalence relation.
To end this stage of the construction, we let F3.h = (W3.h, R3.h, E3.h) where

W3.h = W�
3.h, R3.h = R�

3.h and E3.h = E�
3.h.

Lemma 6.8. F3.h is a finite partially ordered MS4-frame with clean clusters.

Proof. In the ∀-step we only added reflexive arrows to R∀3.h, so R
∀
3.h is a partial order. In the �-step we close

R�
3.h under reflexivity and transitivity each time we add a new arrow, so R�

3.h is reflexive and transitive.
Moreover, we we only add R�

3.h arrows from points that were already present in W ∀3.h into points that
are freshly added in the �-step of round h. Thus, R�

3.h is antisymmetric. That E3.h is an equivalence
relation and that F3.h satisfies commutativity follow from the construction. Finally, to see that F3.h has only
clean clusters, note that in the ∀-step all freshly introduced Eh-relations are of the shape (s, t) where s or
t ∈W ∀3.h \W3.h−1. Since no non-reflexive Rh-arrows are introduced in this step, no dirty cluster could have
been built. We have already discussed the shape of the Rh arrows introduced in the �-step. This guarantees
that no cluster in W ∀3.h is made dirty. The freshly introduced Eh-relations in these steps are of the shape
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(s, t) where s, t ∈ W�
3.h \W ∀3.h. Since no non-reflexive Rh-relations exist between these points, we infer that

all clusters are clean. �

The following lemma summarizes some useful properties of F3. In the following let

n = |Sub(ϕ)| and m = |{�ψ : �ψ ∈ Sub(ϕ)}|.

Lemma 6.9. Let t, u ∈W3.h.
(1) If tE3.hu, then t̂E2û.
(2) If tE3.hu, then Σ∀(t) = Σ∀(u). (This ensures that we only need to perform the ∀-step once per

cluster).
(3) If tE3.hu and t 6= u, then t̂ 6= û. (This ensures that one cluster does not contain two different copies

of the same point, so our cluster size remains bounded).

(4) If [t]
⇀

Q2[u], then t
⇀

Q0u.
(5) If tR3.hu, then t̂R2û.

(6) If t
⇀

Q3.hu, then t̂
⇀

Q2û. Thus, if t
⇀

Q3.hu, then t̂ 6= û.
(7) A formula �γ ∈ Sub(ϕ) can be witnessed at most 2n times in clusters along an R3.h-chain. (This

shows that �γ can be witnessed at most 2n times per Q3.h-chain.)

Proof. (1) This follows from the construction.
(2) By (1), tE3.hu implies t̂E2û, so t̂ �2 ∀γ iff û �2 ∀γ.
(3) Suppose tE3.hu and t̂ = û, and without loss of generality assume that t was added to the cluster before

u, so either u is added to witness some formula ∀δi where û 6�2 δi, or u is added as a commutativity witness
for some point from the cluster below. However, by construction, u would not have been added to witness a
formula ∀δi, because if û 6�2 δi, then t̂ = û implies that t̂ 6�2 δi, so t is already a viable witness in the cluster
for any such formula, contradicting the ∀-step of the construction. Furthermore, u would not be added as
a commutativity witness for some point w in the cluster immediately below, because then in W2 we would
have ŵR2û, so ŵR2t̂, and a new R3.h-relation would have been added from w to t instead, contradicting the
�-step of the construction. Thus, we must have t̂ 6= û.

(4) Suppose [t]
⇀

Q2[u]. Then there is [w] ∈ W2 with [t] 6= [w], [t]R2[w], and [w]E2[u]. From the definitions
of E1 and E2, [w]E2[u] implies wE0u. By definition of R2, [t]R2[w] and [t] 6= [w] imply tR1w. Since [t] 6= [w],

we have t 6= w, so t
⇀

Q0w by the definition of R1. Then there is v ∈ W1 with t 6= v, tR0v, and vE0w. Since
vE0w, we have vE0u. Thus, t 6= v, tR0v, and vE0u, and hence t

⇀

Q0u.
(5) This follows from the construction.

(6) If t
⇀

Q3.hu, then there is w such that t 6= w, tR3.hw, and wE3.hu. By (5), t̂R2ŵ and ŵ must come

from a different cluster in W2 than t̂, so t̂ 6= ŵ. We also have ŵE2û by (1), so t̂
⇀

Q2û. Because F2 has clean
clusters, we must have t̂ 6= û.

(7) Suppose that x1, ..., x2n+1 are all in different E3.h-clusters along an R3.h-chain (where x̂1 = [w1], ...,

x̂2n+1 = [w2n+1]), so x1
⇀

Q3.h...
⇀

Q3.hx2n+1, and all have been added to witness a formula �γ ∈ Sub(ϕ). Thus,
x̂i 6�2 �γ R2-maximally for i = 1, ..., 2n+1. Because there are only 2n subsets of Sub(ϕ) (where n = |Sub(ϕ)|),
the pigeonhole principle implies that there are some i and j with i 6= j (assume i < j) where x̂i and x̂j satisfy

the same subformulas of ϕ. By (6), x̂i
⇀

Q2x̂j and x̂i 6= x̂j . If x̂iR2x̂j , then R2-maximality of x̂i with respect

to �γ implies x̂i = x̂j , contradicting x̂i 6= x̂j , so we must have x̂iR/2x̂j and hence [wi]R/2[wj ]. Since x̂i
⇀

Q2x̂j

we have [wi]
⇀

Q2[wj ]. By (4), we then have wi
⇀

Q0wj . Since [wi] and [wj ] satisfy the same formulas in Sub(ϕ),
we have [wi] �2 �β ⇔ [wj ] �2 �β for �β ∈ Sub(ϕ). By Lemmas 6.6 and 6.3, wi �0 �β ⇔ wj �0 �β. Thus,
wiR1wj and hence [wi]R2[wj ], a contradiction. �

We now prove that the end result of our construction is a finite frame, using the definitions of bounded
cluster size, bounded R-branching, and bounded R-depth given in Definition 5.10.

Lemma 6.10. F3.h = (W3.h, R3.h, E3.h) has cluster size bounded by 2n for all h < ω.

Proof. By Lemma 6.5(5), the cluster size in F2 is bounded by 2n, and by Lemma 6.9(3), we do not add
copies of the same points to a cluster in F3.h. Thus, cluster size in F3.h is bounded by 2n. �
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Lemma 6.11. F3.h = (W3.h, R3.h, E3.h) has R3.h-branching bounded by 2n ·m for all h < ω.

Proof. It is sufficient to show that each t ∈W3.j−1, for j ≤ h, has at most 2n·m immediateR3.j-successors. By
construction, we add at most m-many immediate R3.j-successors to t for formulas of the form �ψ ∈ Sub(ϕ).
Each y ∈ E3.j(t) also needs at mostm-many immediate R3.j-successors to witness�-formulas. Since there are
at most 2n-many such y (including t itself), we must add an immediate R3.j successor to t for commutativity
for at most 2n ·m points. Thus, t has at most 2n ·m immediate R3.j-successors.

y t

|E3.h(t)| ≤ 2n

R
3.h

+
1

E3.h+1

at m
ost m

�-wi
tness

es fo
r y

· · ·

E3.h+1

�

Lemma 6.12. F3.h = (W3.h, R3.h, E3.h) has R3.h-depth bounded by 2n ·m+ 1 for all h < ω.

Proof. By construction, to make an immediate vertical move from some cluster E3.h(t) to another cluster
E3.h(u) (with t 6= u), there must be some point x ∈ E3.h(t) and formula �ψ ∈ Σ�(x) requiring a witness
y, where y ∈ E3.h(u), xR3.hy, and y is added in the �-step of the construction. Starting from the bottom
cluster E3.h(t0), by Lemma 6.9(7), each of our m-many �-formulas can be witnessed at most 2n times in
clusters along an R3.h-chain. Thus, we add at most 2n ·m elements to an R3.h chain originating from this
cluster, with the total length of the chain (including the starting point) being at most 2n ·m+ 1.

E3.h(t) · · ·

R3.h

E3.h(u) · · ·· · ·

· · ·· · ·· · ·

...
...

...
...

at most 2n vertical steps

at most m-many times

at most 2n

�

Lemma 6.13. There is h ∈ ω such that F3.h′ = F3.h for all h′ ≥ h.
Proof. As in the proof of Lemma 5.15, we observe that in stage k of the construction, all R3.h-chains are
bounded by k. Since, by Lemma 6.12, the R3.h-depth of F3.h is bounded by 2n ·m+1, we have F3.h′ = F2n·m+1

for all h′ ≥ 2n ·m+ 1. �
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Set F3 = (W3, R3, E3) where

W3 = W3.h, R3 = R3.h, E3 = E3.h,

and h is as in Lemma 6.13. As an immediate consequence of Lemma 6.8, we obtain:

Lemma 6.14. F3 = (W3, R3, E3) is a finite M+Grz-frame.

Finally, we verify that our frame validates precisely the formulas we want it to. Define a valuation ν3 on
W3 by ν3(p) = {t ∈W3 : t̂ ∈ ν2(p)} for p ∈ Sub(ϕ) and ν3(q) = ∅ for variables q not occurring in ϕ.

Lemma 6.15 (Truth Lemma). For x ∈W3 and ψ ∈ Sub(ϕ),

(F2, x̂) �2 ψ ⇔ (F3, x) �3 ψ.

Proof. The proof is by induction on the complexity of ψ and again we only show the cases where ψ = ∀ψ1

or ψ = �ψ1.
Suppose ψ = ∀ψ1. If x̂ 6�2 ∀ψ1, then ∀ψ1 ∈ Σ∀(x), so at some point in the construction of F3 we add s

to W3 and (x, s) to E3 where ŝ 6�2 ψ1. By the inductive hypothesis, s 6�3 ψ1, hence x 6�3 ∀ψ1. Conversely,
if x 6�3 ∀ψ1, then there is w ∈ W3 with xE3w and w 6�3 ψ1. By the inductive hypothesis, ŵ 6�2 ψ1, and by
Lemma 6.9(1), xE3w implies x̂E2ŵ, so x̂ 6�2 ∀ψ1.

Suppose ψ = �ψ1. If x̂ 6�2 �ψ1, then either x̂ 6�2 ψ1 or x̂ �2 ψ1. If x̂ 6�2 ψ1, then by the inductive
hypothesis we have x 6�3 ψ1, hence x 6�3 �ψ1. If x̂ �2 ψ1, then �ψ1 ∈ Σ�(x), so at some point in the
construction of F3 we add s to W3 and (x, s) to R3 where ŝ 6�2 ψ1. By the inductive hypothesis, s 6�3 ψ1,
hence x 6�3 �ψ1. Conversely, if x 6�3 �ψ1, then there is w ∈ W3 with xR3w and w 6�3 ψ1. By the inductive
hypothesis, ŵ 6�2 ψ1, and by Lemma 6.9(5), xR3w implies x̂R2ŵ, so x̂ 6�2 �ψ1. �

The three steps of our construction yield our desired result:

Theorem 6.16. M+Grz has the finite model property.

As an immediate corollary to Theorem 6.16, we obtain:

Corollary 6.17. M+Grz is decidable.

Remark 6.18. Another consequence of Theorem 6.16 is thatM+Grz is the monadic fragment of the predicate
modal logic obtained by adding to QGrz the Gödel translation of Casari’s formula Cas (cf. Remark 5.19).
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