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MONADIC INTUITIONISTIC AND MODAL LOGICS ADMITTING PROVABILITY

INTERPRETATIONS

GURAM BEZHANISHVILI, KRISTINA BRANTLEY, AND JULIA ILIN

ABsTRACT. The Godel translation provides an embedding of the intuitionistic logic IPC into the modal
logic Grz, which then embeds into the modal logic GL via the splitting translation. Combined with Solovay’s
theorem that GL is the modal logic of the provability predicate of Peano Arithmetic PA, both IPC and Grz
admit arithmetical interpretations. When attempting to ‘lift’ these results to the monadic extensions MIPC,
MGrz, and MGL of these logics, the same techniques no longer work. Following a conjecture made by Esakia,
we add an appropriate version of Casari’s formula to these monadic extensions (denoted by a ‘+’), obtaining
that the Godel translation embeds MTIPC into M+ Grz and the splitting translation embeds M+ Grz into
MGL. As proven by Japaridze, Solovay’s result extends to the monadic system MGL, which leads us to an
arithmetical interpretation of both MTIPC and M+ Grz.
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1. INTRODUCTION

1.1. Propositional case. It is well known that the Go6del translation embeds Intuitionistic Propositional
Calculus IPC into the modal logic S4. We recall that the Géddel translation is defined as follows:

1
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pt = Op for a propositional letter p;

(p V) =t vyl

(P A)t = @t A

(p =) =0(¢" = ¥');

(=) = O(=¢").

McKinsey and Tarski [26] proved that this translation is full and faithful; that is,

IPC - o iff S4 - .

There are many other normal extensions of S4, called modal companions of IPC, in which IPC is embedded
fully and faithfully. Esakia [I2] showed that the largest such companion is Grzegorczyk’s logic Grz, which is
the normal extension of S4 with the Grzegorczyk aziom

grz =: O0(O(p — Op) — p) — p.

Thus, we have
IPCF ¢ iff Grz F .

Goldblatt [21]], Boolos [6], and Kuznetsov and Muravitsky [25] showed that the splitting translation embeds
Grz into the Gédel-Léb logic GL which is the normal extension of the least normal modal logic K with the
axiom

gl:=0(p — p) — Op.
We recall that the splitting translation is defined by “splitting boxes” in formulas (see, e.g., [7, p. 8]); that
is, for a modal formula ¢, let (07 ¢ be the abbreviation of the formula ¢ A Og. Then the splitting translation
is defined by letting ©* be the result of replacing all occurrences of (I in ¢ by (0. We then have

Grz ¢ iff GL F ¢°.
Combining these results yields
IPC I ¢ iff Grz - ¢! iff GL I (¢")*.

By Solovay’s theorem [34], GL can be thought of as the modal logic of the provability predicate in Peano
Arithmetic PA. Thus, both IPC and Grz admit provability interpretations.

1.2. Predicate case. The Gdodel translation extends to the predicate case by setting
o (Voyp)' = Ova(p');
o (Jzp)’ =3z(y").

Let 1QC be the intuitionistic predicate calculus and QS4 the predicate S4. Then

IQC I ¢ iff QS4 F ¢,

so the extension of the Godel translation to the predicate case remains full and faithful (see, e.g., [33]).
However, this is virtually the only positive result. Let QGrz be the predicate Grz and let QGL be the
predicate GL. Montagna [27] showed that Solovay’s theorem no longer holds for QGL. Moreover, the splitting
translation does not embed QGrz fully and faithfully into QGL (see below), and as far as we know, it remains
an open problem whether the Godel translation embeds IQC fully and faithfully into QGrz.

1.3. Monadic case. In view of the above, Esakia [15] suggested to study these translations for the monadic
(one-variable) fragments of IQC, QGrz, and QGL. The monadic fragment of IQC was introduced by Prior [32]
under the name of MIPC. The monadic fragment of QS4 was studied by Fischer-Servi [I7], and the monadic
fragments of QGrz and QGL by Esakia [I5]. We denote them by MS4, MGrz, and MGL, respectively.

Fischer-Servi [I7] proved that the Godel translation embeds MIPC into MS4 fully and faithfully. As we
will see, the Godel translation also embeds MIPC fully and faithfully into MGrz. Japaridze [23, 24] proved
that Solovay’s result extends to MGL. Therefore, to complete the picture, it would be sufficient to show that
the splitting translation embeds MGrz into MGL fully and faithfully. However, as was observed by Esakia,
this is no longer true. To see this, we recall (see, e.g., [30]) that Casari’s formula

Cas: Vz((P(z) —» VyP(y)) — YyP(y)) = Yz P(z)
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is valid in an intuitionistic predicate Kripke frame provided the underlying poset is Noetherian. Consider
the monadic version of Casari’s formula

MCas: VY ((p — Vp) — Vp) — Vp.

Using the same notation for the Goédel and splitting translations in the monadic setting, we have that
MGrz I/ (MCas)? but MGL  ((MCas)?)®. This yields that MGrz does not embed into MGL faithfully.
Let
MTIPC = MIPC + MCas

be the extension of MIPC by MCas, and let
M*Grz = MGrz + (MCas)’
be the extension of MGrz by (MCas)?. Esakia claimed that the translations
IPC— Grz — GL

are lifted to
MTIPC — Mt Grz — MGL.

Verifying this claim will be our main goal.
1.4. Main contribution and organization. Our main result is the following theorem.
Theorem. MTIPC F ¢ iff MTGrz = ! iff MGL F (¢%)%.

We will prove the theorem semantically. The most challenging part of our argument is in establishing the
finite model property for MTIPC and MTGrz (see Sections [5| and @ It was established by Japaridze [23]
that MGL also has the finite model property. In fact, our technique of proving the finite model property for
M*Grz can be adapted to provide an alternative proof of Japaridze’s result for MGL, but this is not needed
for the above theorem.

The paper is organized as follows. Section [2| provides a brief overview of monadic logics and their corre-
sponding algebraic and relational semantics. Section [3] discusses the Gédel and splitting translations in the
monadic setting. In Section [f] we investigate how the addition of the adapted variations of Casari’s formula
affect the semantics. In Sections [5| and |§| we establish the finite model property for MTIPC and M7 Grz,
respectively, using a modified selective filtration, which allows us to conclude the main result stated above.

We use [I0] as our standard reference for intuitionistic and modal propositional logic, and [20] as our
standard reference for intuitionistic modal logics and classical bi-modal systems.

2. MONADIC LOGICS

In this section we recall the notion of monadic intuitionistic and modal logics and discuss their algebraic
and frame-based semantics.

2.1. Monadic intuitionistic logic. The monadic intuitionistic propositional calculus MIPC was defined
by Prior [32] and it was shown by Bull [9] that MIPC axiomatizes the monadic fragment of the predicate
intuitionistic logic. To define MIPC, let £ be the language of propositional intuitionistic logic, and let Ly3
be the enrichment of £ with the quantifier modalities V and 3E|

Definition 2.1. MIPC is the smallest set of Ly3-formulas containing

e all axioms of IPC,

e the S4-axioms for V

e the S5-axioms for 3

e the connecting axioms Jp — Vdp and IVp — Vp,

and closed under the inference rules of substitution, modus ponens, and V-necessitation %.

Remark 2.2. The non-symmetric feature of intuitionistic quantifiers is captured in the fact that while 3 is an
S5-modality, V is merely an S4-modality, and the V-counterpart V(¥pV q) <> (VpVVq) of I(IpAq) + (IpAJq)
is not provable in MIPC.

10 and ¢ are also frequently used in place of V and 3, respectively.
2vp — p, ¥p — WWp, and V(p A q) + (Vp AVQ).
3p — Jp, IFp — Ip, I(pVq) < (IpVIg), and I(Ip A q) < (Ip A Tq).
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Algebraic semantics for MIPC is given by monadic Heyting algebras [28], [2].

Definition 2.3. A monadic Heyting algebra is a triple (H,V,3) where
e H is a Heyting algebra,
V: H — H is an S4-operator
3: H — H is an S5-operator
da < Vda and IVa < Va.

Remark 2.4. This in particular implies that the fixpoints of V and 3 are equal and form a Heyting subalgebra
of H. In fact, every monadic Heyting algebra can be represented as a pair (H, Hy) where Hy is a Heyting
subalgebra of H and the inclusion has both the right (V) and left (3) adjoint.

As usual, propositional letters of Ly3 are evaluated as elements of H, the connectives as the corresponding
operations of H, and the quantifier modalities as the corresponding modal operators of H. The standard
Lindenbaum-Tarski construction then yields:

Theorem 2.5. MIPCF ¢ & 9 E ¢ for each monadic Heyting algebra $).
Kripke semantics for MIPC is an extension of Kripke semantics for IPC [29] 19] [15].

Definition 2.6. An MIPC-frame is a triple § = (W, R, E) where (W, R) is an IPC—frameﬂ and E is an
equivalence relation on W satisfying (R o E)(z) C (E o R)(z) for all x € W; that is, if vEy and yRz, then
there is w € W such that Rw and wEz.

By

TP E@

—m— e

e E— e
@ Yy

We refer to this condition as commutativity. We will sometimes refer to R as a ‘vertical relation’, and to FE
as a ‘horizontal relation’, as depicted in the diagram above.

Valuations on MIPC-frames are defined as for IPC-frames; that is, a valuation on § = (W, R, E) is an
assignment v of propositional letters to R-upsets of Sm As usual, the truth relation in § is defined by
induction. The clauses for the connectives A, V, —, = are the same as for IPC-frames:

wE, p it w e v(p);
wkE, oANYp iff wk, pand wE, ¥;
wkE, eVy iff wk, ¢ orwk, Y;
wk, p = iff (for all v)(wRv and v E, ¢ implies v F,, ¥);
wE, —p iff (for all v)(wRv implies v K, ¢).
To extend this to the truth relation for quantifier modalities, we first define a new relation @) as the compo-
sition R o E on W; that is, zQy iff there is z € W such that xRz and zFy.
o< FE—e®
1
r Q

4

[}
xT
Then @ is a quasi-order (reflexive and transitive) and V, 3 are interpreted in § as follows:
wkE, Yo iff (for all v)(wQv implies v F, ¥);
wkE, Jp iff (there exists v)(wEv and v F, ¢).
a < a, Va < Wa, V(a Ab) = Va AVb, and V1 = 1.
5a < 3a, 33a < Ja, I(a Vb) = Ja Vv 3b, 30 = 0, and I(3a A b) = Ja A Tb.

6A nonempty partially ordered set.
"Recall that U C W is an R-upset if u € U and uRv imply v € U.
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Sometimes we also write (§F,w) E, ¢ to emphasize the underlying frame § or simply w E ¢ in case § and v
are clear from the context.

There is a close connection between algebraic and relational semantics for MIPC. To see this, let § =
(W, R, E) be an MIPC-frame. For z € W let

Q) ={y € W |2Qy} and E(z) = {y € W [ zEy}.
Set §T = (Up(J),V, 3) where Up(F) is the Heyting algebra of R-upsets of §, and for U € Up(F),
VU={xeW|Q(x)CU}land U ={z e W | E(x)NU # }.
Then §* is a monadic Heyting algebra, and every monadic Heyting algebra is represented as a subalgebra,
of such. To see this, for a monadic Heyting algebra $ = (H,V,3), let W be the set of prime filters of H, let
R be the inclusion, and let E be defined by nE( iff nN Hy = { N Hy, where we recall that Hy is the fixpoint

subalgebra of H (see Remark [2.4). Then $, = (W, R, E) is an MIPC-frame (where nQ( iff N Hy C (N Hy)
and there is an embedding e : $ — ($4)T given by

e(a) ={n € H4 laen}.

In general, the embedding e is not onto, so to recognize the e-image of H in the Heyting algebra of upsets,
we introduce the concept of a descriptive MIPC-frame. One way to do this is to introduce topology on an
MIPC-frame.

We recall that a topological space is a Stone space if it is compact Hausdorff and zero—dimensionaﬂ A
relation R on a Stone space W is continuous if (i) R(x) is closed for each € W and (ii) U clopen implies
R~Y(U) is clopen, where

R (U)={z € W | zRu for some u € U}.

Definition 2.7. An MIPC-frame § = (W, R, E) is a descriptive MIPC-frame if

e W is a Stone space,
e R and (@ are continuous relations,
e A clopen R-upset implies E(A) is a clopen R-upset.

Remark 2.8. This does not imply that A clopen implies F(A) is clopen; see [3, p. 32]. However, we do
have that A closed implies E(A) is closed; see [3, Lem. 7].

As follows from Esakia’s representation of Heyting algebras [I1], for a Heyting algebra H, there is a Stone
topology on the set W of prime filters of H generated by the basis

{e(a) \e(b) | a,b € H},

the inclusion relation R on W is continuous, and e is a Heyting isomorphism from H onto the Heyting
algebra of clopen R-upsets of W.

By [3, Thm. 13|, if § = (H,V,3) is a monadic Heyting algebra, then (W, R, E) is a descriptive MIPC-frame,
which we denote by ., and e is an isomorphism from $) onto the monadic Heyting algebra (£.)* of clopen
R-upsets of $,. Thus, every monadic Heyting algebra can be thought of as the algebra of clopen R-upsets
of some descriptive MIPC-frame. This representation together with Theorem yields:

Theorem 2.9. MIPCF ¢ < § E ¢ for each descriptive MIPC-frame §.

If the descriptive MIPC-frame is finite, then the topology is discrete, and hence finite descriptive MIPC-
frames are simply finite MIPC-frames. It is well known that MIPC has the finite model property:

Theorem 2.10. MIPCF ¢ < §F ¢ for each finite MIPC-frame §.

This was first proved by Bull [8] using algebraic semantics. However, Bull’s proof contained a gap, which
was later filled by Fischer-Servi [I8] and Ono [29] independently of each other. For a more frame-theoretic
proof, using the technique of selective filtration, see [20, §10.3].

We finish §2.1 by recalling an important property of descriptive MIPC-frames, which will be useful later
on.

Definition 2.11. Let § = (W, R, E) be a descriptive MIPC-frame and let A C .
(1) We say € A is R-mazimal in A if tRy and y € A imply = = y.

8Clopen (closed and open) sets form a basis for the topology.
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(2) The R-mazimum of A is the set of all R-maximal points of A, i.e.,
max A= {x € A|zRy and y € A imply x = y}.

The next lemma states that every point in the E-saturation of clopen A sees a point that is maximal in
the E-saturation of A. The proof follows from the result of Fine [16] and Esakia [14] that can be phrased
as follows: If A is a closed subset of a descriptive IPC-frame, then for each = € A there is y € max A such
that zRy. Since A clopen implies that F(A) is closed (see Remark [2.8), the proof is a consequence of the
Fine-Esakia lemma.

Lemma 2.12. Let § = (W, R, E) be a descriptive MIPC-frame. For each clopen A and x € E(A), there is
y € max E(A) such that zRy.

2.2. Monadic modal logics. Let ML be the basic propositional modal language (with one modality OJ).
As usual, the least normal modal logic will be denoted by K, and normal modal logics are normal extensions
of K.

Let MLy be the bimodal language which enriches ML with the modality V. We use the abbreviation J¢
for ~V—¢.

Definition 2.13.
(1) The monadic K is the least set of MLy-formulas containing
e the K-axiom for Dﬂl‘ﬂ
e the S5-axioms for V
e the bridge axiom OVp — Vlp,
and closed under V-necessitation % as well as under the usual rules of substitution, modus ponens,
and [-necessitation. We denote the monadic K by MK.
(2) A normal extension of MK is an extension of MK which is closed under both - and V-necessitation.
We call normal extensions of MK normal monadic modal logics or simply mm-logics.
(3) Let L be a normal modal logic (in ML). The least monadic extension ML of L is the smallest
mm-logic containing MK U L.

Remark 2.14.
(1) Monadic modal logics are bimodal logics in the language with two modalities O, V, where V is an
S5-modality. They correspond to expanding relativized products discussed in [20] §9].
(2) The axiom Vp — OVp, which is the converse of the bridge axiom, and is the monadic version of
Barcan’s formula, is not provable in MK.

Algebraic semantics for monadic modal logics is given by monadic modal algebras.

Definition 2.15. A monadic modal algebra or simply an mm-algebra is a triple (B,d,V) where

e (B,0) is a modal algebraﬂ
e (B,Y) is an SS—algebraE
e [Va < Vla.

Remark 2.16. As with monadic Heyting algebras, the V-fixpoints of an mm-algebra (B,0,V) form a
subalgebra of the modal algebra (B,0), and each mm-algebra is represented as a pair (B, Bg) of modal
algebras such that the embedding of By into B has a right adjoint (V).

Kripke semantics for mm-logics is given by augmented Kripke frames of Esakia [I5].

Definition 2.17. An augmented Kripke frame is a triple § = (W, R, E) where (W, R) is a Kripke framﬂ
and E is an equivalence relation on W satisfying commutativity, i.e., (Ro E)(xz) C (E o R)(x) for all x € W;

O(p — ¢) = (@p — D).

Oyp — p, ¥p — VVp, —Vp — Y—Vp, and Y(p — q) — (Vp — Vq).

HThat is, B is a boolean algebra and O : B — B satisfies 01 = 1 and O(a A b) = Oa A Ob.
12That is, (B,V) is a modal algebra satisfying Va < a, Va < Wa, and —Va < V-Va.

By is nonempty and R is a binary relation on W.
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that is, if zFy and yRz, then there is w € W such that x Rw and wEz.

As with MIPC-frames, we may refer to R as a ‘vertical relation,” and to E as a ‘horizontal relation,” as
depicted in the diagram above.

Valuations on augmented Kripke frames are defined analogously to Kripke frames; that is, a valuation
v on an augmented Kripke frame § = (W, R, F) assigns propositional letters to subsets of W. The truth
relation clauses for the connectives V, -, the modality [J, and its dual ¢ are defined as for Kripke frames:

TE,p iff  xev(p);

zE, YvVvy iff xE,¢YorzE, x;

S T

x E, Oy iff  (forally e W)(zRy =y E, ¥);

xE, O iff  (there exists y € W)(zRy and y F, ).

The modality V and its dual 3 are interpreted via the relation E as follows:

zE, Yo ifft (forallye W)(zEy = yFE, ¢)
T E, dp iff (there exists y € W)(zEy and y F, ¢).

As in the case of MIPC-frames, we also use the notation (§,w) F, ¢ or wE .

As in the case of MIPC, there is a close connection between algebraic and relational semantics for mm-
logics. For an augmented Kripke frame § = (W, R, E), set §+ = (p(F),,V) where p(F) is the powerset of
5, and for U € Up(gF),

OU={zxeW|R(x)CU}and VU ={x € W | E(x) CU}.

Then g+ is an mm-algebra, and every mm-algebra is represented as a subalgebra of such. To see this, for
an mm-algebra B = (B,0, V), let W be the set of ultrafilters of B, and let R and F be defined by

nR( iff Oa € n implies a € ¢ and nE¢ iff nN By = (N By.
Then B, = (W, R, F) is an augmented Kripke frame and there is an embedding e : 8 — (B, )T given by

e(a) ={n€ B, [aen}

In general, the embedding e is not onto, so to recognize the e-image of B in the powerset, we introduce
the concept of a descriptive augmented Kripke frame. As in the case of MIPC, we do this by introducing
topology on augmented Kripke frames.

Definition 2.18. An augmented Kripke frame § = (W, R, E) is a descriptive augmented Kripke frame if W
is a Stone space and R and F are continuous relations.

As follows from the representation of modal algebras, for a modal algebra B, there is a Stone topology
on the set W of ultrafilters of B generated by the basis {e(a) | a € B}, the relation R on W is continuous,
and e is a modal isomorphism from B onto the modal algebra of clopen subsets of W.

If 8 = (B,0,V) is an mm-algebra, then (W, R, E) is a descriptive augmented Kripke frame, which we
denote by B,, and e is an isomorphism from B onto the mm-algebra (B,)* of clopen subsets of B.. Thus,
every mm-algebra can be thought of as the algebra of clopen subsets of some descriptive augmented Kripke
frame.
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2.3. MS4, MGrz, and MGL. We next focus on the least monadic extension MS4 of the modal logic S4.

Definition 2.19.
(1) An MS4-algebra is an mm-algebra (B, [, V) such that (B,0) is an S4-algebra.
(2) An MS4-frame is an augmented Kripke frame § = (W, R, E) such that (W, R) is an S4-frame.
(3) A descriptive MS4-frame is a descriptive augmented Kripke frame § = (W, R, E) such that (W, R, E)
is an MS4-frame.

As in the case of MIPC, we have the following standard completeness results:

Theorem 2.20.
(1) MS4F ¢ & B E ¢ for each MS4-algebra B.
(2) MS4F ¢ < F E ¢ for each descriptive MS4-frame §.

We also have that MS4 has the finite model property. This can be proved by adopting the algebraic proof
of the finite model property of MIPC to the setting of MS4 (see [5]).

Theorem 2.21. MS4+ ¢ & § E ¢ for each finite MS4-frame 5.

Let § = (W, R, E) be a descriptive MS4-frame and A C W. The R-maximal points of A and the R-
mazximum of A are defined as in Definition In the context of MS4-frames, we also need the notion of
quasi- R-maximal points.

Definition 2.22. Let § = (W, R, E) be a descriptive MS4-frame and A C W.
(1) We say z € A is quasi-R-mazimal in A if xRy and y € A imply yRzx.
(2) The quasi-R-mazimum of A is the set of all quasi-R-maximal points of A, i.e.,

gnax A = {z € A | zRy and y € A imply yRz}.

Note that max A C gqmax A as R is reflexive, but not conversely. The following lemma is a consequence
of the Fine-Esakia lemma [16], [14] for descriptive S4-frames.

Lemma 2.23. Let § = (W,R,E) be a descriptive MS4-frame. For each closed A C W we have A C
R lgqmax A.

Definition 2.24.
(1) The monadic Grz is the least monadic extension MGrz of Grzegorczyk’s logic Grz.
(2) An MGrz-algebra is an mm-algebra (B, [, V) such that (B,0) is a Grz-algebra.
(3) An MGrz-frame is an augmented Kripke frame § = (W, R, E) such that (W, R) is a Grz-frame.
(4) A descriptive MGrz-frame is a descriptive S4-frame § = (W, R, E) validating Grzegorczyk’s axiom
grz.

Again, we have the following standard completeness results:

Theorem 2.25.
(1) MGrzF ¢ < B F ¢ for each MGrz-algebra 8.
(2) MGrztF ¢ & § F @ for each descriptive MGrz-frame §.

It is well known that an S4-frame § = (W, R) is a Grz-frame iff R is a Noetherian partial order; that is, a
partial order with no infinite ascending chains (of distinct points). Thus, if § is finite, then §F is a Grz-frame
iff R is a partial order.

It is a result of Esakia that a descriptive S4-frame § = (W, R) is a descriptive Grz-frame iff for each clopen
A C W the R-maximal and quasi-R-maximal points of A coincide. These results clearly hold for MGrz as
well.

Lemma 2.26 ([13]).
(1) Let§ = (W, R, E) be a descriptive MS4-frame. Then § E grz iff for each clopen A we have qmax A =
max A.
(2) Let § = (W, R, E) be a descriptive MGrz-frame. For each clopen A we have A C R™! max A.

Definition 2.27.
(1) The monadic GL is the least monadic extension MGL of the Gédel-Lob logic GL.
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(2) An MGL-algebra is an mm-algebra (B,,V) such that (B,0) is a GL-algebra.
(3) An MGL-frame is an augmented Kripke frame § = (W, R, E) such that (W, R) is a GL-frame.
(4) A descriptive MGL-frame is a descriptive augmented Kripke frame § = (W, R, E) validating gl.

As before, we have the following standard completeness results:

Theorem 2.28.
(1) MGLF ¢ & B E ¢ for each MGL-algebra 8.
(2) MGLF ¢ < §E ¢ for each descriptive MGL-frame §.

It is well known that a Kripke frame § = (W, R) is a GL-frame iff R is transitive and dually well founded
(no infinite ascending chains). Call R a strict partial order if R is irreflexive, antisymmetric, and transitive.
If W is finite, then § is a GL-frame iff R is a strict partial order.

A characterization of descriptive GL-frames was originally established by Esakia and given in [I]. It
generalizes directly to descriptive MGL-frames. For a transitive frame § = (W, R) and A C W, define the
irreflexive mazximum of A by

wA)={z € A|R(z)n A= 0o}.

Lemma 2.29 ([I]). Let § = (W, R, E) be a descriptive augmented Kripke frame. Then § is a descriptive
MGL-frame iff § is transitive and A C u(A) U R=*u(A) for each clopen A.

Thus, a descriptive augmented Kripke frame is a descriptive MGL-frame iff it is transitive and each point
in a clopen set is either in the irreflexive maximum of the clopen or sees a point in the irreflexive maximum.
It was observed by Japaridze [23], 24] that MGL has the finite model property.

Theorem 2.30 (Japaridze). MGLF ¢ < FF ¢ for all finite MGL-frames §.

3. THE GODEL AND SPLITTING TRANSLATIONS IN THE MONADIC SETTING

In this section we discuss the Gédel and splitting translations in the monadic setting. While the Godel
translation embeds MIPC fully and faithfully into MGrz, the splitting translation from MGrz into MGL does
not yield a faithful embedding.

3.1. Godel translation. The Gédel translation extends to the monadic setting by defining
(Vo) = Ov'
Fp) = 3

Using algebraic semantics, Fisher-Servi [I7} [I8] proved that this provides a full and faithful embedding of
MIPC into MS4. The proof also yields a full and faithful embedding of MIPC into MGrz. Below we give an
alternate proof of this result, using relational semantics. The proof extends a semantical proof that IPC F ¢
iff S4 F ¢t as given, e.g., in [I0, pp. 96-97].

For notational simplicity, we abbreviate the formula [0V as By and the formula (3¢ as 4. Observe
that this keeps the duality between box and diamond since By = —4— as By = OVy = ~Q—~—3—, which
is provably equivalent to =(Q3d—1y = —¢-).

Remark 3.1. The modalities B, ¢ are S4-modalities which can be modeled using the relation Q@ = Ro FE,
i.e., we have

wE By iff (for all v)(wQu implies v E p);
wk #p iff  (there exists v)(wQuv and v F ).

Using this notation, the V-step in the Godel translation is
(Vo) = Wy,
For an MS4-frame § = (W, R, E)) define an equivalence relation ~ on § by

x ~y iff xRy and yRzx.
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Let [z] denote the equivalence class of z, and let W. = W/~ be the set of all equivalence classes. Define
R. and E. on W. by
[z]R~[y] iff xRy
[]E~ly] iff zQy and yQu.
That E. is well defined follows from Ro @ o R C ) which is true by commutativity in § and transitivity of
R. Let 3o = (We, R, E.). Set Q. = E. o R...
Lemma 3.2. Let § = (W, R, E) be an MS4-frame and x,y € W.
(1) xEy implies [x]E[y];
(2) 2Qy iff [z]Q~[y].
Proof. (1) If zEy, then zQy and yQxz, so [z]E~[y] by definition of E..
(2) Suppose that Qy. Then there is y’ with xRy’ and y'Ey. Therefore, [z]R[y'] by definition of R and
[y']E~[y] by (1). Thus, [2]Q~[y]. Conversely, if [x]Q~[y], then there is [¢/] with [z]R.[y'] and [y/]E~[x]. By
the definitions of R. and E., we have xRy’ and y'Qy. Thus, zQy. O

Lemma 3.3. §. is an MIPC-frame.

Proof. Tt is well known (and easy to verify) that R. is a partial order (see, e.g., [I0, p. 68]). Transitivity
and reflexivity of E. easily follow from transitivity and reflexivity of @, and E. is symmetric by definition.
To see that §.. satisfies commutativity, let [z], [y], [2] € W. with [z]E.[y] and [y]R~[z]. Then zQy and yRz,
so £Qz. Therefore, there is 2/ with zRz" and 2’Ez. From xRz’ it follows that [¢]R[z’], and 2’ Ez implies
[2']E~[2] by Lemma 1). Thus, §~ satisfies commutativity. O

Given a valuation v on §, define a valuation v. on §~ by

va(p) = {lz] | © € v(Op)}.
Clearly v.(p) is an upset. We call §.. the skeleton of § and (§F~,v~) the skeleton of (F,v).

Conversely, given an MIPC-frame §, we regard it as an MS4-frame. In addition, if § is finite, then we
regard it as a finite MGrz-frame. If v is a valuation on the MIPC-frame §, then we regard it as a valuation
on the MGrz-frame 3.

The following lemma describes how the above frame transformations behave with respect to the Godel
translation. It is proved by induction on the complexity of .

Lemma 3.4. Let ¢ be a formula of Ly3.
(1) For an MIPC-frame § with a valuation v and x € § we have

(3:2) Fvp & (8,2) By ¢
(2) For an MS4-frame § with a valuation v and = € §, we have
F.2) F @' &~ [2]) Fos @

Proof. If § is an MIPC-frame, then §. is isomorphic to §. Therefore, (1) follows from (2). To prove (2), by
[10, Lem. 3.81], it is sufficient to only consider the case for the modalities V and 3. Let ¢ = V4. Then

[z] EVy <« (for all [y])([2]@~[y] = [y] F ¥)

& (for all [y])([z]Q~[y] = y E¥") (Inductive Hypothesis)
& (forall y)(zQy = y F¢') (Lemmal[3.2[2))

I

o zk (V).

Next let ¢ = Fop. If z |= (Fup)?, then there is y with zFy and y = ¢'. Therefore, [y] = 1 by the inductive
hypothesis, and [z]E[y] by Lemma 1). Thus, [z] = J¢. Conversely, suppose that [z] = 3. Then there
is [y] with [z]E.[y] and [y] = ¢. Therefore, yQx by the definition of E.. Thus, there is 2’ with yRz’ and
2’ Ex. By the definition of R., we have [y|R~[z']. So [z'] £ ¢ by the persistence in F.. Consequently,
2’ = 4" by the inductive hypothesis, and hence z = Ft = (F)*. O

Theorem 3.5. MIPC I ¢ iff MS4 F ! iff MGrz I .
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Proof. Suppose that MIPC I/ ¢. Since MIPC has the FMP (Theorem , there exists a finite MIPC-frame
3§, a valuation v on §, and z € § such that = &, ¢. By regarding § as an MGrz-frame, = [~, ¢' by
Lemma 1). Therefore, MGrz I/ t. Also, as MS4 C MGrz, it follows that MS4 I/ .

Conversely, if MGrz I ¢, then MS4 I/ ©t. By the FMP for MS4, there is a finite MS4-frame §, a valuation
von §, and z € § such that (§,z) £, ¢'. By Lemma|3.4(2), (§~, [z]) £ ¢. Thus, MIPC / ¢. O

3.2. Splitting translation. Next we discuss the splitting translation in the monadic setting. The key here
is Esakia’s observation that the splitting translation does not yield a faithful embedding of MGrz into MGL.
Since this result is unpublished, we give a proof of it.

Definition 3.6. Let § = (W, R, E) be an augmented Kripke frame (modal or intuitionistic), and let z € W.
(1) An E-cluster (or cluster) is a subset of W of the form F(z) = {w € W : x Fw} (it is the equivalence
class of € W with respect to E).
(2) We say that the E-cluster E(x) is dirty if there are u,v € E(z) with u # v and uRwv.
(3) We say that the cluster is clean otherwise; that is, u,v € E(x) and uRv imply u = v.

[ ]
v
T
i
e<—E— e
v u

Dirty cluster (alternate depiction - oval

Dirty cluster represents E-cluster)

Descriptive MGL-frames have the property that clusters in the irreflexive maximum of an F-saturated
clopen are clean.

Lemma 3.7. Let § = (W, R, E) be a descriptive MGL-frame. For clopen A and m € u(E(A)) we have that
E(m) is clean.

Proof. Suppose there exist clopen A and m € pu(E(A)) with E(m) dirty. Then there are x,y € E(m) with
xRy, xEy, and x # y. By commutativity, there is w such that mRw and wEy, as shown below.

B

[}
w
A
R

—E—

Be—J—><e

Se

Since y € E(A) we have w € E(A). But this contradicts R(m) N E(A) = @. Thus, we cannot have a dirty
cluster in u(E(A)). O

As a consequence of Lemma [3.7] we obtain:
Lemma 3.8. Finite MGL-frames are finite strict partial orders in which all clusters are clean.
We next show that the splitting of the Godel translation of the monadic version of Casari’s formula
MCas: VY ((p — Vp) = Vp) — Vp

is provable in MGL.
Since OVp <> OVp is provable in MS4, it is straightforward to check that (MCas)! is provably equivalent
to DV(D(Dp — Ovp) — DVp) — OVp. Using the notation M introduced above, we have that (MCas)? is:

MpCas : I(D(Dp — Hp) — lp) — Hp.

Note that (H)® = (OVy)* = OV = Vop ADVY = Vo) A Bkp. So we can use BTy to abbreviate
Vi A OV = OV, and so the splitting translation of MpCas is

(MpCas)®* =B (0" (O'p — W p) - WTp) —» Wip.
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Theorem 3.9. MGL F (MgCas)®.

Proof. Suppose § = (W, R, E) is a descriptive MGL-frame. We will prove that § £ (MgCas)®. Let v
be a valuation on §, z € §, and = ¥, BTp. We show that x ¥ BT (0" (O"p — W p) — WMTp). Let
A =W\ v(Bp). Then r € A and so by Lemma r € p(A)U R tu(A). If z € R~ 'u(A), then
there is 2’ € p(A) with xRz, If x € u(A), we let 2’ = . From 2’ € p(A) it follows that 2’ € A, so
' = Btp = Vp A OVp. We show that 2’/ £ Vp. If 2/ £ OVp, then there is y with 2’Ry and y & Vp.
Therefore, y = BT p, so y € A. But this contradicts 2’ € u(A). Thus, 2’ j= Vp. So there is w with wEx’ and
w £ p. We show that w = O (Otp — BT p) — B p.

Since w I p, we have w i p A Op, so w ¥ O p, and hence w F OFp — BT p. Let wRz. By commutativity,
there is y such that 2’ Ry and yFEz. Since 2’ € u(A), we have y ¢ A. Therefore, y = BTp, so y F Vp, and
hence z F Vp.

FETp e<-E->e EVp
Yy z
- T
R
¢ E—e ¥
In fact, if zRt, then wRt by transitivity, and so by the same reasoning as above we have t E Vp. It follows
that z F OVp, and so z = B*p. Thus, z £ OFp — BT p, and hence w F O(0O"p — WTp). This together with
wE O p — B yields w E O (OTp — WTp). Since w ¥ W p, we obtain w ¥ O (OFp — BTp) — BHp.

If x = 2/, then xFw, and so z & V(O (O p — Bp) — BTp). Otherwise, xRz’ and z' Fw imply zQuw,
soz = (O (OTp — WTp) — WTp). Thus, in either case, z = BT (OT(0OTp — BTp) — WTp) as desired.
This yields  E (MgCas)®. Since x was arbitrary, § F (MgCas)®. Because § is an arbitrary descriptive
MGL-frame, by Theorem 2), MGL - (MgCas)®. d

Theorem 3.10. MGrz t/ MgCas.

Proof. Consider the MGrz-frame § = (W, R, E) where W = {z,y}, R = {(z,2),(y,9),(x,y)}, and E =
W2 = {(z,2), (y,9), (,9), (y,7)}, as shown below.

Ep

7 p

The arrow represents the nontrivial R-relation and the circle represents that both points are in the same
E-equivalence class. It is easy to see that this is an MGrz-frame. Let v be a valuation on § with v(p) = {y}.

First, we claim that « F B(CO(Op — Mp) — Mp). To see this, note that both z ¥ Mp and y ¥ Mp, but since
y E p and y only sees itself (with respect to R), we have y E Op. Thus, y ¥ Op — Bp, so x & O(Op — Mp),
and hence z F O(Cp — Mp) — Mp. Moreover, y ¥ O(Op — Wp), so y F O(Op — Mp) — Mp, and hence
x EB(OOp — Hp) — Wp). However, z ¥ Bp as xQx and x & p. Thus, x ¥ I(O(Op — Hp) — Hp) — Hp,
hence § #maer: MgCas, and so MGrz I/ MgCas. O

Corollary 3.11. (Esakia) The splitting translation does not embed MGrz into MGL faithfully.

4. THE LogIics MTIPC AND M*Grz

In the previous section we saw that the splitting translation does not embed MGrz into MGL faithfully.
In fact, while the Go6del translation of MCas is not provable in MGrz, the splitting translation of the Godel
translation of MCas is provable in MGL. Esakia suggested to strengthen MIPC with MCas and MGrz with the
Godel translation of MCas, and see whether this repairs the disbalance. This is what we do in this section.
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4.1. MTIPC.

Definition 4.1. The logic MTIPC is defined as the extension of MIPC by MCas:
M*IPC = MIPC 4+ MCas.

Recall from Definition [3.6] that a cluster of an MIPC-frame is called clean if no distinct points in the cluster
are R-related. The following semantic characterization of MTIPC-frames was established by Esakia. For a
proof see |4, Lem. 38|. It states that a descriptive MIPC-frame is a descriptive MTIPC-frame iff the cluster
of each point in the R-maximum of the E-saturation of clopen is clean.

Lemma 4.2. [ Lem. 38] Let § = (W, R, E) be a descriptive MIPC-frame. Then § E MCas iff for each
clopen A, if m € max E(A), then E(m) is clean.

Remark 4.3. The condition in [4, Lem. 38| is that § F MCas iff for each clopen A we have A C Q! (max AN
max Q1 A). But, as discussed after the proof of [4, Lem. 38|, this statement is equivalent to the statement
in Lemma 42

As a consequence of Lemma [.2] we obtain:
Lemma 4.4. Finite MTIPC-frames are finite MIPC-frames in which all clusters are clean.
4.2. M*Grz.

Definition 4.5. The logic MTGrz is the extension of MGrz by MCas:
MTGrz = MGrz + M Cas.

Remark 4.6. As we pointed out in the previous section, MgCas is provably equivalent to the Gédel trans-
lation of MCas.

In order to obtain a semantic characterization of MTGrz, which is an analogue of Lemma, we require
the following lemma.

Lemma 4.7. Let § = (W, R, E) be a descriptive MGrz-frame, A C W clopen, and y € max E(A). If E(y)
is clean, then:

(1) E(y) € max E(A);

(2) for all z € W, from yRz and zRy it follows that y = z.

Proof. (1) Let z € E(y) and w € E(A) with zRw. By commutativity, there is w’ with yRw’ and w’'Fw.
Therefore, w’ € E(A). Since y € max F(A), we have y = w’. Thus, z,w € E(y) and zRw. As E(y) is clean,
z = w. This shows that z € max E(A).

(2) Suppose yRz and zRy. From y € E(A) and yRy, we have y € R~ 'E(A). We show that y €
qmax R71E(A). Let yRw and w € R~*E(A), so wRu for some u € E(A). Then yRu by transitivity, and
y € max E(A) implies y = u, hence wRy, and so y € qnax R"'E(A). By Lemma M(l), this means
y € max R~'E(A). Since 2Ry, we have z € R™1E(A), so yRz implies z = y. O

We now have the necessary machinery to prove a semantic characterization of MTGrz, which states that
a descriptive MGrz-frame is a descriptive MT Grz-frame iff the cluster of every point in the maximum of the
FE-saturation of a clopen set is clean.

Lemma 4.8. Let § = (W, R, E) be a descriptive MGrz-frame. Then § E MpCas iff for each clopen A and
m € max E(A) we have E(m) is clean.

Proof. First suppose § # MgCas. Then there is 2 € W such that « ¥ B(O(Op — Hp) — Hp) — Wp, and
hence 2 £ B(O(Cp — Mp) — Mp) but « ¥ Wp. Since x # W, there is 2’ € W such that 2Qa’ and 2’ ¥ p. Let
A={weW |wkp}. Then 2’ € A, and as ' Ex’, we have 2’ € E(A). Because A is clopen, so is E(A). By
Lemma 2), there is y € max F(A) with 2’ Ry. If E(y) is dirty, then we are done. So assume that E(y)
is clean. We show that this leads to a contradiction. Since y € E(A), there is y' € A with yEy’. By Lemma
[47(1), ¥ € max E(A). Because 2Qy’ and = £ B(O(Cp — Mp) — Mp), we have y' F O(0p — Mp) — Mp. As
y' € A, we have 3y F p and since y'Qy’, we have y' ¥ Bp, so we must have ¢y & O(Op — Mp). Thus, there
is z € W such that 'Rz and z ¥ (Op — Mp, which means z E Op but z ¥ Bp. Because z 7 Bp, there exist
w',w € W such that zRw' Fw and w F p (see the diagram below).
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Now, since w F p, we have w € A and hence w’ € E(A). Thus, 3’ Rw’ and w’ € E(A), so by R-maximality
of y in E(A), we must have y’ = w’. But then y’ Rz and zRy’, and so by Lemma 2), y' = z. This,
however, is a contradiction since z F Op, hence 2z E p, whereas y' ¥ p.

For the converse, suppose that A is clopen and m € max E(A) with E(m) dirty. First observe that since
m is maximal in F(A), from m@Qt it follows that ¢t € E(m) for all ¢t € E(A). Indeed, if mQt for t € E(A),
then there is ¢/ with mRt’ and t'Et. Since t' € E(A), we have t' = m by maximality of m in F(A). Thus,
t € E(m).

Now, since E(m) is dirty, there are x,z’ € E(m) with xRz’ and x # 2/. In particular, z ¢ max E(A).
Since E(A) is clopen, max E(A) is closed (see, e.g., [14, Sec. IIL.2]). Thus, we can find clopen B such that
x € B but BNmax E(A) = @, as shown below.

Choose a valuation v with v(p) = W\ (BN E(A)). Note that v is well-defined as B and E(A) are clopen.
We aim to show that = B(O(Cp — Mp) — Mp) but z 7 Wp. Since x € BN E(A), we have z [~ p. This
implies that = ~ BMp because 2Qx. To finish the argument it suffices to show that y = O(Op — Hp) — Wp
for all y with 2Qy. So let 2Qy and assume that y = Bp. Then there is z with yQz and z = p. Therefore,
z € BN E(A) and there is 2/ with yRz' and 2/Ez. Clearly 2’ € E(A). By Lemma [2.26[2), there is
t € max E(A) with 2/ Rt.
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€ max E(A)
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Since t € max E(A), we have t € B, so t = p and if tRv for t # v, then v ¢ E(A) by maximality of ¢, so
v = p. Thus, t = Op. On the other hand, zQy, yRz', and 2’ Rt imply mQt. As we saw above, this means
t € E(m), and so tEx. Since = [~ p, we have ¢ |~ Bp. This implies that ¢ = Op — Bp, so y = O(0Op — Wp),
and hence y = O(Cp — Wp) — Mp as desired. a

As a consequence of Lemma we obtain:
Lemma 4.9. Finite MTGrz-frames are finite MGrz-frames in which all clusters are clean.

4.3. The translations MTIPC — M*TGrz — MGL. As we pointed out, the remaining part of the paper
establishes the finite model property for the logics MTIPC and M*Grz. We finish this section by explaining
how a proof of Esakia’s claim is then obtained.

Let R be a binary relation. We recall that the irreflexive reduction of R, denoted R?, is defined by

aR'b iff aRb and a # b;
and the reflexive closure of R, denoted R", is defined by
aR"b iff aRb or a = b.

For an augmented Kripke frame § = (W, R, E), let §' = (W, R}, E) and §" = (W, R", E). Following the
terminology of |10, pp. 98-99], we call §* the irreflerive reduction and §" the reflevive closure of §.

Lemma 4.10.
(1) If § is a finite M+ Grz-frame, then §* is a finite MGL-frame.
(2) If § is a finite MGL-frame, then " is a finite MTGrz-frame.

Proof. Since finite MT Grz-frames are finite partial orders with clean clusters (Lemma [4.9)) and finite MGL-
frames are finite strict partial orders with clean clusters (Lemma , this is an immediate consequence of
[10, pp. 98-99|. O

Lemma 4.11. Let ¢ be a formula of MLy.
(1) For a finite MTGrz-frame §, a valuation v on §, and © € § we have

@F2)F oo (F,2)F ¢
(2) For a finite MGL-frame §, a valuation v on §, and © € § we have
) Fu 9® = (F,7) Fu @

Proof. The proof is an immediate consequence of [I0, pp. 98-99] since the quantifier modalities are not
changed by the translation (—)*, nor is the relation E altered going from § to §* or . O

Finally, we are ready to provide a proof of Esakia’s claim.

Theorem 4.12. MTIPC I ¢ iff MTGrz - ! iff MGL F (p?)5.
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Proof. The first equivalence is proved exactly as Theorem using the fact that finite MTIPC-frames and
finite M+ Grz-frames coincide.

For the second equivalence, suppose MGL I/ (?)%. Since MGL has the FMP, there exist a finite MGL-frame
3, a valuation v on §, and x € § such that (§,z) i, (¢!)°. By Lemma[d.11]2), (3", z) . ¢*, and since §"
is an M*Grz-frame by Lemma 2), M*Grz I '. For the converse, suppose MTGrz I/ ¢!, Since M*Grz
has the FMP, there exist a finite M+ Grz-frame §, a valuation v on §, and z € § such that (§,z) £, ¢'.
By Lemma 1), (§%,2) %, (¢')*, and since §' is an MGL-frame by Lemma [4.10[1), we conclude that
MGL I/ (?)5. O

We now have succeeded in lifting the original correspondences given by Goldblatt, Boolos, Kuznetsov and
Muravitsky from the propositional setting to the monadic setting, verifying Esakia’s claim. Combining this
with Japaridze’s result of arithmetical completeness for MGL yields arithmetic interpretations of MTIPC and
M Grz.

5. THE FINITE MODEL PROPERTY OF MTIPC

This section is dedicated to the proof of the finite model property of MTIPC. We do this by modifying the
selective filtration technique originally developed by Grefe [22] to prove the finite model property of Fisher
Servi’s intuitionistic modal logic FS. In [20, §10.3] it was used to give an alternative proof of the finite model
property of MIPC.

We start by collecting some properties of descriptive MTIPC-frames that will be useful in what follows.
The following lemma is the MTIPC-version of Lemma ).

Lemma 5.1. Let § = (W, R, E) be a descriptive MTIPC-frame, A C W clopen, y € max E(A), and E(y)
clean. Then E(y) C max E(A).

Proof. If E(y) € max E(A), then there are distinct ¢t € E(y) and u € E(A) with tRu. By commutativity,
there is u’ with yRu’ and « Eu. Therefore, v’ € E(A), so by maximality of y in F(A) we have y = «’. This
implies that tEu, contradicting that E(y) is a clean cluster. |

We say a point z is maximal with respect to a formula 1 if x ¢ and for each y with xRy and x # y we
have y E 4 (that is, = refutes ¢ and every point strictly above x validates ).

Lemma 5.2. Let § = (W, R, E) be a descriptive MTIPC-frame, t € W, and v a valuation on §.

(1) Let AC W be clopen. Ift € E(A), then there is x € max E(A) such that tRx and E(x) is clean.
(2) Ift [~ Y, then there is x such that tRx, x is mazimal with respect to Y, and E(z) is clean.

(3) Let AC W be clopen. Ift € A, then there is x € AN max E(A) such that tQx and E(z) is clean.
(4) Ift [~ @, then there is x such that tQx, x is mazimal with respect to ¢, and E(x) is clean.

Proof. (1) Let t € E(A). By Lemma [2.12] there is ¢ € max E(A) such that tRz. By Lemma [£.2] E(z) is
clean.

(2) Suppose that t = V. Let A = v(Vp)©. Then A is clopen, E(A) = A, and t € E(A). By (1), there is
x € max E(A) such that tRz and E(z) is clean. Since E(A) = A, it immediately follows that = is maximal
with respect to V.

(3) Let t € A. Then t € E(A). By (1), there is 2’ € max E(A) such that tRz’ and E(z’) is clean. Since
2’ € E(A), there is x € A with ' Ex. Therefore, tQz, and because F(z') is clean, we have that € max E(A)
by Lemma [5.1}

(4) Suppose that ¢ = ¢. Let A = v(p)°. Then A is clopen and ¢ € A. By (3), there is z € ANmax E(A)
such that tQx and E(z) is clean. Since z € A, we also have x € max A. But the latter means that z is
maximal with respect to ¢. Thus, x is as desired. ]

5.1. The construction. We start with a formula ¢, a descriptive MYIPC-frame § = (W, R, E), and a
valuation v on § such that § £ ¢. By modifying the construction in [20, §10.3], we will construct a sequence
of finite MTIPC-frames §, = (W, Ry, E),) such that §, C Fnyq for all h < w. For each point t € W), that
we select, we will be creating a copy of some original point in W. We give each added point a new name,
say t, and let ¢ denote the original point in W that ¢ was copied from and will behave similar to. Thus, it
is possible to have two different points z; and x5 in our new frame, where T; = Z5. The main difference
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between our construction and the construction given in |20} §10.3] will be seen in the —-step, which requires
a more careful selection of new points.
To start the construction, let Fo = (Wy, Ro, Fo) where

Wo = {to}, Ro=Wg, Eo=W¢,

and {; is a point in W such that fy is from a clean cluster and is maximal with respect to ¢. The existence
of such y follows from Lemma (4) Moreover, let WY = &.

Let Sub(y) be the set of subformulas of ¢, and let (W', R’, E’) be any of our frames in the construction.
To each t € W’ we associate the following subsets of Sub(yp):

»3(t) = {30 € Sub(yp) : t = 36}

)
SYH (1) = {VB € Sub(p) : t is maximal wrt V3}
SV (t) = {¥y € Sub(¢p) : t ¥ but is not maximal wrt ¥~}
Y7 (t) = {o — o € Sub(p) : t ¥ a — & but is not maximal wrt o — o'}

These are precisely the subformulas of ¢ whose truth-value at t is relevant for constructing our countermodel.

Suppose Fr—1 = (Wh_1, Rp_1, Er_1) has already been constructed so that §5—_1 is a finite MTIPC-frame
and E(w) is a clean cluster for each w € Wj,_1. We construct §, applying the four steps described below.
They are designed to add the necessary witnesses required by the formulas in the sets ¥2(¢), SV (¢), YV (¢),
and Y7 (t), respectively. In the 3-step we ensure that for each formula in X7(¢) the point ¢ has an E-successor
that witnesses the existential statement. In the VH-step we ensure that for each formula in X (¢) the point
t has an E-successor that witnesses the refutation of the universal statement. In the vertical steps VV and —
we make sure that ¢ has the necessary R-successors that are maximal with respect to the formulas in X7V (¢)
and X277 (t), respectively. In each step of the construction we add also points to witness commutativity. Note
that the first three of the following four steps are only done once per cluster. This is enough since all points
of a cluster in § agree on refuting an V- or 3-formula and points from a clean cluster agree whether such a
refutation is maximal.

Roughly speaking, points are added to the construction in the following order: In the first round the
cluster of the starting point ¢ is built by adding points for formulas in $3(to) and Y (¢y). After this, no
more points are added to this cluster. We call this the ‘bottom cluster’ of our frame. The first round of the
construction proceeds by adding vertical witnesses for each formula in X7V (#y) and closing each such cluster
by adding points for commutativity. The first round then finishes by adding for each point ¢ in the ‘bottom
cluster’ vertical witnesses for the formulas in ¥7(¢) and closing under commutativity. In the next round all
these newly build clusters will possibly be enlarged in the horizontal steps and then new vertical clusters
will be added in the VV- and —-steps.

3-step (Horizontal): Let W7 = Wy,_1, R} = Rj_1, and E7 = Ej,_;. For each E7(t) C W\WYH, | if
3§ € ¥3(t) but there is no s € W already such that tE}s and § F 4, then we add a point s to W;} with
5= 0 and tE35. Such a point § exists in W since ¢ = 35. We then add the ordered pairs (s,s) to R}, the
ordered pairs (¢, s) to E,i and generate the least equivalence relation.

VH-step (Horizontal): Let WYH = W2, RJH = R}, and EY¥ = E7. For each EYH(t) C WYH\WYH if
VB € TVH(t) but there is no s € WH already such that tE}Y s and $# 3, then we add a point s to WyH
with § £ 8 and tES. Such a point § exists in W since ¢ is maximal with respect to V3. We then add the
ordered pairs (s,s) to RY?, the ordered pairs (¢,s) to EY?, and generate the least equivalence relation.

VV-step (Vertical): Let WYV = WYH R}V = Ry and EYV = EJH. For each E}V (t) C WYV\WYH |
consider Yy € XYV (t). Since t & Vv, we can pick a point § € W as in Lemma (2) We add the point s to
WyV and (t,s) to R}V

Since W satisfies commutativity, for each w € EYV (t), there is z,, € W such that @Rz, and z,Es. To
ensure commutativity is satisfied in our new frame, we add the points s,, to W,Y V' where 5, = z,,. We then
add (w, s,) to R}V and take the reflexive and transitive closure. We also add (s, s) to Ey" and generate
the least equivalence relation.
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—-step (Vertical): Let W;> = W)V, R;> = R}V, and E;” = EYV. For each t € WYH\WYH (hence
including any points added in the horizontal steps above, but not in the previous vertical step), consider all
a — o € X7 (t) such that there is no s € W,,” already such that ¢tR;’s and 5% a — ¢ maximally. Consider

A=W \via=ao)]n () {v@):tFe}
PESub(p)

Then A is clopen and ¢ € A, so by Lemma 3) there is z € A with z € max E(A), 1Qz, and E(z) clean.
We add the point s to W,” where 5= z (s is a distinct new copy of z) and (¢, s) to R;.

Remark 5.3. It is at this step that we have altered the construction given in |20, §10.3], in which witnesses
for implications are added in the same manner as in the VV-step. In our version, we took an original Q-
relation and turned it into an R-relation. The reason for this is that we cannot guarantee the existence of
an R-successor of ¢ that is maximal with respect to & — ¢ and at the same time belongs to a clean cluster.

Before wrapping up the step, we show two properties of the chosen points.
Lemma 5.4. The point s = z, as chosen above, is maximal with respect to o — o.

Proof. Suppose zRu for some u ¥ @ — o. Since zRu and each v(¢) in {v(¢) : tE 1} is an upset, we have
u € A. Because z € max A, we obtain z = u. Thus, z is maximal with respect to a — o. O

Lemma 5.5. E(t) # E(3).

Proof. If E(t) = E(3), then t € max E(A) by Lemma Since t € A, we have t € max A. Therefore, the
same argument as in the proof of the previous lemma yields that ¢ is maximal with respect to @ — o. This
contradicts a« — o € L7 (1). O

We wrap up the —-step the same way as the VV-step. Since W satisfies commutativity, for each w €
EYV(t) there is z, € W with @Rz, and z,Es. We add the points s,, to WV where 5, = z,. We then
add (w, s,) to R;” and take the reflexive and transitive closure. We also add (s, s) to E;” and generate
the least equivalence relation.

To end this stage of the construction, we let §, = (W}, Ry, Ep) where
Wy, =W, Rn=R;, Ep=E;.
Lemma 5.6. 3, is a finite MTIPC-frame.

Proof. First we show that Ry, is a partial order. Since in the 3- and VH-steps we only added reflexive arrows
to Rp_1, the relation RY¥ is a partial order. By moving from R} to R, we finished by taking the reflexive
and transitive closure, hence Ry, is clearly reflexive and transitive. Antisymmetry of R follows from the
fact that every R-arrow added in the VV-step and —-step is either reflexive or an arrow from a previously
existing point into a freshly added point.

That Ej is an equivalence relation is clear from the construction. Moreover, the extra points added
in the VV-step and —-step make sure that commutativity is satisfied. In fact, the added points assure
commutativity for immediate successors and by transitivity this implies commutativity for the whole frame.
Therefore, §, is an MIPC-frame.

It follows from the construction that §j is finite. Thus, by Lemma @ it is left to show that §; has
clean clusters. Note that in the 3-step and VH-step all freshly introduced FEj,-relations are of the shape (s,t)
where either s € W), and t € WZ H \ Wp_1 or s,t € W,\Z H_Since no non-reflexive Ry-arrows are introduced
in these steps, no dirty cluster could have been built. We have already discussed the shape of the Rj, arrows
introduced in the VV-step and —-step. This guarantees that no cluster in WY is made dirty. The freshly
introduced Ej-relations in these steps are of the shape (s,t) where s,t € Wp, \ W,\Z H Since no non-reflexive
Ry, relations exist between these points, we infer that all clusters are clean. O

5.2. Auxiliary lemmas. To prove that our construction terminates after finitely many steps, we require
several auxiliary lemmas.

Lemma 5.7. Let x,y € Wj.

(1) If xRpy and x # y, then TQY and E(T) # E(3).
(2) If xEnpy, then TEY.
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(3) If 2Quy, then FQF.

Proof. (1) Observe that in the construction each non-trivial Ry-relation between immediate successors comes
from either a non-trivial R-relation (as in the case of points added for commutativity or in the VV-step)
or a non-trivial Q-relation (as in the case of points added in the —-step), in which case there is w € W
with T # w, TRw, and wEYy. In that case we obviously have ZQy and by Lemma E(Z) # E(y) in W.
Otherwise the relation xR,y was added by transitivity, so there is a chain x = zoRpx1 R}, . .. Rpx, = y of
immediate Rj-successors to which the previous applies. In particular, by transitivity of @ we have ;Qy for
all i < n, so TQY. Moreover, there is z; € W with 21 # x, TRz and 21 EZ1. Since 71Qy, by commutativity
there is 3/ in W with 21 Ry’ and ¢/ Ey. If ZE7, then also ZEy' and TRy’ by transitivity of R. Since T is
from a clean cluster, this implies Z = 3’. Therefore, TRz, RZ, and so T = z; by antisymmetry of R. This is
a contradiction since T # z1. Thus, E(Z) # E(Y).

(2) It is obvious that each Ej-relation in W}, comes from a pre-existing E-relation in W.

(3) If 2Qny, then there is z with zRy,z and zEpy. If = z, then Eyy, so ZEY by (2), and hence TQy.
If © # z, then ZQZ by (1). Also, zEy implies ZEY by (2). Thus, 2Qy. |

Lemma 5.8 (Persistence). If uRpw, then @k ¢ implies @ E 1 for all 1) € Sub(yp).

Proof. Suppose uR,w, ¥ € Sub(y), and u E 1. It suffices to show the result for an immediate Rj,-successor
w of u, the general result then follows by induction. We consider how the Rp-arrow from u to w was added.
By construction, either “R®@ or w was added to witness some implication in X7 (u). If @Rw, then clearly
u E 9 implies @ E ¢. If w was added in a —-step, then w is specifically chosen so that @ € v(v) for all
v € Sub(¢y) such that u E . Thus, @ F ¢ implies @ E 4. O

Lemma 5.9.

(1) If tEpu, then X3(t) = X3 (u), SVH(t) = X7 (u), and XV (t) = ¥V (u).

(2) If tRyv and Iy € Y3(t) N X3 (v), then there are u,w such that tEyu, uRpw, wER, U = v, and
wEy.

(3) IftRyv and t # v, then "2 (1) N XV (v) = @.

(4) Along an Rp-chain, each formula in {¥i : Y € Sub(p)} U {3 : I € Sub(p)} can serve at most
once as a reason to enlarge a cluster in a horizontal step.

(5) If tRyu, then X7V (u) C XYV (t) and if u was added as an immediate Ry,-successor to t because of
Vo € BV (t), then ¥V (u) C BV (¢).

(6) If tRpu, then X7 (u) C X7(t) and if u was added as an immediate Ry -successor to t because of
a— f€X7(t), then X7 (u) C X7(1).

Proof. (1) Suppose tEyu. Then tEG by Lemma 2). Therefore, E(t) = E(@) and Q(t) = Q(@). Thus,
tEJyiff 4 F Iy, and t E Vv iff G F V. Moreover, since E(%) is a clean cluster, ¢ is not maximal wrt Vv iff @
is not maximal wrt V. Consequently, ¥ (¢) = %3 (u), X7 (t) = ¥V (u), and 7V (¢) = £V (u).

(2) Suppose tRyv and 3y € %3(¢) N %3(v). By the construction, there is u with tEju and @ F 5. Since
51 satisfies commutativity, there is w with uRpw and wE,v. By Lemma [5.8] @ F ~.

(3) Suppose tRyv and ¢ # v. Then tQ0 and E(t) # E(7) by Lemma(l), sot # 0. Thus, if Voo € 2V (¢),
then ¥ F V¢ by maximality of #, so Vi ¢ SV (v). Conversely, if Vi) € XV (v), then t cannot be maximal
with respect to Vi, so Vi & XV (¢).

(4) Let {v; | i € N} be an Rp-chain in Wp,, i.e. v; Rpv;41 for all i € N. Suppose J¢p € Sub(p). Let k be
the least stage at which the formula 3¢ has been used to enlarge the cluster E}(vg) in a horizontal step.
By (2), all E(v;) for I > k already contain a witness for 1, so no cluster above will need to be enlarged
in a horizontal step to witness the formula 3. Now suppose Vi) € Sub(y). Let I be a stage at which the
formula Vi) has been used to enlarge the cluster Ej(v;) in a horizontal step. Then Vi € XV (v;). By (3),
Vi & XVH (vy,) for k # 1. Thus, V4 is responsible for enlarging a cluster at most once in a horizontal step.

(5) We show the statement for immediate Rj-successors only, the general case follows by induction.
Suppose tRyu and V¢p € XYV (u). If t = u, then the result is clear. Suppose ¢ # u. Since tRju, either
tRU in W or u was added as a successor of ¢t in some —-step. If tR4U, then Vo € YV (t) by persistence
(see Lemma . Suppose u© was added as an Rj,-successor to ¢ as a witness to some implication. By the
choice of u, we have u F y for all y € Sub(y) with t E x. Therefore, if ¢ E V4, then we would have @ F V4,
contradicting V¢ € X7V (u). Thus, we must have ¢ & Vi. Moreover, since tRU, t # 4, and 4 ¥ Y1, we
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have that ¢ is not maximal with respect to V1, so Vob € XYV (t). Consequently, in either case we have
YV (u) C BV (1).

Suppose that u was added as an immediate Rj-successor to ¢ because of Yo € X7V (t). Since Vo € XYV (¢),
we have ¢ E Vo but ¢ is not maximal with respect to Va. Since u was added as an immediate Rp,-successor
of t because of Yo, we specifically chose u so that 7 & Yo maximally, hence Ya & X7V (u).

(6) We show the statement for immediate Rj-successors only, the general case follows by induction.
Suppose tRpu and @« — € X7 (u). Then ¥ o« —  and u ¥ a. If ¢ = w, then the result is clear. Suppose
t # wu. Since tRju, either tRU in W or u was added as a successor of ¢ in some —-step. If fRﬂ, then
a — B € X7 (t) by persistence (see Lemma. Suppose u was added as an Rjp-successor to t as a witness
to some implication. By the choice of u, we have u F 9 for all 1) € Sub(y) with t & 1. Therefore, we must
have ¢ £ o — S and © £ o, so ©7(u) € L7 (t). Moreover, by construction, @ refutes o — (8 maximally
(Lemma [5.4), and hence @ F . Thus, @ = 8 ¢ 7 (u). O

5.3. Termination of the construction. With the aid of the auxiliary lemmas of the previous section, we
will now prove that the end result of our construction is a finite frame. We will do this by looking at three
important parameters of our frame: cluster size, R-branching, and R-depth.

Definition 5.10.
(1) A frame § has bounded cluster size if there exists k € N such that |E(t)| < k for all t € W.
(2) A frame § has bounded R-branching if there exists m € N such that ¢ has at most m distinct
immediate R-successors for all t € W.
(3) A frame § has bounded R-depth if there exists n € N such that there is no R-chain in § with more
than n distinct elements.

Lemma 5.11. Let § = (W, R, E) be a partially ordered rooted augmented Kripke frame. If § has bounded
cluster size, bounded R-branching, and bounded R-depth, then § is finite.

Proof. Suppose § = (W, R, E) is a partially ordered rooted augmented Kripke frame with bounded cluster
size, R-branching, and R-depth. Consider the quotient (W/E, Rg) whose worlds are the clusters E(x) where
x € W and E(z)RgE(y) iff xQy. To see that R is well defined, suppose xQy, =’ € E(z), and y’' € E(y).
Then ' ExQyEy’, so 'Qy’, and hence Rg is well defined.

Because @ is reflexive and transitive, so is Rg. Since R is a partial order and § has bounded R-depth,
from 2Qy and yQx it follows that zEy by [3, Lem. 3(b)]. This shows that Rg is anti-symmetric, and hence
a partial order. Clearly (W/E, Rg) is rooted since so is §. Using commutativity in § it is easy to verify that
(W/E, Rg) inherits bounded depth and bounded branching from §. Since every rooted partial order with
the latter properties is finite, we have that W/FE is finite. Because W has bounded cluster size, we conclude
that W is finite too. |

Let mq, mo, mg be the non-negative integers

my = [{J : I € Sub(p)}|

ma = [{V¢ : V1) € Sub(p)}|

mz = [{¢) = x: ¥ = x € Sub(p)}|.
Lemma 5.12. §;, = (Wy, Ry, Ey) has cluster size bounded by 1+ mqy + ms for all h < w.
Proof. Recall how the clusters of our frame are built. The ‘bottom cluster’ of the starting point t; contains
points added via the horizontal 3- and VH-steps. After this, no more points are added to this cluster.

All other clusters are constructed as follows. First points of a new cluster are added via the vertical VYV -

or —-steps, and then the cluster is enlarged by the points added for commutativity. We refer to this stage as
the ‘building phase’ of the cluster. In the next round of the construction, the cluster is (possibly) enlarged

via the two horizontal steps. After this, no more points are added to the cluster. In the horizontal steps, we
enlarge the cluster for only two different reasons:

Iy € ©3(t) or Vy € B (1),
Thus, each enlargement of a cluster after its building phase is due to a formula in

{Vp : Vip € Sub(p)} U {F : T € Sub(p)}.
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At the end of its building phase, the bottom cluster contains just one point. Observe that every cluster
can be reached from the bottom cluster by an Rp-chain. By Lemma ), every formula in {V4) : Vi) €
Sub(¢)}U{F) : Fp € Sub(p)} can serve at most once as a reason to enlarge a cluster after its building phase
along an Rjp-chain. This entails that every cluster has size at most 1 + mj + mo. O

Lemma 5.13. §;, = (Wh, Ry, Ey) has Ry, -branching bounded by (1 4+ my + ms) - ms + ms for all h < w.

Proof. Immediate Rj-successors are added in the VYV -step and —-step. First observe that since we are adding
points to witness commutativity, every point in a cluster has the same number of immediate Rj-successors
by the end of a stage. Thus, it is enough to count the immediate successors of a point ¢ that we picked in
the VV-step.

To such a point ¢ we add immediate Ry-successors for three different reasons:

(1) Yy e BV (),
(2) a >0 €X7(t), or
(3) a — o € X7 (y) for some y € Ey(t) with y # ¢.

The last reason covers the case where we add an Rj-successor to ¢ to witness commutativity. Note that all
reasons occur at most once for each formula in the respective sets. Therefore, reason (1) occurs at most
me-times and reason (2) at most ms-times. Finally, reason (3) occurs at most (my + mg) - m3 times since
by Lemma [5.12] there are at most m; + mo points apart from ¢ in the cluster of ¢. Thus, the Rj-branching
of § is bounded by

ma +mg + (M1 + ma) - mg =ma + (1 +mq +ma) - ms.

~ —

|ER(t)] < 14+m1 +ma

Lemma 5.14. §;, = (W, Ry, Er) has Rp,-depth bounded by (1 +mq + ma) - (ma + mg) for all h < w.

Proof. The reason for adding an immediate successor to t € W}, via an Ry-relation is due to either a formula
in X7V (¢) or a formula in X7 (y) for some y € Ej(t) (as discussed in the proof of Lemma [5.13). Let s be a
(not necessarily immediate) Rp-successor of ¢. Then s could have been added via direct formula witnessing,
i.e. there is an immediate predecessor t’ of s with tRyt' Ry s and s was added due to a formula in X7V (#) or
Y7 (t'), or else s was added to satisfy commutativity.

As we saw in Lemma moving up along an Rj,-chain, the cardinality of the sets XYV (¢) and X7 (¢)
does not increase, and it in fact decreases whenever an Rp-successor is added by direct formula witnessing.
In particular, each point can have at most msy + mg Rp-successors that have been added via direct formula
witnessing and since in each cluster there are at most 1 4+ my + mso points (Lemma , we have that the
total Rp,-depth cannot exceed (1 + my + ma) - (ma + mg).
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Lemma 5.15. There is h € N such that § = §p, for all b’ > h.

Proof. All points in the bottom cluster are added in round 1 and in each round we enlarge the Rj-length of a
path by at most one. Thus, in stage k of the construction, all Rj-chains are bounded by k. The construction
continues only until vertical witnesses are required. Since, by Lemma [5.14] the Rj-depth of §j is bounded
by m = (1 +my + ma) - (mg + mg3), we have Fpr = Fma for all B/ >m + 1. O

Set § = (W', R, E') where
W' =W, R =h E =8,
and h is as in Lemma Then §' is a finite MTIPC-frame by Lemma

5.4. Truth lemma. Define a valuation v/ on W’ by v/(p) = {t € W' : t € v(p)} for p € Sub(p) and
V' (q) = @ for variables ¢ not occurring in ¢. That v/ is well defined follows from Lemma which ensures
that the sets v/(¢) are in Up(gF’) for each 1) € Sub(yp).

Lemma 5.16 (Truth Lemma). For allt € W' and 1) € Sub(p), we have t E' 1 iff t £ .

Proof. The proof is by induction on the complexity of 1. The base cases ¢ = L and ¥ = p (p a propositional
variable) follow from the definition, and the cases ¢ = 11 A 12 and ¥ = 11 V 1y are easily verified. So we
focus on the cases ¢ = ¢ — 19 (and hence 1 = =)y = 1p1 — L), ¥ = F)y, and P = Vi);.

— case: Let ¥ = 1)1 — 1po and t € W’. Suppose ¢t 7 11 — 1. Then tR’s for some s € W’ with s F'
and s ' 3. By the inductive hypothesis, 5 F 11 and §  15. Thus, § & 1)1 — 5. Since tR's, we have
tAI? 11 — 1o by persistence (Lemma .

Conversely, suppose tAE‘ Y1 — g, If t E 4y, then we have £ E 1 but fi;" 2. By the inductive hypothesis,
t E' by but t B 5. By construction, tR't, so t & 11 — tby. If ¢ & ¢y, then in the —-step of the stage
immediately after ¢ is added to W', we add s to W’ and tR's where 5 i ¢y — 12 maximally (Lemma [5.4)).
Thus, 5 F 17 and 5 F 15, so by the inductive hypothesis, s F’ 11 and s ' 5. Since tR’s, we conclude that

t# 1 — .

Jcase: Let ¢ = 1 and t € W'. Suppose t ' Jp;. Then tE’s for some s € W’ with s F' ;. By the
inductive hypothesis, § F 11, and tE’s implies tES by Lemma (2) Thus, ¢ £ 3.

Conversely, suppose tE J¢p;. Then F; € £3(t), so in the I-step of the next stage of the construction
after t is added, we add s to W’ and (t,s) to B’ where s is a copy of some § € W with #E5 and §E ;. By
the inductive hypothesis, s E’ 1)1. Since tE’s, we conclude that ¢ & J1);.

Y case: Let ¢ = Vip; and t € W'. Suppose t B’ Vip;. Then tQ'w for some w € W' with w ¥ ;. By the
inductive hypothesis, w F 11, and tQ’w implies tQw by Lemma ). Thus, ¢ & V.
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Conversely, suppose ¢ Vib;. If ¢ is maximal with respect to i)y, then Vi, € SVH (t), so at some point
in the construction of the next stage after ¢ is added, we add s to W’ and (¢, s) to E’ where s is a copy of
some § € W with tES and 5 ¥ 1. By the inductive hypothesis, s & 91, so t & ;. If £ is not maximal,
then we add s to W’ and (¢, s) to R’ where s is a copy of some § € W and § is maximal with respect to Vi);.
Therefore, V1, € X7 (s), and in the next stage we add w to W’ and (s,w) to E’ where @ € W and @ ¥ ;.
But then tQ'w, hence tQw (see Lemma , and by the inductive hypothesis, w & 1. Thus, t ' Va;. O

The FMP of MTIPC is now an immediate consequence of the above.
Theorem 5.17. MTIPC has the finite model property.

Proof. Suppose MTIPC I/ . By completeness of MTIPC with respect to descriptive frames, there are a
descriptive MTIPC-frame § and a valuation v on § such that (§,v) [~ ¢. Let §’ be the finite MTIPC-frame
constructed above. Since to was chosen so that #, refutes @ in §, by Lemma to refutes ¢ in §’. We thus
found a finite MTIPC-frame refuting ¢. |

Since MTIPC is finitely axiomatizable and has the finite model property, as an immediate corollary to
Theorem we obtain decidability of MTIPC, meaning that there is an effective method for determining
whether an arbitrary formula is a theorem of MTIPC.

Corollary 5.18. MTIPC is decidable.

Remark 5.19. Another consequence of Theorem is that MTIPC is the monadic fragment of the inter-
mediate predicate logic of Casari, which is obtained by adding to IQC the Casari formula Cas. This can be
seen by utilizing the Translation Theorem of Ono and Suzuki (see [31, Thm. 3.5]).

6. THE FINITE MODEL PROPERTY OF M*Grz

In this section we prove that M Grz has the finite model property. Our proof, which consists of three
steps, is a mixture of selective and standard filtration techniques. The main reasons why the same technique
as for MTIPC does not work is the lack of persistence in Mt Grz-models and the fact that witnesses for
V-formulas cannot be chosen maximally wrt @Q-relations. A rough structure of the proof is as follows.

Suppose MTGrz I/ ¢. Then there is a descriptive M+ Grz-frame §o = (Wy, R, Fo, Py) and a valuation v
on Wy such that §o Hy ¢. We build a finite M* Grz-frame from F¢ in three steps:

(1) First we select a (possibly infinite) partially ordered MS4-frame §; = (W3, Ry, E1) from o, in which
all clusters are clean and ¢ is refuted. An important feature of this step is that R; is not simply the
restriction of Ry to W1, but rather its strengthening. Its construction resembles the construction of
R-relations from Q-relations in the —-step of the MTIPC-construction.

(2) Next we construct a (possibly infinite) partially ordered MS4-frame §2 from §1, in which all clusters
are both clean and finite and ¢ is refuted. In this step we use standard filtration to collapse E;-
clusters of §;1 so that each cluster contains only one point representing all points that satisfy the
same formulas of Sub(yp).

(3) Finally, as in Step 1, we use selective filtration to construct a finite partially ordered MS4-frame F3
from §o, in which all clusters are clean (hence §3 is an MTGrz-frame) and ¢ is refuted. This step
resembles the MTIPC-construction, but in order for §s to inherit the bounded cluster size from Fs,
we need to add only a single copy of an original point in § to a cluster.

6.1. Step 1: Constructing §;. Let §o = (Woy, Ry, Eg) be as above. For x,y € Wy let

x@oy iff there is w € Wy such that w # z,xRow, and wEyy.
We construct §1 = (W1, Ry, E1) as follows:
Wy ={z € Wy | € maxg, Eo(A) for some clopen A of Fo}.
TRy x=yor :cQ_\oy and z Fo Oy = y Eg Oy for all Oy € Sub(yp).
xFEy < xEgy.

We define a valuation 4 on §1 by v1(p) = {z : © € vy(p)} for all p € Sub(yp), and v1(q) = & for all
other propositional variables g.

We first show that there is a point in W; which refutes ¢ (in o).
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Lemma 6.1. There is v € Wy such that v %y ¢ (Ro-mazimally) and v € maxpg, Eo(v(—y)) (hence Ey(v) is
clean and v € Wh).

Proof. Since Fo Ho o, there is t € Wy such that t #y ¢. Then ¢ € vo(—¢p), so t € Eyg(vo(—p)). Because
descriptive augmented Kripke frames satisfy A € Py = Fo(A) € Py, we have Eo(vo(—p)) € Py. Thus,
Lemma yields u € Wy with tRou and u € maxg, Eo(vo(—¢p)). Since u € Eg(vo(—y)), there is v € W
with uFEgv and v Fy ¢. We now show that v is our desired point. Because u € maxp, Eo(vo(—¢)), the
cluster Eg(u) = Eo(v) is clean (Lemma [4.8). We show that v € maxg, Eo(vo(—¢)). Suppose vRow for some
w € Ey(vo(—p)). By commutativity, there is u’ such that uRpu’ and u'Epw. Then u' € Ey(vo(—y)), so
u € maxp, Fo(vo(—p)) implies u = «’. Thus, vRyw and vEyw, yielding that v = w as v is in a clean cluster.
Now, since v € maxp, Eo(vo(—¢)) and v € vy(—p), it is easy to see that v is Ryp-maximal with respect to ¢,
hence is our desired point. O

We next highlight some fundamental properties of §, .

Lemma 6.2.
) Eo(x) C Wy is a clean cluster in o for all x € W1.
If x € W1, then Ey(x) C Wh.

xQoy iff xQoy dut xHoy for all x,y € Wy.

)

)

) The restriction of Qo to Wi is a strict partial order.

) Ry is a partial order.

) Ej is an equivalence relation.

) Ri and E; satisfy commutativity.

) &1 has clean clusters.

) Forx € Wy and Oy € Sub(yp), if v o Oy, then there isy € Wi such that tRyy, y € ANmaxp, Fo(A),
where

A = vo(=0y) N[ {o(Tv) | Oy € Sub(y) and x Fo Oy},
and y o Oy Ro-mazimally, hence y Fy .

Proof. (1) This is an immediate consequence of Lemma

(2) Let x € Wy and y € Eg(x). Then « € maxp, E(A) for some clopen A C Wy. Therefore, Ey(x) is clean
by (1), and so y € maxg, E(A) by Lemma [£.7(1). Thus, y € W;.

(3) The implication from right to left is obvious. For the converse, suppose that x,y € W; and there is
w € Wy such that w # z, x Ryw, and wEyy. Then clearly zQoy. Also, since x is from a clean cluster, zEyw.
Thus, zHoy.

(4) Trreflexivity of Q¢ on W follows from the reflexivity of Ey and (3). We show that Qg is transitive on

W1. Suppose xQoyQoz for x,y,z € Wi. Then there are 3y’ # = and 2’ # y with zRyy’, v’ Eoy and yRyz’
and 2’ Fyz. By commutativity, there is 2" with ' Rgz"” and z” Egz. Therefore, xRoz" and 2" Egz. If we had
z = 2", then we would obtain xRy Roz, and so z =y’ by Lemma [4.7(2). The latter contradicts the choice

of y'. Thus, 2’ # x and so xQqz.
(5) Ry is reflexive by definition. To see that R; is transitive, suppose x,y, z € Wy with 2 RjyR;2z. Without

loss of generality we may assume that x,y, z are pairwise distinct. Then 2Qoy and yQoz, so Qoz by (3).
Moreover, if z = Ot for Oy € Sub(yp), then since xR1yR;z, we have y = Oy and so z = . Therefore,

Ry is transitive. Finally, if x RiyRix and = # y, then 2QoyQoz. The latter implies zQox by transitivity of

o, which contradicts irreflexivity of Q9. Thus, R; is anti-symmetric.
(6) This is immediate since E; is an equivalence relation.
(7) Suppose that xR1y and xFz. Without loss of generality we may assume that © # y and = # z. Then

xQoy, so there is u € Wy such that = # u, x Rou, and uFgy. By commutativity in Wy, there is v such that
zRov and vEyu. We show that v is the required witness for commutativity in Wy. From vEyu and uFyy we
have vEyy, so v € Wi by (2). Because = # u, xRou, and z is from a clean cluster, we have xHou . Thus,

zHgv. In particular, z # v, and so zQgv. Moreover, zRgv gives that if z Fg Oy, then v Fg O, so z2R;v.
From vEyy we have vE;y, yielding commutativity in Wi.
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(8) Suppose there are x,y € Wi with « # y, xF1y, and Ryy. Since zEyy, we have zFyy, and because

xRy and x # y, we have £Qpy. Thus, there is w € Wy with = # w, zRyw, and wEyy. From xFEyy and
yFEow we have xEqw. By (1), « is chosen from a clean cluster in Wy, so 2 Ryw and zFEow imply z = w, a
contradiction.

(9) Suppose z o Oy. Consider

A=ryy(-0Ov)N m{uO(Dz/J) | Oy € Sub(p) and = Fo O}

Clearly z € A, so x € Ey(A). We have © € maxp, Fo(A) or ¢ maxp, Eo(A).
Case 1: x € maxp, Fo(A)

If € maxp, Eo(A), then from zRyw and x # w it follows that w & Ey(A), so w € A. But 2 Ryw implies
w € ({vo(Oy) | Oy € Sub(p) and = Fo Oy}, so we must have w ¢ vo(—-0O7v). Therefore, w Fq Oy. Since
x #o Oy but w Fo Oy for all w # x with x Ryw, we must have x ¢y Oy Rp-maximally. Thus, x ; 7, and z
is our desired point.
Case 2: = € maxp, Eo(A)

If 2 ¢ maxp, Eo(A), then Lemma [2.26(2) yields ¢ € maxg, Eo(A) such that = # ¢ and zRot. But then
tEoy for some y € A. Since t € maxp, Eg(A), we have t € Wi, so y € Wi by (2). From x # t and zRot it

follows that xQoy. By the choice of y € A, if x Fo Oy then y Fo Oy for all Oy € Sub(p), so zRy1y. Since
y € A, we have y Fy Ov. To see that y Fy Oy Rg-maximally, suppose yRoz and z 7y Oy. If = Fy O, then
y Eo Oy (as y € A), so yRyz implies z Fy 0. Thus, z € A, hence z € Ey(A), and maximality of y in Ey(A)
yields y = z. Consequently, y is Rg-maximal with respect to [Jy. |

We conclude Step 1 by proving the truth lemma for §;.
Lemma 6.3 (Truth Lemma). For x € Wy and ¢ € Sub(y),
(So,2) Fo ¥ & (§1,2) F1 9.

Proof. The proof is by induction on the complexity of 1). The base case @ = p is clear from the definition
of v1. The cases of ¢ = 11 A1y and ¥ = —); are straightforward, so we focus on the cases ¥ = V1)1 and
¢ =0y

Suppose 1 = V1. If @ Wy Vipy, then xEyy for some y o 1. By Lemma[6.2)2), y € W1, so y 4 ¢ by
the inductive hypothesis. From xFyy we have x Fhy by the definition of F;. Thus, z 1 V1. The proof of
the converse implication is immediate.

Suppose ¥ = 1. If = Hy )y, then by Lemma (9), there is y € Wy such that zRyy and y g 1.
By the inductive hypothesis, y F1 11, hence = 1 ;. Conversely, if z Fq (i), then there is y € Wi such
that xR1y and y ¥, 1. By the iilductive hypothesis, y #y ¥1. If x = y, then x Fy ¥, hence x Fy Oy If

x # y, then as xRy, we have xQoy and x Fo Oy implies y ¢ O for all Oy € Sub(y). Since y #y 11, we
have y Fy . Thus, x #y . |

6.2. Step 2: Constructing §-. In this step we use the standard filtration technique to construct §o from
§1 by ‘collapsing’ Ei-clusters into finitely many classes. Thus, §2 will have finitely many clusters.
Define an equivalence relation ~ on Wj by

x~y < (zE1y and x F1 v < y Fp vy for all v € Sub(y)) .

We construct §o = (Wa, Ra, Es) as follows:

Wy =Wy /~ = {[z] : x € W1} where [z] denotes the ~-equivalence class of z.

For [z], [y] € Wa, [2]Rs[y] < [z] = [y] or zRyy.

For [z], [y] € Wa, [z]E2ly] & xFE1y.

va(p) = {[z] : x € v1(p)} for all p € Sub(y), and v,(q) = @ for all other propositional variables g.

Lemma 6.4. The relations Ey and Ry are well defined, and so is the valuation vs.

Proof. Tt is easy to see that Fo and v are well defined. We show that Ro is well defined. Let z,y, ',y € W1
with ¢ ~ a’, y ~ v/, and [z]Rz[y]. Then [z] = [y] or zRyy. If [z] = [y], we have [2] = [z] = [y] = [¢'],

and so [2'|Ra[y’]. If 2Ry, then z = y or 2Qoy and x Eg Oy implies y Fo Oy for all Oy € Sub(p). The

former case implies [x] = [y] which we have already considered. In the latter case, from xQqy it follows that
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2Qoy and zHoy by Lemma ). Note that ' ~ z implies 2’ E12 and so a’FEgz. Similarly, y'Epy. By

transitivity of Qo we thus have 2'Qoy’. Moreover, 2’ Eyx, y' Eoy, and xBoy imply that 2’ Boy’. Thus, 2’ Qoy’
by Lemma [6.2)(3). If Oy € Sub(y) and 2’ o Oy, then z Fo Oy since 2’ ~ z. So y Fo Oy by assumption.
But then y’ E¢ O since ' ~ y. This shows that 2/ R1y’, so [2'|Ra[y']. O

In the following lemma we highlight some properties of §s.

2) Es is an equivalence relation.

3) Ry and Ey satisfy commutativity.

4) F2 has clean clusters.

5) For [x] € Wa, |Ex([z])| < 2", where n = |Sub(y)|.

6) For [x] € Ws and Oy € Sub(p), if x ¥ Oy, then there is [y] € Wa such that [x]Raly] and y 71 Oy
Ry-mazimally.

Proof. (1) Reflexivity of Rs is immediate from the definition, and transitivity and antisymmetry follow from
transitivity and antisymmetry of Rj.

(2) This follows from E; being an equivalence relation.

(3) This follows from R; and FE; satisfying commutativity.

(4) Suppose there are [z] # [y] in Wa with [2]Rz[y] and [z]E2[y]. Then x # y, so by the definition of R
and F5, we have R,y and xFyy which yields a dirty cluster in §1, contradicting Lemma 8).

(5) This follows from the fact that there are at most 2™ ~-equivalence classes in each cluster (see, e.g.,
[10, Prop. 5.24]).

(6) Suppose = #; [0y. By Lemma z %o O, so by Lemma [6.2(9), there is y € W; such that xRy,
y € ANmaxpg, Fo(A), and y 7o Oy Ro-maximally, where

A = vo(=07) N[ [{ro(D¢) | Dy € Sub(yp) and « Fo O}
Then [z]R2[y] and by Lemma #1 Ovy. We show that y is R;-maximal with respect to Ovy. Suppose

yRy1z and z F¥; Oy. By Lemma [6.3, z ¥y [0, and from yR;z it follows that y = z or yQoz and y Eq 0y
implies z Fo O for all Oy € Sub(p). Suppose the latter. Since z Hy Oy, we have z € vo(—0Oy). If
x Fo Oy for Oy € Sub(yp), then y € A implies y Fg . So yRyz then gives z Fg . Therefore,

z € ({wo(Oy) | Oy € Sub(p) and z o Oy}, and hence z € A. As yQoz, there is w € Wy such that y # w,
yRow, and wEyz. Then w € Ey(A), and maximality of y in Ey(A) yields y = w, contradicting y # w. Thus,
y = z, and so y is Ry-maximal with respect to [ly. O

We conclude Step 2 by showing the truth lemma for .
Lemma 6.6 (Truth Lemma). For [z] € W3 and ¢ € Sub(yp),
($1,2) F1 v & (T2, [2]) F2 9.

Proof. The proof is by induction on the complexity of ¥. The base case ¥ = p follows from the definition of
v5. The cases of ¥ = 11 Ay and ¥ = =)y are straightforward, and the V-case follows from the definition of
E5. Suppose that ¢ = Oy, If 2y iy, then there is y € Wi with xRyy and y Hq ¥1. Therefore, [2]Ra[y]
and [y] #2 ¥ by the inductive hypothesis. Thus, [z] #o Ot1. Conversely, if [x] Fo i)y, then there is y € W
with [z]Rz[y] and [y] F2 ¥1. By the inductive hypothesis, y #; 1. If [z] = [y], then z ¥ Oty by definition
of ~. If [x] # [y], then 2Ry and again = F; Oi;. O

6.3. Step 3: Constructing §s. We are ready for our final step, in which we construct §s = (W3, Rs, E3)
by selective filtration from F2. This is done by constructing a sequence of finite partially ordered MS4-frames
Ss.n = (Ws.p, Ra.n, E3.,) with clean clusters so that §3.5, C F3.p41 for all b < w. We then show that this
construction eventually terminates.

Similar to the construction for M¥IPC, for each point [z] € W5 that we select, we create a copy of the
point, give it a new name, say ¢, and let ¢ = [z] denote the original point in W5 that ¢ represents and
will behave similar to. However, we take a bit more care with the copies in this construction than in the
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construction for MTIPC. In particular, we will never create two copies of the same original point within one
cluster. This will ensure that the cluster size in §3 has the same bound as the cluster size in §s.
Before we begin the construction, we highlight an important property we will need for selecting our points.

Lemma 6.7. For [x] € Wy and Oy € Sub(y), if [x] o Oy, then there is [y| € Wy such that [x]Ra[y] and
[y] F2 Oy Ro-mazimally.

Proof. Suppose [r] 2 [y. By Lemma z 1 Oy, and by Lemma [6.5(6), there is [y] € W> such that
[x]R2[y] and y ¥ Oy Ry-maximally. Applying Lemma again yields [y] Fo Ov. To see that [y] is Ra-
maximal with respect to [, suppose [y|Rz[z] and [z] F2 Oy. By definition of Rs, either [y] = [z] or yR; z.
If yR,z, then by Rj-maximality of y, we have y = z, so [y] = [z], and hence [y] must be Ro-maximal with
respect to [y. O

Throughout the construction, for each ¢ € W3 5, we associate the following sets of subformulas:
$¥(t) = {V6 € Sub(p) | T Hy V¥o}
£5(t) = {0y € Sub(p) | 112 Oy, tF2 7}
We start with §s.0 = (Ws.0, R3.0, F3.0) where
Wao = {to}, Rso=Wig FEso=W3,

and to = [xo] € Ws is a point with [zo] 2 . This will be a root of our frame and has Qs-depth 1. Let
Wi _1=Rs._1=Fs5._1 =. Suppose §3-1 = (W3 h—1, R3.n—1, F5.n—1) has already been constructed and
is a partially ordered MS4-frame with clean clusters. We construct §3., by the following steps.

Step V (Horizontal): Let W;h = Ws3.nh_1, R\g.h = R3.p_1, and Eg.h = F5p-1. For each cluster E3,(t) C
Ws.p—1\W5,_,, consider V§ € ¥Y(t). If there is no s € Wy, already such that tEY ,s and 5 s &, we add
a witness to our new frame as follows. Since t K V4, there exists [z] € Wy such that tEy[z] and [z] Fy 6.
We add the point s to Wy, where § = [z] (s is a distinct new copy of [z]), the relations (s, s) to RY ,, the
relations (¢,s) to EY, and generate the least equivalence relation.

Step O (Vertical): Let W5, = Wy ,, RS, = RY,, and EJ, = EY,. For t € Wy, \WJ, , (hence including
any points added in the horizontal step), consider [y € XU (t) where ¢ Ko Oy, but ¢ Eo ~ (thus, ¢ isn’t
witnessing the formula [y itself), and there is no s € WBD_h already such that tREhs and § o Oy Rs-
maximally (such an s could have been added in a previous stage to satisfy commutativity). For each such
O, since t Ky Oy and ¢ = [w] for some [w] € Wa, we have [w] ¥, [y. By Lemma there is [z] € Wh
such that [w]Ry[z] and [z] is Ro-maximal with respect to (y. We add the point s to W), where 3§ = [z],
(t,s) and (s,s) to RS, and close under transitivity, and add (s, s) to ES,. To make sure commutativity is
satisfied, for each w € Egh(t), if there is already s,, € E?E‘h(s) such that WR25,, we simply add the relation
(w, 84) to REh. If there is no such s,,, then by commutativity in Ws, there is [x,,] € W5 such that @WRz[x,)
and [x,]Fs[z], so we add s, to WEh, where 5, = [z,]. We then add (w, s,,) to REh and close it under
reflexivity and transitivity, and add (s, s) to E:Elh and generate the smallest equivalence relation.
To end this stage of the construction, we let F3., = (W3.p, Rs.5, E3.5) where

Wap, = Wi, Rsp, = RS, and E3y, = ES,.
Lemma 6.8. sy is a finite partially ordered MS4-frame with clean clusters.

Proof. In the V-step we only added reflexive arrows to R\g_ By SO Rg. ,, is a partial order. In the O-step we close
REh under reflexivity and transitivity each time we add a new arrow, so REh is reflexive and transitive.
Moreover, we we only add REh arrows from points that were already present in W; ,, into points that
are freshly added in the U-step of round h. Thus, REh is antisymmetric. That FE3; is an equivalence
relation and that §3 5 satisfies commutativity follow from the construction. Finally, to see that §3., has only
clean clusters, note that in the V-step all freshly introduced E}-relations are of the shape (s,t) where s or
te W; n \ Ws ,_1. Since no non-reflexive Rj-arrows are introduced in this step, no dirty cluster could have
been built. We have already discussed the shape of the R}, arrows introduced in the [(J-step. This guarantees
that no cluster in WY, is made dirty. The freshly introduced Ej-relations in these steps are of the shape
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(s,t) where s,t € Wgu_h \ Wy, Since no non-reflexive Rj-relations exist between these points, we infer that
all clusters are clean. O

The following lemma summarizes some useful properties of §3. In the following let
n = |Sub(y)| and m = |{0y : Oy € Sub(p)}|.

Lemma 6.9. Lett,u € Wy .
(1) If tEs pu, then tEo.
(2) If tEs pu, then X¥(t) = XV(u). (This ensures that we only need to perform the Y-step once per
cluster).
(3) IftEs pu and t # u, then t 4. (This ensures that one cluster does not contain two different copies
of the same point, so our cluster size remains bounded).

(4) If [t]Qzlu], then tQou.

(5) Ifth.hu, then thﬁ

(6) If tQs.nu, then tQo0. Thus, if tQs.pu, then t # .

(7) A formula Oy € Sub(yp) can be witnessed at most 2" times in clusters along an Rsp-chain. (This

shows that Oy can be witnessed at most 2™ times per Qs p,-chain.)

Proof. (1) This follows from the construction.

(2) By (1), tEs pu implies tEsT, so t Ey Vv iff 4 Fo V.

(3) Suppose tEs ,u and t = @, and without loss of generality assume that ¢ was added to the cluster before
u, so either u is added to witness some formula Vd; where u s 0;, or u is added as a commutativity witness
for some point from the cluster below. However, by construction, u would not have been added to witness a
formula V9;, because if u 5 §;, then t=1 implies that tAE/g d;, so t is already a viable witness in the cluster
for any such formula, contradicting the V-step of the construction. Furthermore, v would not be added as
a commutativity witness for some point w in the cluster immediately below, because then in W5 we would
have @WRyT, so WRyt, and a new Rg j,-relation would have been added from w to t instead, contradicting the
[-step of the const_}“uction. Thus, we must have f# u.

(4) Suppose [t]Q2[u]. Then there is [w] € Wy with [t] # [w], [t]Re[w], and [w]Ez[u]. From the definitions
of Ey and Es, [w]Ez[u] implies wEyu. By definition of Ry, [t]R2[w] and [t] # [w] imply tRyw. Since [t] # [w],

N

we have ¢t # w, so tQow by the definition of R;. Then there is v € Wy with ¢t # v, tRyv, and vEqw. Since
vEyw, we have vFEqu. Thus, t # v, tRov, and vEgu, and hence tQqu.
(5) This follows from the construction.

(6) If tQs3.pu, then there is w such that ¢ # w, tR3 pw, and wE3 pu. By (5), tRo®@ and @ must come

N

from a different cluster in Ws than 7, so tA;é w. We also have WE>u by (1), so tAQgﬂ. Because §2 has clean
clusters, we must have t # u.
(7) Suppose that @1, ..., zan 41 are all in different Ej p-clusters along an Rj -chain (where 77 = [w1], ...,

Zong1 = [wany1]), S0 £1Q3 p-..Q3.nT2n 11, and all have been added to witness a formula [0y € Sub(y). Thus,
Z; 2 Oy Re-maximally for ¢ = 1, ..., 2"+1. Because there are only 2" subsets of Sub(y) (where n = |Sub(p)|),
the pigeonhole principle implies that there are some 4 and j with ¢ # j (assume i < j) where Z; and < satisfy

the same subformulas of ¢. By (6), Z;Q22; and Z; # ;. If T, Rox;, then Ry-maximality of Z; with respect
to Oy implies Z; = Z;, contradicting Z; # Z;, so we must have z; B»Z; and hence [w;]Rs[w;]. Since £;Q2;

we have [w;]Q2[w;]. By (4), we then have w;Qow;. Since [w;] and [w;] satisfy the same formulas in Sub(¢y),
we have [w;] F2 OB < [w;] F2 08 for OB € Sub(y). By Lemmas [6.6] and [6.3] w; Fo 08 < w; Fo OB. Thus,
w;R1w; and hence [w;]R2[w;], a contradiction. O

We now prove that the end result of our construction is a finite frame, using the definitions of bounded
cluster size, bounded R-branching, and bounded R-depth given in Definition [5.10]

Lemma 6.10. §3, = (Ws.n, Rs.n, Es.p) has cluster size bounded by 2™ for all h < w.

Proof. By Lemma [6.5(5), the cluster size in § is bounded by 2", and by Lemma [6.9(3), we do not add
copies of the same points to a cluster in §3.,. Thus, cluster size in §3.p is bounded by 2. O
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Lemma 6.11. §3, = (W3, Rs.n, E5.) has Rs.p-branching bounded by 2™ - m for all h < w.

Proof. It is sufficient to show that each t € W3 j_1, for j < h, has at most 2"-m immediate R3_j-successors. By
construction, we add at most m-many immediate Rs3_j-successors to t for formulas of the form [l € Sub(yp).
Each y € F3 ;(t) also needs at most m-many immediate R3 j-successors to witness O-formulas. Since there are
at most 2"-many such y (including ¢ itself), we must add an immediate R3_; successor to ¢ for commutativity
for at most 2" - m points. Thus, ¢ has at most 2" - m immediate R3 j-successors.

E3.ht1

|Es.n(t)] <27
O
Lemma 6.12. §3;, = (W3, Rs.n, Es.p) has Rs p-depth bounded by 2™ -m + 1 for all h < w.

Proof. By construction, to make an immediate vertical move from some cluster E3 ;(t) to another cluster
Es(u) (with ¢ # u), there must be some point z € F3(t) and formula [y € ¥5(z) requiring a witness
y, where y € Fs3(u), xR3 Yy, and y is added in the O-step of the construction. Starting from the bottom
cluster E3(to), by Lemma [6.9(7), each of our m-many O-formulas can be witnessed at most 2" times in
clusters along an Rg3 p-chain. Thus, we add at most 2" - m elements to an R3j chain originating from this
cluster, with the total length of the chain (including the starting point) being at most 2" - m + 1.

at most 2"
A

> at most 2™ vertical steps

_— | ] at most m-many times

|
Lemma 6.13. There is h € w such that §3.p = F3.n for all ' > h.

Proof. As in the proof of Lemma [5.15] we observe that in stage k of the construction, all R3 j-chains are
bounded by k. Since, by Lemmal[6.12] the R3 j-depth of §3 ; is bounded by 2™ -m+1, we have §3.1/ = Fon.m41
forall B’ > 2" . m + 1. O
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Set §3 = (W3, Rs, E3) where
W3 =Wspn, Rs=Rspn, FEsz=EFEsp,
and h is as in Lemma [6.13] As an immediate consequence of Lemma [6.8] we obtain:
Lemma 6.14. §3 = (W3, R3, E3) is a finite M* Grz-frame.

Finally, we verify that our frame validates precisely the formulas we want it to. Define a valuation v3 on
W3 by vs(p) = {t € W5 : t € va(p)} for p € Sub(p) and v3(q) = @ for variables ¢ not occurring in .

Lemma 6.15 (Truth Lemma). For x € W3 and ¢ € Sub(p),
(§2,2) F2 ¢ & (§3, ) F3 9.

Proof. The proof is by induction on the complexity of ¥ and again we only show the cases where ¥ = Vi),
or ¢ = [Y)y.

Suppose ¢ = Vip1. If T Ho Vipq, then Vip, € Zv(m), so at some point in the construction of §3 we add s
to W3 and (z,s) to E3 where § s ¢1. By the inductive hypothesis, s H3 11, hence x 3 Vio;. Conversely,
if x 3 Vipq, then there is w € W3 with zFs3w and w H3 1. By the inductive hypothesis, @ F5 1)1, and by
Lemma 1), xE3w implies TFE>w, so T Ha Vi) .

Suppose ¢ = 1. If & By Oy, then either T Ky 1 or T Fo oy, If T Ho 9y, then by the inductive
hypothesis we have = Hs 11, hence x Fy ). If F Fo 1bp, then iy, € XP(x), so at some point in the
construction of F3 we add s to W3 and (z, s) to Rz where § H5 ;. By the inductive hypothesis, s H3 11,
hence x 3 Oiy. Conversely, if x 3 iy, then there is w € W3 with xRzw and w 3 11. By the inductive
hypothesis, w F5 11, and by Lemma (5), xR3w implies TRow, so T Ho (). |

The three steps of our construction yield our desired result:
Theorem 6.16. MTGrz has the finite model property.

As an immediate corollary to Theorem [6.16] we obtain:
Corollary 6.17. MTGrz is decidable.

Remark 6.18. Another consequence of Theorem is that M+ Grz is the monadic fragment of the predicate
modal logic obtained by adding to QGrz the Gddel translation of Casari’s formula Cas (cf. Remark |5.19)).
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