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THE ORDER OF REFLECTION

J. P. AGUILERA

ABSTRACT. Extending Aanderaa’s classical result that ﬂ% < 0%7 we determine
the order between any two patterns of iterated Z%— and H%—reﬁection on ordi-
nals. We show that this linear reflection order is a prewellordering of length
w®. This requires considering the relationship between linear and some non-
linear reflection patterns, such as cr% A 7r%, the pattern of simultaneous E%—
and H%—reﬂection,

The proofs involve linking the lengths of a-recursive wellorderings to var-
ious forms of stability and reflection properties satisfied by ordinals o within
standard and non-standard models of set theory.
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1. INTRODUCTION

Let L, denote the ath level of Godel’s constructible hierarchy, given by Ly = &,
Lo41 = all sets definable over L, with parameters, and L, = Ua <n L, at limit
stages. In a-recursion theory, one lifts the usual notion of “computation” over the
natural numbers (or, equivalently, over L) to L, for sufficiently closed a. As
became evident from early work by Kreisel, Kripke, Platek, Sacks, Takeuti, and
others (see e.g., Simpson [11]), facts about recursion on L, can be translated into
facts about recursion on L, in various ways. In particular, the termination of
simple inductive definitions of sets of natural numbers is deeply connected with the
reflecting structure of L (see e.g., Cenzer [7] or Aczel and Richter [3]). The purpose
of this article is to study the order in which various reflecting properties given in
terms of iterated ¥1- and IIi-reflection first occur in the constructible hierarchy.

A formula in the language of set theory is X if it contains only existential
second-order quantifiers (i.e., ranging over classes) followed by arbitrary first-order
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quantifiers. An ordinal « is said to be i-reflecting if whenever ¢ is a X1 formula
in the language of set theory and aq,...,a, are finitely many elements of L, then

L., E ¢(ai,...,a,) implies 3ﬁ<a(a1,...,an€L5/\LI3 |:¢(a1,...,an)).

Given a class of ordinals X, an ordinal « is said to be X1-reflecting on X if one can
additionally demand that the ordinal 3 above belong to X. The least X{-reflecting
ordinal is denoted by o, and 7 is defined dually.

An ordinal « is said to be 8-stable if L, is a ¥;-elementary substructure of Lg;
in symbols:

Lo <1 LB'

Given an ordinal «, write a™ for the smallest admissible ordinal greater than o.
Aczel and Richter [3] showed that mf # o] and that a countable ordinal « is
[M-reflecting if, and only if, it is at-stable. Afterwards, Aanderaa [1] showed
that m{ < of. Gostanian [8] showed that o] is smaller than the least o which is
(a™ +1)-reflecting; in fact, he showed that any a which is both (a™ +1)-stable and
locally countable is also Yi-reflecting. Later Gostanian and Hrbacek [9] employed
Gostanian’s method to give a new proof of Aanderaa’s theorem. A third, apparently
folklore proof appears in Simpson [11]. Aanderaa’s theorem is also an immediate
consequence of Proposition 10 below, although the proof of Proposition 10 has a
similar flavor to the argument in Simpson [11].

Let us now generalize the definitions of o} and 7 as follows:

Definition 1. The notion of a reflection pattern is given inductively: the empty
set is a reflection pattern; if s and ¢ are reflection patterns, then so too are s At,
o1(s), and 7 (s).

We write of for o} (@) and 71 for n}(2).

Definition 2. A reflection pattern is linear if it contains no conjunctions, and
non-linear otherwise.

Definition 3. An ordinal is said to be o (@)-reflecting if it is ¥}-reflecting; it is
said to be 71 (@)-reflecting if it is ITi-reflecting. Let s and t be reflection patterns.
Inductively, an ordinal « is said to be o} (s)-reflecting if it reflects ¥1 statements
onto s-reflecting ordinals; it is said to be 7 (s)-reflecting if it reflects IT} statements
onto s-reflecting ordinals; it is said to be s At-reflecting if it is both s-reflecting and
t-reflecting.

We may alternate between uppercase ¥ and Il and lowercase o and 7 in speaking
about patterns of reflection.

The ordering problem is: given two reflection patterns s and ¢, determine whether
the least s-reflecting ordinal is smaller than the least t-reflecting ordinal. We will
identify a pattern s with the least s-reflecting ordinal. Thus, instances of the
ordering problem are e.g., determining whether

oi(o1) < oi(mi(of A7)
or whether
™1 (01) < mi(o7) Ami(m).
Other related problems emerge. For instance, one may ask whether of (o}) is the

least ¥{-reflecting ordinal which is also a limit of ¥{-reflecting ordinals. (Inciden-
tally, the answer to all three questions is “no.”)
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In this article, we solve the ordering problem for linear patterns of reflection: we
exhibit a way of assigning ordinals to linear patterns in a way that respects their
ordering; in particular, we show:

Theorem 4. The linear order of reflection is a prewellordering of length w®.

The proof requires analyzing the structure of the non-linear, or full, reflection
order, to a certain extent. We shall see that all reflection patterns are witnessed
for the first time by ordinals between the least o which is a-stable and the least
a which is (a™ + 1)-stable. In addition, we show:

Theorem 5. The linear reflection order is cofinal in the full reflection order.

This raises the question of whether the full reflection order also has length w*.
This turns out to be false:

Theorem 6. The patterns i, o1, o A}, and oi(of) have ranks 1, w, w?, and
w* in the reflection order, respectively.

In the course of proving these theorems, we find various easier results which we
believe to be of independent interest; these are labelled “propositions.”

Convention. Even if not mentioned explicitly, every ordinal in this article is as-
sumed to be both countable and locally countable (i.e., for all 8 < «, there is
a surjection from w to S in L,). These are the hypotheses for the theorems of
Gostanian and Aczel-Richter mentioned above, respectively.

2. STABILITY AND GANDY ORDINALS
For an admissible ordinal «, write
dq = SUp {5 : 0 is the length of an a-recursive wellordering of a subset of a},

where a subset of « is said to be a-recursive if it is Aj-definable over L, with
parameters. The value of §, remains unchanged if one replaces “a-recursive” by
“a-r.e.” in the definition. For every admissible «, d, is easily seen to be a limit
and e.g., additively indecomposable. We always have §, < a'; an ordinal « is
Gandy if 5, = at. Gostanian [8] showed that of is the smallest ordinal which is
not Gandy. In fact, he showed that a locally countable ordinal is not Gandy if, and
only if, it is ¥1-reflecting. Abramson and Sacks [2] showed that (RL)* is Gandy,
so not every Gandy ordinal is locally countable.

Since we know what the degree of stability of 71 is (viz. (7})"), a possible first
question is that of the degree of stability of o7.

Proposition 7. o} is not (651 + 1)-stable.

Proof. Let 6 = d,1. Since § < (01)T, it is not admissible. As we observed before, §
is a limit ordinal; thus, the failure of admissibility must be due to an instance of col-
lection. Choose some A formula ¢ such that for some @ € Ls, Ls [~ 1(a@)-collection.
To see that o} is not (§ + 1)-stable, consider the formula ¢ in the language of set
theory asserting that there are sets A, B such that:

(1) A and B are transitive sets satisfying V=L, A is admissible, A € B, and
there is @ € B such that B does not satisfy 1 (&)-collection;
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(2) for each (OrdN A)-recursive linear ordering R € B, either there is an infinite
descending sequence b through R with b € A, or there is an ordinal § € B
and an isomorphism f € B from R to ;

(3) for each 8 € B, there is an (Ord N A)-recursive linear ordering R € B and
an isomorphism f € B from R to f.

Notice that ¢ is a X7 formula, since the only unbounded quantifier is the one on
B. Moreover, it does not hold in La}, for the sets A and B would need to be of
the form L, and Lg, with o < 8 < o}. Conditions (2) and (3) together imply that
B = 64, but Gostanian’s characterization of o then implies 8 = a*, contradicting
condition (1). Finally, it does hold in Lsy1, as witnessed by A = L,1 and B = Ls.
To see that (2) holds, recall a theorem of Gostanian [8, Theorem 3.2] by which if «
is Y1-reflecting, then every a-recursive linear ordering which is not a wellordering
has an infinite descending sequence in L,. Thus, every oi-recursive linear ordering
R either has an infinite descending sequence in L1, or else is isomorphic to some
ordinal 8 < §. One can construct an isomorphism witnessing this by transfinite
recursion: at stage v < (3, one has defined f | v and sets f(v) equal to the R-
least element not in the range of f [ -y. Since this process takes S-many stages
and R € L,1,y, such an isomorphism belongs to L1 . Since ¢ is additively
indecomposable, it belongs to Ls. The proof that (3) holds is similar. O

The proof of Proposition 7 shows:

Corollary 8. Suppose o is X1-reflecting and (65 + 1)-stable. Then, it is a limit of
Si-reflecting ordinals.

One cannot improve the conclusion of Proposition 7—every Y1-reflecting ordinal
is stable to the supremum of its recursive wellorderings:

Proposition 9. Suppose o is Xi-reflecting. Then o is 6,-stable.

Proof. Since ¢ is a limit ordinal, it suffices to consider arbitrary v < ¢ and show
that

Lo <1 L’Y'
Let a € L, and ¢ be a ¥;-formula such that L., = ¢(a). Without loss of generality,

assume that a is an ordinal. Let R be a o-recursive wellordering of length ~. In
particular, R is o-r.e., so there is a 31 formula v, such that for all z,y € L,

xRy < L, E ¥(z,y).

Let us assume for notational simplicity that 1 is defined without parameters. Given
an ordinal ¢’, let R, be the binary relation given by

:ERa’y & LU’ ): ’(/J(LL',y)

Since 1 is X1, we have R,» C R, whenever ¢/ < 7 < . In particular, R, is
wellfounded for all o’ < o.
Because Ly = ¢(a), there is a subset A of L, such that
(1) A codes a model (M, E) of KP+V = L;
(2) M has a largest admissible ordinal 7 and (7, E) is isomorphic to (o, €);

(3) there is an ordinal 8 of M and a function f € M which is an isomorphism
between RM (i.e., R, computed within M) and 3, and Lfy E ¢(a).
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The existence of such an A can be expressed by a set-theoretic ¥} formula over L,
with parameter a (as well as any other parameters involved in the definition of R).

By Xi-reflection, there is some o’ < ¢ and some A,s C L, such that a € L,
and

(1) Ay codes a model (N, F) of KP4+ V = L;

(2) N has a largest admissible ordinal  and (7, F') is isomorphic to (¢’ €);

(3) there is an ordinal b of N and a function g € N which is an isomorphism
between R} and b, and L} = ¢(a).

Here and for the rest of our lives, let us identify the wellfounded part of N with its
transitive collapse. Condition (2) implies that L, € N. By (3), there is an ordinal b
of N and an isomorphism g € N from R,/ to b. Because R, C R, it is wellfounded,
and so b really is an ordinal. Now, L, = ¢(a), and N has no admissible ordinals
above 0/, s0 b < (¢/)T < 0. Since ¢ is X1, we conclude that L, = ¢(a), as was to
be shown.

We have shown that o1 is d,1-stable and not (6,1 +1)-stable. The proof of Propo-
sition 9 illustrates how one derives consequences of an ordinal being X1-reflecting.
We shall carry out many similar arguments in the future, perhaps omitting some of
the details that show up repeatedly. We note the following consequence of Propo-
sition 9:

Proposition 10. There is a Xi-sentence ¢ such that for every countable, locally
countable o, Ly = ¢ if, and only if, o is Xt-reflecting or 11} -reflecting.

Proof. Let ¢ be the sentence that asserts the existence of some A C L, coding a
model (M, E) of KP +V = L containing ¢ and such that

M = Ly <1 Ls, .

Clearly, every Ili-reflecting ordinal satisfies this sentence, as does every Xi-
reflecting ordinal, by Proposition 9.

Suppose that L, = ¢, as witnessed by (M, E). Suppose moreover that o is
not Yi-reflecting, so that d, = o by Gostanian’s characterization. Since o € M,
a well-known theorem of F. Ville (see e.g., Barwise [5] for a proof) implies that
L,+ C M. Given an arbitrary 3 < o, we then have 8§ € M and 8 < 6, for

otherwise 6 < o, which is impossible, since any o-recursive wellordering of a
subset of o of length 6 would belong to M. By choice of M,

M Ly <1 Ls,,

and so M = L, <1 Lg. However, being X;-elementary is absolute, so we really
do have L, <1 Lg and, since 8 was arbitrary, we have L, <1 L,+, so o is II}-
reflecting. O

An immediate consequence is Aanderaa’s classical result:
Corollary 11 (Aanderaa). 71 < of.

Corollary 11 holds in a strong form:
Corollary 12. o1 reflects X1 sentences on 11} -reflecting ordinals.

Proof. Let ¢ be the sentence from Proposition 10. Then, if 4 is another ¥ sentence,
so is the conjunction ¢ A 1. (I
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Corollary 12 is not new; it also follows from the proof of Corollary 11 written
down in Simpson [11]. Our method for analyzing the reflection order is to prove
results akin to Corollary 12. Now that we know the degree of stability of o1, it
is natural to ask what the least ordinal o which is (, + 1)-stable is. We shall
eventually see that it is rather small and in fact smaller than the successor of o1 in
the reflection order. We finish this section with some related results that will not
be used in future sections.

Proposition 13. Suppose o is locally countable and X1-reflecting on $1-reflecting
ordinals. Then o is (0, + 1)-stable.

Proof. This is similar to the proof of Proposition 9. Again, it is easy to see that ¢
is a limit. Let v =, + 1 and a € L, be such that L., = ¢(a), for some £, formula
¢. Let ¢ be the X1 formula expressing that o is locally countable and there is a set
A C L, coding a model (M, E) of KP +V = L with 0 € M and such that

M E “Ls, 41 E ¢(a)”

Then L, |= 1. By hypothesis, there is a Yi-reflecting 7 < o such that L, = 1.
Thus, 7 is locally countable and there is a model (M, E) of KP+V = L with 7 € M
and such that

M= “Ls 11 |= ¢(a).”

By Ville’s theorem, L.+ C M and, since 7 is Xi-reflecting, §, < 7+. Hence, M
computes d, and J, + 1 correctly and so we really have Ls_11 = ¢(a). Since ¢ is
¥, we conclude L, |= ¢(a), as desired. O

The preceding proof shows that if ¢ is as in Proposition 13, then o is (d, + 2)-
stable, (d,)“-stable, etc. It shows that if f is a function on ordinals which is
uniformly ¥;-definable (with parameters in L,) on e.g., multiplicatively indecom-
posable levels of L containing all parameters, then o is f(d,)-stable.

Definition 14. We denote by ai’e the least ¥}-reflecting ordinal which is a limit
of ¥i-reflecting ordinals.

Proposition 15. U%’é is smaller than the least o which is (0o + 1)-stable.

Proof. Let a be as in the statement. We claim that « is Xi-reflecting. Otherwise,
0o = a™, and so a is (o™ + 1)-stable. But surely « is locally countable, and thus
Yl-reflecting, by Gostanian’s result mentioned in the introduction. Thus, « is ¥1-
reflecting. By Corollary 8, « is a limit of Xi-reflecting ordinals. However, this is
expressible in L ; thus, the proof of Proposition 7 shows that « is a limit of ordinals
which are both L1-reflecting and limits of ¥}-reflecting ordinals. O

As a consequence, we obtain a negative answer to one of the questions posed in
the introduction.

1

Corollary 16. Jl’e does not reflect o1 statements onto X1 -reflecting ordinals.

We state without proof a result implying that U% < 71 (o1). Tts proof is similar
to that of the more powerful Theorem 26 below.

Proposition 17. For every a < mi(o1), there is some o < mi(o}) which is both
Yi-reflecting and (3, + «)-stable.



THE ORDER OF REFLECTION 7

Lo <1 Lot - of - 0}75 — Lo <1 Ls,41 = La <1 Lo, 42 = --- = 7 (0])

FIGURE 1. Ordinals below 7} (o1)

Figure 1 summarizes the relationships between the ordinals considered so far.
We shall also see that
1/ 1 1/ 1
T (o1) < oy(oy).

3. REFLECTION TRANSFER THEOREMS

In this section, we will present some results on the transfer of reflection proper-
ties, i.e., results of the form

if o is s-reflecting, then it is t-reflecting,

where s and ¢ are reflection patterns. Recall our convention that every ordinal
considered is countable and locally countable. The first five reflection transfer
results we present are rather elementary:

Lemma 18. Let s be a reflection pattern and o be an ordinal.
(1) If o is X1(oi(s))-reflecting, then o is $1(s)-reflecting.
(2) If o is i(mwi(s))-reflecting, then o is 1} (s)-reflecting.

Proof. If o is X1(oi(s))-reflecting and L, satisfies a ¥} sentence ¢, then, by def-
inition, there is a 3i(s)-reflecting 7 < o such that L, = ¢. By Xi(s)-reflection,
there is an s-reflecting n < 7 such that L, = ¢. Hence, o is ¥ (s)-reflecting. The
argument for IT} (7 (s))-reflection is similar. O

Lemma 19. Let s and t be reflection patterns and o be an ordinal.
(1) If o is o1(s) A mi(t)-reflecting, then it is w1 (o1 (s) A t)-reflecting.
(2) If o is o1(s) A mi(t)-reflecting, then it is of (s A 7i(t))-reflecting.
(3) If o is oi(s)-reflecting, then it is oi (s A 7i)-reflecting.

Proof. Recall that if an ordinal o is s-reflecting, for any nontrivial reflection pattern
s, then it is recursively inaccessible and, in fact, a limit of recursively inaccessible
ordinals. (1) then follows from the simple observation that being 1 (s)-reflecting
is expressible by a I1} sentence . Thus, if o is o (s) A 71 (t)-reflecting and satisfies
some I1}-sentence ¢, then the conjunction ¢ is also I13, and any ordinal satisfying
it must be 31 (s)-reflecting.

(2) is similar. For (3), there are two cases: if o is ITj-reflecting, then the result
follows from (2). If o is not I}-reflecting, it is not o -stable. Hence, there is a
least v < o such that o is not 7-stable, i.e., there is a X;-formula 1 and some
parameter a < o such that L, = ¢(a), but L, ¥ 9(a). The remainder of the
proof is an adaptation of the proof of Corollary 11 presented in Simpson [11]:

Let ¢ be the ¥i-statement expressing that there is a model (M, E) of KP+V = L
end-extending Ly, such that for some 7/ € M with v/ < ¢™M, Lf‘y/,l E ¥(a) and,
moreover, if v is least such, then M =% is (<')-stable.” Then L, = ¢. By
choice of o, there is an s-reflecting ordinal 7 < ¢ such that L, = ¢. This means
that there is a model (M, E') of KP+V = L end-extending L,; such that for some
v € M with o/ < 7 L |= 4(a) and, for the least such ', we have M |=“7 is
(<v)-stable.”. Since ¢ is X1 and L, F~ 1(a), v must belong to the illfounded part
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of M. So 7 is s-reflecting and, as in the proof of Proposition 10, 7 is II}-reflecting.
By taking conjunctions as before, one sees that every 1 satisfied by L, is satisfied
by some (s A} )-reflecting 7 < o, as was to be shown. 0

Ezample 20. We claim that

a1(mi(01)) < o1 (01)-
To see this, notice that Lemma 19(1) and 19(2) imply that

o1 Ay =0y Ami(oy) = o1(mi(01)) Amp = o1 Ay (oq (T (07)))

and thus that

ai(mi(o1)) <o Ay,
On the other hand, Lemma 19(3) implies that

a1(oy) = o1(o1 A ),
and so

o1(mi(01)) < o1 Ay < o1 (01),

as claimed. O

A natural question is whether one can strengthen 7{ in the statement of Lemma

19(3) and, in particular, whether of is o (7} (7}))-reflecting. By generalizing the

proof of Lemma 19(3), we see that the answer is “yes.”

Definition 21. Let s be a reflection pattern. An ordinal « is (-stable on s if
whenever Lg satisfies a 31 sentence ¢(Ly) with additional parameters in L, there
is an s-reflecting v < « such that L.+ = ¢(L-).

We caution the reader that an ordinal o being S-stable on @ is not the same as
it being S-stable, for the first definition allows L, as a parameter. We do have the
following;:

Lemma 22. Let s be a reflection pattern. The following are equivalent:

(1) « is at-stable on s;
(2) « is I} (s)-reflecting.

We omit the proof of Lemma 22, which is a simple adaptation of Aczel and
Richter’s characterization of I1}-reflection.

Theorem 23. Let s be a reflection pattern. Suppose o is o1(s)-reflecting. Then,
it is o1 (s A wi(s))-reflecting.

Proof. The conclusion of the theorem follows from Lemma 19 if o is 7] (s)-reflecting,
so we may assume that it is not.

Since o is not 71 (s)-reflecting, it is not oT-stable on s, so there is a least 8 < o+
and a X1-formula 3z ¢(y, z) such that Lg = 3z ¢(Ls, ) and whenever v < o and ~
is s-reflecting, then L.+ [~ 3z ¢(L,,x). Let 1 be the formula expressing that there
is a model M of KP +V = L such that

(1) M contains o.
(2) M = “Jx ¢(Ly, x) and, letting v be least such that M = ¢(L,,a) for some
a € L., o is <y-stable on s.”
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By reflection, there is 7 < o with L, |= 1, as witnessed by some model N which
end-extends L,+. Since o is o1 (s)-reflecting, we may assume that 7 is s-reflecting.
Let 4 be N-least such that N |= 3z € L, ¢(L-,z). Then, we cannot have v < 7,
for otherwise 7 is an s-reflecting ordinal such that L+ | 3x ¢(L,, ), contradicting
the choice of ¢. Thus, v belongs to the illfounded part of N and, in N, 7 is <~-
stable on s. Since 7 is recursively inaccessible (this can be assumed also if s = @),
N is correct about s-reflection below 7, so an argument as before shows that 7 is
7T -stable on s and thus ITj (s)-reflecting. (]

Ezxample 24. By repeatedly applying Theorem 23, we obtain

ol = ol(m) = ol (wl(n})) = ol (ml (=L (x1))) = ...
This implies the sequence of inequalities
m < mi(m) <mi(m(m) <o <oy,
which strengthens Corollary 11.
The following strengthening of Proposition 9 is proved similarly:

Lemma 25. Suppose o is 31(s)-reflecting. Then, it is §,-stable on s.

Proof. Let 0(L,) be a ¥; sentence with parameters in L,, say, of the form
Jzx 0p(x,Ls). Let n < 6, and b € L, be such that Ls, = 0y(b, Ls). Since n < 4,
there is a o-recursive wellorder R of length 7. Let i) be the sentence asserting the
existence of a model M of KPi such that’

(1) M end-extends Ly41;
(2) in M, R is isomorphic to an ordinal 7y and there is by € L% such that
L% ': oo(bO;LU)'

Then L, = 1. Moreover, 1 is ¥} so, by reflection, there is an s-reflecting 7 < o
such that L, | ¢, as witnessed by some model N which end-extends L,+. Now,
in N, Lf_\’+ E 6o (bo, L) for some by € Lf]\(’), where 79 is some N-ordinal isomorphic
to R,;. However, R, C R, since R is o-recursive, and 6, is ¥g, so we really have
L.+ = 6(L;), as desired. O

The following theorem, although perhaps odd-looking at first, is crucial for our
analysis of the reflection order.

Theorem 26. Let s be a reflection pattern. Suppose o is 111 (o1 (s))-reflecting but
not X}-reflecting. Then o is 111 (s)-reflecting.

Proof. Suppose o is ITi-reflecting on 31 (s)-reflecting ordinals but not ¥1-reflecting.
Let ¢ be the statement expressing that whenever (M, E) is an end-extension of L, 41
satisfying KPi, then M =“o is not ¥1(s)-reflecting.” This sentence is I3 and thus
cannot be satisfied by L., for otherwise it would be reflected to a ¥} (s)-reflecting
ordinal. But clearly L, cannot satisfy 1 if o is X1 (s)-reflecting.

Thus, L, = v, so there is a model M of KPi end-extending L,41 such that

M =40 is X1 (s)-reflecting.”

LKPi is the extension of KP by an axiom asserting that every set is contained in an admissible
set.
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For ordinals 7 < o, whether 7 is t-reflecting is computed correctly by, say, 7+,

and thus too by M, for any reflection pattern ¢t. By Lemma 25 applied within M,
M %o is §,-stable on s.”

Let ¢ be a II} statement, and a € L, be a parameter such that L, = ¢(a). By
Barwise-Gandy-Moschovakis [6], there is a ¥ formula ¢* such that for all admissible
a with a € Ly, Lo E ¢(a) if, and only if, L.+ E ¢*(a, Ly); thus, L,+ E ¢*(a, Ly).
Let b € L,+ be a witness for ¢* and let v < ot be large enough so that b € L.,.
Since o is not Yi-reflecting (in the real world), 6, = o™, and thus

v < M.

Since ¢* is ¥,

M =*Ls, |= ¢*(a, Lo),”
so by the d,-stability of ¢ on s within M, there is an s-reflecting 7 < ¢ such that

M ESLys b= ¢*(a, L)
Since 77 < o, we really do have

Lo F ¢ (a, L),

and so L, = ¢(a). This completes the proof of the theorem. O

Remark 27. The assumption that o is not Xi-reflecting cannot be removed from

the statement of Theorem 26. To see this, let s be the trivial pattern. By Lemma
19(1), of A 7i is 1T (o} )-reflecting. However, of A 7 is not 11} (n{)-reflecting, for
being Yi-reflecting is expressible by a ITi-formula, and thus every ordinal which is
(o} A7l (m}))-reflecting is also i (o1 A mi)-reflecting and, in particular, a limit of
(o} A m})-reflecting ordinals. O
Remark 28. One cannot improve the statement of Theorem 26 to conclude that o
is T1} (0} (s) A s)-reflecting, for let s = 71. Then, 7 (o} (7})) = 71 (0}) by Lemma
19(3). However, as in Example 20,

mi(o1) < o1 (mi(o1)) < o1 Ay
This is in contrast to Theorem 23. O

Ezxample 29. By combining Theorems 26 and 23, one sees that
mi(01) = my(01) Ami(my) = mp (o) Ay (my(m)) = ...

Since we have seen that these reflection patterns are all smaller than o} (o]) and
ol A, it follows that o} and 7} (o}) have order-types w and w+ 1 in the reflection
order, respectively. (I

Ezxample 30. Let us present a proof of the inequality
i (J% ATi(of A W%)) < oi(o}).
First, apply Theorem 23 to see that
o1(o1) = o1 (o1 Ami(m)).
Then, apply Lemma 19 to see that

o1 Am(m) =01 Ami(on Am),
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so that
1 1, 1.1 1( 1, 11,1
o3 (‘71 AT (ﬂ'l)) =0 (O’l Amy(o] A ﬂ'l)).
Finally, by Theorem 23, every oi(oi A mi(of A mi))-reflecting ordinal is also
oi(mi(of Ami (o] Am})))-reflecting, so that o] (o1) is a limit of 7 (o] A7 (o] A7]))-
reflecting ordinals. ]

We finish this section with a final reflection transfer theorem. It is a strength-
ening of Theorem 26 which clarifies the hypothesis on o not being %1-reflecting.
We state it separately, however, since the proof is longer and the result is not used
afterwards.

Theorem 31. Suppose o is wi (o1 (t Ami(s)))-reflecting. Then, one of the following
holds:

(1) o is wi(s)-reflecting; or

(2) o is of(t A i(s))-reflecting.

Proof. Suppose o is 71 (o1 (t A w1 (s)))-reflecting but not i (s)-reflecting. Let 6 be
a Y1 sentence with parameters in L, such that

L, E 6,
we need to find a (t A 7w (s))-reflecting 7 < o such that

L. E9.

By Barwise-Gandy-Moschovakis [6], there is a IT; formula 8*(a) such that for every
admissible « containing the parameters of 8, L, = 6 if, and only if, L+ = 6*(Ly).
In particular,
Lo+ E0°(L,).
Since o is not 7 (s)-reflecting, there is a least 3 < o+ such that o is not 3-stable
on s. Because 6* is I,
L,@ ): 0" (La)'
Let ¢ be the sentence asserting the non-existence of a model M of KPi+V = L
end-extending L,41 in which o is o} (t A 7 (s))-reflecting. This is a [T sentence
and thus cannot be satisfied by any 7i(of(t A 71(s)))-reflecting ordinal and, in
particular, by . Thus, there is a model M of KPi+ V = L end-extending L,1
and such that
M |= “o is oy (t A 71 (s))-reflecting.”
Let x be the sentence asserting the existence of a model N of KP + V = L such
that
(1) N contains o;
(2) in N, letting 8 be least such that o is not S-stable on s, we have

N ': “Lﬁ ': 9*(La’)-”
Since B < o and M must end-extend L,+, 3 € M and M is correct about 3 being
the least ordinal at which o fails to be stable on s. Thus, we have

M ': “Lg ': X, R

as witnessed, say, by LM . Within M, o is o (t A 7} (s))-reflecting and thus there
is some 7 < ¢ such that,

M ': chT ':Xv”
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and so we really do have
L, =x.

Moreover, M 1is correct about reflection below o, so we may assume that 7 is
(t A 71 (s))-reflecting. By the definition of x, there is a model N of KP +V = L
such that

(1) N contains T;
(2) in N, letting 7 be least such that 7 is not y-stable on s, we have

N ): LLLIB ': 9*(-[/7')'”
1

Since 7 is 7 (s)-reflecting, it is 7T-stable on s, and thus v cannot be a true ordinal
smaller than 7+. By Ville’s Theorem, N must end-extend L, +. Because 6* is Il
it follows that

L+ ': 0" (LT)7
and thus, that
L. E9,

as was to be shown. O

4. PATTERNS BELOW o} (o7)

In this section, we describe the reflection order below of(ci). The remaining
sections do not depend on this one, so the reader who so desires should feel free to
skip ahead. To ease notation, we shall omit subscripts and superscripts and simply
write o for o and 7 for 71. We shall also sometimes omit parentheses; thus, e.g.,
we will write

oNTO
instead of
ol Ami(o}).
We will also express concatenation by direct juxtaposition, so that e.g., if s = o A,
then
ss=oAw(oc AT).
We remind the reader one last time of our convention on all ordinals being countable

and locally countable. The following notation will be useful:

Definition 32. Let s and ¢ be reflection patterns. We write s = ¢ if for every
ordinal «, « is s-reflecting if, and only if, it is ¢-reflecting.

Definition 33. Let & € N and s be a reflection pattern. We write cfs = s;
inductively,

cﬁHS =0 wkmrcfls.
We write ¢k for cFs, where s is the empty pattern.
We remark that, in particular, ¢ = (om)".

Lemma 34. For every n,k € N and every reflection pattern s, every (o A wF+ls)-

reflecting ordinal is (mck s)-reflecting.
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Proof. We first show by induction on n that
oAl =4 /\7rcfl.
Suppose that every (o A 78F1)-reflecting ordinal is (7ck)-reflecting, i.e., that
o AT =0 Arck = o Ar(cE AT,

After some applications of Lemma 19, we have

kE _ k k
o NTe, = ome, \Tc,
= mrcfz A\ k1
_ k k+1 k
=omc, N\ T omc,,
=0 A 7Tk+1a7rcﬁ

= o An(rFoncl)

=0 An(o Arrorck)
=0 A wcﬁ +1>
as desired. The argument given also shows that every every (o A 78 1s)-reflecting
ordinal is (o A mcks)-reflecting, although it does not prove the converse (which,
incidentally, is not true). O

Corollary 35. For every n,k € N, every | < k, and every reflection pattern s,

every (o A whtLs)-reflecting ordinal is (7*+tloncl s)-reflecting.

Proof. Suppose a is (o A m°*1s)-reflecting. By Lemma 34,
o is wck 415-reflecting.
By definition,
mek s =70 Arhoncks);
in particular,

k+1

a is T orek s-reflecting.

We may thus apply Lemma 18 n times to see that every cfs-reflecting ordinal is

also c!,-reflecting, from which the result follows. O
Lemma 36. For every k € N, every ng,...,nx € N, and every reflection pattern
s, every (o A whLs)-reflecting ordinal is (w*omcd cl ... ck s)-reflecting.

Proof. This follows from applying Corollary 35 repeatedly. O
Definition 37. A reflection pattern is in 2-normal form if it is of the form

0 1 k
T CryCry -+ Crs
for some natural numbers k, ng,ni,...,nk. If w is the reflection pattern above, we
define
o(w) = g+ W g1+ -+ weng +n.

For now, we shall simply refer to patterns in 2-normal form as being in normal
form. We shall see that patterns in normal form have very nice properties.

Lemma 38. Suppose s is a reflection pattern in normal form. Then, every co-
reflecting ordinal is o(s)-reflecting.
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Proof. By Theorem 23, any such ordinal is o(c A 7%)-reflecting for any k. The
lemma now follows from Lemma 36. O

We also have the following “contraction” lemma, which will be crucial:

Lemma 39. Suppose s is a reflection pattern. Then, every omons-reflecting ordinal
is omws-reflecting.

Proof. Suppose « is owoms-reflecting. By an argument as in Lemma 18, apply-
ing Lemma 19, for every Yi-sentence ¢ satisfied by L,, one can find some moms-
reflecting 3 < a such that Lg = ¢ and S is not L1-reflecting. By Theorem 26, 3 is
nrs-reflecting. By Lemma 18, § is ws-reflecting, as desired. O

Lemma 40. Suppose wt and ws are reflection patterns in mormal form such that
o(nt) < o(ws). Then, every (ws)-reflecting ordinal is either (wt)-reflecting or o-
reflecting.

Proof. Let
Tt = w"c,omcil . .cfw
and
TS = ﬂ'mc?noc}m . cim,

where n and m are nonzero. Without loss of generality, we assume that n; and
my are also nonzero. It follows that k <. Suppose that o(nt) < o(ws). It will be
convenient, for illustrative purposes, to consider the case that k < [ first. If so, it
suffices to show that every (o A 7!)-reflecting ordinal which is not o-reflecting is
(wt)-reflecting, for then the result follows from Theorem 26. By Lemma 36, every
7(o A 7)-reflecting ordinal is

10 1 k .
(o Amtonc, ¢, - .- cn )-reflecting.

By Lemma 19, every such ordinal is

10 1 k

(0T CpyCry - - - Cp,, )-Teflecting,

and, by Theorem 23 or Lemma 18, according asn <[ or [ < n, it is

n 0 1 k

(o CpyCp, - - - €y, )-Teflecting,

so that, if it is not o-reflecting, then it is

n 0 1

k .
(" Cp,Cp, - - - Cny, )-Teflecting,

by Theorem 26, i.e., 7(t)-reflecting.
The general case is similar: let ¢ < k be greatest such that n; < m; and notice
that

Ch = Ch . Ch
Thus,
=" cp ...cit
where t’ = ¢}, ...ck ; and
ms=n"c) b e ot

It suffices to show that every m(ocAriomt’)-reflecting ordinal which is not o-reflecting
is (wt)-reflecting, for then the result follows from Theorem 26. Lemma 36 (with
ont’ being the s in the statement) shows that every such ordinal is

i 0 1 i—1 / ~
(o AT'onc, Cy, - Cy,, - ont’)-reflecting.
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As before, by Lemma 19, every such ordinal is

m(on'oncy cy, ...ch ! omt’)-reflecting.

By Theorem 23 and Lemma 18, every such ordinal is

n__ 0 1 i—1 / .
n(or"oncy, ¢, ..., ont')-reflecting.

By contraction (Lemma 39), it is

n__ 0 1 i1y .
m(om"oncy, ¢y, - C,, -, t')-reflecting,

and by an argument like the one for Lemma 39, it is

n0 1 i—1 :
(o CpoCpy -+ - Cp,, t')-reflecting,

so that if it is not o-reflecting, then it is

no0 1 i
(7" CryCpy -+ Cory

! t')-reflecting,
by Theorem 26, as desired. ([

Lemma 41. Suppose t is a reflection pattern in normal form. Then o At is
equivalent to a reflection pattern in normal form.

Proof. Put t = wkcronoc}n L cfm. The lemma is immediate unless k # 0 and there

is some least i < [ such that m; # 0. Thus,

_ ki i+l !
L=T"Cp.Cmyy -+ Comy
_ k i i+l !
=m0 AT OTCry, _1Cm 0y - Cimy)-
Let
s = ki hritl !
T UMy Mpgig1 T M)
so that
_ k i i+l ki1
t=T (0 AT OMCpy _1Cmisy - Copei 1 S)-

If all the indicated m; are zero, then the result follows easily; otherwise, by Lemma
19 and Lemma 39,

_ _k i i i+l fti—1
t=m" (0 AT OTCY, _1Cniy - Copye, OTTS).
By Lemma 19,
_ k i i i+1 kti—1
ONt=0 AT (0 AT OTCY, _1Ciy - Cppy'e OTS)
_ ko i i i+l kti—1
=0 ATHT' OMCr, 1Cm 0y - Cmprs 1 OTS)
- ki i it1 ki1
=0 AT T OMC,, 1Cmy - Cimery 1 OTS)

By Lemma 36 on the one hand and Lemma 18 and Lemma 39 on the other,
oAt tiors =0 A t,

but the reflection pattern on the left-hand side is readily seen to be equivalent to
one in normal form. O

Theorem 42. Let s be a reflection pattern in which the string oo does not occur.
Then, it is equivalent to a reflection pattern in 2-normal form.
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Proof. This is proved by induction on the construction of s. Clearly, if s is equiva-
lent to a reflection pattern in normal form, then so too is ms. We only need consider
the string os in the case that s is of the form

m 0 1 !

T CroCrmy -+ - Cmy»

where m is nonzero. Then, it is easy to see that

m 0 1 ! _ 0 1 !
O™ Cr Cy -+ Cy = OTCop Co v Co
_ 0 1 l
= Crg+1Cmy -+ Cmy -

Now, let s be as above, and let

n 0 1 l

t=m"cp Cpy -+ Cp,-

We need to show that s At is equivalent to a reflection pattern in normal form. If
both n and m are nonzero, then the result follows from Lemma 40; so suppose that
one of m and n is zero, so that

sSANt=o0ANsANt.

Write n = n_; and m = m_; and let 7 and j be least such that n; and m; are
nonzero, respectively. There are four cases to consider. The first one is that in
which both 7 and j are equal to 0. Then, there are reflection patterns u and v, both
in normal form, such that

t=omu
and
s = omv.

Suppose without loss of generality that o(mu) < o(wv). By Lemma 40, every (mwv)-
reflecting ordinal which is not o-reflecting is (7mu)-reflecting. Thus, every s-reflecting
ordinal is either t-reflecting or oo-reflecting, in which case it is also t-reflecting by
Lemma 38.

The second case is that in which ¢ = 0 but j # 0. Then, there are reflection
patterns v and v, both in normal form, such that

t=omu
and
ocNs=ocATomv.
By direct computation,

sANt=onmu AT omv

o(mu AT omv) AT o

o(ru AT omv) An™ (o(mu A 7™ omv) A omv)
=o A7 (o(mu A T omv) A omw).
Now, it is easily seen that
7Mio(mu AT omv) = 7o (mu AT omu A ToTv)

=q" (U(wu AT o) A U7TU7T’U)

=7 (O’(ﬂ'u AT o) A Jﬂ'v) ,
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where the last equivalence follows from Lemma 39, and so
sAt=o A" o(mu AT omv).

Since each of mu and 7™ omv is a reflection pattern in normal form, Lemma 40
implies that their conjunction is equivalent to one of mu and 7™ o7v in this context.
Let us denote this conjunct by w. Then, by an argument as before,

sANt=oc Am"ow.

Since w is in normal form and of the form mww’, so too is #™iow, so the result
follows from Lemma 41. The case in which i # 0 and j = 0 is analogous.

The remaining case is that in which both i and j are nonzero. Suppose with-
out loss of generality that n; < m; By replacing n; and m; by larger numbers if
necessary (this might need to be done in the case i = —1 and mo = 0—a situation
similar to the one in Lemma 41) we may assume that there are reflection patterns
u and v such that

oANt=ocAT"omu
and
oANs=oc AT omv.
Then, we have
ocNsANt=cArn"oru AT omv
= J(ﬂ'”" omu A" mrv) AT oru AT omv
=oc A7V oru A" (U(Wni omu A" U7T’U) A UTF’U) .
By contraction,
ocANTorMoru =0 AT oromu
=o A7 omu,
so, because n; < mj, it follows that every ordinal which is
(o ANm™ o omu)-reflecting

is also
(o A m"iomu)-reflecting.

Similarly, we have
o ANTor™ oty =0 AT (mrmj omv A Jﬂ'aﬂ'v)
=oAn" (mrmj omv A Jﬂ'v)
and so every ordinal which is (o A 7™ o™i omrv)-reflecting is also
(O’ Amm (0'7ij omv A mrv))—reﬂecting.
From these two observations, we see that
oANsANt=ocAr"oru Ar" (O’ (w"i omu A mrv) A Jﬂ'v)

=0 A ﬂ'mfa(wm oru A 7" Jﬂ'v).
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Since both m; and n; are nonzero, Lemma 40 implies that in this context the
conjunction

moru A " omv
is equivalent to one of 7™ omu or #™iomv. Denote this conjunct by w. Then, w is
in normal form. Since w begins with the symbol 7, 77 ow is also equivalent to a
pattern in normal form. The result then follows from Lemma 41. This proves the
theorem. (]

Theorem 43. oo has order-type w* in the reflection order.

Proof. By Theorem 42, every reflection pattern in which the string oo does not
occur is equivalent to one in oo-normal form. By Lemma 38, this implies that oo
is strictly bigger than each reflection pattern in which the string oo does not occur.
Conversely, if a reflection pattern does contain the string oo, then naturally, it
cannot be strictly smaller than oo. An easy induction using Lemma 36 shows that,
for reflection patterns w and v in 2-normal form, u < v if, and only if, o(u) < o(v),
so the result follows. O

5. LINEAR PATTERNS

Our first result in this section concerns the length of the linear reflection order;
its proof induces a simple algorithm for comparing two arbitrary linear reflection
patterns.

Theorem 44. The length of the linear fragment of the reflection order is w*.

Proof. Let us employ the simplified notation from the previous section. Recursively,
we assign ordinals to reflection patterns without conjunction: we assign the ordinal

w™ to the pattern

o”.

In particular, the ordinal 1 is assigned to the empty pattern. If s and t are patterns
to which ordinals o(s) and o(t) have been assigned, we assign the ordinal

o(s) + o(t)

to the pattern
trs.

Note that if n < m, then, on the one hand,
at+w"+w" =a+wm,

while, on the other,

ocMrs=o0"""o"ns
=" " (o"Ts A ) by Lemma 19(3)
=" "(o"ns Ao s) by Lemma 19(1)
=gm " (J”(ﬂ's Ao ms) A wa"ws) by Lemma 19(2)

=o™(rs Amo"rs)

=oc"rsANo"mo"Ts.

Thus, every o™ ms-reflecting ordinal is also o™ mo"mws-reflecting when n < m; the
converse is also true, by Lemma 18 and Theorem 26 (cf. the argument of Lemma
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39 on p. 14). It follows that this assignment of ordinals is well-defined. By Lemma
18 and Theorem 23, we have

onoc =on ™o

for any pair of nonzero numbers n and m, so every conjunction-free reflection
pattern is equivalent to one to which an ordinal has been assigned. It should
be clear by now that, for conjunction-free reflection patterns, s < t if, and only if|
o(s) < o(t), which completes the proof. O

The second result of this section is that the linear patterns are cofinal in the
reflection order.

Theorem 45. The sequence {(o1)™ : n € N} is cofinal in the reflection order.

Proof. To prove the theorem, we shall prove by induction on the construction of a
reflection pattern s that if s contains no occurrence of ¢"*1, then every o(c™ A t)-
reflecting ordinal is also o(c™ At A s)-reflecting, for every reflection pattern ¢ (cf.
Lemma 38 on p. 13). We may assume that n # 0, for otherwise the conclusion
follows from Theorem 23. Note that the case that s is a conjunction is immediate
from the induction hypothesis and the case that s is of the form 7s’ is also immediate
from the induction hypothesis and Theorem 23, thus, we suppose that s is of the
form os’. The pattern s’ might be a conjunction, say,

S/:So/\Sl/\"'/\Sk/\To/\T1/\"'/\Tl,

where each s; is of the form o™is] for some m; < n and some s, which is a
conjunction of patterns of the form ms*, and each r; is of the form 7r}. Instead of
proving that every o(o™ A t)-reflecting ordinal is o(c™ At A os’)-reflecting, we shall
prove the stronger fact that it is

U(U" ANEAG(a™ (SO ASE A ASL) Arg ATy A A Tl)>-reﬂecting.
By the induction hypothesis applied to ', and the fact that each of s, and
ri=rgAT1 N AT

is a conjunction of patterns of the form ms*, we obtain:

a(a”/\t) _a(a”/\t/\sg/\-~-/\s;€/\r)

a(a"/\t/\a"/\sg/\---/\s;/\r)

_a(a"/\t/\a(a"_l/\56/\~-/\s§€/\r))
EJ(U”/\t/\cr(cr”fl(sg/\'~'/\s;€)/\r)),

where the last two equivalences follow from Lemma 19. This completes the proof
of the theorem. O

6. CONCLUDING REMARKS

We have not given any bounds on the length of the reflection order. Let us say
something about this:



20 J. P. AGUILERA

Proposition 46. Let s be a reflection pattern and suppose « is a countable, locally
countable ordinal such that

La ‘<1 La++1.

Then, « is s-reflecting.

Proof. Since
Lo <1 La+7

it follows that « is mi-reflecting. By Gostanian’s theorem [8] mentioned in the
introduction, « is oi-reflecting. Inductively, suppose it is

(01)"-reflecting
and let ¢ be a ¥{ sentence such that

Lo =

Choose a II; sentence ¥* such that for all admissible 8 containing all relevent
parameters,

Lg v
if, and only if,
Lg+ =" (Lg),
so that, in particular,
Lo+ E¥*(La).

Then, from the point of view of L.+ 1, there are admissible sets L, and L.+ such
that

(1) «is (o )"-reflecting, i.e., for every II; sentence ¢*, if Lo+ = ¢*(Ly), then
there is a (of)" !-reflecting 8 < « such that Lg+ = ¢*(Lg). (The quan-
tification over ¢* is bounded.)

(2) Lo+ =¥ (La)

Thus, by stability, there are admissible sets Lz and Lg+ in Lq such that 3 is (of)"-
reflecting and Lg+ = ¢*(Lg). Hence, a is (01)""!-reflecting. Therefore, a simple
induction on the construction of a reflection pattern s, using the proofs of Theorem
26 and Theorem 45 shows that « is s-reflecting. O

The length of the reflection order is thus at most the least ordinal « such that
Lo <1 La+1.

Moreover, surely each inequality between reflection patterns is provable in any the-
ory that proves the existence of the corresponding ordinals. This suggests strongly
that the length of the reflection order is smaller than the proof-theoretic ordinal of
the subsystem IT3-CAq of analysis and in fact smaller than the ordinal described
in Rathjen [10], though we do not have a proof of this. The reader may consult [4]
for an example of a chain of length ¢ in the reflection order.

An interesting question is that of the structure of the “higher” reflection order,
defined in terms of iterated II}, and X! -reflection and conjunctions. The situation
there is very different and involves set-theoretic considerations; it will be the subject
of a forthcoming article.
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