
THE POSET OF ALL LOGICS I:
INTERPRETATIONS AND LATTICE STRUCTURE

R. JANSANA AND T. MORASCHINI

Abstract. A notion of interpretation between arbitrary logics is introduced, and the
poset Log of all logics ordered under interpretability is studied. It is shown that in Log
infima of arbitrarily large sets exist, but binary suprema in general do not. On the other
hand, the existence of suprema of sets of equivalential logics is established. The relations
between Log and the lattice of interpretability types of varieties are investigated.

1. Introduction

Universal algebra [3, 7] and abstract algebraic logic [10, 15] are two disciplines that
study, respectively, general algebraic structures and propositional logics. One of their
main achievements is the development of two parallel taxonomies, one of varieties (a.k.a.
equational classes) of algebras, and the other one of propositional logics.

More precisely, the Maltsev hierarchy of universal algebra is a classification of varieties
in terms of syntactic principles (called Maltsev conditions) intended to describe the
structure of the congruence lattices of algebras [25, 29, 40, 48, 49]. The first, and perhaps
most celebrated, example of a Maltsev condition is the requirement that a variety K is
congruence permutable, equivalent to the syntactic requirement of the existence of a
minority term for K [31], i.e. a ternary term ϕ(x, y, z) such that

K � ϕ(x, x, y) ≈ y ≈ ϕ(y, x, x).

Similarly, in abstract algebraic logic, the Leibniz hierarchy is a taxonomy of propositional
logics in terms of rule schemata (here called Leibniz conditions) whose aim is to govern
the interplay between lattices of deductive filters (a.k.a. theories) of logics and lattices
of congruences of algebras [4, 5, 10, 12, 36, 43]. One of the most fundamental examples
of a Leibniz condition is the requirement that a logic ` possesses a set ∆(x, y) of binary
formulas satisfying the rules

∅ �∆(x, x) and x, ∆(x, y)� y,

which generalize the behavior of most implication connectives. This requirement is
equivalent to the property that the Leibniz operator of the logic ` is monotone [4].

From this point of view, it is natural to wonder whether the Maltsev and Leibniz
hierarchies are two faces of the same coin (see for instance [44]). In a series of papers
of which this one is the first (and whose next parts are [27, 28]) we show that this is
indeed the case. More in detail, it turns out that the Maltsev hierarchy is a sort of finitary
companion of the Leibniz hierarchy of the two-deductive systems [6], i.e. substitution-
invariant consequence relations between pairs of terms understood as equations. One of
the main obstacles to establish this result is that, while there exists a precise definition of
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Maltsev condition, this is not the case for what concerns Leibniz conditions (which until
now were recognized on empirical grounds only).

To clarify the notion of a Leibniz condition, we adopt an order-theoretic perspective
inspired by the theory of the Maltsev hierarchy, in which varieties are ordered by means
of the existence of interpretations between them [38, 46] (see also [30]). A variety K is
said to be interpretable [46] into another variety V, when V is term-equivalent to some
variety V∗ whose reducts (in a smaller signature) belong to K. When this is true we write
K 6 V. For instance, the variety of distributive lattices is interpretable into the one of
Boolean algebras, while the variety of sets (lacking non-trivial operations) is interpretable
in any variety. It is clear that the interpretability relation 6 is a preorder on the collection
of all varieties. More interestingly, the poset Var associated with 6 happens to be a lattice,
sometimes called the lattice of interpretability types of varieties [20, 38]. The study of the
lattice Var allowed to identify the classes of models of Maltsev conditions with the filters
of Var that are generated by finitely presentable varieties [2, 21, 38, 46].

As we mentioned, we will export this order-theoretic perspective to the realm of
propositional logics that, when ordered under a suitable notion of interpretability, form
the poset of all logics Log. Accordingly, the aim of this paper is to describe the structure
of the poset Log, which will be exploited to define and investigate Leibniz conditions in
general in [27, 28]. The main results of this paper can be summarized as follows. First we
establish that Log is a set-complete meet-semilattice in which binary joins may fail to exist
(Theorems 4.6 and 5.1). Then we show that the proper submeet-semilattice Equiv of Log,
whose elements are equivalential logics, happens to have joins and to be a set-complete
lattice (Theorem 6.5). We conclude by investigating the bottom and the top parts of Log
and by comparing the poset of all logics Log with the lattice of interpretability types of
varieties Var.

2. Propositional logics

For general informations on abstract algebraic logic, we refer the reader to [4, 5, 6,
10, 15, 16, 17, 26, 50]. We fix a proper class of (propositional) variables {xα : α ∈ OR}
indexed in a one-to-one way by the ordinals. Given an algebraic language L (from
now on, simply a language), and an infinite cardinal κ, we denote by FmL (κ) the set of
formulas of L with variables among {xα : α < κ}, and by FmL (κ) the corresponding
algebra. When the language L is clear from the context, we simply write Fm(κ). For the
sake of simplicity, we assume that languages have no nullary operation1. Note that the
cardinality of FmL (κ) is the maximum of κ and the cardinality of L .

A logic ` is then a consequence relation on the set FmL (κ), for some language L and
infinite cardinal κ, that is substitution invariant in the sense that for every substitution σ
on FmL (κ) and Γ ∪ {ϕ} ⊆ FmL (κ),

if Γ ` ϕ, then σ[Γ] ` σ(ϕ).

Given a logic `, we denote by L` (resp. κ`) the language (resp. the cardinality of the set
of variables) in which ` is formulated. Moreover, we write Fm(`) as a shorthand for
FmL`(κ`). A theorem of ` is a formula ϕ such that ∅ ` ϕ.

1In the appendix we explain why this assumption is harmless, and how we can modify our approach to
cover logics in languages with constants as well. However, this comes at the cost of distinguishing cases so
frequently that the exposition would turn unnecessarily cumbersome.
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Given an algebra A and a logic ` in the same language, a set F ⊆ A is said to be a
deductive filter of ` on A when for every Γ ∪ {ϕ} ⊆ Fm(`) such that Γ ` ϕ and every
homomorphism h : Fm(`)→ A, if h[Γ] ⊆ F, then h(ϕ) ∈ F. The set of deductive filters of
` on A is a closure system, whose closure operator is denoted by FgA

` (·) : P(A)→ P(A).
Given X ∪ {a} ⊆ A, we write FgA

` (X, a) as a shorthand for FgA
` (X ∪ {a}). Given an

algebra B, we also write B ⊆ A when B is a subalgebra of A, and B 6 A when B is
isomorphic to a subalgebra of A.

Lemma 2.1. Let ` be a logic formulated on Fm(κ) and A an algebra.

(i) If B ⊆ A and X ⊆ A, then FgB
`(X ∩ B) ⊆ FgA

` (X).
(ii) Let λ > |Fm(κ)| and X ∪ Z ∪ {a} ⊆ A be such that |Z| 6 λ. If a ∈ FgA

` (X), then there
is an algebra B ⊆ A such that |B| 6 λ, Z ⊆ B, and a ∈ FgB

`(X ∩ B).

Proof. Condition (i) is straightforward. Hence we detail only the proof of (ii).
It is well-known that

FgA
` (X) =

⋃
α<λ+

Vα

where the various Vα are defined in the following way. First we set V0 := X, and at limit
ordinals we take unions. At successor ordinals we proceed as follows. If α < λ, then

Vα+1 := Vα ∪ {c ∈ C : c = f (ϕ) for some homomorphism f : Fm(κ)→ A

and Γ ∪ {ϕ} ⊆ Fm(κ) such that Γ ` ϕ and v[Γ] ⊆ Vα}.

We claim that for every α < λ+ and b ∈ Vα, there is an algebra B[b, α] 6 A such
that |B[b, α]| 6 λ, Z ⊆ B[b, α], and b ∈ FgB[b,α]

` (X ∩ B[b, α]). To prove this, we reason by
induction on α 6 λ+. In the case where α = 0 we take the subalgebra of A generated by
X ∪ Z. If α is a limit ordinal and b ∈ Vα, then b ∈ Vβ for some β < α. Therefore, with an
application of the inductive hypothesis, we are done.

Then we consider the case where α = β+ 1. Since b ∈ Vβ+1, there are a homomorphism
f : Fm(κ) → A and Γ ∪ {ϕ} ⊆ Fm(κ) such that Γ ` ϕ, b = f (ϕ), and v[Γ] ⊆ Vβ. Now,
for every γ ∈ Γ, we consider the algebra B[ f (γ), β] given by the inductive hypothesis.
Let B[b, α] be the subalgebra of A generated by

Z ∪ f [Fm(κ)] ∪
⋃

γ∈Γ

B[ f (γ), β].

The fact that |Z|+ |Fm(κ)| 6 λ, and that |B[ f (γ), β]| 6 λ for every γ ∈ Γ ensures that
|B[b, α]| 6 λ.

It only remains to show that b ∈ FgB[b,α]
` (X ∩ B[b, α]). To this end, consider γ ∈ Γ. By

the inductive hypothesis and condition (i) we obtain that

f (γ) ∈ FgB[ f (γ),β]
` (X ∩ B[ f (γ), β]) ⊆ FgB[b,α]

` (X ∩ B[b, α]). (1)

Since f [Fm(κ)] ⊆ B[b, α], the homomorphism f : Fm(κ) → B[b, α] is well defined. To-
gether with the fact that Γ ` ϕ and that f [Γ] ⊆ FgB[b,α]

` (X ∩ B[b, α]) by (1), this implies

that b = f (ϕ) ∈ FgB[b,α]
` (X ∩ B[b, α]), as desired. This establishes the claim.

Together with the fact that FgA
` (X) =

⋃
α<λ+ Vα, the claim concludes the proof. �
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Given an algebra A, we denote by ConA its congruence lattice. Moreover, a congruence
θ ∈ ConA is compatible with a set F ⊆ A when for every a, b ∈ A,

if 〈a, b〉 ∈ θ and a ∈ F, then b ∈ F.

The Leibniz congruence ΩAF of F is the largest congruence on A compatible with F.
Similarly, given a logic ` (in the same language as A), we set

∼
ΩA
` F :=

⋂
{ΩAG : G is a deductive filter of ` on A, and F ⊆ G}.

The relation
∼
ΩA
` F is often called the Suszko congruence of F. The congruences ΩAF and∼

ΩA
` F can de described as follows [15, Thms. 4.23 and 5.32]:

Proposition 2.2. Let ` be a logic, A an algebra, F ⊆ A, and a, b ∈ A.
(i) 〈a, b〉 ∈ ΩAF ⇐⇒ (p(a) ∈ F if and only if p(b) ∈ F), for every unary polynomial

function p of A.
(ii) 〈a, b〉 ∈ ∼

Ω A
` F ⇐⇒ FgA

` (F, p(a)) = FgA
` (F, p(b)), for every unary polynomial function p

of A.

A matrix is a pair 〈A, F〉 such that A is an algebra and F ⊆ A. A matrix 〈A, F〉 is said
to be reduced when ΩAF is the identity relation. Moreover, we set

〈A, F〉∗ := 〈A/ΩAF, F/ΩAF〉.
Similarly, given a class of matrices K, we set

R(K) := I{〈A, F〉∗ : 〈A, F〉 ∈ K},
where I is the class operator of closing under isomorphic copies. A matrix 〈A, F〉 is said
to be trivial when A is the trivial algebra (which we denote by 1) and F = {1}.

The logic induced by a class of similar matrices K in κ variables is the consequence
relation ` on Fm(κ) defined for every Γ ∪ {ϕ} ⊆ Fm(κ) as follows:

Γ ` ϕ⇐⇒ for every 〈A, F〉 ∈ K and homomorphism h : Fm(κ)→ A,

if h[Γ] ⊆ F, then h(ϕ) ∈ F.

A matrix 〈A, F〉 is said to be a model of a logic ` (in the same language as A) when F is a
deductive filter of ` on A. We set

Mod(`) := {〈A, F〉 : 〈A, F〉 is a model of `}
Mod≡(`) := {〈A, F〉 ∈ Mod(`) :

∼
Ω A
` F is the identity relation}.

Observe that ` is the logic induced both by Mod(`) and Mod≡(`) [15, Thm. 4.16].
We denote by S,P,P

sd
and P

rκ+
the class operators for substructures, direct products,

subdirect products, and reduced products over κ-complete filters. We assume that their
application produces classes closed under isomorphic copies. Moreover, we assume
that the product-style operators, when applied to empty sets of indexes, produce trivial
matrices. We also consider the following class operator: given a class of matrices K and
an infinite cardinal κ, we define

Uκ(K) := {〈A, F〉 : 〈B, F ∩ B〉 ∈ K for every κ-generated B 6 A}.

Lemma 2.3. If ` is a logic, then Mod≡(`) = P
sd
R(Mod(`)).

Proof. See [11, Thm. 5.3]. �
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The first equality of the following result is taken from [14, 41], and generalizes a
previous result in [8].

Theorem 2.4. Let K be a class of matrices. If ` is the logic induced by K on Fm(κ) and
|Fm(κ)| 6 κ, then R(Mod(`)) = RSP

rκ+
(K) = RUκSP(K).

Proof. Under the assumption that the cardinality of the language of a class of matrices K
is 6 κ, the proof of the equality SP

rκ+
(K) = UκSP(K) is routinary. �

Corollary 2.5. Let K be a class of matrices. If ` is the logic induced by K on Fm(κ) and
|Fm(κ)| 6 κ, then Mod≡(`) = P

sd
RSP

rκ+
(K).

Proof. Immediate from Lemma 2.3 and Theorem 2.4. �

Corollary 2.6. Let ` be the logic induced by a class of matrices K on Fm(κ). Then the algebraic
reducts of the matrices in Mod≡(`) belong to the variety generated by the algebraic reducts of the
matrices in K.

A logic ` is said to be equivalential [4, 9] if there is a non-empty2 set of formulas ∆(x, y)
such that for every 〈A, F〉 ∈ Mod(`) and a, b ∈ A,

〈a, b〉 ∈ ΩAF ⇐⇒ ∆A(a, b) ⊆ F.

In this case we say that ∆ is a set of congruence formulas for `. Examples of equivalential
logics comprise all the so-called algebraizable logics [5], as well as a wide range of
non-algebraizable ones such as the the local consequence of the normal modal system K
[32]. For further information about equivalential logics, see [10, 15, 22, 23, 24].

Theorem 2.7. A logic ` is equivalential if and only if there is a non-empty set of formulas ∆(x, y)
such that for every n-ary connective ∗,

∅ `∆(x, x) x, ∆(x, y) ` y⋃
16i6n

∆(xi, yi) ` ∆(∗(x1, . . . , xn), ∗(y1, . . . , yn)).

In this case, ∆ is a set of congruence formulas for ` and Mod≡(`) = R(Mod(`)).

Proof. See [15, Thms. 6.17 and 6.60]. �

For equivalential logics we have the following improvement of Corollary 2.5:

Lemma 2.8. Let ` be the logic induced by a class of reduced matrices K on Fm(κ). If ` is
equivalential, then Mod≡(`) = UκPsd

S(K).

Proof. This result is essentially [45, Thm. 5.6]. �

A tuple of elements of a set A is a finite sequence of elements of A.

Lemma 2.9. If ` is a logic on Fm(κ) and λ > |Fm(κ)|, then Mod≡(`) is closed under Uλ.

2In the literature the set ∆ is not required to be non-empty. However, this restriction is almost immaterial
as, in a fixed language, there is a unique equivalential logic with an empty ∆ is the pathological almost
inconsistent logic [15, Prop. 6.11.5].
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Proof. Suppose, with a view to contradiction, that there is a matrix 〈A, F〉 ∈ Uλ(Mod≡(`))
such that 〈A, F〉 /∈ Mod≡(`). First observe that 〈A, F〉 is a model of `, since λ > κ and
` is defined on Fm(κ). Then the congruence

∼
Ω A
` F is not the identity relation. Together

with Proposition 2.2(ii), this implies that there are two different a, b ∈ A such that for
every ϕ(x,~y) ∈ Fm(ω), and every tuple ~c ∈ A,

FgA
` (F, ϕ(a,~c)) = Fg`(F, ϕA(b,~c)). (2)

We define a chain (under the inclusion relation) 〈Bα : α < λ〉 of subalgebras of A as
follows. First we let B0 be the subalgebra of A generated by {a, b}. At limit ordinals we
take unions. Now, suppose that Bα has already been defined and that α < λ. Consider a
formula ϕ(x,~y) ∈ Fm(ω) and a tuple ~c ∈ Bα. By Lemma 2.1 and (2) there is a subalgebra
B[ϕ,~c, α] 6 A such that |B[ϕ,~c, α]| 6 λ, a, b,~c ∈ B[ϕ,~c] and

FgB[ϕ,~c,α]
` (F ∩ B[ϕ,~c, α], ϕ(a,~c)) = FgB[ϕ,~c,α]

` (F ∩ B[ϕ,~c, α], ϕ(b,~c)). (3)

Then we let B∗α+1 be the subalgebra of A generated by the union of the various B[ϕ,~c, α],
and Bα the subalgebra of A generated by Bα ∪ B∗α+1.

Now we set
〈B, G〉 := 〈

⋃
α<λ

Bα, F ∩
⋃

α<λ

Bα〉.

Bearing in mind that |B[ϕ,~c, α]|+ |Fm(κ)| 6 λ, an easy induction shows that |Bα| 6 λ
for every α < λ. As a consequence, we obtain that |B| 6 λ and, therefore, that B is
λ-generated. Together with 〈A, F〉 ∈ Uλ(Mod≡(`)), this implies that 〈B, G〉 ∈ Mod≡(`).

Now, the fact that 〈B, G〉 ∈ Mod≡(`) implies that
∼
ΩB
`G is the identity relation

and, therefore, that 〈a, b〉 /∈ ∼
ΩB
`G. By Lemma 2.2(ii) we can assume without loss

of generality that there are a formula ϕ(x,~y) ∈ Fm(ω) and a tuple ~c ∈ B such that
ϕ(a,~c) /∈ FgB

`(G, ϕ(b,~c)). Observe that there is α < λ such that ~c ∈ Bα. By (3) and
Lemma 2.1(i) we obtain that

ϕ(a,~c) ∈ FgB[ϕ,~c,α]
` (F ∩ B[ϕ,~c, α], ϕ(b,~c))

= FgB[ϕ,~c,α]
` (G ∩ B[ϕ,~c, α], ϕ(b,~c))

⊆ FgB
`(G, ϕ(b,~c)).

But this contradicts the fact that ϕ(a,~c) /∈ FgB
`(G, ϕ(b,~c)). Hence we reached a contradic-

tion, as desired. �

3. Interpretations

Definition 3.1. Let L and L ′ be two languages. A translation τ of L into L ′ is a map
that associates an n-ary formula τ(∗) of L ′ in variables x1, . . . , xn to every n-ary function
symbol ∗ of L .

Let τ be a translation of L into L ′. Given two infinite cardinals κ 6 λ and a formula
ϕ ∈ FmL (κ), we define a formula τ(ϕ) ∈ FmL ′(λ) by recursion as follows. If ϕ = xα

for some α < κ, then τ(ϕ) := xα. Moreover, if ϕ = ∗(ψ1, . . . , ψn) for some n-ary function
symbol ∗ of L , then τ(ϕ) := τ(∗)(τ(ψ1), . . . , τ(ψn)). We extend this notation to sets
of formulas Γ ⊆ FmL (κ), by setting τ[Γ] := {τ(γ) : γ ∈ Γ}. Note that the variables of
τ(ϕ) are among the variables in ϕ.
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Moreover, given an L ′-algebra A, we let Aτ be the L -algebra, whose universe is A,
and whose n-ary operations ∗ are interpreted as follows:

∗Aτ
(a1, . . . , an) := τ(∗)A(a1, . . . , an), for every a1, . . . , an ∈ A.

By induction on the construction of the formulas we obtain that for every ϕ(z1, . . . , zn) ∈
FmL (κ) and every a1, . . . , an ∈ A,

τ(ϕ)A(a1, . . . , an) = ϕAτ
(a1, . . . , an).

Definition 3.2. Let ` and `′ be two logics. An interpretation of ` into `′ is a translation
τ of L` into L`′ such that

if 〈A, F〉 ∈ Mod≡(`′), then 〈Aτ , F〉 ∈ Mod≡(`).
For instance, for every given logic the identity map is an interpretation of it into any

of its extensions.

Proposition 3.3. If τ is an interpretation of ` into `′, and 〈A, F〉 ∈ Mod(`′), then 〈Aτ , F〉 ∈
Mod(`). Moreover, if λ 6 κ` 6 κ`′ , then for every Γ ∪ {ϕ} ⊆ FmL`(λ),

if Γ ` ϕ, then τ[Γ] `′ τ(ϕ).

Proposition 3.4. Let ` and `′ be two logics and τ be a translation of L` into L`′ . Then τ is an
interpretation of ` into `′ if and only if 〈Aτ , F〉 ∈ Mod≡(`) for every 〈A, F〉 ∈ R(Mod(`′)).
Proof. The “only if” part is immediate. The “if” one is a consequence of Lemma 2.3. �

When there is an interpretation of ` into `′ we write ` 6 `′ and say that ` is
interpretable into `′. Similarly, we say that ` and `′ are equi-interpretable if ` 6 `′
and `′ 6 `. Given a logic `, we denote by J`K the class of all logics which are equi-
interpretable with `. It is clear that relation 6 is a preorder on the proper class of all
logics, and that it induces a partial order on the collection of all classes of the form J`K.
The latter poset constitutes the object of study of this work.

Definition 3.5. We denote by Log the poset of all logics, i.e. the poset whose universe is
{J`K : ` is a logic} equipped with the partial order 6, defined as follows:

J`K 6 J`′K⇐⇒ ` 6 `′.
Remark 3.6. The reader may feel reassured by learning that, despite our reference to
classes and collections, the results of this work can be formulated entirely in ZFC. This is
because our statements can be phrased equivalently as speaking about logics ordered
under the preorder 6 by modifying the statements about posets to statements about
preorders in the natural way. It is therefore only for the sake of simplicity that we found
convenient to work with the poset Log whose elements are, strictly speaking, proper
classes. �

The notion of interpretability can be broken into two halves as follows:

Definition 3.7. Let ` and `′ be logics.
(i) ` and `′ are term-equivalent if there are interpretations τ of ` into `′ and ρ of `′

into ` such that

〈A, F〉 = 〈Aτρ, F〉 and 〈B, G〉 = 〈Bρτ , G〉
for every 〈A, F〉 ∈ Mod≡(`′) and 〈B, G〉 ∈ Mod≡(`).
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(ii) `′ is a compatible expansion of ` if L` ⊆ L`′ and the L`-reducts of the structures in
Mod≡(`′) belong to Mod≡(`).

Proposition 3.8. Let ` and `′ be logics. Then ` 6 `′ if and only if `′ is term-equivalent to a
compatible expansion of `.

Proof. The “if” part is immediate. To prove the “only if” part, suppose that there is an
interpretation τ of ` into `′. We can assume without loss of generality that the sets
of function symbols of ` and `′ are disjoint. Then let L be the language extending
L`′ with the symbols of `. Given a matrix 〈A, F〉 ∈ Mod≡(`′), we denote by AL the
L -algebra obtained by enriching A with the following interpretation of n-ary symbols ∗
of `: for every a1, . . . , an ∈ A,

∗AL (a1, . . . , an) := τ(∗)A(a1, . . . , an).

Then consider the class of matrices K := {〈AL , F〉 : 〈A, F〉 ∈ Mod≡(`′)}, and let `′′ be
the logic on FmL (κ`′) induced by K. It is not hard to see that Mod≡(`′′) = K. Together
with the fact that τ is an interpretation of ` into `′, this implies that `′′ is a compatible
expansion of `. As it is clear that `′ and `′′ are term-equivalent, we are done. �

The following is instrumental to construct concrete interpretations.

Proposition 3.9. Let K be a class of reduced matrices that induces an equivalential logic `′.
Moreover, let ` be a logic such that κ`′ > |Fm(`)|. A translation τ of L` into L`′ is an
interpretation of ` into `′ if and only if 〈Aτ , F〉 ∈ Mod≡(`) for every 〈A, F〉 ∈ S(K).

Proof. The “if” part follows from the fact that S(K) ⊆ Mod≡(`′) by Lemma 2.8.
To prove the “only if” part, suppose that 〈Aτ , F〉 ∈ Mod≡(`) for every 〈A, F〉 ∈ S(K).

By Lemmas 2.3 and 2.9 this yields that 〈Aτ , F〉 ∈ Mod≡(`) for every 〈A, F〉 ∈ Uκ`′Psd
S(K).

With an application of Lemma 2.8, we conclude that 〈Aτ , F〉 ∈ Mod≡(`) for every
〈A, F〉 ∈ Mod≡(`′) and, therefore, that τ is an interpretation of ` into `′. �

4. Existence of infima of sets

A basic question about the poset Log is whether it is a lattice or not. It turns out that
Log has infima of arbitrarily large sets, but unfortunately may lack even finite suprema.
In this section we describe a construction that supplies an explicit description of infima.

Definition 4.1. Given a family {Li : i ∈ I} of languages, we denote by
⊗

i∈I Li the
language whose n-ary symbols ∗ are sequences of the form

∗ = 〈ϕi(x1, . . . , xn) : i ∈ I〉,

where ϕi(x1, . . . , xn) ∈ FmLi(ω) for every i ∈ I. Keeping this in mind, consider a family
J = {Ai : i ∈ I} in which Ai is an Li-algebra, for every i ∈ I. The non-indexed product⊗

i∈I Ai of J is the
⊗

i∈I Li-algebra defined as follows:
(i) the universe of

⊗
i∈I Ai is the Cartesian product ∏i∈I Ai, and

(ii) the n-ary symbols ∗ = 〈ϕi(x1, . . . , xn) : i ∈ I〉 are interpreted as

∗
⊗

i∈I Ai(~a1, . . . ,~an) := 〈ϕAi
i (~a1(i), . . . ,~an(i)) : i ∈ I〉,

for every~a1, . . . ,~an ∈ ∏i∈I Ai. �
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Non-indexed products of algebras found various applications in universal algebra,
especially in the theory of Maltsev conditions [2, 20, 21, 38, 46]. We use the terminology
of these papers and extend it to families of matrices and logics.

Definition 4.2. The non-indexed product of a family {〈Ai, Fi〉 : i ∈ I} of matrices is defined
in a similar fashion, by setting⊗

i∈I

〈Ai, Fi〉 := 〈
⊗
i∈I

Ai, ∏
i∈I

Fi〉. �

Remark 4.3. If {`i : i ∈ I} is a family of logics, then the cardinal of
⊗

i∈I L`i is lesser
than or equal to ∏i∈I |Fm(`i)|. Moreover, if κ > ∏i∈I |Fm(`i)| and Fm(κ) is the set of
formulas of

⊗
i∈I L`i in κ variables, then |Fm(κ)| 6 κ. �

Given a collection {Ki : i ∈ I} in which Ki is a class of Li-matrices and I is a set, we
define ⊗

i∈I

Ki := I{
⊗
i∈I

〈Ai, Fi〉 : 〈Ai, Fi〉 ∈ Ki}.

A submatrix 〈A, F〉 ⊆ ⊗
i∈I〈Ai, Fi〉 is said to be a non-indexed subdirect product of

{〈Ai, Fi〉 : i ∈ I}, in symbols 〈A, F〉 ⊆ sd
⊗

i∈I〈Ai, Fi〉, if the projection maps πi : A→ Ai
are surjective. We write 〈A, F〉 6 sd

⊗
i∈I〈Ai, Fi〉 to indicate that 〈A, F〉 is isomorphic to a

matrix 〈B, G〉 such that 〈B, G〉 ⊆ sd
⊗

i∈I〈Ai, Fi〉.

Definition 4.4. Let {`i : i ∈ I} be a family of logics. The non-indexed product
⊗

i∈I `i of
{`i : i ∈ I} is the logic in the language

⊗
i∈I Li formulated in κ variables and induced by

the class of matrices
⊗

i∈I Mod≡(`i), where

κ := ∏
i∈I
|Fm(`i)|.

When I = ∅, we stipulate that
⊗

i∈I `i is the logic in the empty language formulated
in countably many variables and induced by the trivial matrix 〈1, {1}〉. �

Our aim is to prove that J
⊗

i∈I `iK is the infimum of {J`iK : i ∈ I} in Log. To this end,
we rely on the following characterization of Mod≡(

⊗
i∈I `i), to be established later on.

Proposition 4.5. If {`i : i ∈ I} is a family of logics, then

Mod≡(
⊗
i∈I

`i) = P
sd
(
⊗
i∈I

R(Mod(`i))) = P
sd
(
⊗
i∈I

Mod≡(`i)).

Moreover,

Mod≡(
⊗
i∈I

`i) = {〈A, F〉 : 〈A, F〉 6sd
⊗
i∈I

〈Ai, Fi〉 for some 〈Ai, Fi〉 ∈ Mod≡(`i)}.

As we promised, we obtain the following:

Theorem 4.6. The infimum of a set {J`iK : i ∈ I} ⊆ Log is J
⊗

i∈I `iK. Thus Log is a set-
complete meet-semilattice, i.e. infima of subsets of Log exist.

Proof. First we show that
⊗

i∈I `i 6 `j for every j ∈ I. To this end, consider the map
τ that sends every n-ary basic operation of

⊗
i∈I `i to its j-th component (which is an

n-ary term of `j). Consider 〈A, F〉 ∈ Mod≡(`j). It is clear that 〈Aτ , F〉 ∼=
⊗

i∈I〈Ai, Fi〉
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such that 〈Ai, Fi〉 is the trivial Li-matrix for every i ∈ I r {j}, and 〈Aj, Fj〉 := 〈A, F〉. By
Proposition 4.5 we have

〈Aτ , F〉 ∼=
⊗
i∈I

〈Ai, Fi〉 ∈
⊗
i∈I

Mod≡(`i) ⊆ Mod≡(
⊗
i∈I

`i).

In particular, this means that τ is an interpretation of
⊗

i∈I `i in `j, thus
⊗

i∈I `i 6 `j.
As a consequence, J

⊗
i∈I `iK is a lower bound of {J`iK : i ∈ I}.

To prove that {J`iK : i ∈ I} is the greatest lower bound of J
⊗

i∈I `iK, consider a logic `
such that ` 6 `i for every i ∈ I. Then for each i ∈ I there is an interpretation τi of ` into
`i. Let τ be the map that associates with every basic n-ary symbol ∗ of ` the following
n-ary term of

⊗
i∈I `i:

τ(∗) := 〈τi(∗) : i ∈ I〉.
Now, consider a matrix 〈A, F〉 ∈ Mod≡(

⊗
i∈I `i). From Proposition 4.5 it follows that

〈A, F〉 6 ∏j∈J(
⊗

i∈I〈A
j
i , Fj

i 〉) is a subdirect product for some 〈Aj
i , Fj

i 〉 ∈ Mod≡(`i). It is
easy to see that

〈Aτ , F〉 6 ∏
j∈J

(
∏
i∈I
〈(Aj

i)
τi , Fj

i 〉
)

is also a subdirect product. Since each τi is an interpretation of ` into `i, we conclude
that

〈Aτ , F〉 ∈ P
sd
P(Mod≡(`)) = P

sd
(Mod≡(`)).

Together with the fact that Mod≡(`) is closed under subdirect products by Lemma 2.3,
this yields that 〈Aτ , F〉 ∈ Mod≡(`). Hence we conclude that

⊗
i∈I `i 6 `. �

The remaining part of this section is devote to prove Proposition 4.5. The proof
proceeds through a series of technical observations.

Lemma 4.7. If 〈A, F〉 ⊆sd
⊗

i∈I〈Ai, Fi〉 and F 6= ∅, then for every~a,~c ∈ A,

〈~a,~c〉 ∈ ΩAF ⇐⇒ for every i ∈ I, 〈~a(i),~c(i)〉 ∈ ΩAi Fi.

Proof. The right-to-left direction is an easy exercise. To prove the left-to-right direction,
suppose that 〈~a,~c〉 ∈ ΩAF. By Lemma 2.2(i), given an arbitrary j ∈ I, we need to show
that p(~a(j)) ∈ F iff p(~c(j)) ∈ F, for every unary polynomial function p(x) of Aj. To this
end, consider a formula ϕ(x, y1, . . . , yn) of Aj and elements e1, . . . , en ∈ Aj such that

ϕAj(~a(j), e1, . . . , en) ∈ Fj. (4)

Since πj : A → Aj is surjective, there are ~e1, . . . ,~en ∈ A whose j-th components are
respectively e1, . . . , en. Moreover, as F 6= ∅, we can choose an element ~e ∈ F. Then
consider the basic operation

ψ(x, y1, . . . , yn, z) := 〈ψi(x, y1, . . . , yn, z) : i ∈ I〉
of A, where ψj = ϕ, and ψi = z for every i ∈ J r {j}. We have that for every i ∈ I,

ψ(~a,~e1, . . . ,~en,~e)(i) =
{

ϕAj(~a(j), e1, . . . , en) if i = j
~e(i) otherwise.

Together with (4) and ~e ∈ F, this implies that ψ(~a,~e1, . . . ,~en,~e) ∈ F. Since 〈~a,~c〉 ∈ ΩAF,
we obtain that ψ(~c,~e1, . . . ,~en,~e) ∈ F as well. In particular, this means that

ϕAj(~c(j), e1, . . . , en) = ψ(~c,~e1, . . . ,~en,~e)(j) ∈ Fj.
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Hence we conclude that 〈~a(j),~c(j)〉 ∈ ΩAj Fj, as desired. �

Corollary 4.8. If 〈A, F〉 ⊆sd
⊗

i∈I〈Ai, Fi〉 and F 6= ∅, then
(i) if the matrices in {〈Ai, Fi〉 : i ∈ I} are reduced, then so is 〈A, F〉;

(ii) 〈A, F〉∗ 6sd
⊗

i∈I〈Ai, Fi〉∗.

Proof. Condition (i) is an immediate consequence of Lemma 4.7. To prove condition (ii),
consider the map f : 〈A, F〉∗ → ⊗

i∈I〈Ai, Fi〉∗ defined as

f (a/ΩAF) := 〈a(i)/ΩAi Fi : i ∈ I〉
for every a ∈ A. From Lemma 4.7 it follows that f is a well-defined embedding. Together
with the fact that 〈A, F〉 ⊆sd

⊗
i∈I〈Ai, Fi〉, this implies that 〈A, F〉∗ 6sd

⊗
i∈I〈Ai, Fi〉∗. �

Proposition 4.9. Let {`i : i ∈ I} be a family of logics. The logic
⊗

i∈I `i has theorems if and
only if each `i has theorems.

Proof. The “only if” part is immediate. To prove the “if” one, suppose that each `i has a
theorem ϕi. By substitution invariance, we can assume that ϕi = ϕi(x). Then the formula
ϕ(x) := 〈ϕi(x) : i ∈ I〉 is a theorem of

⊗
i∈I `i. �

Lemma 4.10. Let {`i : i ∈ I} be a family of logics, and 〈A, F〉 a matrix such that F 6= ∅. The
following conditions are equivalent:

(i) 〈A, F〉 ∈ R(Mod(
⊗

i∈I `i)).
(ii) 〈A, F〉 6sd

⊗
i∈I〈Ai, Fi〉, for some 〈Ai, Fi〉 ∈ R(Mod(`i)).

Proof. (i)⇒(ii): Let κ := ∏i∈I |Fm(`i)| and Fm(κ) the set of formulas of
⊗

i∈I `i in κ
variables. We know that κ > |Fm(κ)|. Since

⊗
i∈I `i is the logic on Fm(κ) induced by⊗

i∈I Mod≡(`i), we can apply Theorem 2.4 yielding

〈A, F〉 ∈ RSP
rκ+

(
⊗
i∈I

Mod≡(`i)).

Then there are a matrix 〈B, G〉, a family of matrices {〈Bj
i , Gj

i 〉 : i ∈ I, j ∈ J}, and a
κ+-complete filter F on J such that 〈B, G〉∗ = 〈A, F〉, 〈Bj

i , Gj
i 〉 ∈ Mod≡(`i), and

〈B, G〉 6
(

∏
j∈J

(
⊗
i∈I

〈Bj
i , Gj

i 〉)
)

/F. (5)

It is easy to see that the map

f : ∏
j∈J

(
⊗
i∈I

〈Bj
i , Gj

i 〉)→
⊗
i∈I

(∏
j∈J
〈Bj

i , Gj
i 〉),

defined by the rule

f (~a)(i)(j) :=~a(j)(i), for every i ∈ I, j ∈ J,

is an isomorphism. We shall see that also the map

g : ∏
j∈J

(
⊗
i∈I

〈Bj
i , Gj

i 〉)/F →
⊗
i∈I

(∏
j∈J
〈Bj

i , Gj
i 〉/F),

defined by the rule
g(~a/F)(i) := f (~a)(i)/F, for every i ∈ I,
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is an isomorphism. The proof that g is a well-defined surjective homomorphism is
routinary. To prove that g is also injective, consider ~a,~c ∈ ∏j∈J(

⊗
i∈I〈B

j
i , Gj

i 〉) such that
g(~a/F) = g(~c/F), i.e. that f (~a)(i)/F = f (~c)/F for every i ∈ I. Since κ > |I| and F is
κ+-complete, we have

{j ∈ J : ~a(j) = ~c(j)} =
⋂
i∈I

{j ∈ J : ~a(j)(i) = ~c(j)(i)}

=
⋂
i∈I

{j ∈ J : f (~a)(i)(j) = f (~c)(i)(j)}

∈ F.

Hence~a/F = ~c/F and, therefore, g is injective. This establishes that g is an isomorphism.
Together with (5), this yields that 〈B, G〉 6⊗i∈I(∏j∈J〈B

j
i , Gj

i 〉/F). As a consequence,
there are 〈Ai, Fi〉 ∈ SP

rκ+
(Mod≡(`i)) such that 〈B, G〉 6sd

⊗
i∈I〈Ai, Fi〉. Together with

Corollary 4.8, this implies that

〈A, F〉 6 sd
⊗
i∈I

〈Ai, Fi〉∗

where 〈Ai, Fi〉∗ ∈ RSP
rκ+

(Mod≡(`i)). As κ > |Fm(`i)|, it is not hard to see that
P

rκ+
(Mod≡(`i)) ⊆ Mod(`i). In particular, this implies that SP

rκ+
(Mod≡(`i)) ⊆ Mod(`i)

and, therefore, that 〈Ai, Fi〉∗ ∈ R(Mod(`i)).
(ii)⇒(i): From the definition of

⊗
i∈I `i it follows that

⊗
i∈I〈Ai, Fi〉 is a model of

⊗
i∈I `i.

As submatrices of models are still models, this implies that 〈A, F〉 ∈ Mod(
⊗

i∈I `i).
Finally, the matrix 〈A, F〉 is reduced by Corollary 4.8. �

The following observation is well-known [15, pag. 205].

Lemma 4.11. Let ` be a logic, and A an algebra.
(i) If 〈A, ∅〉 ∈ R(Mod(`)), then A is the trivial algebra 1.

(ii) A logic ` has theorems if and only if 〈1, ∅〉 /∈ Mod≡(`) or, equivalently, if 〈1, ∅〉 /∈
R(Mod(`)).

As a consequence we obtain a transparent description of R(Mod(
⊗

i∈I `i)):

Proposition 4.12. Let {`i : i ∈ I} be a family of logics. The class R(Mod(
⊗

i∈I `i)) consists of
matrices satisfying condition (ii) of Lemma 4.10, plus 〈1, ∅〉 in case some `i has no theorems.

Proof. This is an easy consequence of Proposition 4.9, and of Lemmas 4.10 and 4.11 �

Let {Li : i ∈ I} be a family of languages and 〈A, F〉 be a Lj-matrix for some j ∈ I. We
denote by 〈A, F〉[ the

⊗
i∈I Li-matrix

⊗
i∈I〈A−i , F−i 〉, where

〈A−i , F−i 〉 :=
{
〈A, F〉 if i = j
〈1, {1}〉 otherwise.

Note that if 〈A, F〉 is reduced, then 〈A, F〉[ is reduced as well.

Lemma 4.13. If {`i : i ∈ I} is a family of logics,

R(Mod(
⊗
i∈I

`i)) ⊆ P
sd
(
⊗
i∈I

R(Mod(`i))) ⊆ P
sd
R(Mod(

⊗
i∈I

`i)).
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Proof. We detail only the proof of the first inclusion, since the proof of the second one
exploits similar ideas. Consider a matrix 〈A, F〉 ∈ R(Mod(

⊗
i∈I `i)). First we consider

the case where F = ∅. As the matrix 〈A, F〉 is reduced, we know that A is trivial by
Lemma 4.11(i). Now, the fact that F is empty implies that

⊗
i∈I `i has no theorems. From

Proposition 4.9 it follows that there is j ∈ I such that `j has no theorems. Therefore by
Lemma 4.11(ii) the Lj-matrix 〈1, ∅〉 belongs to R(Mod(`j)). As a consequence we obtain
that

〈A, F〉 = 〈1, ∅〉[ ∈
⊗
i∈I

(R(Mod(`i)).

Then we consider the case where F 6= ∅. From Lemma 4.10 we know that 〈A, F〉 6sd⊗
i∈I〈Ai, Fi〉 for some 〈Ai, Fi〉 ∈ R(Mod(`i)). Moreover, it is easy to see that the map

f : ∏
i∈I
〈Ai, Fi〉[ →

⊗
i∈I

〈Ai, Fi〉

defined by the rule
f (~a)(i) :=~a(i)(i), for every i ∈ I,

is an isomorphism. Together with the fact that 〈A, F〉 6sd
⊗

i∈I〈Ai, Fi〉, this implies that

〈A, F〉 6∏
i∈I
〈Ai, Fi〉[

is a subdirect product. Hence we conclude that 〈A, F〉 ∈ P
sd
(
⊗

i∈I R(Mod(`i))). �

Proof of Proposition 4.5. We begin by proving the first part. From Lemma 2.3 and 4.13 it
follows that

Mod≡(
⊗
i∈I

`i) = P
sd
R(Mod(

⊗
i∈I

`i)) ⊆ P
sd
P

sd
(
⊗
i∈I

R(Mod(`i))) = P
sd
(
⊗
i∈I

R(Mod(`i))).

Moreover, since R(Mod(`i)) ⊆ Mod≡(`i) for every i ∈ I, we have

P
sd
(
⊗
i∈I

R(Mod(`i))) ⊆ P
sd
(
⊗
i∈I

Mod≡(`i)).

It only remains to prove that P
sd
(
⊗

i∈I Mod≡(`i)) ⊆ Mod≡(
⊗

i∈I `i). Since the class
Mod≡(

⊗
i∈I `i) is closed under subdirect products by Lemma 2.3, it suffices to show that⊗

i∈I Mod≡(`i) ⊆ Mod≡(
⊗

i∈I `i). To this end, consider a matrix 〈Ai, Fi〉 ∈ Mod≡(`i) for
each i ∈ I. By Lemma 2.3, for every i ∈ I there is a family {〈Aj

i , Fj
i 〉 : j ∈ Ji} ⊆ R(Mod(`i))

such that 〈Ai, Fi〉 6 ∏j∈Ji
〈Aj

i , Fj
i 〉 is a subdirect product. We can assume without loss of

generality that Ji = Jj for every i, j ∈ I (for instance, by adding trivial matrices to the
factors of products when necessary). Accordingly, we drop the index i in each Ji, and
write simply J. Under this convention, it is easy to see that⊗

i∈I

〈Ai, Fi〉 6∏
j∈J

(
⊗
i∈I

〈Aj
i , Fj

i 〉)

is a subdirect product. Together with Lemmas 4.13 and 2.3, this yields⊗
i∈I

〈Ai, Fi〉 ∈ P
sd
(
⊗
i∈I

R(Mod(`i))) ⊆ P
sd
R(Mod(

⊗
i∈I

`i)) = Mod≡(
⊗
i∈I

`i).

Hence we conclude that
⊗

i∈I Mod≡(`i) ⊆ Mod≡(
⊗

i∈I `i), as desired.
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To prove the second part, we rely on the first one. Consider a matrix 〈A, F〉 ∈
Mod≡(

⊗
i∈I `i) = P

sd
(
⊗

i∈I Mod≡(`i)). We can assume without loss of generality that

〈A, F〉 ⊆∏
j∈J

⊗
i∈I

〈Bj
i , Gj

i 〉

is a subdirect product for some families {〈Bj
i , Gj

i 〉 : j ∈ J} ⊆ Mod≡(`i), one for each i ∈ I.
Then for every i ∈ I, let

f : ∏
j∈J

(
⊗
i∈I

〈Bj
i , Gj

i 〉)→
⊗
i∈I

(∏
j∈J
〈Bj

i , Gj
i 〉)

πi : ∏
i∈I

∏
j∈J

Bj
i →∏

j∈J
Bj

i

be, respectively, the isomorphism defined in the proof of Lemma 4.10, and the natural
projection on the i-th component. Bearing this in mind, for every i ∈ I let 〈Ci, Hi〉 be the
matrix where Ci is the subalgebra πi[ f [A]] ⊆ ∏j∈J Bj

i and Hi = πi[ f [F]].
The restriction f �A : 〈A, F〉 → ⊗

i∈I〈Ci, Hi〉 is a well-defined matrix embedding such
that πi[ f �A[A]] = Ci for every i ∈ I. Hence, we conclude that

〈A, F〉 6sd
⊗
i∈I

〈Ci, Hi〉.

Now, it is not hard to see that 〈Ci, Hi〉 is a subdirect product of ∏j∈J〈B
j
i , Gj

i 〉, for every
i ∈ I. Since each Mod≡(`i) is closed under subdirect products, this implies that 〈Ci, Hi〉 ∈
Mod≡(`i) for every i ∈ I. This proves the inclusion from left to right.

To prove the other inclusion, let 〈A, F〉 6sd
⊗

i∈I〈Ai, Fi〉 where 〈Ai, Fi〉 ∈ Mod≡(`i)
for every i ∈ I. Then, as in the proof of Lemma 4.13, we have that 〈A, F〉 is a subdirect
product of ∏i∈I〈Ai, Fi〉[. From the fact that 〈Ai, Fi〉[ ∈

⊗
i∈I Mod≡(`i) for every i ∈ I, we

obtain that 〈A, F〉 ∈ P
sd
(
⊗

i∈I Mod≡(`i)). �

The characterization of Mod≡(
⊗

i∈I `i) given in Proposition 4.5 has a particularly
appealing simplification in the case where the index set I is finite.

Corollary 4.14. If ` and `′ are logics, then

Mod≡(`
⊗
`′) = Mod≡(`)

⊗
Mod≡(`′).

Proof. As shown essentially in [46, Lem. 1.9 and 1.10], if K1 and K2 are classes of matrices
(resp. algebras) closed under subdirect products, then so is K1

⊗
K2. Together with

Lemma 2.3, this implies that the class Mod≡(`)⊗Mod≡(`′) is closed under subdirect
products. By Proposition 4.5 we conclude that Mod≡(`⊗ `′) = Mod≡(`)⊗Mod≡(`′
). �

5. Finite suprema need not exist

It is well known that if A is a poset whose universe is a set and in which infima of
sets exist, then A is a complete lattice. Unfortunately, the proof of this fact relies on the
assumption that the universe of A is a set and, therefore, cannot be applied to the poset
Log (which is known to have infima of sets by Theorem 4.6). The situation is entirely
different for Log. This section is devoted to prove the following:
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Theorem 5.1. Finite suprema need not exist in Log.

The proof of this theorem builds on a counterexample. Let A = 〈A;∨, a, b, 0〉 be the
join-semilattice, expanded with constants3, depicted below:

• 1

c • • b

a • e • • d

0 •
Then let `∨ be the logic in countably many variables induced by the set of matrices

{〈A, {1}〉, 〈A, {1, c}〉}.

Fact 1. We have that 〈A, {1}〉 ∈ Mod≡(`∨).

Proof. It is clear that 〈A, {1}〉 is a model of `∨. Hence it will be enough to prove that∼
Ω A
`∨{1} is the identity relation on A. From the definition of `∨ it follows that {c, 1} is a

deductive filter of `∨ on A. Now, an easy computation shows that:
(i) The blocks of ΩA{1} are {a, e, c}, {0, d}, {b}, {1}.

(ii) The blocks of ΩA{c, 1} are {0}, {a}, {e}, {b, d}, {c, 1}.
Together with the fact that

∼
Ω A
`∨{1} ⊆ ΩA{1} ∩ΩA{c, 1},

this implies that
∼
Ω A
`∨{1} is the identity relation on A. �

Fact 2. The algebraic reducts of the matrices in Mod≡(`∨) are either trivial or have at
least four elements.

Proof. In this proof we assume that semilattices are equipped with the join-order. Con-
sider a matrix 〈B, F〉 ∈ Mod≡(`∨) such that B is non-trivial. By Corollary 2.6 we know
that B is a semilattice with constants a, b, 0 such that

0 6 a and 0 6 b. (6)

Now, since B is non-trivial, we know that F 6= B. Together with the fact that

a `∨ x b `∨ x 0 `∨ x

this implies that a, b, 0 /∈ F. Observe that a∨ b ∈ F, since ∅ `∨ a∨ b. Hence, to conclude
that B has at least four elements, it will be enough to check that a, b, 0 are different one
from the other. From the fact that a, b /∈ F and a ∨ b ∈ F, it follows that a and b are
incomparable in the order of B. Together with (6), this implies that 0 is different from a
and b. �

We say that a negation algebra is an algebra B = 〈B;¬〉 where ¬ is a unary operation
with at most one fix point, and such that ¬¬a = a for all a ∈ B. We denote by NA the
class of negation algebras, and by `¬ be the negation fragment of classical propositional
logic (formulated in countably many variables). The relation between `¬ and NA is
captured by the following result:

3 We use in this section “constant(s)” as an abbreviation for “constant unary operation(s)”.
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Fact 3. Mod≡(`¬) is the class of matrices 〈B, F〉 such that either B is trivial or B is a
negation algebra and in this case either F = ∅ or F = {a} for some a ∈ B that is not a
fixed point of ¬.

Proof. The interested reader may consult the Appendix for the details. �

Now, given a cardinal κ > 0 and α < κ, we let Aα,κ be the expansion of A with a
constant for every element of A, a unary operation ¬ defined as

¬0 = d ¬d = 0 ¬a = c ¬c = a ¬1 = b ¬b = 1 ¬e = e,

and with a set of binary operations {(β : β < κ} defined for every β < κ and p, q ∈ A
as follows:

p(β q :=
{

1 if p = q or β 6= α
0 if p 6= q and β = α.

Then let `κ be the logic formulated in countably many variables induced by the class of
matrices {〈Aα,κ, {1}〉 : α < κ}.
Fact 4. For every κ > 0, the logic `κ is equivalential.

Proof. Consider the set
∆(x, y) := {x(α y : α < κ}.

It is easy to see that ∆ witnesses the validity of the rules in Theorem 2.7. Hence we
conclude that `κ is equivalential. �

Fact 5. For every κ > 0, J`κK is an upper bound of J`∨K and J`¬K in Log.

Proof. Consider the class of matrices K := {〈Aα,κ, {1}〉 : α < κ}. It is clear that `κ is the
logic induced by K and that S(K) = K. Then let τ be the identity translation of L`∨ into
L`κ

. By Fact 1 we have that

〈Bτ , F〉 = 〈A, {1}〉 ∈ Mod≡(`∨)
for every 〈B, F〉 ∈ K. Together with Fact 4 and Proposition 3.9, this implies that τ is an
interpretation of `∨ into `κ.

A similar argument (requiring Fact 3) shows that `∨ is also interpretable in `κ. �

Suppose, with a view to contradiction, that there exists the supremum of J`∨K and
J`¬K in Log, i.e. that there exists a logic ` such that

J`K = J`∨K∨ J`¬K. (7)

From now on, our aim is to obtain a contradiction.

Fact 6. For every κ > 0, we have J`K 6 J`κK.

Proof. This is a direct consequence of Fact 5. �

Now, since ` is a logic, its language is a set, say of cardinality κ. We can assume
without loss of generality that κ is infinite (if it is not, then we can add to it infinitely
many unary operations whose interpretation in Mod≡(`) would be the identity map).
By Fact 6 there is an interpretation τ of ` into `κ+ .

Fact 7. There is α < κ+ such that the symbol(α does not appear in the terms {τ(ϕ) : ϕ ∈
L`}.
Proof. Straightforward. �
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From now on we will work with the special α < κ+ provided by Fact 7. Let Âα,κ+ be
the {(α}-free reduct of Aα,κ+ .

Fact 8. The algebra Âα,κ+ is term-equivalent to

〈A;∨Aα,κ+ ,¬Aα,κ+ , a, b, 0, e〉.

Proof. Using negation, it is easy to see that all constants from Âα,κ+ are definable in the

displayed algebra. Moreover, if β 6= α, then(
Aα,κ+

β is a constant map. This shows that
all term-functions of Âα,κ+ are also term-functions of the algebra in the display. The
converse is obvious. �

In what follows we will work under the identification of Âα,κ+ with the algebra
displayed in Fact 8.

Fact 9. If γ(x) is a formula of Âα,κ+ such that 〈A; γÂα,κ+ 〉 is a negation algebra, then γ
can be obtained as a composition of ∨ and ¬.

Proof. Assume that 〈A; γÂα,κ+ 〉 is a negation algebra. Suppose, with a view to contra-
diction, that either 0 or a or b occur in γ. It is not hard to see that this implies that
e /∈ γÂα,κ+ [A]. However, since 〈A; γÂα,κ+ 〉 is a negation algebra, we know that

e = γÂα,κ+ γÂα,κ+ (e) ∈ γÂα,κ+ [A],

which is false. Hence we conclude that 0, a, and b do not occur in γ.
It only remains to prove that e does not occur in γ. Suppose the contrary, with a

view to contradiction. An easy induction on the construction of formulas shows that
if ϕ(x) is a formula of Âα,κ+ in which 0, a, and b do not occur and in which e occurs,
then ϕÂα,κ+ (0) ∈ {e, a, c}. As 0, a, and b do not occur in the composition γ(γ(x)), this
means that γÂα,κ+ γÂα,κ+ (0) 6= 0. But this contradicts the fact that 〈A; γÂα,κ+ 〉 is a negation
algebra, as desired. �

Fact 10. The blocks of Ω
Aτ

α,κ+{1} are {0, d}, {a, c, e}, {b}, {1}.

Proof. By Fact 7 we know that the term-functions of Aτ
α,κ+ are also term-functions of

Âα,κ+ . In particular, this means that ConÂα,κ+ ⊆ ConAτ
α,κ+ .

Consider the equivalence relation θ on A determined by the partition in the statement.
Using for instance Fact 8, it is easy to see that θ is a congruence of Âα,κ+ . Then θ is also a
congruence of Aτ

α,κ+ . As θ is compatible with {1}, this implies that θ ⊆ Ω
Aτ

α,κ+{1}.
As a consequence, we obtain that A/Ω

Aτ
α,κ+{1} is a set of at most four elements.

Moreover, since Ω
Aτ

α,κ+{1} is compatible with {1}, we know that 〈0, 1〉 /∈ Ω
Aτ

α,κ+{1}.
Therefore we have

2 6 |A/Ω
Aτ

α,κ+{1}| 6 4. (8)
Now, it is easy to see that 〈Aα,κ+ , {1}〉 ∈ R(Mod≡(`κ+)). Since τ is an interpre-
tation of ` into `κ+ , this implies that 〈Aτ

α,κ+ , {1}〉 ∈ Mod(`) and, therefore, that
〈Aτ

α,κ+ , {1}〉∗ ∈ Mod≡(`). Together with Fact 2 and `∨ 6 `, this implies that either

the matrix 〈Aτ
α,κ+ , {1}〉∗ is trivial, or the congruence Ω

Aτ
α,κ+{1} has at least four blocks.
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By (8) we conclude that Ω
Aτ

α,κ+{1} has exactly four blocks. Together with the fact that
θ ⊆ Ω

Aτ
α,κ+{1}, this implies that θ = Ω

Aτ
α,κ+{1}. �

We are now ready to produce the desired contradiction. To this end, recall that there
is an interpretation ρ of `¬ into `. Since 〈Aα,κ+ , {1}〉 ∈ Mod≡(`κ+), we can apply Fact 3

obtaining that 〈A; τρ(¬)Aα,κ+ 〉 is a negation algebra. By Fact 7 we know that the function
τρ(¬)Aα,κ+ : A → A is a term-function of Âα,κ+ . Hence we can apply Fact 9 obtaining
that τρ(¬)Aα,κ+ can be produced as a composition of the functions

¬Aα,κ+ : A→ A and ∨Aα,κ+ : A× A→ A.

This yields that
τρ(¬)Aα,κ+ (0) ∈ {0, d} and τρ(¬)Aα,κ+ (e) = e. (9)

From the fact that 〈Aα,κ+ , {1}〉 ∈ Mod≡(`κ+) it follows that 〈Aτ
α,κ+ , {1}〉 ∈ Mod(`). In

particular, this implies that

〈Aτ
α,κ+/θ, {1}/θ〉 ∈ Mod≡(`),

where θ := Ω
Aτ

α,κ+{1}. Together with Fact 3, this yields that 〈A/θ; τρ(¬)Aα,κ+/θ〉 is a
negation algebra. However, by Fact 10 and (9) this negation algebra has two distinct
fixed points for negation (namely 0/θ and e/θ), which is impossible. Hence we reached
a contradiction, establishing Theorem 5.1.

6. The lattice of equivalential logics

Even if suprema need not exist in Log there is an important subsemilattice of Log
where suprema exist, i.e. the lattice of equivalential logics.

Proposition 6.1.
(i) Let ` and `′ be logics. If ` is equivalential and ` 6 `′, then `′ is also equivalential.

(ii) If {`i : i ∈ I} is a family of equivalential logics, then
⊗

i∈I `i is equivalential.

Proof. (i): Let ∆(x, y) be the set of formulas witnessing the fact that ` is equivalential, as
in Theorem 2.7. Moreover, let τ be an interpretation of ` into `′. We consider the set
Σ(x, y) := τ[∆] of formulas of L`′ . In order to establish that `′ is equivalential, it will be
enough to show that Σ and `′ satisfy the conditions in Theorem 2.7.

From Proposition 3.3 it follows that ∅ `′ Σ(x, x) and x, Σ(x, y) `′ y. It only remains to
prove that for every n-ary connective ∗ of `′,⋃

16i6n

Σ(xi, yi) `′ Σ(∗(x1, . . . , xn), ∗(y1, . . . , yn)). (10)

To this end, consider an n-ary connective ∗ of `′, a matrix 〈A, F〉 ∈ Mod≡(`′), and tuples
~a,~c ∈ An such that ⋃

16i6n

ΣA(ai, ci) ⊆ F.

Since Σ = τ[∆], we have ⋃
16i6n

∆Aτ
(ai, ci) ⊆ F.
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As ∆ is a set of congruence formulas for `, and 〈Aτ , F〉 ∈ Mod≡(`) = R(Mod(`)), the
above display implies that~a = ~c. As a consequence, we obtain that ∗A(~a) = ∗A(~c). Since
∅ `′ Σ(x, x) and 〈A, F〉 ∈ Mod(`′), this yields

ΣA(∗(~a), ∗(~c)) = ΣA(∗(~a), ∗(~a)) ⊆ F.

Hence we conclude that (10) holds.
(ii): Given i ∈ I, let ∆ i(x, y) be a set of congruence formulas for `i. Observe that the

Cartesian product ∏i∈I ∆ i can be viewed as a set ∆(x, y) of formulas of
⊗

i∈I `i. Since
the various ∆ i satisfy the rules in Theorem 2.7, and

⊗
i∈I `i is the logic induced by⊗

i∈I Mod≡(`i), it is easy to see that the set ∆ satisfies the rules in Theorem 2.7 as well.
As a consequence, we conclude that

⊗
i∈I `i is an equivalential logic. �

The above result motivates the following definition:

Definition 6.2. Let Equiv be the subposet of Log that contains the classes J`K such that `
is an equivalential logic.

From Proposition 6.1 it follows that Equiv is a set-complete filter of Log, i.e. an upset that
is closed under infima of sets. Moreover, we shall prove that in Equiv suprema of sets
exist.

Definition 6.3. Given a family {Li : i ∈ I} of languages, we let
⊕

i∈I Li be the language
consisting of the disjoint union of the various Li. Moreover, given a family {`i : i ∈ I} of
equivalential logics, we let

⊕
i∈I `i be the logic in the language

⊕
i∈I Li formulated in

Σi∈Iκ`i variables and induced by the following class of
⊕

i∈I L`i -matrices:

{〈A, F〉 : the L`i -reduct of 〈A, F〉 belongs to R(Mod(`i)) for all i ∈ I}. (11)

We will show that J
⊕

i∈I `iK is the supremum of {J`iK : i ∈ I} both in Log and Equiv.

Lemma 6.4. Let {`i : i ∈ I} be a family of equivalential logics.
(i) If ∆ is a set of congruence formulas for `i, then so it is for

⊕
i∈I `i.

(ii) The logic
⊕

i∈I `i is equivalential.
(iii) Mod≡(

⊕
i∈I `i) is the class of matrices in (11).

(iv) J
⊕

i∈I `iK is the supremum of {J`iK : i ∈ I} both in Equiv and in Log.

Proof. (i): Observe that the L`i -reducts of the matrices in (11) are reduced. Together with
the fact that ∆ is a set of congruence formulas for `i, this easily implies that ∆ satisfies
the conditions of Theorem 2.7 for

⊕
i∈I `i. As a consequence, we conclude that ∆ is a set

of congruence formulas for
⊕

i∈I `i.
(ii): Immediate from (i). (iii): Let M be the class of matrices in (11). It is easy to see

that the matrices in M are reduced and, therefore, that M ⊆ Mod≡(
⊕

i∈I `i). To prove
the other inclusion, consider 〈A, F〉 ∈ Mod≡(

⊕
i∈I `i). As

⊕
i∈I `i is equivalential by (ii),

we can apply Theorem 2.7 obtaining that 〈A, F〉 ∈ R(Mod(
⊕

i∈I `i)). It will be enough
to show that (for every i ∈ I) the L`i -reduct 〈A−, F〉 of 〈A, F〉 is a reduced model of `i.
The fact that 〈A−, F〉 is a model of `i is clear. To prove that it is reduced, let ∆ be a set of
congruence formulas of `i. By (i) we know that ∆ is also a set of congruence formulas
for

⊕
i∈I `i. Together with the fact that 〈A, F〉 is a reduced model of

⊕
i∈I `i, this implies

that for every a, b ∈ A,

a = b⇐⇒ ∆A(a, b) ⊆ F ⇐⇒ ∆A−(a, b) ⊆ F.
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Since 〈A−, F〉 is a model of `i, this implies that the matrix 〈A−, F〉 is reduced.
(iv): By (i) we know that J

⊕
i∈I `iK belongs to Equiv. Hence it will be enough to

show that it is the supremum of {J`iK : i ∈ I} in Log. Recall from Theorem 2.7 that
Mod≡(`i) = R(Mod(`i)) for all i ∈ I. Together with (iii), this implies that `j 6

⊕
i∈I `i

for all j ∈ I.
Then consider a logic ` such that `i 6 ` for every i ∈ I. Then for every i ∈ I, there

is an interpretation τi of `i into `. Observe that all these τi can be joined together
into a translation τ of

⊕
i∈I Li into L`. We will show that τ is also an interpretation

of
⊕

i∈I `i into `. To this end, consider a matrix 〈A, F〉 ∈ Mod≡(`). We know that
〈Aτi , F〉 ∈ Mod≡(`i) = R(Mod(`i)) for every i ∈ I. This implies that the matrix 〈Aτ , F〉
belongs to the class in (11). By (iii) we conclude that 〈A, F〉 ∈ Mod≡(

⊕
i∈I `i). �

As a consequence, we obtain the following:

Theorem 6.5. Equiv is a set-complete lattice, i.e. infima and suprema of subsets of Equiv exist.
Moreover, these infima and suprema coincide with those of Log.

Proof. From Proposition 6.1(ii) and Lemma 6.4(iv). �

Problem 1. Do suprema of protoalgebraic logics [15] exist as well?

An adaptation of an argument given in [20, pag. 34] shows that the lattice Equiv is not
modular. However, to our knowledge, the following problem remains open:

Problem 2. Do Equiv and Var satisfy any non-trivial lattice equation?

7. The top and the bottom

In this section we will describe the top and the bottom parts of Log. To this end, recall
that a logic ` is inconsistent if Γ ` ϕ for every Γ ∪ {ϕ} ⊆ Fm(`). Similarly, ` is said to
be almost inconsistent if it lacks theorems and Γ ` ϕ for every Γ ∪ {ϕ} ⊆ Fm(`) such that
Γ 6= ∅. The following result is part of the folklore.

Lemma 7.1. A logic ` is inconsistent (resp. almost inconsistent) if and only if Mod≡(`) is the
class of isomorphic copies of 〈1, {1}〉 (resp. of 〈1, {1}〉 and 〈1, ∅〉).

The lemma easily implies that any two inconsistent (resp. almost inconsistent) logics
are equi-interpretable (since any translation between their languages is necessarily an
interpretation).

Corollary 7.2. The class of all inconsistent (resp. almost inconsistent) logics is a member of Log.

In the light of the above corollary, the main results of this section can be summarized
as follows:

Theorem 7.3. The poset Log lacks a minimum. Moreover, its maximum is the class of all
inconsistent logics, and its unique coatom is the class K of all almost inconsistent logics. In
particular, a logic ` lacks theorems if and only if J`K 6 K.

Proof. We first prove that Log has no minimum. Suppose, with a view to contradiction,
that Log has a minimum J`K. Then let κ := |Fm(`)| and consider the language L
that consists in k+ binary connectives {(α : α < κ+}. For every α < κ+, let Aα be the
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L -algebra with universe {1, 0, a} and operations defined for every p, q ∈ A and β < κ+

as follows:

p(β q :=
{

1 if p = q or β 6= α
0 if p 6= q and β = α.

Let also `κ+ be the logic (formulated in a countable set of variables) induced by the class
of reduced matrices

M := {〈Aα, {1, a}〉 : α < κ+}.
Clearly, M ⊆ Mod≡(`κ+).

Since ` is the minimum of Log, there is an interpretation τ of ` into `κ+ . On
cardinality grounds, there is α < κ+ such that the symbol (α does not occur in the
formulas {τ(ϕ) : ϕ ∈ L }. In particular, this implies that the matrix 〈Aτ

α , {1, a}〉 is not
reduced.

On the other hand, we know that
∼
Ω

Aτ
α

` {1, a} is the identity relation, since τ is an
interpretation of ` into `κ+ and 〈Aα, {1, a}〉 ∈ Mod≡(`κ+). Now, since Aα = {1, 0, a}, the
only deductive filter of ` on Aτ

α extending properly {1, a} is forcefully {1, 0, a}. Hence
we obtain that

∼
Ω

Aτ
α

` {1, a} = ΩAτ
α {1, a} ∩ΩAτ

α {1, 0, a} = ΩAτ
α {1, a} ∩ A2

α = ΩAτ
α {1, a}.

But this implies that ΩAτ
α {1, a} is the identity relation, which is false.

Now, from Lemma 7.1 it follows easily that the class of inconsistent (resp. almost
inconsistent) logics is the maximum (resp. a coatom) of Log. Hence, in order to establish
the second part of the theorem it only remains to show that the class K of all almost
inconsistent logics is the unique coatom of Log, and that a logic ` lacks theorems if and
only if J`K 6 K.

By Lemmas 4.11(ii) and 7.1 a logic ` lacks theorems if and only if J`K 6 K. Hence
it only remains to show that K is the unique coatom of Log. Suppose, with a view to
contradiction, that there is a coatom J`K in Log such that ` is not almost inconsistent.
Since J`K is neither the maximum of Log, nor comparable with K, we know that ` is not
inconsistent and that it has theorems. Then there is a matrix 〈A, F〉 ∈ Mod≡(`) such that
F ∈ P(A)r {∅, A}. In particular, this implies that |A| > 2. Now, consider the matrix

〈B, G〉 := 〈A, F〉|A| ∈ P(Mod≡(`)) ⊆ Mod≡(`)
and observe that |B| > |A| by Cantor’s Theorem.

Let B+ be the expansion of B with all finitary operations on B, and consider the logic
`+ formulated in |Fm(`)| variables induced by the matrix 〈B+, G〉.

Bering in mind that all finitary operations on B are term-function of B+, it is not
hard to see that the matrix 〈B+, G〉 is reduced and that the logic `+ is equivalential (see
[34, Lemma 3.2] if necessary). Moreover, we have that S(B+) = {B+}. Together with
Proposition 3.9, this implies that the identity map is a translation of ` into `+. Since ` is
a coatom of Log, this implies that either `+ is inconsistent or it is equi-interpretable with
`. As G 6= B and 〈B+, G〉 is a model of `+, we know that `+ is not inconsistent, whence
`+ 6 `.

Together with the fact that 〈A, F〉 ∈ Mod≡(`), this implies that Mod≡(`+) contains a
matrix of size |A|. However, from Lemma 2.8 it follows that every non-trivial member of
Mod≡(`+) has cardinality > |B|. Together with the fact that |A| < |B|, this implies that
A is trivial, which is false. �
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Remark 7.4. The proof above of the first part of Theorem 7.3 suggests that the lack of
a minimum in Log can be amended if we impose restrictions on the cardinality of the
languages in which logics are formulated.4 To be more precise, we will show that the
following poset has a minimum for every infinite cardinal κ:

Logκ := {J`K : |L`| 6 κ} ⊆ Log.

To this end, recall that the basic logic `V of a variety V [18, 19] is the logic in the
language of V (formulated in a countable set of variables) induced by the following class
of matrices

{〈A, F〉 : A ∈ V and F ⊆ A}.
Given an infinite cardinal κ, we consider the language Lκ comprising κ different n-
ary symbols for every n ∈ ω. Then let Vκ be the variety of all Lκ-algebras. Clearly
J`VκK ∈ Logκ. More interestingly, we shall prove that J`VκK is indeed the minimum of
Logκ.

Consider a logic ` such that |L`| 6 κ. We can assume without loss of generality that
the language of ` is of size κ. Then there is a surjective translation τ : Lκ → L`. We will
show that τ is an interpretation of `Vκ into `. To this end, consider 〈A, F〉 ∈ R(Mod(`)).
Since τ is surjective, the algebras A and Aτ are term-equivalent. In particular, this
implies that the matrix 〈Aτ , F〉 is reduced. Together with the fact that Aτ ∈ Vκ, this
implies that 〈Aτ , F〉 ∈ Mod≡(`Vκ ). Hence, with an application of Proposition 3.4, we
conclude that τ is an interpretation. �

As a consequence of the remark we have:

Corollary 7.5. The upset of Log generated by the set {J`VκK : κ is an infinite cardinal} is Log.

8. Relations with the lattice of varieties

For κ ∈ ω, a k-deductive system ` [6] is a consequence relation over FmL (κ)k (for some
language L and infinite cardinal κ) that, moreover, is substitution invariant in the sense
that for every substitution σ,

if Γ ` 〈ϕ1, . . . , ϕk〉, then {〈σ(γ1), . . . , σ(γk)〉 : 〈γ1, . . . , γk〉 ∈ Γ} ` 〈σ(ϕ1), . . . , σ(ϕk)〉

for every Γ ∪ {〈ϕ1, . . . , ϕk〉} ⊆ FmL (κ)k.

Example 8.1. Observe that 1-deductive systems coincide with logics. Moreover, every
variety K can be associated with a 2-deductive system �K formulated over Fm(ω)2 as
follows. For every Γ ∪ 〈ϕ, ψ〉 ⊆ Fm(ω)2 we set

Γ �K 〈ϕ, ψ〉 ⇐⇒ for every A ∈ K and homomorphism f : Fm(ω)→ A

if f (ε) = f (δ) for all 〈ε, δ〉 ∈ Γ, then f (ϕ) = f (ψ).

The relation �K is a notational variant of the standard equational consequence relative to
K (formulated in countably many variables). �

4The reader may have noticed that also the proof that finite suprema need not exist in Log relies on the
fact that the cardinality of languages in which logics are formulated is unbounded. However, in that case,
it is not clear to the authors that imposing cardinality restriction on the size of the languages would be
sufficient to recover the existence of suprema in Log.
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The theory of k-deductive systems is a smooth generalization of that of logics (for
the details, see for instance [6, 42]). In particular, every k-deductive system ` can be
associated with a class Mod≡(`) of models of the form 〈A, F〉 where A is an algebra and
F ⊆ Ak. Bearing this in mind, we say that an interpretation of a k-deductive system ` into
another k-deductive system `′ is a translation τ of the language of ` into that of `′ such
that 〈Aτ , F〉 ∈ Mod≡(`), for every 〈A, F〉 ∈ Mod(`′). We denote by Syst(k) the poset of
classes J`K of equi-interpretable k-deductive systems, ordered under interpretability. Let
also Equiv(k) be the subposet of Syst(k) that contains the classes J`K such that ` is an
equivalential k-deductive system. A straightforward adaptation of the proof of Theorem
6.5 shows that Equiv(k) is a set-complete lattice.

Recall form the Introduction that a variety K is interpretable [46] into another variety
V, when V is term-equivalent to some variety V∗ whose reducts (in a smaller signature)
belong to K, in which case we write K 6 V. When K 6 V and V 6 K we say that K and V
are equi-interpretable. The class of all varieties equi-interpretable with K is denoted by
JKK and is called the interpretability type of K. Moreover, we denote by Var the lattice of
interpretability types of varieties ordered by the relation 6 defined as follows: JKK 6 JVK
if and only if K 6 V. The next result draws a relation between Syst(2), and the lattice Var
of interpretability types of varieties.

Proposition 8.2. The map given by the rule JKK 7−→ J�KK is a lattice-embedding of Var into
Equiv(2).

Proof sketch. It is well known that if K is a variety, then �K is an algebraizable [5] (and,
therefore, equivalential) 2-deductive system such that

Mod≡(�K) = {〈A, {〈a, a〉 : a ∈ A}〉 : A ∈ K}.

As a consequence, a variety K is interpretable into another variety V if and only if �K is
interpretable into �V. Hence, the map in the statement is an order-embedding. The fact
that it is a lattice homomorphism follows from the description of infima and suprema
in Var [20, 38], and from a straightforward adaptation of the description of infima and
suprema of equivalential logics given here to the case of 2-deductive systems. �

The above result gives a logical explanation of some known facts about Var. For
instance, the fact that Var is a lattice (as opposed to a poset only) can be viewed as a
consequence of the fact that equivalential 2-deductive systems form a lattice. Similarly,
the fact that Var has no coatoms [20, Chpt. 2] follows from a variant of Theorem 7.3, and
the observation that every two-deductive system of the form �K has at least one theorem,
namely 〈x, x〉.

We conclude this section by showing that there is a meet-homomorphism from Var to
Log (Theorem 8.4). To this end, given a language L we denote by Tm(L) the set of all its
m-ary terms in the variables x1, . . . , xm. Then, for every L-algebra A and n > 0, the n-th
matrix power of A is the algebra

A[n] := 〈An; {mt : t ∈ Tkn(A)n for some positive k ∈ ω},

where for each t = 〈t1, . . . , tn〉 ∈ Tkn(A)n, we define mt : (An)k → An as follows: if
aj = 〈aj1, . . . , ajn〉 ∈ An for j = 1, . . . , k, then

mt(a1, . . . , ak) = 〈tA
i (a11, . . . , a1n, . . . , ak1, . . . , akn) : 1 6 i 6 n〉.
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For 0 < n ∈ ω, the n-th matrix power of a class K of similar algebras is the class
K[n] := I{A[n] : A ∈ K}. Applications of the matrix power construction range from the
algebraic study of category equivalences and adjunctions [13, 33, 35] to the study of
clones [39], Maltsev conditions [47, 20], and finite algebras [25].

Given a variety K, we denote by `2
K the logic formulated in countably many variables

induced by the class of matrices

I{〈A[2], {〈a, a〉 : a ∈ A}〉 : A ∈ K}. (12)

We rely on the following observation [37, Thm. 8]:

Theorem 8.3. If K is variety, then Mod≡(`2
K) is the class in (12).

As a consequence we obtain the desired result (cf. [20, Prop. 7]):

Theorem 8.4. The map defined by the rule JKK 7−→ J`[2]K K is a meet-homomorphism from Var
into Log.

Proof. We claim that if K and V are varieties such that K 6 V, then `[2]K 6 `
[2]
V . To prove

this, let τ be an interpretation of K into V. It is not hard to see that the map τ∗, defined by
the rule 〈t1, t2〉 7−→ 〈τ(t1), τ(t2)〉, is an interpretation of K[2] into V[2]. We will show that
τ∗ is also an interpretation of `[2]K into `[2]V . To this end, consider 〈A, F〉 ∈ Mod≡(`[2]V ).
By Theorem 8.3 there is B ∈ V[2] such that 〈A, F〉 ∼= 〈B, {〈b, b〉 : b ∈ B}〉. As τ∗ is an
interpretation of K[2] and V[2], this yields Bτ∗ ∈ K[2]. Hence, by Theorem 8.3 we obtain

〈A, F〉 ∈ I(〈Bτ∗ , {〈b, b〉 : b ∈ B}〉) ⊆ Mod≡(`[2]K ).

We conclude that τ∗ is an interpretation of `[2]K into `[2]V , establishing the claim.
Let µ : Var → Log be the map in the statement. From the claim it follows that µ is

well-defined. Then we turn to prove that it is a meet-homomorphism. To this end, given
two varieties K and V, we set K

⊗
V := I{A

⊗
B : A ∈ K and B ∈ V}. It is easy to see

that K
⊗

V is a variety. Moreover, recall that JK
⊗

VK is the meet of JKK and JVK in Var,
and that (K

⊗
V)[2] is term-equivalent to K[2]⊗V[2] (see for instance [20]). Together with

Corollary 4.14 and Theorem 8.3, this implies that `[2]K
⊗

V is term-equivalent to `[2]K

⊗ `[2]V

as well. Hence we have that

µ(JKK) ∧ µ(JVK) = J`[2]K K∧ J`[2]V K = J`[2]K

⊗
`[2]V K = J`[2]K

⊗
VK

= µ(JK
⊗

VK) = µ(JKK∧ JVK).

This shows that µ is a meet-homomorphism, as desired. �
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Appendix

A. Recall that `¬ is the negation fragment of classical propositional logic. The following
result is part of the folklore:
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Proposition 8.5. The logic `¬ is axiomatized by the following rules:

x,¬x � y x �¬¬x ¬¬x � x.

Theorem 8.6. Mod≡(`¬) is the class of matrices 〈A, F〉 such that either A is trivial or (A ∈ NA
and either F = ∅ or F = {a} for some a ∈ A that is not a fixed point of ¬).

Proof. We begin by proving the inclusion from left to right. To this end, observe that `¬
is determined the the matrix 〈2, {1}〉 where 2 is the negation reduct of the two-element
Boolean algebra with universe {0, 1}. Then consider a matrix 〈A, F〉 ∈ Mod≡(`¬) such
that A is non-trivial. First we show that A ∈ NA. The fact that 2 � x ≈ ¬¬x, together
with Corollary 2.5, implies that A � x ≈ ¬¬x.

It only remains to prove that A has at most one fixed point of ¬. Suppose that a, b ∈ A
are fixed points of ¬. We prove that FgA

`¬(F, p(a)) = FgA
`¬(F, p(b)) for every unary

polynomial function p of A. This implies that 〈a, b〉 ∈ ∼
Ω A
`¬F by Proposition 2.2(ii) and,

since 〈A, F〉 ∈ Mod≡(`¬), we that a = b. Let p be a unary polynomial function of A.
Because of the poor language of A, every polynomial function q(x) of A has the form

q(x) = ¬ . . .¬︸ ︷︷ ︸
n-times

x or q(x) = ¬ . . .¬︸ ︷︷ ︸
n-times

c

for some n ∈ ω and c ∈ A. If p is of the first shape, then since a, b are fixed points of
¬, it easily follows that p(a) = a and p(b) = b; then using the rule x,¬x � y, which
holds in the logic, it follows that b ∈ FgA

`¬(F, a) and a ∈ FgA
`¬(F, b) and, therefore,

FgA
`¬(F, p(a)) = FgA

`¬(F, p(b)). If p is of the second shape, then there is nothing to prove.
Hence we conclude that A is a negation algebra.

Now, recall that `¬ is determined by a matrix 〈2, {1}〉, whose set of designated
elements is a singleton. By a minor variant of [1, Thm. 8], this implies that Mod≡(`¬) is a
class of matrices 〈A, F〉 such that F is either empty or a singleton. Then consider a matrix
〈A, F〉 ∈ Mod≡(`¬) such that A is non-trivial. We know that A is a negation algebra and
that F is either empty or a singleton. Suppose, with a view to contradiction, that F = {a}
for a fixed point a of ¬. Since x,¬x `¬ y, this implies that F = A and, therefore, that A
is trivial which is false. This establishes the inclusion from left to right.

To prove the inclusion from right to left, consider a matrix 〈A, F〉 in the right-hand side
of the display in the statement. If A = 1, then either F = ∅ or F = {1}. In both cases,
〈A, F〉 ∈ Mod≡(`¬), since `¬ has no theorems. Then we suppose that A is non-trivial, in
which case A ∈ NA and either F = ∅ or F = {a} for some a ∈ A that is not a fixed point
of ¬. Together with Proposition 8.5, this implies that 〈A, F〉 ∈ Mod(`¬).

It only remains to prove that
∼
Ω A
`¬F is the identity relation. To prove this, consider

two different elements b, c ∈ A. First we consider the case where F = ∅. Since A is
a negation algebra, it has at most one fixed point of ¬. Thus we can assume without
loss of generality that b is not a fixed point of ¬. Together with Proposition 8.5, this
implies that 〈A, {b}〉 ∈ Mod(`¬). Moreover, clearly we have that F = ∅ ⊆ {b} and
〈b, c〉 /∈ ΩA{b} ⊆ ∼

Ω A
`¬∅ =

∼
Ω A
`¬F.

Then we consider the case in which F = {a} for some a ∈ A that is not a fixed point
of ¬. Since A has at most one fixed point of ¬, A � x ≈ ¬¬x, and b 6= c one of the
following conditions holds:

(i) Either (b 6= ¬b and b 6= ¬a) or (c 6= ¬c and c 6= ¬a).
(ii) Either (b = ¬b and c = ¬a) or (c = ¬c and b = ¬a).
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If condition (i) holds, we can assume without loss of generality that b 6= ¬b and b 6= ¬a.
If c = a, then 〈b, c〉 /∈ ΩA{a} ⊆ ∼

Ω A
`¬{a} =

∼
Ω A
`¬F. Then consider the case where c 6= a.

By Proposition 8.5 we know that {a, b} is a deductive filter of `¬. Hence we have that
〈b, c〉 /∈ ΩA{a, b} ⊆ ∼

Ω A
`¬{a} =

∼
Ω A
`¬F. Then suppose that the condition (ii) holds. We

can assume without loss of generality that b = ¬b and c = ¬a. In this case we have that
¬b /∈ {a} and ¬c ∈ {a} which, by Proposition 2.2(ii), implies that 〈b, c〉 /∈ ∼

Ω A
`¬F.

This concludes the proof that
∼
Ω A
`¬F is the identity relation. �

B. We close the paper with an observation on languages with constant symbols. If a
logic ` has constants in its language, then we can obtain a new language by keeping
all the connectives of L` and replacing each constant c by a unary operation ∗c. Then
we can transform every algebra A for the language L` into an algebra Aco for the new
language, where ∗Aco

c is the unary constant map to cA. The logic `co in the new language
induced by the class of matrices

{〈Aco, F〉 : 〈A, F〉 ∈ Mod(`)}

is the incarnation of the logic ` in our setting of logics with languages without constants.
Note that if the language of ` has no constant symbols, then ` = `co. It is therefore

natural to say of any two logics ` and `′, possibly with constants, that ` is interpretable
into `′ if `co is interpretable into `′co in the sense of Definition 3.2. Alternatively, and
with similar ideas to the ones used in the paper, the reader can easily figure out how to
modify our notion of a concrete interpretation to accommodate interpretations between
languages possibly with constants.
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