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MORE ZFC INEQUALITIES BETWEEN CARDINAL INVARIANTS

VERA FISCHER AND DÁNIEL T. SOUKUP

Abstract. Motivated by recent results and questions of D. Raghavan and S. Shelah,
we present ZFC theorems on the bounding and various almost disjointness numbers, as
well as on reaping and dominating families on uncountable, regular cardinals. We show
that if κ = λ+ for some λ ≥ ω and b(κ) = κ+ then ae(κ) = ap(κ) = κ+. If, additionally,
2<λ = λ then ag(κ) = κ+ as well. Furthermore, we prove a variety of new bounds for
d(κ) in terms of r(κ), including d(κ) ≤ rσ(κ) ≤ cf([r(κ)]ω), and d(κ) ≤ r(κ) whenever
r(κ) < b(κ)+κ or cf(r(κ)) ≤ κ holds.

1. Introduction

In this article, we focus on unbounded, dominating and eventually different families of
functions in κκ, and unsplit families of sets from [κ]κ for an uncountable, regular cardinal κ.
There is a great history of such studies for κ = ℵ0, which later sparked significant interest
in the case of κ > ℵ0. Especially so, that some long unresolved questions for cardinal
characteristics on ℵ0 have been answered for uncountable cardinals (e.g. Roitman’s problem
[4]). The goal of our paper is to present new ZFC relations between cardinal invariants on
an uncountable, regular κ, many that fail to hold in the countable case.

First, in Section 2, we show that if κ is a successor cardinal and there is a ≤∗-unbounded
family of functions in κκ of size κ+, then there is a maximal family of eventually different
functions/permutations of size κ+ as well. If, additionally, 2<λ = λ holds where κ = λ+, then
there is a maximal group of eventually different permutations of κ of size κ+ as well. These
results generalize recent work of D. Raghavan and S. Shelah [15], and provide strengthening
of certain results from [4, 11].

Next, in Section 3, we bound the minimal size of a ≤∗-dominating family by the minimal
size of an unsplit family under various conditions. Raghavan and Shelah proved that d(κ) ≤
r(κ) whenever κ ≥ iω. Our main result here is Theorem 3.7 that provides a variety of new
bounds for d(κ) in terms of r(κ), and a new characterization of the dominating number (see
Corollary 3.6, 3.9, and 3.10). In an independent argument, we next show that cf(r(κ)) ≤ κ
implies d(κ) ≤ r(κ) as well (see Theorem 3.11).

Finally, we summarize the relations between these invariants in three diagrams, and end
our article by emphasizing the most important open problems in the area. In particular, it
remains open if d(κ) ≤ r(κ) holds for all uncountable, regular κ.

We aimed our paper to be self contained, and to collect most of the known results on
related cardinal invariants. Let us also refer the new reader to A. Blass’ [3] as a classical
reference on cardinal characteristics on ℵ0.
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2. Unbounded and mad families of functions

Let us start by recalling some well known definitions. The bounding number b(κ) is
the minimal size of a family F ⊂ κκ so that there is no single function g ∈ κκ so that
{α < κ : g(α) < f(α)} has size < κ for all f ∈ F . In other words, F is unbounded in the
relation ≤∗ of almost everywhere dominance. We use the fact that bcl(κ) = b(κ) for any
uncountable, regular κ [8]: there is F ⊂ κκ of size b(κ) so that for any g ∈ κκ there is some
f ∈ F with {α < κ : g(α) < f(α)} stationary. I.e., F is ≤cl-unbounded where f ≤cl g iff
{α < κ : f(α) ≤ g(α)} contains a club1 subset of κ.

We also remind the reader of the usual almost disjointness numbers; in our context almost
disjoint (eventually different) means that the intersection of the sets (functions) has size < κ.

(i) a(κ) is the minimal size of a maximal almost disjoint family A ⊂ [κ]κ that is of size
≥ κ (the latter rules out trivialities like A = {κ}).

(ii) ae(κ) is the minimal size of a maximal, eventually different family of functions in κκ.
(iii) ap(κ) is the minimal size of a maximal, eventually different family of functions in S(κ),

the set of bijective members of κκ.
(iv) ag(κ) is the minimal size of an almost disjoint subgroup of S(κ), that is maximal among

such subgroups.

D. Raghavan and S. Shelah [14] recently proved that b(κ) = κ+ implies a(κ) = κ+ for any
regular, uncountable κ, by an elegant, and surprisingly elementary application of Fodor’s
pressing down lemma. Building on their momentum, we extend this result to related cardinal
invariants on maximal families of eventually different functions and permutations (see [4, 11]
for a detailed background).

Theorem 2.1. Suppose that κ = λ+ for some λ ≥ ω and b(κ) = κ+. Then ae(κ) = ap(κ) =
κ+. If, additionally, 2<λ = λ then ag(κ) = κ+ as well.

This is a strengthening of [4, Theorem 2.2], where d(κ) = κ+ implies ae(κ) = κ+ was
proved for successor κ, and also of [11, Theorem 4] where b(κ) = κ+ implies ae(κ) = κ+ was
proved using additional assumptions.

Proof. Let {fδ : δ < κ+} witness bcl(κ) = κ+. Also, fix bijections eδ : κ → δ where
κ ≤ δ < κ+ and bijections dα : α → λ where λ ≤ α < κ. The latter will allow us, given
some H ⊆ α < κ with |H |= λ and ζ < λ, to select the ζth element of H with respect to dα;
that is, to pick β ∈ H so that dα(β) ∩ dα[H ] has order type ζ.

Let us start with ae(κ) = κ+. We will define functions hδ,ζ ∈ κκ for δ < κ+, ζ < λ that
will form our maximal eventually different family.

We go by induction on δ < κ+. For each µ < κ, let Hδ(µ) = {hδ′,ζ′ : δ′ ∈ ran(eδ ↾ µ), ζ′ <
λ}. Note that

Hδ(µ) = {h(µ) : h ∈ Hδ(µ)}

has size < κ, so we can define

f∗
δ (µ) = max{fδ(µ),min{α < κ : |α \Hδ(µ)|= λ}}.

1I.e., closed and unbounded.
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We define hδ,ζ(µ) to be the ζth element of f∗
δ (µ) \Hδ(µ) with respect to df∗

δ
(µ).

Claim 2.2. H = {hδ,ζ : δ < κ+, ζ < λ} ⊂ κκ is eventually different.

Proof. For a fixed δ and ζ < ζ′ < λ, hδ,ζ(µ) 6= hδ,ζ′(µ) by definition for all µ < κ.
Given δ′ < δ, and ζ, ζ′ < λ, whenever δ′ ∈ ran(eδ ↾ µ), then hδ′,ζ′ ∈ Hδ(µ) and so

hδ′,ζ′(µ) 6= hδ,ζ(µ), since hδ,ζ /∈ Hδ(µ). �

Claim 2.3. H is maximal.

Proof. Fix some h ∈ κκ, and find δ < κ+ so that

S = {µ < κ : h(µ) < fδ(µ)}

is stationary. Now, there is a stationary S0 ⊂ S so that either

(1) h(µ) ∈ Hδ(µ) for all µ ∈ S0, or
(2) h(µ) /∈ Hδ(µ) for all µ ∈ S0.

In the first case, for each µ, we can find some δ′ = eδ(ηµ) with ηµ < µ and ζ′ = ζ′µ < λ
so that h(µ) = hδ′,ζ′(µ). In turn, by Fodor’s lemma, we can find a stationary S1 ⊂ S0 and
single δ′ = eδ(η) and ζ′ < λ so that h(µ) = hδ′,ζ′(µ) for all µ ∈ S1; hence, h∩ hδ′,ζ′ has size
κ.

In the second case, h(µ) ∈ f∗
δ (µ) \Hδ(µ) must hold too, and so there is a ζµ < λ so that

h(µ) is the ζthµ element of f∗
δ (µ) \Hδ(µ) with respect to df∗

δ
(µ). Again, we can find a single

ζ < λ and stationary S1 ⊂ S0 so that ζµ = ζ for all µ ∈ S1 and so h ∩ hδ,ζ has size κ.
�

This shows that H is the desired maximal eventually different family.

Now, we proceed with ap(κ) = κ+. We will modify the previous argument to ensure
hδ,ζ ∈ S(κ) and to keep the family maximal in S(κ). Let ē = {eδ : κ ≤ δ < κ+}, d̄ = {dα :
λ ≤ α < κ} , f̄ = {fδ : δ < κ+}. We will need some elementary submodels: for each δ < κ+,
we fix a continuous, increasing sequence of elementary submodels N̄ δ = (N δ

η )η<κ of some
H(θ) so that

(i) |N δ
η |= λ, and N δ

η ∩ κ ∈ κ,

(ii) δ, ē, d̄, f̄ ∈ N δ
η ,

(iii) δ′ ∈ N δ
η implies N̄ δ′ ∈ N δ

η .

Let Eδ = {N δ
η ∩ κ : ζ < κ} ∪ {0} which is a club in κ.

Again, we proceed by induction on δ, but use the notation Hδ(ν) and Hδ(ν) with minor
modifications: Hδ(ν) = {hδ′,ζ′ : δ′ ∈ ran(eδ ↾ µ), ζ′ < λ} where µ = sup(Eδ ∩ ν) ≤ ν, and

Hδ(ν) = {h(ν) : h ∈ Hδ(ν)}.

So Hδ(ν) = Hδ(µ) but Hδ(ν) and Hδ(µ) are typically different (where µ = sup(Eδ ∩ ν)).
We construct hδ,ζ for ζ < λ so that

(1) hδ,ζ ↾ [µ, µ+) ∈ S([µ, µ+)) for any successive elements µ, µ+ of Eδ,
(2) hδ,ζ ∩ hδ,ζ′ = ∅ for ζ′ < ζ,
(3) hδ,ζ(ν) ∈ κ \Hδ(ν),
(4) hδ,ζ(µ) is the ζth element of f∗

δ (µ) \ (Hδ(µ) ∪ µ) with respect to df∗

δ
(µ), where

f∗
δ (µ) = max{fδ(µ),min{α < κ : |α \ (Hδ(µ) ∪ µ)|= λ}},

(5) (hδ,ζ)ζ<λ is uniquely definable from N̄ δ.
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These conditions clearly ensure that hδ,ζ ∈ S(κ), and as before, the family {hδ′,ζ′ : δ′ ≤
δ, ζ′ < λ} remains eventually different by conditions (2) and (3). Maximality, just as before,
follows from condition (4) and Fodor’s lemma.

Let us show that we can actually construct functions with the above properties. Fix
successive elements µ < µ+ of Eδ, and we define hδ,ζ ↾ [µ, µ+) ∈ S([µ, µ+)) by an induction
in λ steps. We list all triples from λ× [µ, µ+)× 2 as (ζξ, νξ, iξ) for ξ < λ.

First of all, let µ = κ ∩N δ
η and µ+ = κ ∩N δ

η+1; we will write N for N δ
η+1 temporarily.

Claim 2.4. µ+ \ (Hδ(ν) ∪ µ) has size λ for all ν ∈ µ+ \ µ.

Proof. Note that eδ ↾ µ ∈ N and so ran(eδ ↾ µ) is an element and subset of N . Furthermore,
we can apply (5) to see that Hδ(µ) ∈ N and so Hδ(ν) ∈ N for any ν < µ+. Moreover,
N |= |Hδ(ν)|< κ so µ+ \ (Hδ(ν) ∪ µ) has size λ. �

In turn, since fδ(µ) ∈ N as well, the value f∗
δ (µ) in condition (4) is well defined and

< µ+.
Now, we can start our induction on ξ < λ by partial functions hδ,ζ , each defined only at

µ to satisfy condition (4). At step ξ, we do the following. Let ζ = ζξ, ν = νξ; if iξ = 0 then
we make sure that ν gets into the domain of hδ,ζ, and if iξ = 1 then we make sure that ν is
in the range of hδ,ζ .

Suppose iξ = 0. We need to find a value for hδ,ζ(ν) which is in µ+ \ (Hδ(ν) ∪ µ) and
which also avoids hδ,ζ′(ν) where ζ′ = ζξ′ for some ξ′ < ξ. The set µ+ \ (Hδ(ν) ∪ µ) has size
λ (using that Hδ(ν) ∈ N as before), and we only defined < λ many functions so far, hence
we can find a (minimal) good choice.

Next, if iξ = 1 then we need to find some ϑ ∈ µ+ \ µ so that h(ϑ) 6= ν for h ∈ Hδ(µ) and
hδ,ζ′(ϑ) 6= ν for all ζ′ = ζξ′ for some ξ′ < ξ. First, Hδ(µ) ∈ N and has size < κ so the set of
good choices

µ+ \ (µ ∪ {ϑ < κ : h(ϑ) = ν, h ∈ Hδ(µ)}

still has size λ by elementarity. Each hδ,ζ′ introduces ≤ 1 bad ϑ, and we have ≤ |ξ|< λ
many of these, so we can find a good (minimal) ϑ.

If we carry out all this work in N δ
η+2, always taking minimal choices, then in the end

condition (5) is preserved as well.

Finally, we turn to the proof of ag(κ) = κ+. We use the additional assumption that
2<λ = λ. We keep the notations Hδ(ν), Hδ(ν) from the previous section, as well as the
elementary submodels. However, we can now assume that each successor model N δ

η+1 is
< λ-closed. This will help us when we are constructing the functions hδ,ζ in the induction of
length λ, because at each intermediate step ξ, the model N δ

ξ+1 will contain all the functions

which we constructed so far (there was no reason for this to hold before).
So, our aim now is to construct H = {hδ,ζ : δ < κ+, ζ < λ} ⊂ S(κ), so that in the

generated subgroup G = 〈H〉, only the identity has κ fixed points and G is maximal. We
use the notation

Gδ(ν) = 〈Hδ(ν)〉 and Gδ(ν) = {g(ν) : g ∈ Gδ(ν)}

for δ < κ+ and ν < κ.
We go by induction on δ as before, and construct hδ,ζ so that

(1) hδ,ζ ↾ [µ, µ+) ∈ S([µ, µ+)) for any successive elements µ, µ+ of Eδ,
(2) any fixed point of a non identity function h ∈ 〈Hδ(µ)∪ {hδ,ζ ↾ µ+ : ζ < λ}〉 is below

µ,
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(3) (hδ,ζ)ζ<λ is uniquely definable from N̄ δ.

These conditions ensure that only the identity in G has κ fixed points. Indeed, suppose
g ∈ G is not the identity and write it as a finite product of hδ,ζ functions. Let δ1 be the
maximal δ that occurs; if no other δ is in this product then g has no fixed points by (2). If δ0
is the maximum of all other δ’s that occur then we can find a µ < κ so that δ0 ∈ ran(eδ ↾ µ)
and so (2) implies that all fixed points of g are below µ.

As before, we fixed some µ < µ+, and hδ,ζ is constructed by an induction of length λ,
using an enumeration of all triples from λ× [µ, µ+)× 2 as (ζξ, νξ, iξ) for ξ < λ.

We start by empty functions now, and at step ξ, we either need to put ν = νξ into the
domain of hδ,ζ or into the range of hδ,ζ (where ζ = ζξ).

Lets look at the first case: in order to preserve (2), it suffices to ensure that hδ,ζ(ν) 6= h(ν)
for any

h ∈ Z = 〈Hδ(µ) ∪ {hδ,ζ′ : ζ′ = ζξ′ , ξ
′ < ξ}〉

whenever h(ν) can be computed.
The maps hδ,ζ′ are some partial functions on µ+ that extend hδ,ζ′ ↾ µ by < λ many new

values. Since N = N δ
ξ+1 now contains these functions as well as the set {hδ,ζ′ : ζ′ = ζξ′ , ξ

′ <

ξ}, it also contains the set Z (we applied that N is < λ-closed and the inductive hypothesis
(3)). So, since

N |= |{h(ν) : h ∈ Z}|< κ,

we can take hδ,ζ(ν) = minµ+ \ ({h(ν) : h ∈ Z} ∪ µ).
To ensure maximality in the end, we consider the case ν = µ separately. Now, we don’t

just take a minimal good choice but look at the minimal α ≥ fδ(µ) so that α \ ({h(µ) : h ∈
Z} ∪ µ) has size λ. Since Z ∈ N and N |= |Z|< κ, α ∈ N too. Now, we define hδ,ζ(µ) to be
the ζth element of α \ {h(µ) : h ∈ Z} with respect to dα.

Second, to put ν in the range of hδ,ζ : we need some ϑ ∈ µ+ \ µ so that h(ϑ) 6= ν for any
h ∈ Z (and then we can set hδ,ζ(θ) = ν). Again, N |= |Z|< κ and each h ∈ Z contributes
with at most one bad ϑ so we can pick a minimal ϑ that works.

It is left to check that we constructed a maximal G. Fix any g ∈ S(κ)\G and find δ < κ+

so that S = {µ < κ : g(µ) < fδ(µ)} is stationary. Now, there is a stationary S0 ⊂ S so that
either

(1) g(µ) = h(µ) for some 〈Hδ(µ) ∪ {hδ,ζ : ζ < λ}〉 for all µ ∈ S0, or
(2) g(µ) 6= h(µ) for all 〈Hδ(µ) ∪ {hδ,ζ : ζ < λ}〉 for all µ ∈ S0.

In the first case, we can use Fodor’s theorem to fix a single h ∈ G so that g ∩ h has size κ.
In the latter, there is some ζ < λ so that g ∩ hδ,ζ has size κ (just as in the previous proofs).

�

We do not know at this point if our theorem is true without the assumption of κ being
successor, nor how to remove 2<λ = λ from the last part of the result.

3. Reaping and dominating numbers

Some background. Let us recall a few more invariants, first the dual of the bounding
number:

(i) the dominating number d(κ) is the minimal size of a family F ⊂ κκ which is ≤∗-
dominating;
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(ii) the club-dominating number dcl(κ) is the minimal size of a family F ⊂ κκ which is
≤cl-dominating.2

Second, we will look at the reaping and splitting numbers. We say that B splits A if
|A ∩B|= |A \B|= κ.

(i) r(κ) is the minimal size of a family F ⊂ [κ]κ so that no single B ⊂ κ splits all A ∈ F ;
(ii) s(κ) is the minimal size of a family F ⊂ [κ]κ so that any A ∈ [κ]κ is split by some

B ∈ F .

It was proved by Cummings and Shelah that

dcl(κ) ≤ d(κ) ≤ cf([dcl(κ)]
ω),

and d(κ) = dcl(κ) whenever κ ≥ iω [8]. It is not known if the latter assumption is necessary.

To the surprise of many, Raghavan and Shelah [15] proved that s(κ) ≤ b(κ) for any
uncountable, regular κ (a result that consistently fails for κ = ω).3 In fact, they prove that

s(κ) ≤ pcl(κ) ≤ b(κ)

where pcl(κ) is the minimal size of a family of clubs D in κ without a pseudo intersection
i.e., no A ∈ [κ]κ satisfies A ⊆∗ D for all D ∈ D. We remark that

κ+ ≤ p(κ) ≤ t(κ) ≤ b(κ)

where p(κ) is the minimal size of a family with the κ-intersection property (i.e., any subfamily
of size < κ has an intersection of size κ) but without a pseudo intersection, and t(κ) is
the minimal size of a ⊆∗-chain with the κ-intersection property in [κ]κ without a pseudo
intersection [6].4 While p(κ) ≤ pcl(κ) clearly holds by definition, we are not aware of results
separating these invariants.

Most recently, Raghavan and Shelah [14] showed the dual inequality

d(κ) ≤ r(κ)

whenever κ ≥ iω , and this is where our interest lies. Especially so, that it is not known at
this point if the assumption κ ≥ iω can be removed from their result.

Raghavan and Shelah’s argument is surprisingly short, and goes as follows. For a set
E ⊂ κ and ξ ∈ κ, we let sE(ξ) = minE \ (ξ + 1).

Take an arbitrary F ⊂ [κ]κ. First, if there is a club E1 so that for any club E2 ⊂ E1

there is some A ∈ F so that A ⊂∗
⋃

ξ∈E2
[ξ, sE1

(ξ)) then d(κ) ≤ |F |. Indeed, the functions

gA(ξ) = sA(sE1
(ξ)) for A ∈ F must ≤∗-dominate.

So, suppose that F has size r(κ), and by the previous observation, we can assume the
following: for any club E1, there is a club E2 ⊂ E1 so that A 6⊂∗ ⋃

ξ∈E2
[ξ, sE1

(ξ)) for all

A ∈ F . In this case we say that F has property RS (for Raghavan-Shelah). Let us emphasize
this definition.

Definition 3.1. We say that F ⊂ [κ]κ has property RS if for any club E1, there is a club
E2 ⊂ E1 so that A 6⊂∗ ⋃

ξ∈E2
[ξ, sE1

(ξ)) for all A ∈ F .

2Recall that f ≤cl g if {α < κ : f(α) ≤ g(α)} contains a club.
3Even before this result, it was known that s(κ) behaves very interestingly for an uncountable κ. s(κ) ≥ κ

iff κ is weakly inaccessible, s(κ) > κ iff κ is weakly compact, and s(κ) > κ+ is equiconsistent with the
existence of a measurable cardinal µ with Mitchell order at least µ++ [2, 18, 19].

4S. Garti proved that p(κ) = t(κ) if p(κ) = κ+ and κ<κ = κ [10]. Given the recent breakthrough of M.
Malliaris and Shelah [13] proving p(ω) = t(ω), it would be interesting to see how much of that machienary
can be generalized to uncountable cardinals.
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Now, the next observation follows by definition.

Observation 3.2. If F is unsplit and has property RS then for any club E1 ⊂ κ, there is a
club E2 ⊂ E1 and some A ∈ F so that A ⊂∗ κ \

⋃
ξ∈E2

[ξ, sE1
(ξ)).

Proof. Indeed, given E1 we find E2 using property RS so that A 6⊂∗ ⋃
ξ∈E2

[ξ, sE1
(ξ)) for all

A ∈ F . If A ∩
⋃

ξ∈E2
[ξ, sE1

(ξ)) has size κ for all A ∈ F then
⋃

ξ∈E2
[ξ, sE1

(ξ)) would split
F , which contradicts that F is unsplit.

�

Now, we claim that {sA : A ∈ F} is ≤cl-dominating for an unsplit RS-family. Given
f ∈ κκ, take an f -closed club E1 and find E2 ⊂ E1 and A ∈ F using property RS so that
A \ δ ⊂ κ \

⋃
ξ∈E2

[ξ, sE1
(ξ)) for some δ < κ. Now, we claim that f ↾ E2 \ δ ≤ sA ↾ E2 \ δ.

Indeed, ξ ∈ E2\δ implies that f(ξ) < sE1
(ξ) ≤ sA(ξ) since sA(ξ) ∈ A and A∩[ξ, sE1

(ξ)) = ∅.
This proves

dcl(κ) ≤ r(κ),

and in turn, d(κ) = dcl(κ) ≤ r(κ) follows if κ ≥ iω by the Cummings-Shelah result above.

New results. Recall that rσ(κ) is the minimal size of a family F ⊂ [κ]κ so that there is no
countable family {Bn : n < ω} so that any A ∈ F is split by some Bn. It is easy to see that
rσ(ℵ0) exists, however this is not so obvious for an uncountable κ.

Observation 3.3. [19, Lemma 3] If ℵ0 < κ ≤ 2ℵ0 then there is a countable B that splits all
A ∈ [κ]κ.

In turn, rσ(κ) does not exist if ℵ0 < κ ≤ 2ℵ0 .

Proof. Take an injection f : κ → 2ω and let Bs = {α < κ : s ⊂ f(α)} for s ∈ 2<ω. We
claim that {Bs : s ∈ 2<ω} splits all A ∈ [κ]κ. Indeed, this follows from the fact that any
uncountable set of reals has at least two complete accumulation points. In detail, assume
that some A ⊂ κ is not split by any Bs. Then the set S = {s ∈ 2<ω : |A ∩Bs|= κ} cannot
contain incompatible elements (as Bs ∩Bt = ∅ whenever s, t are incompatible), and so there
is at most one α such that s ∈ S implies s ⊂ f(α). In turn,

A ⊂ {α} ∪
⋃

s∈2<ω\S

A ∩Bs

and the latter set has size < κ.
�

Proposition 3.4. If cf(κ) > 2ℵ0 then rσ(κ) exists, and r(κ) ≤ rσ(κ) ≤ cf([r(κ)]ω).

Proof. Given a countable family B = {Bn : n < ω}, we can look at the map gB : κ → [ω]ω

defined by gB(α) = {n ∈ ω : α ∈ Bn}. For any A ∈ [κ]κ, it is equivalent that

(1) no element of B splits A, and
(2) gB is eventually constant on A.

Suppose that F ⊂ [κ]κ is a reaping family of size r(κ), and {Bξ : ξ < λ} is cofinal in [r(κ)]ω

of size λ = cf([r(κ)]ω). Find Aξ ∈ [κ]κ so that gBξ
↾ Aξ is constant, which can be done by

cf(κ) > 2ℵ0 .
We claim that {Aξ : ξ < λ} cannot be split by any countable family B, and so rσ(κ) ≤

cf([r(κ)]ω). Indeed, given B, find ξ < λ so that B ⊂ Bξ, and so Aξ is not split by any
member of B (since gB is constant on Aξ).
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Note that once rσ(κ) exists, r(κ) ≤ rσ(κ) trivially holds by definition. �

For κ = ω, we know that rσ ≤ max{cf([r]ω), non(M)} (see [7, Theorem 3.6]), and it is a
long standing open problem whether r(ω) < rσ(ω) is possible [7].

Proposition 3.5. d(κ) ≤ rσ(κ) for any uncountable, regular κ > 2ℵ0 .

Proof. Take a family F which is not split by countably many sets and has size rσ(κ). Again,
we can suppose that F is RS (otherwise d(κ) ≤ |F | holds); we will show that {sA : A ∈ F}
is dominating. Pick any f ∈ κκ, and we may assume α ≤ f(α) for all α < κ. Starting form
an f -closed club E0, build E0 ⊇ E1 ⊇ . . . clubs in κ so that

A 6⊂∗ Bn =
⋃

ξ∈En+1

[ξ, sEn
(ξ))

for all A ∈ F and n ∈ ω (this is simply by applying that F is RS inductively). The family
{Bn}n∈ω cannot split F so there is a single A ∈ F unsplit by all the Bn. This means that

A \ δ ⊂ κ \Bn

some δ < κ and for all n < ω. We claim that f ≤∗ sA.
Indeed, for any α ∈ κ\δ, we can find n < ω so that sup(En∩(α+1)) = sup(En+1∩(α+1))

and let ξ denote this common value. Now

ξ ≤ α ≤ f(α) < sEn
(ξ) < sA(α)

as desired.
�

Next, we use this result to present a new characterization of d(κ) for uncountable κ. For
κ = ω, the value of min{r, d} is actually equal to the minimal size of a family of partitions I
of ω into finite sets (equivalently, partitions to intervals) so that there is no single A ∈ [ω]ω

that splits all (In)n∈ω ∈ I in the sense that both {n ∈ ω : In ⊂ A} and {n ∈ ω : In ∩A = ∅}
are infinite. This invariant, the finitely reaping number, is denoted by fr [7].

Now, the equivalent of this invariant for an uncountable and regular κ, which we denote
by fr(κ), is the following: the minimal size of a family of clubs E so that there is no single
A ⊂ κ such that both {ξ ∈ E : [ξ, sE(ξ)) ⊂ A} and {ξ ∈ E : [ξ, sE(ξ)) ∩ A = ∅} have size κ
for all E ∈ E . We say that A interval-splits E. It is easily shown, just like the above cited
[7, Proposition 3.1], that fr(κ) = min{d(κ), r(κ)} still holds.

Similarly, one proves that frσ(κ) = min{d(κ), rσ(κ)}, and so we actually get frσ(κ) = d(κ)
by Proposition 3.5 for an uncountable, regular κ. In other words:

Corollary 3.6. Suppose that κ is regular and uncountable. Then d(κ) is the minimal size
of a family of clubs E so that there is no countable family A of subsets of κ such that both
{ξ ∈ E : [ξ, sE(ξ)) ⊂ A} and {ξ ∈ E : [ξ, sE(ξ)) ∩ A = ∅} have size κ for all E ∈ E and
some A ∈ A.

For the sake of completeness, we sketch the argument:

Proof. First, we prove frσ(κ) ≤ d(κ): given a dominating family F ⊂ κκ, take some f -closed
club Ef for each f ∈ F and let E = {Ef : f ∈ F}. We claim that there is no countable
family A such that each Ef is split by some A ∈ A. Indeed, let g = sup{sA : A ∈ A} and
find f ∈ F so that g ≤∗ f . It is easy to see that almost all intervals of Ef meet all A ∈ A.

Now, suppose that we are given a family of clubs E of size < d(κ). First, we can find a
single f ∈ κκ so that {α < κ : sE ◦ sE(α) < f(α)} has size κ for all E ∈ E . So, if D is an
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f -closed club in κ then XE = {ζ ∈ D : [ξ, sE(ξ)) ⊂ [ζ, sD(ζ)) for some ξ ∈ E} has size κ.
Since |E|< d(κ) ≤ rσ(κ), there is a countable family {Bn : n ∈ ω} so that any XE is split
by some Bn. So, we define

An =
⋃

{[ζ, sD(ζ)) : ζ ∈ D ∩Bn}

for n < ω. Now, any E ∈ E must be interval-split by some element of {An : n ∈ ω}.
�

Returning to the question whether d(κ) ≤ r(κ) for any uncountable κ, we present the
following new results.

Theorem 3.7. Suppose that κ is uncountable and regular. Then

(1) d(κ) ≤ supλ<r(κ) cf([λ]
ω) ≤ cf([r(κ)]ω) ≤ r(κ)ω,

(2) d(κ) ≤ cf([r(κ)]θ) for any ω ≤ θ < b(κ), and

(3) if r(κ) < b(κ)+κ then d(κ) ≤ r(κ).

In fact, the proof of Theorem 3.7 will follow from a closer analysis of Raghavan and
Shelah’s arguments in [15], given in the next lemma.

Lemma 3.8. Suppose that κ is uncountable and regular, and F ⊂ [κ]κ is an RS family.
Also, assume that G ⊂ κκ and for any F0 ∈ [F ]κ there is some g ∈ G such that

|{A ∈ F0 : sA ≤∗ g}|≥ ℵ0.

Then G is ≤∗-dominating in κκ as well.

First, let us show how the theorem is deduced from this lemma.

Proof of Theorem 3.7. Assume that F = {Aξ : ξ < µ} ⊂ [κ]κ is an RS family of size
µ = r(κ), and let F ↾ λ = {Aξ : ξ < λ} for λ < µ. Observe that for any F0 ∈ [F ]κ there is
some λ < µ so that F0 ∩ F ↾ λ is infinite.

(1) Suppose that Bλ ⊂ [F ↾ λ]ω is cofinal in [F ↾ λ]ω for λ < µ. If now F0 ∈ [F ]κ then
there is some λ < µ and X ∈ Bλ so that F0∩X is infinite. Hence, if we let gX ∈ κκ dominate
{sA : A ∈ X}, then G = {gX : X ∈ Bλ, λ < µ} satisfies the assumptions of Lemma 3.8. In
turn, the first inequality of (1) holds (and the rest trivially follows).

(2) As before, if B ⊂ [F ]θ cofinal and gX ∈ κκ dominates {sA : A ∈ X} for X ∈ B then
G = {gX : X ∈ B} satisfies the assumptions of Lemma 3.8.

(3) We claim that for any F ⊂ [κ]κ of size < b(κ)+κ there is some G of size |F | that
satisfies the assumptions of Lemma 3.8. We still use µ for the size of F and keep the
notation F ↾ λ.

Assume first that µ = b(κ). We can find G = {gλ : λ < µ} so that gλ dominates
{sA : A ∈ F ↾ λ}. By the above observation, G satisfies the assumptions of Lemma 3.8 and
we are done.

In general, we proceed by induction. Suppose that the claim is proved for µ = b(κ)+ζ

for ζ < ξ where ξ < κ. Since cf(ξ) < κ, for any F0 ∈ [F ]κ there is some λ < µ so that
|F0 ∩ F ↾ λ|= κ. So, if Gλ is the family provided by the inductive hypothesis that satisfies
the assumptions of Lemma 3.8 for F ↾ λ, then G = ∪{Gλ : λ < µ} works for F .

This, in turn, implies d(κ) ≤ r(κ) whenever r(κ) < b(κ)+κ by Lemma 3.8. �

Now, we prove the lemma:
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Proof of Lemma 3.8. This statement is essentially proved in [14], but let us reiterate: fix an

f ∈ κκ, and we construct clubs Ei
2 ⊂ Ei

1 ⊂ κ and Ai ∈ F for i < κ so that Ei
1 ⊂

⋂
j<i E

j
2

and

Ai \ δi ⊂ κ \
⋃

ξ∈Ei
2

[ξ, sEi
1
(ξ))

for some δi < κ. Moreover, we assume that E0
0 is f -closed.

Now, apply the assumption on G and the set F0 = {Ai : i < κ} to find g ∈ G and
increasing i0 < i1 < i2 < · · · < κ so that sAin ≤∗ g for all n < ω. We claim that f ≤∗ g;
indeed, fix some large enough α ∈ κ \ supn<ω δin that also satisfies supn<ω sAin (α) < g(α).
We will show that f(α) < g(α).

There is an n < ω so that sup(Ein
1 ∩ (α+1)) = sup(E

in+1

1 ∩ (α+1)) and let ξ denote this

common value. Then ξ ∈ Ein
2 as well and

ξ ≤ α ≤ f(α) < s
E

in
1

(ξ) < sAin (α) < g(α)

as desired. �

3.1. On cofinalities. A particular case of Theorem 3.7 addresses [15, Question 15]:

Corollary 3.9. d(ℵn) ≤ r(ℵn) unless ℵωn
≤ r(ℵn) for n < ω.

Furthermore, one can use Theorem 3.7 with PCF-theoretic bounds for cofinalities to relate
d(κ) and r(κ):

Corollary 3.10. If r(ℵ1) < ℵω2
then d(ℵ1) < ℵω5

.

Proof. Recall that

cf([ℵδ]
|δ|) < ℵ|δ|+4

for any δ < ℵδ [1, Theorem 7.2]. Suppose that r(ℵ1) = ℵδ+n for some limit ω1 ≤ δ < ω2

and n ∈ ω. In turn, by Theorem 3.7 (2) applied with θ = ℵ1 < b(ℵ1),

d(ℵ1) ≤ cf([ℵδ+n]
ω1) ≤ ℵδ+n · cf([ℵδ]

ω1) < ℵω5

as desired. �

The above results point us to the following interesting question: what can the cofinality
of r(κ) be? Indeed, it is famously open whether cf(r) = ω is consistent,5 however cf(r) = ω
does imply d ≤ r [17].

Theorem 3.11. If cf(r(κ)) ≤ κ then d(κ) ≤ r(κ) for any uncountable, regular κ.

We mention that our proof is very specific to the uncountable case (and does not use
Raghavan and Shelah’s recent work).

Proof. Let us assume that µ = r(κ) < d(κ) and cf(µ) ≤ κ. Given some F ⊂ [κ]κ of size µ,
we construct a set B which splits each A ∈ F .

We can write F as an increasing union ∪{Fξ : ξ < λ} where λ = cf(µ), so that |Fξ|< µ
and find Bξ that splits each A ∈ Fξ. Our job is to glue together the sets {Bξ : ξ < λ} into
a single set B which splits all A ∈ F at once.

5Here r, d denote r(ℵ0) and d(ℵ0), respectively.
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Let us consider the λ = κ case first: we would like to find a fast enough club E ⊂ κ so
that

B =
⋃

{[ξ, sE(ξ)) ∩Bξ : ξ ∈ E}

works. So, take an elementary submodel M ≺ H(Θ) of size µ such that F ∪{Bα : α < κ} ⊂
M . By assumption M ∩κκ is not dominating, so we can find a single f ∈ κκ so that for any
g ∈ M ∩ κκ, the set

Ig = {α < κ : g(α) < f(α)}

has size κ. Now let E be a club of f -closed ordinals in κ, and we claim that the above
defined B splits each A ∈ F .

Fix some A ∈ F such that A ∈ Fζ and note that

g(α) = sup{min(A ∩Bα′ \ (α+ 1)) : α′ ≤ α}

is well defined for α ≥ ζ, and g(α) < κ. The crucial property of g we use is that

(α, g(α)) ∩A ∩Bα′ 6= ∅

for any α′ ≤ α. Since g ∈ M , the set Ig has size κ.
Now, given α ∈ Ig \ ζ, find the interval from E that contains α: let ξα = sup(E ∩ (α+1))

and note that

ξα ≤ α < g(α) < f(α) < sE(ξα)

since E was f -closed. In particular,

[ξα, sE(ξα)) ∩ A ∩B = [ξα, sE(ξα)) ∩ A ∩Bξα 6= ∅

and so |B ∩ A|≥ |{ξα : α ∈ Ig \ ζ}|= κ as desired.
We can similarly prove |A \B|= κ by looking at the function

g′(α) = sup{min(A \ (Bα′ ∪ (α+ 1))) : α′ ≤ α}

and noting that

[ξα, sE(ξα)) ∩ A \B = [ξα, sE(ξα)) ∩ A \Bξα 6= ∅

for any α ∈ Ig′ \ ζ.

Now, suppose λ = cf(µ) < κ: this case will be handled similarly although the arguments
are a bit more involved. We take an increasing sequence of elementary submodels (Mν)ν<λ

and sequence of functions (fν)ν<λ such that

(1) each Mν has size µ, and (Mη)η<ν ∈ Mν ,
(2) fν ∈ κκ ∩Mν+1 and η < ν implies fη < fν , and
(3) fν is not ≤∗-dominated by any g ∈ κκ ∩Mν .

Construct clubs Eν ⊂ κ and functions sν ∈ κκ for ν < λ as follows: s0 is the identity
function on κ, and E0 is an f0-closed club. In general, sν+1 = sEν

◦ sν and sν = supη<ν s
η

for limit ν < λ. We pick

Eν ⊂
⋂

η<ν

Eη

so that each ξ ∈ Eν is closed under fν and sν . Moreover, we pick each Eν ∈ Mν+1 canonically
which ensures sν+1 ∈ Mν+1 as well.

Now, we construct a club E = {ξγ : γ < κ} ⊂ κ. Let us outline the first λ steps and then
describe the general construction: ξ0 = 0, ξ1 = sE0

(ξ0), ξ2 = sE1
(ξ1) and so on. At limit

steps ν we take supremum: ξν = supη<ν ξη, and let ξν+1 = sEν
(ξν) in successor steps. In
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other words, ξν = sν(0) for ν < λ. This defines the first λ many elements of E. In general,
any γ < κ can be written as γ = λ · γ0 + ν for a unique ν = ν(γ) < λ and we set

ξγ+1 = sEν
(ξγ) = sν(ξλ·γ0

).

Figure 1. Defining B from {Bξ : ξ < λ}

This defines the club E, and we set

B =
⋃

{[ξγ , ξγ+1) ∩Bν(γ) : γ < κ}.

We would like to show that B works: fix some A ∈ F , and we need that both A ∩B and
A \B have size κ.

Now, fix some ν0 < λ so that A ∈ Fν0 . Note that A ∩Bν and A \ Bν are both of size κ
for ν0 ≤ ν < λ so the set of accumulation points acc(A ∩ Bν) and acc(A \Bν) are clubs in
κ. In, particular we can define a function gA by setting

(3.1) gA(α) = min
⋂

ν∈λ\ν0

(acc(A ∩Bν) ∩ acc(A \Bν)) \ (s
ν0+1(α) + 1).

The important fact here is that g(α) is an accumulation point of all the sets A ∩Bν and
A \Bν (where ν ∈ λ \ ν0) above sν0+1(α). Moreover, since gA ∈ κκ ∩Mν0+1, the set

I = {α < κ : gA(α) < fν0+1(α)}

must have size κ.
We can find a single ν < λ so that there are κ many γ < κ of the form γ = λ · γ0+ ν such

that [ξγ , ξγ+1) ∩ I 6= ∅. Fix such an α ∈ [ξγ , ξγ+1) ∩ I and recall that ξγ+1 ∈ Eν .
So if ν0 < ν then ξγ+1 is sν0+1-closed and so sν0+1(α) < ξγ+1. In turn,

(3.2) ξγ ≤ α < gA(α) < fν0+1(α) ≤ fν(α) < ξγ+1

since ξγ+1 was closed under fν . Since gA(α) was an accumulation point of both A ∩ Bν(γ)

and A \Bν(γ) (see the definition in (3.1)) and by equation (3.2), we must have

[ξγ , ξγ+1) ∩A ∩Bν(γ) 6= ∅,

and
[ξγ , ξγ+1) ∩ A \Bν(γ) 6= ∅.

Now, consider the case when ν ≤ ν0. It still holds that α < sν(α) < ξγ+1 since ξγ+1 is
sν-closed and so sν+1(α) = sEν

◦ sν(α) = ξγ+1. In turn,

sν0+1(α) = ξλ·γ0+ν0+1 =: ξ ∈ Eν0 .

The next point in our club E is ξ+ := ξλ·γ0+ν0+2 ∈ Eν0+1 which is fν0+1-closed. So

ξ < gA(α) < fν0+1(α) < ξ+.
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As gA(α) is an accumulation point of A ∩Bν0+1 and A \Bν0+1 above ξ, we see that both

[ξ, ξ+) ∩ A ∩Bν0+1 6= ∅,

and

[ξ, ξ+) ∩A \Bν0+1 6= ∅

holds.
All in all, we proved that there are κ many γ < κ so that both

[ξγ , ξγ+1) ∩A ∩B = [ξγ , ξγ+1) ∩ A ∩Bν(γ) 6= ∅

and

[ξγ , ξγ+1) ∩A \B = [ξγ , ξγ+1) ∩ A \Bν(γ) 6= ∅

holds. In turn, B ∩ A and A \B both have size κ.
�

Hence d(ℵ1) ≤ r(ℵ1) unless r(ℵ1) > ℵω1
. It is still open if the inequality r(ℵ1) < 2ℵ1 is

consistent, and hence we don’t know whether cf r(κ) ≤ κ is consistent at all.

The inequalities known to us are summarized in Figure 2-4 below, where arrows point
to cardinals greater or equal. First, the most studied case when κ is ℵ0, with plenty of
independence between the characteristics:

Figure 2. The case of κ = ℵ0

Next, note how the picture simplifies between the splitting and reaping numbers as we
move to uncountable values of κ:

Figure 3. The case of κ = cf(κ) > ℵ0



14 VERA FISCHER AND DÁNIEL T. SOUKUP

The dashed arrows adjacent to rσ(κ) hold whenever rσ(κ) exists (that is, for κ > 2ℵ0).
Furthermore, the dashed arrow between r(κ) and d(κ) is valid also when cf(r(κ)) ≤ κ.

Finally, an even more linear diagram above iω:

Figure 4. The case of κ = cf(κ) ≥ iω

4. Questions

Finally, let us emphasize a few fascinating open problems about combinatorial cardinal
characteristics; we would also like to refer the interested reader to [5, 6, 12] for further
reading and questions on the generalized Baire space and Cichon’s diagram.

Problem 4.1. [14] Is b(κ) < a(κ) consistent for an uncountable, regular κ?

The answer is yes at least for κ = ℵ0 [16].

Problem 4.2. [8] Does d(κ) = dcl(κ) hold for all uncountable, regular κ?

Problem 4.3. [15] Does d(κ) ≤ r(κ) hold for all uncountable, regular κ?

Recall that if d(κ) = dcl(κ) then d(κ) ≤ r(κ) follows.

Problem 4.4. Can r(κ) have cofinality at most κ?

In particular, is r(ℵ1) = ℵω possible?

Problem 4.5. [15] Is it consistent that r(ℵ1) < 2ℵ1?

Given that s(κ) = κ unless κ is quite large (i.e., weakly compact), one might conjecture
a dual result: r(κ) < 2κ implies that κ is large [15].

Problem 4.6. [2] Is it consistent that s(κ) is singular for some uncountable, regular κ?

Problem 4.7. Does p(κ) = t(κ) for all uncountable, regular κ?

The last two problems have a positive answer for κ = ℵ0 [9, 13].
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