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NOTES ON SOME ERDŐS–HAJNAL PROBLEMS

PÉTER KOMJÁTH

Abstract. We make comments on some problems Erdős and Hajnal posed in their famous problem

list. Let X be a graph on ù1 with the property that every uncountable set A of vertices contains a finite set s

such that each element of A – s is joined to one of the elements of s. Does then X contain an uncountable

clique? (Problem 69) We prove that both the statement and its negation are consistent. Do there exist

circuitfree graphs {Xn : n < ù} on ù1 such that if A ∈ [ù1]
ℵ1 , then {n < ù : Xn ∩ [A]

2 = ∅} is finite?

(Problem 61) We show that the answer is yes under CH, and no under Martin’s axiom. Does there exist

F : [ù1]
2 → 3 with all three colors appearing in every uncountable set, and with no triangle of three colors.

(Problem 68) We give a different proof of Todorcevic’ theorem that the existence of a κ-Suslin tree gives

F : [κ]2 → κ establishing κ 6→ [κ]2κ with no three-colored triangles. This statement in turn implies the

existence of a κ-Aronszajn tree.

In this note we consider three problems of the Erdős–Hajnal collection of unsolved
problems in set theory [1].
The first problem is the following.

Problem 69. Let X be a graph on ù1. Assume that for every A ∈ [ù1]
ℵ1 there is

a finite s ⊆ A such that each element of A – s is joined to some element of s. Does X
necessarily contain an uncountable clique?

I slightly modified the formulation by requiring |A| = ℵ1, originally the authors
only assumed A ⊆ ù1. This is, however, problematic, as if there is no uncountable
clique, then there is an infinite independent vertex set by the Erdős–Dushnik–Miller
theorem, so the statement trivially holds.
For technical reasons we reformulate the problem for the complement of X.

Problem 69. Let X be a graph on ù1. Assume that for every A ∈ [ù1]
ℵ1 there is

a finite s ⊆ A such that no element of A – s is joined to every element of s. Does X
necessarily contain an uncountable independent set?

In this note I prove the consistency of both the statement and its negation
(Corollary 2, Theorem 3).
The second problem is the following.

Problem 61. Do there exist circuitfree graphs {Xn : n < ù} on ù1 such that if
A ∈ [ù1]

ℵ1 , then {n < ù : Xn ∩ [A]
2 = ∅} is finite?

Erdős and Hajnal remarked in [2], CH implies a ‘yes’ answer. As it remained
unpublished, we reprove this result here (Theorem 4).
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NOTES ON SOME ERDŐS–HAJNAL PROBLEMS 1117

For the other direction, we show that a ‘no’ answer follows from MAù1
(Theorem 5).
The third problem we address from the Erdős–Hajnal list is the following.

Problem 68. (GCH) Assume that F : [ù1]
2 → 3 is such that F assumes all

values on any uncountable subset of ù1. Do there exist α < â < ã < ù1 with
{F (α, â), F (α, ã), F (â, ã)} = {0, 1, 2}?

In what follows we call a triangle {x, y, z} three-colored, if F (x, y), F (x, z), and
F (y, z) are distinct.A functionF : [κ]2 → ã is said to establishκ 6→ [κ]2ã ifF assumes
all values on everyA ∈ [κ]κ. In [3], Shelah proved that 2κ = κ+ implies the existence
of a function establishing κ+ 6→ [κ+]2κ with no three-colored triangles. We include
his proof as it can be considerably simplified using a well known consequence of CH
(Theorem 8).
Shelah also proved, that if V=L, then for every regular cardinal ë, there is a

function F : [ë+]2 → ë+ witnessing ë+ 6→ [ë+]2
ë+
with no triangles of three colors.

Todorcevic in [5] proved the stronger result that a similar function exists on a
cardinal κ for which a κ-Suslin tree exists. We give a different proof to his result
(Theorem 10). Following the referee’s suggestion, we show that if κ<κ = κ holds
then forcing with Add(κ, 1) adds such an example on κ+ (Theorem 11). Finally, we
show that the existence of F : [κ]2 → κ establishing κ 6→ [κ]2κ with no three-colored
triangles which in turn implies the existence of a κ-Aronszajn tree. By result of
Mitchell [7, Theorem 4], this gives that it is consistent (relative to the consistency of
a weakly compact) that there is no F : [ù2]

2 → ù2 establishing ℵ2 6→ [ℵ2]
2
ℵ2
with no

three-colored triangles.
Notation and Definitions. We use the notions and definitions of axiomatic

set theory. In particular, each ordinal is a von Neumann ordinal, each cardinal is
identified with the least ordinal of that cardinality. If f is a function, A a set, then
f[A] = {f(x) : x ∈ A}. If κ is an infinite cardinal, then κ+ is its successor cardinal.
If (A,<) is an ordered set, then tp(A,<) or just tp(A) denotes its order type. If A,
B are subsets of the same ordered set, then A < B denotes that x < y holds for any
x ∈ A, y ∈ B . If A or B is a singleton, we write a < B instead of {a} < B , etc. If
S is a set, κ a cardinal, then [S]κ = {x ⊆ S : |x| = κ}, [S]<κ = {x ⊆ S : |x| < κ},
[S]≤κ = {x ⊆ S : |x| ≤ κ}.
A tree is a partially ordered set (T,≤), such that t ↓= {t′ ∈ T : t′ < t} is well

ordered for each element (or node) t ∈ T . If (T,≤) is a tree, t ∈ T , then ht(t) =
tp((t ↓)) is the height of t. We also use the piece of notation t ↑= {t′ ∈ T : t < t′}.
Tα = {t ∈ T : ht(t) = α} for any ordinal α. The height of a tree (T,≤), ht(T,≤) is
the least ordinal such that Tα = ∅.
A chain in a tree (T,≤) is a set of pairwise comparable nodes. A κ-branch is a

chain B ⊆ T , such that b ∩ Tα 6= ∅ (α < κ). An antichain in a tree (T,≤) is a set of
pairwise incomparable nodes.
A tree is normal, if

(1) |T0| = 1,
(2) each t ∈ Tα has at least two successors in Tα+1 (α + 1 < ht(T,≤)),
(3) if α < â < ht(T ), x ∈ Tα , then there is x < y ∈ Tâ , and
(4) if α < ht(T ) is a limit ordinal, x, y are distinct elements of Tα , then x ↓6= y ↓.
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1118 PÉTER KOMJÁTH

If (T,≤) is normal, then for each x, y ∈ T there is a largest lower bound denoted
by x ∧ y.
A tree (T,≤) of height κ is a κ-Suslin tree if there are no chains or antichains

of size κ in it. We freely use the facts that if there is a κ-Suslin tree, then there is a
normal κ-Suslin tree, and that for a normal tree to be κ-Suslin it suffices to assume
that it does not contain antichains of cardinality κ. An ù1-Suslin tree is simply
called a Suslin-tree.
A graph is any pair (V,X ) where X ⊆ [V ]2. If κ, ë are cardinals, then Kκ,ë is the

complete bipartite graph with bipartition classes of size κ, ë.
If (T,≤) is a tree, then a graph X ⊆ [T ]2 obeys (T,≤), if {t, t′} ∈ X implies t′ or

t′ < t.

Theorem 1. It is consistent that there exist a Suslin tree (T,≤) and a graph X on
T such that

(1) X obeys (T,≤),
(2) there is no uncountable independent set in X, and
(3) if t0, t1 ∈ T are incomparable, then

N (t0, t1) = {t ∈ T : {t, t0}, {t, t1} ∈ X}

is finite.

Notice that if t0, t1 are as in (3), t ∈ N (t0, t1), then t < t0, t1. Indeed, both t0 <
t < t1 and t0, t1 < t are ruled out as they would imply that t0, t1 are comparable.

Proof. Let (T,≤) be a Suslin tree.
Define the notion of forcing (P,≤) as follows.p ∈ P ifp = (s, g)where s ∈ [T ]<ù ,

g ⊆ [s]2, g obeys (T,≤). (s ′, g ′) ≤ (s, g) iff s ′ ⊇ s , g = g ′ ∩ [s]2, and there are no
t0, t1 ∈ s incomparable, t ∈ s

′ – s such that {t, t0}, {t, t1} ∈ g ′. ⊣

Claim 1. ≤ is transitive.

Proof. Straightforward. ⊣

Claim 2. If t ∈ T , then Dt = {(s, g) : t ∈ s} is dense.

Proof. If t ∈ T , (s, g) ∈ P, then (s ∪ {t}, g) is a condition and
(s ∪ {t}, g) ≤ (s, g). ⊣

Claim 3. (P,≤) has the Knaster property.

Proof. Assume that pî ∈ P (î < ù1). Using the pigeon hole principle and the
∆-system lemma, we can assume that pî = (s ∪ sî , gî) with

ht[s] < ht[s0] < ht[s1] < ··· < ht[sî] < ··· ,

gî ∩ [s]
2 = g. If now î < ç, then p′ = (s ′, g ′) is a condition where s ′ = s ∪ sî ∪ sç,

g ′ = gî ∪ gç. The only possibility that p
′ ≤ pî , pç does not hold is that there are

incomparable t0, t1 ∈ sç, t ∈ sî , with {t, t0}, {t, t1} ∈ g ′, which is not the case. ⊣

Let G ⊆ P be generic.

Claim 4. (T,≤) remains Suslin in V [G ].

Proof. Immediate from Claim 3. ⊣

https://doi.org/10.1017/jsl.2021.56 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.56
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In V [G ], define X =
⋃
{g : (s, g) ∈ G}.

Claim 5. If t0, t1 ∈ T are incomparable, then N (t0, t1) is finite.

Proof. Assume that t0, t1 ∈ T are incomparable. ByClaim2, there isp = (s, g) ∈
G with t0, t1 ∈ s . By the definition of extension of conditions,

{t ∈ s ′ : {t, t0}, {t, t1} ∈ g ′} = {t ∈ s : {t, t0}, {t, t1} ∈ g}

holds for every p′ = (s ′, g ′) ≤ p. But then, N (t0, t1) ⊆ s , therefore N (t0, t1) is
finite. ⊣

Claim 6. X has no uncountable independent subset.

Proof. Assume that p forces thatA ⊆ T is an uncountable independent set ofX.
For an uncountable set B ⊆ T there are p ≥ pt ‖−− t ∈ A. Using again the pigeon
hole principle and the ∆-system lemma, there is an uncountable B ′ ⊆ B , such that
pt = (s ∪ st , gt) where gt ∩ [s]

2 = g, t ∈ st , if t
′, t′′ ∈ B ′ then ht(t′) 6= ht(t′′) and if

ht(t′) < ht(t′′), then ht[s] < ht[st′ ] < ht[st′′ ].
As (T,≤) is a Suslin tree, there are t′, t′′ ∈ B ′ with t′ < t′′. Define p∗ = (s∗, g∗)

where

s∗ = s ∪ st′ ∪ st′′

and

g∗ = gt′ ∪ gt′′ ∪ {{t′, t′′}}.

It is clear that p∗ is a condition. The only trouble with p∗ ≤ pt′ , pt′′ could be that
there are incomparable t0, t1 ∈ st′′ , t ∈ st′ with {t, t0}, {t, t1} ∈ g∗. As there are no
such elements, we have p∗ ≤ pt′ , pt′′ and so

p∗ ‖−− t′, t′′ ∈ A, {t′, t′′} ∈ X,

a contradiction.
By Claims 5 and 6, the proof of the Theorem is finished. ⊣

Corollary 2. It is consistent that there is a graph X on ù1 such that

(A) if A ∈ [ù1]
ℵ1 , then there is some ∅ 6= s ∈ [A]<ù , such that no x ∈ A – s is

joined to every element of s, and

(B) there is no uncountable independent set in X.

Proof. Let (T,≤) be a Suslin tree and X be a graph on T, as in Theorem 1. We
claim that X is as required.
Assume that A is an uncountable subset of T. As (T,≤) is Suslin, there are

incomparable t0, t1 ∈ A. Let

s = {t0, t1} ∪ (N (t0, t1) ∩ A).

The finite set s satisfies the above property (A): if t ∈ A – s , {t0, t}, {t1, t} ∈ X , then
t ∈ N (t0, t1) ∩ A ⊆ s , a contradiction. As property (B) obviously holds, we are
done. ⊣

We will apply the following result of Todorcevic.
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Theorem A (Todorcevic, [6]). It is consistent that c = ℵ2,MAù1 holds, and if X is
a graph on ù1 then either X contains an uncountable independent set or it has two sets,
A,B ⊆ ù1, |A| = ℵ0, |B | = ℵ1, such that [A]

2 ⊆ X and each vertex of A is joined to
each vertex in B.

In fact, the result follows from PFA.

Theorem 3. It is consistent that if X is a graph onù1 such that for everyA ∈ [ù1]
ℵ1

there is ∅ 6= s ∈ [A]<ù with the property that every x ∈ A – s is not joined to at least
one y ∈ s , then X has an uncountable independent vertex set.

Proof. We refer to amodel of TheoremA. In thatmodel, ifX is a graph onù1 not
containing an uncountable independent set, then there are A ∈ [ù1]

ù , B ∈ [ù1]
ù1

with [A]2 ⊆ X and

{{x, y} : x ∈ A, y ∈ B} ⊆ X.

We claim that A ∪ B does not satisfy the condition in the Problem. For that, let
s ∈ [A ∪ B]<ù . If now x ∈ A – s , then x is joined to each element of s. ⊣

Theorem 4. (Erdős–Hajnal) If CH holds, then there are disjoint circuitfree graphs
{Xn : n < ù} such that if A ∈ [ù1]

ℵ1 , then {n < ù : Xn ∩ [A]
2 = ∅} is finite.

Proof. Enumerate [ù1]
ù × [ù]ù as {〈Aα , Bα〉 : α < ù1}. Then define the partial

function F with Dom(F ) ⊆ [ù1]
2, Ran(F ) ⊆ ù such that

(a) F (â, α) 6= F (â ′, α) (â < â ′ < α) and
(b) if â < α is such thatAâ ⊆ α, then there are ã ∈ Aâ , n ∈ Bâ with F (ã, α) = n.

One can immediately see that Xn = F
–1(n) (n < ù) are as required. ⊣

One cannot change “finite” to “empty” in the Theorem, as for every n < ù there
is A ∈ [ù1]

ù1 such that Xn ∩ [A]
2 = ∅. Namely, any uncountable color class in the

two-coloring of the graph Xn.
Forcing withP = Add(ù, κ) over amodel of CH gives amodel of the statement in

the Theorem with large continuum. In fact, the ground model construction retains
its property via forcing with any P with the Knaster property.

Theorem 5. (MAù1) There are no graphs {Xn : n < ù} on ù1 such that if A ∈
[ù1]

ℵ1 , then {n < ù : Xn ∩ [A]
2 = ∅} is finite.

Proof. Assume that X0, X1, ... are circuitfree graphs on ù1. Let D be a
nonprincipal ultrafilter on ù. Set e ∈ X iff {n < ù : e ∈ Xn} ∈ D. X is circuitfree:
should {e0, ... , ek} be a circuit, then we had e0, ... , ek ∈ Xn for some n, a
contradiction. X is a bipartite graph on ù1, let V be one of the uncountable
bipartition classes.
If we now restrict to V and redefine it to ù1, then we obtain that X0, ... are

circuitfree graphs on ù1 and
(*) {n : e ∈ Xn} /∈ D for every e ∈ [ù1]

2.
Define (s, t) ∈ P if s ∈ [ù1]

<ù , t ∈ [ù]<ù , and s is independent in Xn (n ∈ t).
(s ′, t′) ≤ (s, t) if s ′ ⊇ s , t′ ⊇ t.
By (*), for each n < ù, the set Dn = {(s, t) : |t| > n} is dense.
In order to show ccc, assume that pα ∈ P (α < ù1). Without loss of generality,

pα = (s ∪ sα , t) where {s, sα : α < ù1} are disjoint. If (s ∪ sα , t), (s ∪ sâ , t) are
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incompatible, then there is an edge ofY =
⋃
{Xk : k ∈ t} between sα and sâ . Using

this, one obtains that Y contains aKn+1,n2 where n = |t|. If the edges of thisKn+1,n2
are colored with n colors, then there is a monocolored C4, i.e., some Xi contains a
C4, a contradiction.
By ccc, there is ã < ù1, such that if (s, t) ∈ P, s ∩ ã = ∅, then for every ã < α < ù1

there is (s ′, t′) ≤ (s, t), s ′ ∩ ã = ∅, s ′ 6⊆ α. We can now redefine P by adding the
condition s ∩ ã = ∅ to the definition of (s, t) ∈ P.
Finally, a standard application of MAù1 gives the result. ⊣

Lemma 6. If f : [κ]2 → ë is a coloring with no three-colored triangle, g : ë→ ì is
arbitrary, then g ◦ f : [κ]2 → ì is a coloring with no three-colored triangle.

Proof. Immediate. ⊣

Theorem 7. (Shelah [3]) If κ<κ = κ and 2κ = κ+, then there is a coloring F :
[κ+]2 → κ establishing κ+ 6→ [κ+]2κ with no three-colored triangle.

Proof. Let A ⊆ κ2 be a Lusin set, i.e., |A| = κ+ and every B ⊆ [A]κ
+
is

somewhere dense in the lexicographically ordered κ2. Define H (f, g) < κ as the

place of the least difference of f, g ∈ A. If B ∈ [A]κ
+
, then the range of H on [B]2

contains an end-segment of κ, by the Lusin property. If g : κ → κ is such that g–1(α)
is cofinal in κ for each α < κ, then F = g ◦H is as required by Lemma 6 and the
above observation. ⊣

Lemma 8. If (T,≤) is a normal tree, ht(T ) = κ, F (t0, t1) = ht(t0 ∧ t1), then F :
[T ]2 → κ is a coloring with no three-colored triangle.

Proof. Let t0, t1, and t2 be three distinct elements of T. It suffices to show that
some two of t0 ∧ t1, t0 ∧ t2, t1 ∧ t2 are equal. As we have t0 ∧ t1, t0 ∧ t2 ≤ t0, the
nodes t0 ∧ t1 and t0 ∧ t2 are comparable. As we are done if they are equal, we can
assume that t0 ∧ t1 < t0 ∧ t2. If t

′ = t0 ∧ t1, then t
′ ≤ t1, t

′ < t0 ∧ t2 ≤ t2. If x, y are
the immediate successors of t′ with x ≤ t0, y ≤ t1, then t1 ∧ t2 = t

′, and we are
finished. ⊣

Lemma 9. If (T,≤) is a κ-Suslin tree andH ∈ [T ]κ, then H is somewhere dense in
(T,≤).

Proof. Assume indirectly that H is nowhere dense. Let A ⊆ T be a maximal
antichain consisting of elements t ∈ T such that t ↑ ∩H = ∅. As (T,≤) is κ-Suslin,
|A| < κ, consequently, A ⊆ T<α for some α < κ. ⊣

Claim. H ⊆ T<α .

Proof. Assume not, and so s ∈ H ∩ T≥α . As s ∈ H , we cannot have t < s for
some t ∈ A. Also, s < t is impossible by height considerations. Let s ′ > s be such
that (s ′ ↑) ∩H = ∅ (exists by the indirect assumption). As s ′ is incomparable by any
element of A, A ∪ {s ′} would properly extend A, a contradiction.
As by the Claim |H | < κ holds, we have reached the desired contradiction. ⊣

A different argument is the following. Let G be generic for (T,≤). As we force
with a κ-cc forcing, some t ∈ T forces that |H ∩G | = κ. Obviously, H is dense
above t.
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Theorem 10. (Todorcevic [5]) If there is a κ-Suslin tree, then there is a coloring
F : [κ]2 → κ establishing κ 6→ [κ]2κ with no three-colored triangles.

Proof. Let (T,≤) be a normal κ-Suslin tree. Set F0(t0, t1) = ht(t0 ∧ t1). Let
g : κ → κ be such that |g–1(α)| = κ (α < κ).We claim theF = g ◦ F0 is as required.
F has no three-colored triangle by Lemmas 6 and 8.
In order to prove that F establishes T 6→ [κ]2κ, let H ∈ [T ]κ. ⊣

Claim. Ran(F0|[H ]
2) contains an end segment of κ.

Proof. By Lemma 9, H is somewhere dense, say, above t ∈ T . Set α = ht(t).
As T is normal, if ã > α, there is t′ > t, ht(t′) = ã. Let t0, t1 be two immediate
successors of t′ (exist, as T is normal). As H is dense above t, there are x0 > t0,
x1 > t1, x0, x1 ∈ H . Now F0(x0, x1) = ht(x0 ∧ x1) = ht(t

′) = ã.
As we proved that (α, κ) ⊆ Ran(F0|[H ]

2), we are done.
By the definition of g, g assumes every value of (α, κ), we are finished. ⊣

Theorem 11. (κ<κ = κ) After forcing with Add(κ, 1), there is a three-colored
triangle free coloring F : [κ+]2 → κ+ establishing κ+ 6→ [κ+]2

κ+
.

Proof. By Shelah’s theorem [4], in the forced model there is a κ+-Suslin tree and
so we can apply Theorem 10. ⊣

Theorem 12. If κ > ù is regular, there is a coloring F : [κ]2 → κ establishing
κ 6→ [κ]2κ with no three-colored triangles, then there is a κ-Aronszajn tree.

Proof. Let F be as in the Theorem. Set h(α) = {F (α, â) : α < â < κ}
for α < κ. ⊣

Claim 1. |h(α)| < κ(α < κ).

Proof. Otherwise pick α < âi for 0 < i ∈ h(α) such that F (α, âi) = i . If i 6= j,
then, as F (α, âi) = i and F (α, âj) = j, necessarily F (âi , âj) ∈ {i, j} (as otherwise
{α, âi , âj} formed a three-colored triangle). This implies that F restricted to {âi :
i ∈ h(α) – {0}} misses color 0, a contradiction. ⊣

We now describe the tree (T,≤). Its elements are of the form t ∈ <κκ with t < t′

iff t′ extends t. If t ∈ ακ is in T and â < α, then t|â ∈ T , i.e., (T,≤) is a subtree
of <κκ.
For each t ∈ T we define V (t) ⊆ κ and p(t) < κ.
Set T0 = {∅}, V (∅) = κ, p(∅) = 0. If t ∈ Tα , define

V (tai) = {x ∈ V (t) – {p(t)} : F (p(t), x) = i}

for i ∈ h(p(t)) and put tai into T if V (tai) 6= ∅. In this case, define p(tai) =
min(V (tai)).
If α < κ is limit, t ∈ ακ, define t ∈ Tα if V (t) =

⋂
{V (t|â) : â < α} 6= ∅. In this

case set p(t) = min(V (t)).

Claim 2.
⋃
{V (t) : t ∈ Tα} = κ – {p(t) : t ∈ T<α}.

Proof. By induction on α, immediately from the definition. ⊣

Claim 3. If t ∈ Tα , then |{t
′ < Tα+1 : t < t

′}| < κ.
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Proof. As |h(p(t))| < κ. ⊣

Claim 4. |Tα | < κ (α < κ).

Proof. By induction on α. If this holds for α, then Tα+1 is the union of < κ sets
each of size < κ by Claim 3 and we are finished as κ is regular.
Assume thatα < κ is limit andwe have theClaim for all â < α. Then |T<α | < κ as

κ is regular. Assume indirectly that |Tα | = κ. Consider the set P = {p(t) : t ∈ Tα}.
If t0, t1 ∈ Tα , then there are a â < α and t ∈ Tâ and there are t

′
0, t

′
1 ∈ Tâ+1 such that

t < t′0 < t0, t < t
′
1 < t1 and so by the construction

F (p(t0), p(t1)) ∈ {F (p(t), p(t′0)), F (p(t), p(t
′
1))} .

Consequently, the values of F on [P]2 are of the form F (p(t), p(t′)) for some
t < t′ ∈ T<α and there are < κ such possibilities by the inductive hypothesis, i.e., F
misses some values on [P]2, contradicting our condition on F. ⊣

Claim 5. (T,≤) has no κ-branch.

Proof. Assume indirectly that b = {tα : α < κ} is a κ-branch with tα ∈ Tα (α <
κ). By the way we constructed T, we have tα = g|α for some function g : κ → κ.
Further, F (p(tâ), p(tα)) = g(â) for â < α, i.e., the branch is end-homogeneous.
There is some i < κ such that |κ – g–1(i)| = κ and then the set {p(tα) : g(α) 6= i}
has cardinality κ and it misses color i, a contradiction.
As by Claims 2, 4, and 5 (T,≤) is a κ-Aronszajn tree, the proof is complete. ⊣
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