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Abstract

The Ω numbers—the halting probabilities of universal prefix-free machines—are
known to be exactly the Martin-Löf random left-c.e. reals. We show that one cannot
uniformly produce, from a Martin-Löf random left-c.e. real α, a universal prefix-free
machine U whose halting probability is α. We also answer a question of Barmpalias
and Lewis-Pye by showing that given a left-c.e. real α, one cannot uniformly produce
a left-c.e. real β such that α − β is neither left-c.e. nor right-c.e.

1 Introduction

Prefix-free Kolmogorov complexity, which is perhaps the most prominent version of
Kolmogorov complexity in the study of algorithmic randomness, is defined via prefix-
free machines: A prefix-free machine is a partial computable function M ∶ 2<ω → 2<ω

(2<ω being the set of finite binary strings) such that no two distinct elements of dom(M)
are comparable under the prefix relation. The prefix-free Kolmogorov complexity of
x ∈ 2<ω relative to the machine M is defined to be the quantity KM (x) = min{∣p∣ ∶
M(p) = x}. To get a machine-independent notion of Kolmogorov complexity, one
needs to take an optimal prefix-free machine, that is, a prefix-free machine U such
that for any prefix-free machine M , one has KU ≤ KM + cM for some constant cM
which depends solely on M . Then one defines the prefix-free Kolmogorov complexity
K by setting K = KU . The resulting function K only depends on the choice of U by
an additive constant, because by definition, if U and V are optimal machines, then
∣KU −KV ∣ = O(1). To be complete, one needs to make sure optimal machines exist.
One way to build one is to take a total computable function e ↦ σe from N to 2<ω

whose range is prefix-free (for example, σe = 0e1), and set U(σeτ) =Me(τ) where (Me)
is an effective enumeration of all prefix-free machines. It is easy to see that U is prefix-
free and for all e, KU ≤ KMe + ∣σe∣, hence U is optimal. Machines U of this type are
called universal by adjunction and they form a strict subclass of optimal prefix-free
machines.1

1For example, given a universal prefix-free machine U , we can construct an optimal prefix-free machine
V , which is not universal by adjunction, by defining, for p ∈ dom(U), V (p0) = V (p1) = U(p) if ∣p∣ odd, and
V (p) = U(p) if ∣p∣ is even. This is well-defined because U is prefix-free, and the fact that U is prefix-free
and optimal implies that V is. V is not universal by adjunction; one can see this for example by noting that

1

http://arxiv.org/abs/2111.01472v1


Remark. Often no distinction is made between optimal prefix-free machines and uni-
versal prefix-free machines. E.g., in [Nie09] it is said that optimal prefix-free machines
are often called universal prefix-free machines. In this paper, the distinction will be
important. An optimal prefix-free machine is a prefix-free machine U such that for
every prefix-free machine M , there is a constant cM such that KU ≤KM + cM . A uni-
versal prefix-free machine is one that is universal by adjunction. Thus every universal
machine is optimal, but the converse is not true. Every machine in this paper will be
prefix-free, and so we often omit the term ‘prefix-free’.

1.1 Omega Numbers

Given a prefix-free machine M , one can consider the ‘halting probability’ of M , defined
by

ΩM = ∑
M(σ)↓

2−∣σ∣.

The term ‘halting probability’ is justified by the following observation: a prefix-free
machine M can be naturally extended to a partial functional from 2ω, the set of
infinite binary sequences, to 2<ω, where for X ∈ 2ω, M(X) is defined to be M(σ) if
some σ ∈ dom(M) is a prefix of X, and M(X) ↑ otherwise. The prefix-freeness of M
on finite strings ensures that this extension is well-defined. With this point of view,
ΩM is simply µ{X ∈ 2ω ∶M(X) ↓}, where µ is the uniform probability measure (a.k.a.
Lebesgue measure) on 2ω, that is, the measure where each bit of X is equal to 0 with
probability 1/2 independently of all other bits.

For any machine M , the number ΩM is fairly simple from a computability-theoretic
viewpoint, namely, it is the limit of a computable non-decreasing sequence of rationals
(this is easy to see, because ΩM is the limit of ΩMs = ∑M(σ)[s]↓ 2

−∣σ∣). We call such
a real left-c.e. It turns out that every left-c.e. real α ∈ [0,1] can be represented in
this way, i.e., for any left-c.e. α ∈ [0,1], there exists a prefix-free machine M such that
α = ΩM , as consequence of the Kraft-Chaitin theorem (see [DH10, Theorem 3.6.1]).

One of the first major results in algorithmic randomness was Chaitin’s theorem [Cha75]
that the halting probability ΩU of an optimal machine U is always an algorithmically
random real, in the sense of Martin-Löf (for background on Martin-Löf randomness,
one can consult [DH10, Nie09]). From here on we simply call a real random if it is
random in the sense of Martin-Löf.

This is particularly interesting because this gives “concrete” examples of Martin-Löf
random reals, which furthermore are, as we just saw, left-c.e. Whether the converse
is true, that is, whether every random left-c.e. real α ∈ [0,1] is equal to ΩU for some
optimal machine U remained open for a long time. The answer turned out to be
positive, a remarkable result with no less remarkable history. Shortly after the work
of Chaitin, Solovay [Sol75] introduced a preorder on left-c.e. reals, which we now call
Solovay reducibility: for α,β left-c.e., we say that α is Solovay-reducible to β, which
we write α ⪯S β, if for some positive integer n, nβ −α is left-c.e.2. Solovay showed that

every string in the domain of V is of even length, but this is not true of any machine that is universal by
adjunction. See, for example, [CNSS11, CS09].

2In fact Solovay gave a more intuitive definition, which in substance states that computable approxi-
mations of β from below converge more slowly than computable approximations of α from below, but the
version we give is equivalent to Solovay’s original definition and easier to manipulate.
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reals of type ΩU for optimal U are maximal with respect to the Solovay reducibility.
While this did not fully settle the above question, Solovay reducibility turned out to
be the pivotal notion towards its solution. Together with Solovay’s result, subsequent
work lead to the following theorem.

Theorem 1.1. For α ∈ [0,1] left-c.e., the following are equivalent.

(a) α is Martin-Löf random

(b) α = ΩU for some optimal machine U

(c) α is maximal w.r.t Solovay reducibility.

The implication (b) ⇒ (a) is Chaitin’s result and the implication (b) ⇒ (c) is
Solovay’s, as discussed above. Calude, Hertling, Khoussainov, and Wang [CHKW01]
showed (c) ⇒ (b), and the last crucial step (a) ⇒ (c) was made by Kučera and Sla-
man [KS01]. We refer the reader to the survey [BS12] for an exposition of this result.

Summing up what we know so far, we have for any real α ∈ [0,1]:
α is left-c.e. ⇔ α = ΩM for some machine M

α is left-c.e. and random ⇔ α = ΩU for some optimal machine U

The first equivalence is uniform: Given a prefix-free machine M (represented by its
index in an effective enumeration of all prefix-free machines), we can pass in a uniform
way to a left-c.e. index for ΩM ; and moreover, given a left-c.e. index for a left-c.e. real
α ∈ [0,1], we can pass uniformly to an index for a prefix-free machine M with ΩM = α
(a consequence of the so-called Kraft-Chaitin theorem, see [DH10, Theorem 3.6.1]).
By a left-c.e. index, we mean an index for a non-decreasing sequence of rationals

It was previously open however (see for example [Bar18, p.11]) whether the second
equivalence was uniform, that is: given an index for a random left-c.e. α ∈ [0,1], can
we uniformly obtain an index for an optimal machine U such that α = ΩU? Our first
main result is a negative answer to this question.

Theorem 1.2. There is no partial computable function f such that if e is an index
for a Martin-Löf random left-c.e. real α ∈ [0,1], then the value of f(e) is defined and
is an index for an optimal Turing machine Mf(e) with halting probability α.

Thus one cannot uniformly view a Martin-Löf random left-c.e. real as an Ω number.

On the other hand, we show that given a left-c.e. random α ∈ [0,1], one can uni-
formly find a universal left-c.e. semi-measure m with ∑im(i) = α. An interesting
corollary is that one cannot uniformly turn a universal left-c.e. semi-measure m into a
universal machine whose halting probability is ∑im(i).

1.2 Differences of left-c.e. reals

The set of left-c.e. reals is closed under addition and multiplication, not under subtrac-
tion or inverse. However, the set {α − β ∣ α,β left-c.e.}, of differences of two left-c.e.
reals is algebraically much better behaved, namely it is a real closed field [ASWZ00,
Rai05, Ng06]. Barmpalias and Lewis-Pye proved the following theorem.
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Theorem 1.3 (Barmpalias and Lewis-Pye [BLP17]). If α is a non-computable left-c.e.
real there exists a left-c.e. real β such that α − β is neither left-c.e. nor right-c.e.

The proof is non-uniform, and considers two separate cases depending on whether or
not α is Martin-Löf random (though it is uniform in each of these cases). Barmpalias
and Lewis-Pye ask whether there is a uniform construction; we show that the answer
is negative.

Theorem 1.4. There is no partial computable function f such that if e is an index for
a non-computable left-c.e. real α, then f(e) is defined and is an index for a left-c.e.
real β such that α − β is neither left-c.e. nor right-c.e.

Barmpalias and Lewis-Pye note that it follows from [DHN02, Theorem 3.5] that if
α and β are left-c.e. reals and α is Martin-Löf random while β is not, then α − β is
a Martin-Löf random left-c.e. real. In particular, if α in Theorem 1.3 is Martin-Löf
random, then the corresponding β must be Martin-Löf random as well. Thus α and β

are the halting probabilities of universal machines.

Theorem 1.5 (Barmpalias and Lewis-Pye [BLP17]). For every universal machine U ,
there is a universal machine V such that ΩU −ΩV is neither left-c.e. nor right-c.e.

Recall that the construction for Theorem 1.3 was uniform in the Martin-Löf random
case. So it is not too surprising that Theorem 1.5 is uniform; but because we can-
not pass uniformly from an arbitrary Martin-Löf random left-c.e. real to a universal
machine (Theorem 1.2), this requires a new proof.

Theorem 1.6. Theorem 1.5 is uniform in the sense that there is a total computable
function f such that if U = Me is an optimal (respectively universal by adjunction)
machine, then V =Mf(e) is optimal (respectively universal by adjunction) and ΩU −ΩV

is neither left-c.e. nor right-c.e.

2 Omega Numbers

2.1 No uniform construction of universal machines

We prove Theorem 1.2:

Theorem 1.2. There is no partial computable function f such that if e is an index for
a random left-c.e. real α ∈ [0,1], then f(e) is defined and is an index for an optimal
prefix-free machine Mf(e) with halting probability α.

Proof. First note that we can assume that the partial computable function f is total.
Indeed, define a total function g as follows: for each input e, g(e) is an index for a
machine which on input σ waits for f(e) to converge, and then copies Mf(e)(σ).

Fix a partial computable function f taking indices for left-c.e. reals to indices for
prefix-free machines. Using the recursion theorem, we will define a left-c.e. ML-random
α = αe ∈ [0,1] using, in its definition, the index f(e) of a prefix-free Turing machine
Mf(e). We must define α even if Mf(e) is not optimal or f(e) does not converge. We
can always assume that Mf(e) is prefix-free by not letting it converge on a string σ if
it has already converged on a prefix of σ; we can also assume that f(e) converges by
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having α follow some fixed left-c.e. random β (say the one chosen below) until f(e)
converges. During the construction of α we will also build an auxiliary machine Q.
We will ensure that α is a random left-c.e. real, but that either Mf(e) is not optimal
(which will happen because for all d, there is σ such that KMf(e)

(σ) > KQ(σ) + d), or
µ(dom(Mf(e))) is not α. This will prove the theorem.

In the construction, we will build α = αe (using the recursion theorem to know the
index e in advance) while watching M = Mf(e). (From now on, we drop the index e

everywhere; we will write αs for the left-c.e. approximation to α.) We will try to meet
the requirements:

Rd : For some σ, KM(σ) >KQ(σ) + d.
If M is universal, then there must be some d such that, for all σ, KM(σ) ≤KQ(σ)+ d.
Thus meeting Rd for every d will ensure that M is not universal. At the same time,
we will be trying to get a global win by having µ(dom(M)) ≠ α.

We will define stage-by-stage rationals α0 < α1 < α2 < ⋯ with α = lims αs. (Recall
that an index for such a sequence is an index for α.) Fix β a left-c.e. random, 3

4
< β < 1.

We will have α = qβ + l for some q, l ∈ Q, q > 0, so that α will be random (indeed,
multiplying by the denominator of q and subtracting β, we see that β ⪯S α, and since
β is random, by Theorem 1.1, so is α). It is quite possible that we will have α = β.
Let β0 < β1 < β2 < ⋯ be a computable sequence of rationals with limit β. At each
stage s we will define αs = qsβs + ls for some qs, ls ∈ Q in such a way that q = lims qs
and l = lims ls are reached after finitely many stages. We think of our opponent as
defining the machine M with measure γs at stage s, with γ = lims γs the measure of
the domain of M . Our opponent must keep γs ≤ αs, as if they ever have γs > αs then
we can immediately abandon the construction and choose q, l such that α = qβ + l has
αs < α < γ and get a global win. Our opponent also has to (eventually) increase γs
whenever we increase αs, or they will have γ < α. However, they may wait to do this.
But, intuitively speaking, whenever we increase αs, we can wait for our opponent to
increase γs correspondingly (as long as, in the meantime, we work towards making α

random).
The requirements can be in one of four states: inactive, preparing, waiting,

and restraining. Unless it is injured by a higher priority requirement, in which case
it becomes inactive, a requirement will begin inactive, then be preparing, before
switching back and forth between waiting and restraining.

Before giving the formal construction, we will give an overview. To start, each re-
quirement will be inactive. When activated, a requirement will be in state preparing.
When entering state preparing, a requirement Rd will have a reserved code τ ∈ 2<ω and
a restraint rd = 2−(∣τ ∣+d). The reserved code τ will be such that Q has not yet converged
on input τ nor on any prefix or extension of τ , so that we can still use τ as a code for
some string σ to make KQ(σ) ≤ ∣τ ∣. While in this state, our left-c.e. approximation to
α will copy that of β. The requirement Rd will remain in this state until the measure
of the domain of the machine M is close to our current approximation to α, namely,
within rd. (If our opponent does not increase the measure of M as we increase the
approximation to α, then we win.) At this point, we will set Q(τ) = σ for some string
σ for which KM(σ) is currently greater than ∣τ ∣ + d. The requirement will move into
state waiting. From now on, we are trying to ensure that M can never converge on
a string of length ≤ ∣τ ∣ + d, so that KM(σ) will never drop below ∣τ ∣ + d, satisfying Rd.
We do this by having the approximation to αs grow very slowly, so that M can only
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add a small amount of measure at each stage. Rd will now move between the states
waiting and restraining. The requirement Rd will remain in state waiting at stages
s when the measure of the domain of M is close (within rd) to βs, so that Rd is content
to have α approximate β. However, at some stages s, it might be that βs is at least
rd greater than γs, the measure of the domain of M so far. In this case, Rd is in state
restraining and has to actively restrain αs to not increase too much. Letting l = αs−1

and q = rd − (αs−1 − γs), where s is the stage when Rd enters the state restraining,
Rd has α temporarily approximate qβ + l. Whenever the measure of the domain of
M increases by 1

2
rd, Rd updates the values of q and l (recall that β ≥ 3

4
). Thus, each

time the values of q and l are reset, the measure of the domain of M has increased
by at least 1

2
rd. (Again, if our opponent does not increase the measure of M as we

increase the approximation to α, then we win.) This can happen at most finitely many
times until the measure of the domain of M is within rd of the current approximation
to β, and so the requirement re-enters state waiting.3 The requirement may then
later re-enter state restraining if the approximation to βs increases too much faster
than the measure of the domain of M , but since the measure of the domain of M will
increase by at least 1

2
rd every time Rd switches from restraining to waiting, Rd can

only switch finitely many times.
Just considering one requirement, the possible outcomes of the construction are as

follows:

• γs > αs at some stage s, in which case we can immediately ensure that α < γ and
that α is random.

• γ < α; the requirement may get stuck in preparing or restraining. If it gets
stuck in preparing, we have α = β is random. If it gets stuck in restraining,
we have α = qβ + l, with q and l rational, and this is random.

• γ = α; in this case, the requirement always leaves preparing, and every time
it enters restraining it returns to waiting. After some stage, it is always in
waiting and has α = β, which is random. The requirement is satisfied by having
KQ(σ) ≤ ∣τ ∣ but KM(σ) > ∣τ ∣ + d.

With multiple requirements, there is injury. A requirement only allows lower priority
requirements to be active while it is waiting. Every stage at which a requirement is
preparing or restraining, it injures all lower priority requirements. So, at any stage,
there is at most one requirement—the lowest priority active requirement—which can
be in a state other than waiting.

Construction.

Stage 0. Begin with α0 = 0, all the requirements other than R0 inactive, and Q0 not
converged on any input.

Set αs = βs. Activate R0 and put it in state preparing. Choose a reserved code τ0
such that Qs(τ0) ↑ and set the restraint r1 = 2−∣τ0∣.

Stage s > 0. Let γs = µ(dom(Ms)) be the measure of the domain of M at stage s. If
γs > αs−1, we can immediately end the construction, letting αt = αs−1 + (γs − αs−1)βt
for t ≥ s, so that

α = lim
t→∞

αt = αs−1 + (γs − αs−1)β < γs ≤ µ(dom(Ms)).
3Of course, the requirement does not have to re-enter state waiting, but in this case the values of q and

l are eventually fixed.
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So for the rest of this stage, we may assume that γs ≤ αs−1.
Find the highest-priority active requirement Rd, if it exists, such that βs − γs ≥

rd. Cancel every lower priority requirement. Let Rd be the lowest priority active
requirement. (Every higher priority requirement is in state waiting.)

Case 1. Rd is preparing.

Set αs = βs. Rd has a reserved code τd and restraint rd. If βs − γs > rd, Rd remains
preparing. Otherwise, if βs − γs < rd, find a string σd such that KM(σd)[s] > ∣τd∣ + d.
Put Q(τd) = σd. Rd is now waiting.

Case 2. Rd is waiting and βs − γs < rd.

Set αs = βs. Requirement Rd remains in state waiting. Activate Rd+1 and put it
in state preparing. Choose a reserved code τd+1 such that Qs(τd+1) ↑ and set the
restraint rd+1 = 2−∣τd+1 ∣−d−1.

Case 3. Rd is waiting and βs − γs ≥ rd.

Set the reference values ld = αs−1 and qd = rd − (αs−1 − γs). (In Claim 1 we will show
that qd > 0.) Put Rd in state restraining. Set αs = qdβs + ld.

Case 4. Rd is in state restraining.

Rd has a restraint rd and reference values qd and ld. If γs ≤ ld +
1

2
qd, keep the same

reference values, and set αs = qdβs + ld. If γs > ld + 1

2
qd, then what we do depends on

whether βs−γs < rd or βs−γs ≥ rd. In either case, we call stage s incremental for Rd. If
βs − γs < rd, then set αs = βs and put Rd into state waiting. If βs − γs ≥ rd, change the
reference values ld and qd to ld = αs−1 and qd = rd − (αs−1 − γs), and set αs = qdβs + ld.
Rd remains restraining.

End construction.

Verification.

Claim 1. At every stage s > 0, αs−1 ≤ αs ≤ βs, and for every requirement Rd which is
active at stage s, either Rd is preparing or αs − γs < rd.

Proof. Assume the result holds for all t < s. Let d be the lowest priority active require-
ment at stage s (after the cancellation). By choice of d, for d′ < d we have βs −γs < rd′ .
We now check that no matter which case of the construction was used to define αs, the
result holds. In all cases we will have αs − γs ≤ βs − γs < rd′ , so it is really αs − γs < rd
that we must check.

(1) At stage s the construction was in Case 1 or Case 2. We set αs = βs ≥ βs−1 ≥ αs−1.
Either we are in Case 1 and Rd remains preparing, or αs − γs = βs − γs < rd.

(2) At stage s the construction was in Case 3. We set αs = qdβs + ld. Now in Case
3, ld = αs−1 and qd = (rd − (αs−1 − γs)). Note that αs−1 − γs ≤ αs−1 − γs−1 < rd by
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induction, so αs ≥ αs−1. Also

αs = (rd − (αs−1 − γs))βs + αs−1

= rdβs − (αs−1 − γs)βs + (αs−1 − γs) + γs
= rdβs + (1 − βs)(αs−1 − γs) + γs
< rdβs + (1 − βs)rd + γs
= rd + γs
≤ βs.

Finally, since we’ve just seen that αs < rd + γs, we have that αs − γs < rd.

(3) At stage s the construction was in Case 4. We set αs = qdβs + ld. Then since
Rd was in state restraining at stage s, we must have defined αs−1 = qdβs−1 + ld
unless s was an incremental stage, in which case qd and ld were reset at stage s

before defining αs. If s was not incremental, then αs = qd(βs−βs−1)+qdβs−1+ ld =
qd(βs−βs−1)+αs−1 ≤ qd(βs−βs−1)+βs−1 ≤ βs. Also αs−1 = qdβs−1+ld ≤ qdβs+ld = αs.
Finally, if we let s̃ < s be the stage where qd and ld were last defined, then we see
that

αs − γs = qdβs + ld − γs
= (rd − (αs̃−1 − γs̃))βs +αs̃−1 − γs

≤ (rd − (αs̃−1 − γs̃))βs +αs̃−1 − γs̃

= rdβs + (1 − βs)(αs̃−1 − γs̃)
< rd.

Now suppose stage s was incremental for Rd. If βs − γs < rd, then the result
follows as in (1), and if βs − γs ≥ rd, then the result follows as in (3).

Claim 2. Suppose that the requirement Rd is activated at stage s and never injured
after stage s. Then Rd has only finitely many incremental stages.

Proof. The restraint rd is defined when Rd is activated, and never changes after stage
s. Suppose to the contrary that there are incremental stages s0 < s1 < s2 < ⋯ after
stage s. We claim that γsi+1 ≥

1

2
rd + γsi . From this it follows that there are at most

2/rd incremental stages for Rd, as if there were that many incremental stages, for
some sufficiently large stage t we would have γt greater than 1 and hence greater than
αt−1—and so the construction could immediately end, with finitely many incremental
stages.

Fix i for which we will show that γsi+1 ≥
1

2
rd + γsi . Since stage si is incremental, at

the start of that stage Rd is in stage restraining. There are two cases, depending on
whether βsi − γsi < rd or βsi − γsi ≥ rd.

Case 1: βsi − γsi < rd. During stage si, the requirement Rd enters state waiting.
Since stage si+1 is the next incremental stage, there must be some unique stage t,
si < t < si+1, where Rd enters state restraining again and stays in that state until at
least stage si+1. At stage t we define ld = αt−1 and qd = rd − (αt−1 − γt). These values
cannot be redefined until the next incremental stage, si+1, where we have γsi+1 > ld+

1

2
qd.
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Then:

γsi+1 > ld +
1

2
qd

= αt−1 +
1

2
(rd − (αt−1 − γt))

=
1

2
rd +

1

2
(αt−1 + γt)

≥
1

2
rd + γt

≥
1

2
rd + γsi .

Case 2: βsi − γsi ≥ rd. During stage si, the requirement Rd remains in state
restraining, defining ℓd = αsi−1 and qd = rd − (αsi−1 − γsi−1). It stays in that state,
with the same reference values qd and ld, until the next incremental stage si+1, where
we have γsi+1 > ld +

1

2
qd. We get a similar computation to the previous case:

γsi+1 > ld +
1

2
qd

= αsi−1 +
1

2
(rd − (αsi−1 − γsi))

=
1

2
rd +

1

2
(αsi−1 + γsi)

≥
1

2
rd + γsi .

Thus for each i we have γsi+1 ≥
1

2
rd + γsi , completing the proof of the claim.

Claim 3. Each requirement is injured only finitely many times.

Proof. We argue by induction on the priority of the requirements. Suppose that each
requirement of higher priority than Rd is only injured finitely many times. Fix a stage
s after which none of them are injured. By the previous claim, by increasing s we may
assume that no higher priority requirement has an incremental stage after stage s.

First of all, Rd can only be activated at stages when every higher priority require-
ment is waiting. If Rd is never activated after stage s, then it cannot be injured.
Increasing s further, assume that Rd is activated at stage s. If Rd is injured after stage
s, it is at the first stage t > s such that a requirement Re of higher priority than Rd has
βt − γt > re. Moreover, the requirement Re remains in the state waiting until such a
stage. Suppose that t > s is the first such stage, if one exists. At the beginning of stage
t, Re is waiting, and so Re enters the state restraining. Then Re can only leave state
restraining, and re-enter state waiting, at a stage which is incremental for Re; since
there are no such stages after stage s, Re can never re-enter stage waiting. So even
Rd is never again re-activated, and so cannot be injured. Thus Rd can be injured only
once after stage s, proving the claim.

Claim 4. α = limsαs is random.

Proof. There are three possibilities.

9



(1) Some requirement enters state preparing at stage s, and is never injured nor
leaves state preparing after stage s.

The requirement Rd is the lowest priority requirement which is active at any point
after stage s. In this case, at each stage t ≥ s, we set αt = βt and so α = β is
random.

(2) Some requirement enters state restraining at stage s, and is never injured nor
leaves state restraining after stage s.

The requirement Rd is the lowest priority requirement which is active at any point
after stage s. Increasing s, we may assume that this requirement Rd never has an
incremental stage after stage s. Then the target value qdβ + ld at stage s is also
the target value at all stages t ≥ s. At each such stage t ≥ s, we set αt+1 = qdβt+ ld.
Thus α = qdβ + ld, with qd, ld ∈ Q, and so is random.

(3) For each requirement there is a stage s after which the requirement is never
injured and is always in state waiting.

There are infinitely many stages s at which we are in Case 2 of the construction.
At every stage, all requirements except possibly for the lowest priority requirement
are in state waiting. For requirements R1, . . . ,Rn, there is some first stage t at
which the lowest priority requirement is in state waiting and never again leaves
state waiting. At stage t, we must be in Case 2 of the construction. Indeed,
in Case 3 the requirement Rd leaves state waiting. In Case 2, we set αt = βt.
Moreover, we activate the next requirement, and the next requirement is never
injured. So there is a greater corresponding first stage t at which that requirement
is in state waiting and never again leaves that state. Continuing, there are
infinitely many stages at which we set αt = βt. It follows that α = β, which is
random.

Claim 5. Suppose that µ(dom(M)) = α. For each requirement Rd, there is a stage s

after which the requirement is active, never injured, and is always in state waiting.

Proof. We argue inductively that for each requirement Rd, there is a stage s after
which the requirement is never injured and is always waiting.

By Claim 3 there is a stage s after which Rd is never injured, and (inductively)
every higher priority requirement is always waiting after stage s. By Claim 2, by
increasing s we may assume that Rd has no incremental stages after stage s.

Then Rd is activated at the least such stage s since each higher priority requirement
is always waiting. Note that Rd can never be injured after stage s, as if Rd is injured
by Re, then Re enters state restraining.

Now we claim that, if Rd is preparing, it leaves that state after stage s. Indeed, if
Rd never left state preparing, we would have α = β. By assumption, α = µ(dom(M)) =
lims γs. Thus for some stage t we must have that βt −γt < rd. At this stage t, Rd leaves
state preparing.

Now we claim that Rd can never enter state restraining after stage s. Since Rd

has no incremental stages after stage s, if Rd did enter state restraining, it would
never be able to leave that state. Moreover, qd and ld can never change their values.
So we end up with α = qdβ + ld. Moreover, for all t ≥ s, γt < ld + 1

2
qd, as there are no

10



more incremental stages. Then γ ≤ ld + 1

2
qd < ld + qdβ = α, contradicting the hypotheses

of the claim. Thus Rd can never enter state restraining after stage s.
Thus we have shown that for sufficiently large stages, Rd is in state waiting.

Claim 6. Suppose that µ(dom(M)) = α. Then every requirement Rd is satisfied.

Proof. Since µ(dom(M)) = α, at all stages s, γs ≤ αs−1. As argued in the previous
claim, there is a stage s at which Rd is activated, and after which Rd is never injured.
At this stage s, Rd enters state preparing and we choose τd such that Q(τd) ↑ and set
rd = 2−(∣τd ∣+d).

By the previous claim, Rd exits state preparing at some stage t > s. At this point,
we have βt−γt < rd. We choose a string σ such that KM(σ) > ∣τd∣+d and put Q(τd) = σ.
Thus KQ(σ) ≤ ∣τd∣. Rd enters state waiting, and αs = βs.

Since, at stage t, KM(σ) > ∣τ ∣d + d, for every string ρ with ∣ρ∣ ≤ ∣τd∣ + d, M(ρ) ≠ σ.
For each stage t′ ≥ t the requirement Rd is no longer in state preparing and so by
Claim 1 we have γt′+1 − γt′ ≤ αt′ − γt′ < rd. From this it follows that we can never have
M(ρ) = σ for any ρ with ∣ρ∣ ≤ ∣τd∣ + d; if M(ρ) = σ for the first time at stage t′ + 1 > t,
then we would have γt′+1 − γt′ ≥ ∣ρ∣ = rd, which as we just argued cannot happen.

We can now use the claims to complete the verification. By Claim 4, α = lims αs is
indeed random, and by Claim 1 α ≤ β and so α ∈ [0,1]. So the function f must output
the index of a machine M with µ(M) = α. By Claim 6, each requirement is satisfied
and so, for every d, there is σ such that KM(σ) >KQ(σ) + d. Thus M is not optimal,
a contradiction. This completes the proof of the theorem.

2.2 Almost uniform constructions of optimal machines

We just established that there is no uniform procedure to turn a left-c.e. Martin-Löf
random α ∈ [0,1] into a universal machine M such that ΩM = α. However, algorithmic
randomness offers a notion of ‘almost uniformity’, known as layerwise computability,
see [HR09]: Let (Uk) be a fixed effectively optimal Martin-Löf test, i.e., a Martin-Löf
test such that for any other Martin-Löf test (Vk), there exists a constant c such that
Vk+c ⊆ Uk for all k, and this constant c can be uniformly computed in an index of the
Martin-Löf test (Vk). Note that an effectively optimal Martin-Löf test is in particular
universal, i.e., x is Martin-Löf random if and only if x ∉ Ud for some d. A function F

from [0,1] (or more generally, from a computable metric space) to some represented
space X is layerwise computable if it is defined on every Martin-Löf random x and
moreover there is a partial computable f from [0,1] × N to X where f(x,d) = F (x)
whenever x ∉ Ud.

Here we are in a different setting as we are dealing with indices of reals instead of
reals, but by extension we could say that a partial function F ∶ N → X is layerwise
computable on left-c.e. reals if F (e) is defined for every index e of a random left-c.e.
real, and if there is a partial computable function f ∶ N × N → X such that f(e, d) =
F (e) whenever the left-c.e. real αe of index e does not belong to Ud (note that the
definition remains the same if f is required to be total). Even with this weaker notion
of uniformity, uniform construction of optimal machines from their halting probabilities
remains impossible.
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Theorem 2.1. There does not exist a layerwise computable mapping F from indices
for random left-c.e. reals αe ∈ [0,1] to optimal machines such that ΩMF (e)

= αe.

Proof. This is in fact a consequence of a stronger result: there is no ∅′-partial com-
putable function F such that F (e) is defined whenever αe is Martin-Löf random and
ΩMF (e)

= αe. Since a ∅
′-partial computable function can be represented by a total com-

putable function f(., .) such that for every e on which F is defined, limt f(e, t) = F (e),
we see that a layerwise computable function on left-c.e. reals is a particular case of
∅′-partial computable function.

Let now F be a ∅′-partial computable function and f a total computable such that
limt f(e, t) = F (e) whenever F (e) is defined.

The idea is to run the same construction as in Theorem 1.2, but instead of playing
against the machine of index f(e), we play against the machine of index f(e, s0), with
s0 = 0. If at some point we find a s1 > s0 such that f(e, s1) /= f(e, s0), we restart
the entire construction, this time playing against the machine of index f(e, s1), until
we find s2 > s1 such that f(e, s2) /= f(e, s1), then restart, etc. Of course when we
restart the construction, we cannot undo the increases we have already made on α.
This problem is easily overcome as follows. First observe that the strategy presented
in the proof of Theorem 1.2, is robust: instead of starting at α = 0, and staying in
the interval [0,1] throughout the construction, for any rational interval [a, b] ⊆ [0,1],
we could have started the construction with α0 = a and stayed within [a, b] by – for
example – targeting the random real a+ (b− a)β instead of β. Now, let ξ be a random
left-c.e. real in [0,1] with computable lower approximation ξ0 < ξ1 < . . .. We play
against the machine of index f(e, si) by applying the strategy of Theorem 1.2 with the
added constraint that α must stay in the interval [ξi, ξi+1]. If we then find a si+1 such
that f(e, si+1) /= f(e, si), we then move to the next interval [ξi+1, ξi+2] and apply the
strategy to diagonalize against the machine of index f(e, si+1) while keeping α in this
interval, etc.

There are two cases:

• Either f(e, t) eventually stabilizes to a value f(e, sk), in which case we get to
fully implement the diagonalization against the machine of index f(e, sk) = F (e),
which ensures that αe /= ΩMF (e)

or that MF (e) is not optimal.

• Or f(e, t) does not stabilize, in which case we will infinitely often move α from
the interval [ξi, ξi+1] to [ξi+1, ξi+2], which means that the limit value of α = αe will
be ξ, hence αe is random, while F (e) is undefined since f(e, t) does not converge.

In either case, we have shown what we wanted.

Finally, we can consider a yet weaker type of non-uniformity. In the definition of
layerwise computability on left-c.e. reals, we asked that for αe ∉ Ud, the machine of
index f(e, d) has halting probability αe and f(e, d) = f(e, d′) if αe ∉ Ud ∪ Ud′ . Here we
could try to remove this last condition by allowing f(e, d) and f(e, d′) to be codes for
different machines (but both with halting probabilities αe). In this setting, we do get
a positive result.

Theorem 2.2. There exists a partial computable function f(., .) such that if αe ∉ Ud,
αe ∈ [0,1], then f(e, d) is defined and ΩMf(e,d)

= αe.
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Proof. This follows from work of Calude, Hertling, Khoussainov, and Wong [CHKW01]
and of Kučera and Slaman [KS01]. Let Ω be the halting probability of an optimal
machine. Kučera and Slaman showed how from the index of a left-c.e. real α ∈ [0,1]
one can build a Martin-Löf test (Vk) such that if α ∉ (Vk) then one can, uniformly
in k, produce approximations α1 < α2 < . . . of α and Ω1 < Ω2 < . . . of Ω such that
(αs+1 − αs) > 2−k(Ωs+1 − Ωs) (see [DH10, Theorem 9.2.3]). Then, by [CHKW01],
one can use such approximations to uniformly build a uniform machine with halting
probability α, as long as α ∈ (2−k,1 − 2−k) (see [DH10, Theorem 9.2.2])

Thus, given an index for α, if (Vk) is the Martin-Löf test built as in [KS01], we
can build the test V ′k = Vk+2 ∪ (0,2−k−2) ∪ (1 − 2−k−2,1) (whose index can uniformly be
computed from that of (Vk)). Now, if α ∉ Ud, then we can compute a constant c such
that α ∉ V ′d+c, and apply the above argument with k = c + d + 2.

2.3 Uniform constructions of semi-measures

Another way to define Omega numbers, which is equivalent if one is not concerned
about uniformity issues, is via left-c.e. semi-measures (see [DH10, Section 3.9]).

Definition 2.3. A semi-measure is a function m ∶ N → R+ such that ∑im(i) ≤ 1. It
is left-c.e. if the set {(i, q) ∣ i ∈ N, q ∈ Q, m(i) > q} is c.e., or equivalently, if m is the
limit of a non-decreasing sequence (ms) of uniformly computable functions such that

∑sms(i) ≤ 1 for all s.

There exist universal left-c.e. semi-measures, i.e., left-c.e. semi-measures m such
that for any other left-c.e. semi-measure µ, there is a c > 0 such that m(i) > c ⋅ µ(i)
for all i. The Levin coding theorem (see [DH10, Theorem 3.9.4]) asserts that a left-
c.e. semi-measure m is universal if and only if there are positive constants c1, c2 such
that c1 ⋅2

−K(i) <m(i) < c2 ⋅2−K(i) for all i. An important result from Calude, Hertling,
Khoussainov, and Wang [CHKW01] is that a left-c.e. real α is an Omega number if and
only if it is the sum ∑im(i) for some universal left-c.e. semi-measure m. Interestingly,
with this representation of Omega numbers, uniform constructions are possible.

Theorem 2.4. There is a total computable function f such that if e is an index for
a random left-c.e. real α ∈ [0,1], then f(e) is defined and is an index for a universal
left-c.e. semi-measure mf(e) with sum α.

Proof. Let µ be a fixed universal semi-measure and γ ≤ 1 its sum. Suppose we are given
(the index of) a left-c.e. real α. We build our m by building uniformly, for each k > 0,
a left-c.e. semi-measure mk of halting probability α ⋅ 2−k and will take m = ∑k>0mk.
While doing so, we also build an auxiliary Martin-Löf test (Uk)k>0.

The measure mk is designed as follows. We monitor the semi-measure µ and α at
the same time and run the following algorithm

1. Let s0 be the stage at which we entered step 1. Wait for the least stage s ≥ s0
such that some value µ(i) with i ≤ s has increased since the last i-stage. If there
is more than one such i at stage s, let i be the one whose most recent i-stage is
least. Let x be the amount by which µ(i) has increased since the previous i-stage,
and say that s is an i-stage. Move to step 2.

2. Put (αs, αs + 2
−kx) into Uk. Move to step 3.
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3. Increase mk(i) by 2−k(αs −αs0). At further stages t ≥ s, when we see an increase
αt+1 > αt, we increase mk(i) by 2−k(αt+1 − αt). Moreover, if we now have αt+1 >
αs + 2

−kx, we go back to step 1, otherwise we stay in this step 3.

By construction we do have ∑imk(i) = 2−kα. Still by construction, the measure of
Uk is bounded by γ ⋅ 2−k ≤ 2−k, so it is indeed a Martin-Löf test. Thus, if α is indeed
random, there is a j such that α ∉ Uj. Looking at the above algorithm, α ∉ Uj means
that for this j, we enter step 1 of the algorithm infinitely often and thus whenever
some µ(i) is increased by x at step 1, this is met by a sum of increases of mj(i) by
strictly more than 2−jx during step 3. Thus, mj > 2−jµ, which makes mj a universal
semi-measure, and thus m >mj is universal.

An interesting corollary is that one cannot uniformly turn a universal left-c.e. semi-
measure m into a prefix-free machine whose halting probability is ∑im(i). Indeed, if
we could, then we could uniformly turn a random left-c.e. α ∈ [0,1] into a prefix-free
machine of halting probability α by first applying the above theorem to get a universal
left-c.e. semi-measure m of sum α, and then we could turn m into a machine M of sum
α. This would contradict Theorem 1.2.

To summarize, for arbitrary (not necessarily random) left-c.e. reals, we can make
all of the transformations uniformly:

left-c.e. real
left-c.e. semi-

measure

prefix-free
machine

For random left-c.e. reals, and optimal prefix-free machines, we can only make the
following transformations uniformly:

random left-
c.e. real

universal left-c.e.
semi-measure

optimal prefix-
free machine

3 Differences of Left-c.e. Reals

Theorem 1.4. There is no partial computable function f such that if e is an index for
a non-computable left-c.e. real α, then f(e) is defined and is an index for a left-c.e.
real β such that α − β is neither left-c.e. nor right-c.e.
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Proof. Using the recursion theorem, define a left-c.e. real α while watching the left-c.e.
real β produced from α by a function f . We will also define a right-c.e. real δ. Let θi

be an enumeration of the right-c.e. reals with right-c.e. approximations (θis). We will
ensure that α ≠ θi for any i, so that α is non-computable, and that either α − β = δ or
for all sufficiently large stages, α grows more than β (and so α − β is left-c.e.).

Each stage of the construction will be in one of infinitely many possible states: wait

and follow(i) for some i. In wait, α will be held to the same value and we will begin
decreasing the right-c.e. real δ closer to α−β; if there are infinitely many wait stages,
then in fact we will have δ = α − β. At follow(i) stages, α will increase as much as β,
and possibly more, in an attempt to have θi < α. Because α will be increasing as much
as and possibly more than β, if from some point on all stages are follow(i) stages,
then α − β will be left-c.e. We will only enter follow(i) when we have a reasonable
chance of making θi < α, i.e., when θi is not too much greater than α, and we will
only exit follow(i) when we have succeeded in making θi < α. Since θi is right-c.e.
and α is left-c.e., this can never be injured. It is possible that we will never succeed in
making θi < α (because in fact θi > α) but in this case we will still ensure that α is not
computable and make α−β left-c.e. We just have to make sure that we never increase
α − β above δ.

Note that technically when defining αs we cannot wait for βs to converge. But we
can do this by essentially the following argument. First, fix a non-computable left-c.e.
real γ and let αs = γs until the uniform procedure provides us with a β and β0 converges
at some stage s0. Then we can restart the construction, considering the construction
to begin with α0 = γs0 . We can also in a uniform way replace the given approximation
to β (which might not even be total or left-c.e.) by a different one which is guaranteed
to be left-c.e. and which converges in a known amount of time, and is equal to β in the
case that β is in fact left-c.e.

Construction.

Stage s = 0. Begin with α0 = γs0 , δ0 = 1+α0−β0. Say that stage 1 will be a wait stage.

Stage s+1. We will have determined in stage s whether stage s+1 is a wait or follow
stage.

wait: Let αs+1 = αs and

δs+1 =min(δs, αs+1 − βs+1 +
1

2s
) .

Check whether, for some i ≤ s, θis+1 ≥ αs+1 and θis+1 − αs+1 < 1

2i
. If we find such an i,

let i be the least such. The next stage is a follow(i) stage. If there is no such i, the
next stage is a wait stage.

follow(i): In all cases, let δs+1 = δs. Then:

(1) Check whether
αs + βs+1 − βs > θis+1.

If so, set
αs+1 = θis+1 + ǫ ≤ αs + βs+1 − βs

where ǫ < 1

2i
. The next stage is a wait stage.
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(2) Otherwise, check whether for some j,

0 ≤ θjs − αs <
1

2j+2
[δs − (αs − βs)].

If we find such a j, choose the least such j, and let ǫ > 0 be such that

θjs + ǫ −αs <
1

2j+2
[δs − (αs − βs)].

Let
αs+1 =max(θjs + ǫ,αs + βs+1 − βs).

If j = i, the next stage is a wait stage. Otherwise, the next stage is a follow(i)
stage.

(3) Finally, in any other case, let

αs+1 = αs + βs+1 − βs.

The next stage is a follow(i) stage.
End construction.

The verification will consist of five claims followed by a short argument.

Claim 1. α = supαs comes to a limit.

Proof. Inwait stages, we do not increase α. If we enter follow(i), then we can increase
α by at most 2

2i
before we exit follow(i). Thus

α ≤ ∑
i∈ω

2

2i
<∞.

Claim 2. Suppose that, from some stage t on, every stage is a follow(i) stage. Then:

(1) for all s ≥ t, αs+1 − αs ≥ βs+1 − βs,

(2) α − β is left-c.e.,

(3) for all s ≥ t,

δs − (αs − βs) ≥ 1

2
[δt − (αt − βt)].

Proof. (1) follows from the fact that we either set the next stage to be a wait stage,
or we have αs+1 ≥ αs + βs+1 − βs. (2) follows easily from (1).

For (3), since δs = δt for all s ≥ t, whenever we define

αs+1 = αs + βs+1 − βs

we maintain
δs+1 − (αs+1 − βs+1) = δs − (αs − βs).

The other possible case is when we find j such that

0 ≤ θjs −αs <
1

2j+2
[δs − (αs − βs)].
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and define
αs+1 = θ

j
s + ǫ.

Note that in this case we permanently have θj − α < 0 so we can never do this again
for the same j. We have

δs+1 − (αs+1 − βs+1) = δs − θjs − ǫ + βs+1
≥ δs − αs + βs −

1

2j+2
[δs − (αs − βs)]

=
2j+2 − 1

2j+2
[δs − (αs − βs)].

Thus, for all stages s ≥ t,

δs − (αs − βs) ≥ ∏
j∈ω

2j+2 − 1

2j+2
[δt − (αt − βt)]

≥
1

2
[δt − (αt − βt)].

Claim 3. For all stages s, δs > αs − βs.

Proof. We argue by induction. This is true for s = 0.
If stage s + 1 is a wait stage, then there are two possible values for δs+1: δs or

αs+1 −βs+1 +
1

2s
. It is clear that the second is strictly greater than αs+1 −βs+1. We also

have, since αs+1 = αs and βs+1 ≥ βs, that δs > αs − βs ≥ αs+1 − βs+1.
If stage s+1 is a follow stage, then δs+1 = δs. There are two options for αs+1. First,

we might set αs+1 ≤ αs + βs+1 − βs so that αs+1 − βs+1 ≤ αs − βs and δs+1 > αs+1 − βs+1
follows from the induction hypothesis δs > αs − βs. Second, we might set

αs+1 = θjs + ǫ.

where

θjs + ǫ −αs <
1

2j+2
[δs − (αs − βs)].

Then

αs+1 − βs+1 ≤ θ
j
s + ǫ − βs

< αs − βs +
1

2j+2
[δs − (αs − βs)]

≤
1

2j+2
δs +

2j+2 − 1

2j+2
[αs − βs]

< δs = δs+1.

This completes the proof.

Claim 4. α is non-computable.

Proof. If α was computable, then it would be equal to a right-c.e. real θi. For all stages
s, α ≤ θis. Let t be a stage such that θit − αt < 1

2i
. Increasing t, we may assume that

there is j ≤ i such that we are in follow(j) from stage t on. Increasing t further, we
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can assume that for each i′ < i, if θi < α, then we have seen this by stage t. Consider
the inequality

θis − αs <
1

2i+2
[δs − (αs − βs)].

By (3) of Claim 2, the right-hand-side has a lower bound, and this lower bound is
strictly positive by Claim 3. Since θi = α, there is a stage s ≥ t where this inequality
holds. Then by choice of t, i is the least value satisfying this inequality and we set
αs+1 > θis.

Claim 5. If there are infinitely many wait stages, then δ = α − β.

Proof. Using Claim 3, for each wait stage s, we have

αs − βs ≤ δs ≤ αs − βs +
1

2s−1
.

Thus δ = α − β.

We are now ready to complete the proof. It follows from Claim 1 that α is a left-
c.e. real that comes to a limit, and by Claim 4, α is a non-computable. If there are
infinitely many wait stages, then by Claim 5 δ = α−β is right-c.e. The other option is
that there is j such that every stage from some point on is a follow(j) stage. In this
case, by (2) of Claim 2, α − β is left-c.e.

We now turn to Theorem 1.6 which says that one can uniformly construct, from
an optimal (respectively universal) machine U , an optimal (respectively universal)
machine V such that ΩU −ΩV is neither left-c.e. nor right-c.e. We first prove this for
optimal machines, and then obtain the result for universal machines as a corollary.

Theorem 3.1. Theorem 1.5 is uniform, in the sense that there is a total computable
function f such that if U =Me is an optimal machine, then V =Mf(e) is optimal and
ΩU −ΩV is neither left-c.e. nor right-c.e.

Proof. Let γ, δ be two Solovay-incomparable left-c.e. reals. As explained in [BLP17],
if α is random, then β = α + γ − δ is left-c.e. and random, and α − β is neither left-c.e.
nor right-c.e. Our goal is to make this idea effective.

Let us first express δ as the sum ∑n 2
−h(n) where h is a computable function. In

what follows, when we write h(σ) for a string σ, we mean h(n) where n is the integer
associated to σ via a fixed computable bijection. Furthermore, let Q be a machine such
that µ(dom(Q)) = γ.

We build a machine V from a machine U as follows. First, we wait for U to issue
a description U(σ0) = τ0. When this happens, V issues a description V (σ00) = τ0 and
countably many descriptions by setting V (σ01p) = Q(p) for every p ∈ dom(Q).

Now, for every string τ /= τ0 in parallel, we enumerate all descriptions U(σ) = τ . As
long as the enumerated descriptions are such that ∣σ∣ ≥ h(τ), V copies these descrip-
tions. If at some point we find a description U(σ) = τ with ∣σ∣ ≤ h(τ)−1, we then issue
descriptions V (σ0) = τ , and V (σ′) = τ for every σ′ of length h(τ) which extends σ1,
except for σ′ = σ1h(τ)−∣σ∣, for which we leave V (σ′) undefined. After having done that,
V copies all further U -descriptions of τ , regardless of the length of these descriptions.

By construction, V is prefix-free, because any U -description U(σ) = τ is replaced in
V by a set of descriptions V (σ′) = τ ′ where the σ′ form a prefix-free set of extensions
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of σ. Moreover, V is optimal because by construction, whenever a description U(σ) = τ
is enumerated, a V -description of τ of length at most ∣σ∣ + 1 is issued. Let us now
evaluate ΩU −ΩV . The very first description U(σ0) = τ0 of U gives rise to descriptions
in V of total measure 2−c−1 + 2−c−1µ(dom(Q)), where c = ∣σ0∣. Thus this part of the
construction contributes to ΩU − ΩV by an amount 2−c − 2−c−1 − 2−c−1µ(dom(Q)) =
2−c−1 − 2−c−1γ.

Now, for other strings τ /= τ0, there are two cases. Either a description U(σ) = τ
with ∣σ∣ < h(τ) is found (which is equivalent to saying that KU(τ) < h(τ)), or no
such description is found. Let A be the set of τ for which such a description is found.
For τ ∉ A, all U -descriptions of τ are copied identically in V . For τ ∈ A, all U -
descriptions of τ are copied except one description U(σ) = τ (thus of measure 2−∣σ∣)
which is mimicked in V by a set of descriptions of measure 2−∣σ∣ − 2−h(τ).

Putting it all together:

ΩU −ΩV = 2−c−1 − 2−c−1γ + ∑
τ∈A

2−h(τ)

To finish the proof, we appeal to the theory of Solovay functions. When h is a
computable positive function, the sum ∑n 2

−h(n) is not random if and only if h(n) −
K(n) → ∞ [BD09, BDNM15]. This is the case here as δ = ∑n 2

−h(n) is Solovay-
incomplete hence not random. Suppose that the machine U is indeed an optimal
machine. Then KU = K +O(1), and thus we have h(n) −KU(n) → ∞. In particular,
for almost all n, h(n) > KU(n). This shows that the set A above is cofinite and
therefore that ∑τ∈A 2−h(τ) = δ − q for some (dyadic) rational q. Plugging this in the
above equality, we get

ΩU −ΩV = 2−c−1 − 2−c−1γ + δ − q

Since γ and δ are Solovay-incomparable, this shows that ΩU − ΩV is neither left-c.e.
nor right-c.e.

Corollary 3.2. There is a total computable function g such that if U =Me is a uni-
versal machine, then W = Mg(e) is universal and ΩU − ΩW is neither left-c.e. nor
right-c.e.

Proof. Given U = Me, construct V = Mf(e) as in the previous theorem. Define a
machine W = Mg(e) by setting W (0σ) = U(0σ) and W (1σ) = V (1σ). Then ΩW =
1

2
ΩU +

1

2
ΩV , and so ΩU −ΩW = 1

2
(ΩU −ΩV ). Thus if U is universal, then so is W , and

ΩU −ΩW is neither left-c.e. nor right-c.e.
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