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CLASSIFYING SPACES AND THE LASCAR GROUP

TIM CAMPION, GREG COUSINS, AND JINHE YE

Abstract. We show that the Lascar group GalL(T ) of a first-order theory T

is naturally isomorphic to the fundamental group π1(|Mod(T )|) of the classify-
ing space of the category of models of T and elementary embeddings. We use
this identification to compute the Lascar groups of several example theories via
homotopy-theoretic methods, and in fact completely characterize the homotopy
type of |Mod(T )| for these theories T . It turns out that in each of these cases,
|Mod(T )| is aspherical, i.e. its higher homotopy groups vanish. This raises the
question of which homotopy types are of the form |Mod(T )| in general. As a pre-
liminary step towards answering this question, we show that every homotopy type
is of the form |C| where C is an Abstract Elementary Class with amalgamation for
κ-small objects, where κ may be taken arbitrarily large. This result is improved
in another paper.
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0. Introduction

The Lascar group. In [Las82], Lascar introduced a notion of a Galois group of
a complete first-order theory T , now known as the Lascar group GalL(T ). His
main result was a reconstruction theorem: he showed that if the theory T is ω-
categorical and the Lascar group over finitely many parameters is always trivial,
then one can recover the category of definable sets from the category Mod(T ) of
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2 TIM CAMPION, GREG COUSINS, AND JINHE YE

models of the theory. The Lascar group, along with other related notions, has
become an important piece of machinery in model theory, see for example [Hru19]
for some recent progress in understanding the Lascar group. In this paper, we revisit
the relationship between Mod(T ) and GalL(T ) from the perspective of categorical
homotopy theory.
Let us first recall the standard definition of the group GalL(T ) in an ad hoc

categorical framework:

Definition 0.1. Given an arbitrary category C, a full subcategory C0 ⊆ C, and an
object U ∈ C, we make the following definitions:

• Let Lst(C, C0, U) ⊆ AutC(U) denote the subgroup generated by those auto-
morphisms α ∈ AutC(U) such that there exists an M ∈ C0 and a morphism
f :M → U in C which is fixed by α in the sense that αf = f .
• Let GalL(C, C0, U) = AutC(U)/Lst(C, C0, U).

Then for a complete first-order theory T , by definition we have

GalL(T ) := GalL(Mod(T ),Modκ(T ),U)

Here Mod(T ) is the category of models of T with elementary embeddings for mor-
phisms, Modκ(T ) ⊂ Mod(T ) is the full subcategory of κ-small models for some reg-
ular cardinal κ > |T |, and U is a κ-saturated and strongly-κ-homogeneous model.
It is a theorem that this definition of GalL(T ) is independent of the choice of κ and
of U up to isomorphism.

Definition 0.1 positions the Lascar group in the context of pure category the-
ory, but in a way which suffers a number of deficiencies. In particular, the group
GalL(C, C0, U) depends not only on the category C, but also on the auxiliary data
of C0 ⊆ C and U ∈ C. Yet in the case of interest, the dependence of GalL(T ) on
these choices is trivial. One would prefer a description making this independence
manifest.
A new perspective. To shed some light on this phenomenon, let us follow a chain
of loose analogies. An analogy between the Lascar group GalL(T ) and the absolute
Galois group of a field k would liken the choice of U to the choice of an algebraic
closure k̄ of k and an embedding k → k̄. Following another well-known analogy
between Galois groups and fundamental groups, this in turn is analogous to the
choice of a universal cover X̃ of a connected space X and a covering map X̃ → X ,
or equivalently to a choice of base-point of X .
In this paper, we make the “composite” of these two analogies, relating GalL(T )

to the fundamental group of a space, entirely precise. We show (Theorem 3.4) that
for every first-order theory T , there is a space canonically associated to T , which
we denote |Mod(T )|,1 such that π1(|Mod(T )|) ∼= GalL(T ). Here π1(X) denotes the
fundamental group of a topological space X . If T is complete, then |Mod(T )| is
connected, and the base-point-independence of π1(|Mod(T )|) formally implies the
independence of GalL(T ) from the choice of a saturated model U (Corollary 3.5).
Moreover, the space |Mod(T )| is constructed in an entirely standard way. Namely,
|Mod(T )| is defined to be the classifying space (Definition 1.22) of the category

1See Section 0.1 about set theoretical conventions.
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Mod(T ) of models of T and elementary embeddings. This is a large category, but
we deduce from standard category-theoretic considerations that the classifying space
is homotopy equivalent to a small subspace (Proposition 3.1).
Applications. We develop a few applications of this perspective:

(1) In Section 3, we deduce an alternative proof of the invariance of the Lascar
group from the choice of U, see Corollary 3.5. In particular, we obtain
weak conditions on a model U such that GalL(T,U) ∼= GalL(T ), recovering a
theorem of [CP05] (for the notation GalL(T,U), see Definition 2.4). We also
provide an alternate proof of the usual cardinality bound |GalL(T )| ≤ 2|T |

(Corollary 3.8).
(2) In Section 4, we use the results of the previous section to compute the Lascar

groups of several familiar theories using homotopy-theoretic techniques.
(3) The space |Mod(T )|, up to homotopy equivalence, is an invariant of the

theory T . Since a classifying space is always a CW complex, for the paper,
we use the term homotopy type to mean homotopy type of a CW complex.
One may ask whether every homotopy type is realized as |Mod(T )| for a
first-order theory T . Though we do not know the answer to this question,
Section 5 presents evidence for both an affirmative and negative answer:
• On the one hand, the known “purely categorical” properties shared by
all elementary classes Mod(T ) are nicely summarized in the statement
that Mod(T ) is an Abstract Elementary Class (AEC) with amalgama-
tion. We construct, (Theorem 5.5) for each CW complex X and regular
cardinal κ, an AEC C with amalgamation for κ-presentable objects such
that |C| ≃ X . In a parallel work [CY21], we will provide an alternate
construction which realizes the homotopy type of X as |C| where C is
an AEC with amalgamation for all objects and no maximal models.
• On the other hand, in all the examples of finitary first-order theories
T for which we have characterized the homotopy type of |Mod(T )| in
Section 4, the space |Mod(T )| satisfies the restrictive condition of being
aspherical, meaning its higher homotopy groups vanish.

Questions for Future Work. Given the fact that one can identify GalL(T ) canon-
ically as π1(|Mod(T )|), it would be interesting to see if the original work of Lascar
in [Las82] can be restated in homotopy-theoretic language.
The Lascar group carries a natural topology, but the fundamental group of a

space is merely a discrete group. Thus our results say nothing about the topology
on GalL(T ). It may be possible to recover this topology in various ways, for example,
by enriching Mod(T ) with additional structures such as the ones in [Hru19].
This paper does not consider the relationship between the Lascar group and re-

lated notions such as the Kim-Pillay galois group or the Shelah galois group of a
theory T . We do not know whether these groups admit homotopy-theoretic descrip-
tions. It would be interesting to see what kind of data is needed to enrich Mod(T )
in order to give a homotopy-theoretic definition of the above groups.
Besides fundamental groups, one may also consider other homotopy invariants

of the space |Mod(T )| such as higher homotopy groups, homology groups, and co-
homology groups. We do not consider such invariants in this paper because in



4 TIM CAMPION, GREG COUSINS, AND JINHE YE

the theories T which we consider, the higher homotopy groups of |Mod(T )| vanish.
Consequently, in these cases, the space |Mod(T )| is homotopy equivalent to the clas-
sifying space of the group π1(|Mod(T )|) ∼= GalL(T ) considered as a discrete group
(cf. Example 1.29), and therefore the homology and cohomology groups of |Mod(T )|
are simply the group homology and cohomology of GalL(T ) considered as a discrete
group.
In [GKK13], a notion of homology of types was defined and in [DKL17], it was

shown that the first homology group of a given type p is given by the abelianization
of the relativized Lascar groups. The relationship between their construction and
the one considered here is unclear.
The model theoretic significance of the higher homotopy groups of |Mod(T )| –

if indeed they can be nonvanishing – is not clear to us. It has been suggested
that non-trivial elements in πn(|Mod(T )|) might be related to failure of n + 1-
almagation of models of T . However, n + 1-amalgamation involves finding cocones
on certain diagrams with contractible classifying space, whereas the homotopy group
πn(|Mod(T )|) has to do with diagrams with classifying space homotopy equivalent
to the n-sphere Sn. Thus, as we will see in Example 4.11, such a connection remains
unclear.
In [CY21], the first and third authors improve the results of Section 5, showing

that for every small CW complex X , there exists an AEC C with amalgamation
for all objects and no maximal models, such that |C| ≃ X . In fact, C consists of
the models of certain theory in Lκ+,ω where κ = max(ℵ0,#X) (where #X is the
number of cells of X), with strong embeddings for morphisms.
Overview. We begin in Sections 1 and 2 by recalling some background material in
category, homotopy theory and model theory, respectively. In Section 3, the heart
of the paper, we prove our main result (Theorem 3.4), exhibiting the Lascar group
as the fundamental group of a space, and deduce that the Lascar group is bounded
(Corollary 3.5), and give a bound on its cardinality (Corollary 3.8). In Section 4, we
give some toy applications, computing the Lascar groups of several familiar theories
with methods of a homotopy-theoretic and category-theoretic flavor. In fact, in all
of the examples we consider, we are able to go further and determine the complete
homotopy type of the space |Mod(T )|, and find that in these examples |Mod(T )| is
aspherical (i.e. its higher homotopy groups vanish). In Section 5.1 we consider the
question of which homotopy types can be realized in the form |Mod(T )|. In this
paper, we attain only partial results, including Observation 5.6, 5.7 and Theorem
5.5. We conclude in Section 5.2 with a discussion of known categorical criteria on
a category C implying that |C| is aspherical, and find that none of the criteria we
consider are satisfied by Mod(T ) for a general finitary first-order theory T .

0.1. Set-theoretic conventions. We fix two strongly inaccessible cardinals λ1 <
λ2. For each ordinal α, let Vα denote the sets of rank less than α. Sets in Vλ1

are
called small, sets in Vλ2

are called moderate, any other set is called large. Models
(including “monster models”), by convention, are assumed to be small. Topological
spaces are assumed to be moderate. Categories have no cardinality restrictions. A
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category is called small if its sets of objects and morphisms are small, and a category
with small homsets is called locally small.
Set-theoretical considerations enter this paper merely as a convenience for two

reasons. One is that we would like to be able to talk about the (large) category of
all (moderate) categories. The other is that we would like to consider the classifying
space of a moderate category. Both uses can be circumvented, the first by standard
circumlocutions and the second by Proposition 3.1, which shows that the topological
spaces we are interested in are homotopy equivalent to canonical small subspaces.
Thus our results will continue to hold, mutatis mutandis, in ZFC.
In particular, we do not use “monster models” which are saturated in their own

cardinality.

0.2. Notational conventions. In this paper, composition in a category is written

as follows. If A
f
→ B

g
→ C is a composable pair in a category C, then the composite

is written in the usual way as A
gf
→ C. This convention includes the case where C is

a groupoid.
We refer to several specific categories in the paper. Set is the category of small

sets and functions. Cat is the category of moderate categories. Top is the category
of moderate topological spaces. Gpd is the full subcategory of Cat consisting of
(moderate) groupoids (see Section 1.1), and Grp is the category of (small) groups.
sSet is the category of moderate simplicial sets. For a first-order theory T , Mod(T )
is the category of (small) models of T and elementary embeddings. This differs
from the convention of [AR94] for example, where Mod(T ) is used for the category
of models of T with homomorphisms as morphisms, and Elem(T ) is used for our
Mod(T ).
For a category C, we will typically use the notation HomC(−,−) for the Hom

sets, and we will drop the subscript C when the underlying category C is clear from
the context. In some cases we may also write C(X, Y ) instead of HomC(X, Y ) to
emphasize the category in which the homset is being taken.
Background. Category-theoretically, we assume only that the reader is familiar
with the concepts of category, functor, natural transformation, subcategories, full
and faithful functors, opposite categories, isomorphism, and equivalence of cate-
gories. A familiarity with notions of universal properties is also helpful, but not
strictly necessary. We will review several other basic and advanced concepts of cat-
egory theory in Section 1.1. We will assume a bit more categorical sophistication in
Section 5.
Homotopy-theoretically, we assume only that the reader is familiar with the no-

tions of topological space and continuous map (although a more sophisticated reader
should feel free to substitute their favorite model of homotopy theory). We will re-
view several basic and advanced concepts of homotopy theory in Section 1.2. In
Section 5, we will assume a bit more homotopical sophistication.
Model-theoretically, we assume only that the reader is familiar with the notions

of first-order structure, first-order theory, elementary embedding, and completeness.
We will review several more advanced concepts of model theory in Section 2.
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1. Background in category theory and homotopy theory

1.1. Background in category theory.

Basic notions. There are many excellent introductions to category theory available,
for example the classic [Mac13] or the more modern [Rie17], which is freely available
from the author’s website. We recall some basic definitions here, but our treatment
is necessarily brief.

Recollection 1.1 (Equivalence of Categories). A functor F : C → D is an equiv-
alence of categories if there is a functor G : D → C and natural isomorphisms
idC ∼= GF and idD ∼= FG. In this case we refer to G as a weak inverse to F . A
basic theorem says that a functor F is an equivalence of categories if and only if it
is full, faithful, and essentially surjective (i.e. surjective on isomorphism classes of
objects). Moreover, in this case a weak inverse may be constructed by arbitrarily
fixing, for each D ∈ D, an object G(D) ∈ C such that F (G(D)) ∼= D, and an
isomorphism ιD : F (G(D))→ D. Then G is defined on morphisms f : D → D′ by
G(f) = F−1(ι−1D′ fιD). We use C ≃ D to denote that C and D are equivalent.

Recollection 1.2 (Skeleton). A skeletal category is a category where any two iso-
morphic objects are equal. Any equivalence of categories between skeletal categories
is an isomorphism of categories. A skeleton of a category C is an equivalent skeletal
category. Every category has a skeleton, unique up to isomorphism of categories,
which may be constructed by choosing an arbitrary representative of each isomor-
phism class of objects of C, and taking skC ⊆ C to be the full subcategory on these
objects. The inclusion skC → C is unique up to non-unique natural isomorphism.
Two categories are equivalent if and only if their skeleta are isomorphic.

Recollection 1.3 (Size). The size #(C) of a category C is the cardinality of its set
of morphisms. Note that on account of identity morphisms, this is always at least
the number of objects of C. If κ is a cardinal, we say that C is κ-small if #(C) < κ.
A more important notion is the essential size of a category C, i.e. the size of a
skeleton of C.

Recollection 1.4 (Connected). A category C is strongly connected if its underlying
directed graph is strongly connected, i.e. for every two objects x, y ∈ C, there is a
morphism from x to y. A category C is connected if its underlying directed graph
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is weakly connected, i.e. for every two objects x, y ∈ C there exists a zigzag of
morphisms x = x0 ← x1 → x2 ← · · · ← xn−1 → xn = y.

Recollection 1.5 (Adjunction). An adjunction consists of a pair of functors F :
C→←D : U equipped with a family of bijections HomD(FC,D) ∼= HomC(C,UD), nat-
ural in C,D. In this situation F is said to be left adjoint to U , and U is right
adjoint to F . Alternatively, an adjunction may be specified by natural transforma-
tions η : idC ⇒ UF (the unit) and ε : FU ⇒ idD (the counit) satisfying certain
equations. The bijection of homsets encodes a universal property : in order to define
a morphism FC → D, it suffices to define a morphism C → UD.

Recollection 1.6 (Monomorphism). Let C be a category. A monomorphism in C
is a morphism f : D → E such that for every two morphisms g, h : C → D, if
fg = fh, then g = h. For example, in the category Set of sets and functions, the
monomorphisms are precisely the injective functions.

Recollection 1.7 (Fibration, Slice Category). The notion of a Grothendieck opfi-
bration is used as a convenience in Section 4. Let F : E → B be a functor. Let
f : B → B′ be a morphism in B and E ∈ E an object with F (E) = B. A cocartesian
lift of f to E is a morphism g : E → E ′ with F (g) = f satisfying the following uni-
versal property. For every f ′ : B′ → B′′ and every g′′ : E → E ′′ with F (g′′) = f ′f ,
there exists a unique g′ : E ′ → E ′′ such that F (g′) = f ′ and g′g = g′′. By the
universal property, cocartesian lifts are unique up to unique vertical isomorphism;
that is, if g, : E → E ′ and ḡ : E → Ē are two cocartesian lifts of f to E, then there
is a unique map ι : E ′ → Ē such that F (ι) = idB′ and ιg = ḡ; moreover, ι is an
isomorphism. The functor F is said to be a Grothendieck opfibration if for every
f : B → B′ and E ∈ E such that F (E) = B, there is a cocartesian lift of f to E.
Note that any isomorphism in E is cocartesian, and conversely if f : B → B′ is an
isomorphism, then any cocartesian lift of f is an isomorphism.
Let F : C → D be a functor and D ∈ D. The fiber F−1(D) of F over D is

the subcategory of C consisting of objects C with F (C) = D and morphisms f
with F (f) = idD. The slice category F ↓ D of F over D is the following category.
The objects are pairs (C, f) where C ∈ C and f : F (C) → D is a morphism
in D. The morphisms from (C, f) to (C ′, f ′) are morphisms g : C → C ′ such
that f ′F (g) = f . If the functor F is clear from context, we may write C ↓ D
instead of F ↓ D. If h : D → D′ is a morphism in D, then there is a reindexing
functor h∗ : F ↓ D → F ↓ D′ defined by (C, f) 7→ (C, hf). There is an inclusion
F−1(D)→ F ↓ D, and if F is a Grothendieck opfibration the inclusion functor has
a left adjoint denoted (C, f) 7→ f∗(C), defined by taking f∗(C) to be the codomain
of an arbitrary cocartesian lift of f to C. If F is a Grothendieck opfibration, then
there is also a reindexing functor h∗ : F

−1(D) → F−1(D′) defined similarly. The
two types of reindexing functor are compatible in that there is an isomorphism
(hf)∗(C) ∼= h∗(f∗(C)), natural in (C, f) ∈ F ↓ D.

Recollection 1.8 ((Co)Cones, (Co)Limits). An initial object in a category C is an
object 0 ∈ C with the following univeral property: every object C ∈ C admits a
unique morphism 0 → C. If C has an initial object, then it is unique up to unique
isomorphism, so we speak of the initial object, and denote it 0.
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A diagram in a category C consists of a category J (the shape of the diagram) and
a functor X : J → C. When thinking of a functor as a diagram, we will often denote
its application to objects and morphisms using subscript notation, so that if j ∈ J
we write Xj = X(j) and if u : j → j′ is a morphism in J , we write Xu : Xj → Xj′.
We will sometimes also use notation such as (Xj)j∈J to denote a functor X of shape
J , or even (Xj)j when J is implicit. A cocone on a diagram X : J → C consists of
an object V ∈ C (the vertex of the cone) and morphisms λj : Xj → V for all j ∈ J
(the legs of the cone) such that λjXu = λj′ for all u : j′ → j in J . If (V, λ) and
(V ′, λ′) are cocones on X , then a morphism of cocones f : (V, λ)→ (V ′, λ′) consists
of a morphism f : V → V ′ such that fλj = λ′j for all j ∈ J ; thus there is a category
CoCone(X) of cones on X . A colimit of X is an initial object in CoCone(X); if a
colimit of X exists it is unique up to unique isomorphism of cocones on X , so we
speak of the colimit and denote it (lim−→X, ιX) or (lim−→j∈J

Xj , ι
X) or just (lim−→j

Xj, ι
X)

when J is implicit. Moreover, we will often leave the colimiting cocone ι implicit,
referring to lim−→X abusively as the colimit of X .
For any functor F : C → D and any category I, there is an induced map from

I-shaped diagrams in C to I-shaped diagrams in D as well as an induced map
on cocones over such diagrams. We say that F preserves I-shaped colimits if it
carries colimiting cocones on I-shaped diagrams to colimiting cocones on I-shaped
diagrams. Any left adjoint functor preserves all colimits.
Terminal objects (denoted 1), cones, and limits of F (denoted lim←−F ), and preser-

vation thereof, are defined dually.

Recollection 1.9 (Filtered). Perhaps less familiar is the notion of a filtered cate-
gory, i.e. a category C such that every functor F : J → C, with J finite, admits
a cocone; to show that C is filtered, it suffices to check the following 3 cases: (1)
J is empty, (2) J consists of two objects with no nonidentity morphisms, (3) J
is the category depicted as 0 ⇒ 1. Filtered categories generalize directed posets;
in particular, if J is a preorder (i.e. a category where each homset as at most one
element), then J is a filtered category if and only if it is a directed preorder. More
generally, if κ is a regular cardinal, a κ-filtered category is a category C such that
every functor F : J → C with J κ-small (cf. Recollection 1.3), admits a cocone.

Example 1.10 (Examples of (Co)limits). Let J be a discrete category, i.e. one
with no nonidentity morphisms. Then the data of a diagram of shape J in C is
equivalent to the data a function X : Ob J → Ob C. A colimit of shape J is called
a coproduct, and denoted ∐j∈JXj, or by X1 ∐X2 in the binary case. The category
Set has coproducts, given by disjoint union. The category Top has coproducts, also
given by disjoint union. Incidentally, a set 1 with one element is a terminal object
in Set, and the discrete category 1 with one object is a terminal object in Cat.
In general, small colimits exist in Set and in Top. They are computed by lim−→j∈J

Xj =

∐j∈JXj/ ∼ where ∼ is the equivalence relation generated by setting x ∈ Xj equiv-
alent to Xu(x) for every u : j → j′. There are some cases where the equivalence
relation so generated admits a simplified description.
For example, let J be the category 1← 0→ 2. A diagram of shape J is called a

span, and consists of three objects with two nonidentity morphisms between them in
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the shape B ← A→ C. A colimit of shape J is called a pushout, and denoted B∪AC.

In Set, pushouts are particularly easy to describe when the maps B
i
← A

j
−→ C are

injective: in this case B ∪A C is B ∐ C modulo the equivalence relation identifying
i(a) with j(a).
For another example, if J is small and filtered and F : J → Set is a J-indexed

diagram in Set, then lim−→j
F (j) = ∐jF (j)/ ∼, where ∼ identifies x ∈ F (j) with

x′ ∈ F (j′) if and only if there is j′′ ∈ J and morphisms j′
f
−→ j′′

f ′

← j′ such that
F (f)(x) = F (f ′)(x′). A similar construction works in Cat, and in many other
categories.

Definition 1.11 (JEP, AP). Let C be a category.

(1) We say that C has the joint embedding property (JEP) if for any finite,
discrete diagram in C there is a cocone. In other words, for every A,B ∈ C,
there is an object C and two morphisms A→ C, B → C.

(2) We say that C has the amalgamation property (AP) if for any span in C, i.e.

a diagram of the form B
f
← A

f
−→ C, there is a cocone. In other words, there

is an object D and morphisms B
g′

→ D
f ′

← C such that g′f = f ′g.

Example 1.12. Mod(T ) has the joint embedding property and amalgamation prop-
erty. This follows from compactness and the Downward Löwenheim-Skolem Theo-
rem.

Groupoids.

Recollection 1.13 (Groupoid). A groupoid is a category where every morphism
is an isomorphism. We denote by Gpd the category of moderate groupoids. If G
is a group, then there is a 1-object groupoid, denoted BG, whose morphisms are
the elements of G, with composition given by multiplication in G. Note that if G
and H are groups, then BG and BH are equivalent as groupoids if and only if they
are isomorphic as groups. Moreover, G → H is an isomorphism of groups iff the
induced functor BG→ BH is an equivalence of categories. If Γ is any groupoid and
x ∈ Γ is an object, then we will denote π1(Γ, x) := HomΓ(x, x). There is a canonical
inclusion functor ιx : Bπ1(Γ, x)→ Γ, which is fully faithful. We say that a groupoid
Γ is trivial if it is nonempty and for every two objects x, y ∈ Γ there is a unique
morphism x→ y. Equivalently, Γ is trivial if it is equivalent to BG for G the trivial
group, i.e. if it is equivalent to the terminal category 1 (cf. Example 1.10).

Recollection 1.14 (Connected Groupoids). Let Γ be a connected groupoid (cf.
Recollection 1.4). Then Γ is strongly connected, and so all of its objects are iso-
morphic. For if x0 ← x1 → x2 ← · · · ← xn−1 → xn is a zigzag, then by taking the
inverses of all the backward-pointing arrows and composing, we obtain an isomor-
phism x0 → xn. It follows that if Γ is a connected groupoid and x ∈ Γ is an object,
then the inclusion Bπ1(Γ, x) → Γ is full, faithful, and essentially surjective and so
an equivalence of groupoids (cf. Recollection 1.1). Thus when Γ is a nonempty
connected groupoid, we may sometimes refer to π1(Γ) loosely. In particular, when
Γ is connected, the groups π1(Γ, x) are isomorphic for different x ∈ Γ.
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When Γ is not connected, it is a disjoint union of its connected components, and
equivalent to its skeleton, which is a disjoint union of one-object groupoids. Thus it
is often fruitful to think of a groupoid simply as a collection of groups.

Recollection 1.15 (Fundamental Groupoid of a Category). The inclusion Gpd →
Cat has a left adjoint denoted Π1 : Cat → Gpd. The gropoid Π1(C) is called the
fundamental groupoid of C, or sometimes the free groupoid on C. For C ∈ Cat, we
will denote by J−K : C → Π1(C) the unit of this adjunction, so that for f : C → C ′ a
morphism in C, JfK denotes the equivalence class of f considered as a morphism in
Π1(C). The groupoid Π1(C) is constructed by “freely adjoining inverses to C”; see
[GZ12, Chapter I.1] for an explicit description. In practice, it suffices to know that
there is a functor J−K : C → Π1(C) and that every morphism of Π1(C) is invertible.
Beware that J−K : C → Π1(C) is generally far from faithful, even on automorphisms.
For C ∈ C, we also write π1(C, C) := HomΠ1(C)(C,C) = π1(Π1(C), C). If C is
connected and nonempty, then we may loosely speak of π1(C). We note that Π1(C)
has the same objects as C, and is connected iff C is. Moreover, we have #(Π1(C)) ≤
ℵ0 +#(C), and Π1(skC) ≃ skΠ1(C).
This adjunction is in fact a 2-categorical adjunction. We will not spell out what

this means, but we note a few consequences, which can also be deduced directly from
the explicit description in [GZ12, Chapter I.1]. First, if F,G : C ⇒ Γ are two functors
to a groupoid and α : F ⇒ G is a natural isomorphism, and if F̃ , G̃ : Π1(C) ⇒ Γ are
the functors induced by the universal property of the adjunction, then there is an
induced natural isomorphism α̃ : F̃ ⇒ G̃. It follows that if C and D are equivalent
categories, then their fundamental groupoids are also equivalent.

Accessible categories. The theory of accessible categories will be used in Section
5; all of Section 3 also generalizes to this setting, but we do not assume familiarity
with accessible categories in Section 3. For the theory of accessible categories, we
refer the reader to [AR94].

Definition 1.16 (Accessible Category). Let κ be a small regular cardinal. A κ-
accessible category is a moderate,2 locally small category with κ-filtered colimits
(i.e. colimits of functors F : J → C where J is small and κ-filtered), and an
essentially small full subcategory Cκ ⊆ C of κ-presentable objects – objects C such
that HomC(C,−) : C → Set commutes with κ-filtered colimits for C ∈ Cκ – and
moreover every object X ∈ C is the colimit of a small, κ-filtered diagram in Cκ. In
this case the κ-presentable objects are precisely the retracts of objects of Cκ: for if
X is κ-presentable, then we write X = lim−→i

Xi with Xi ∈ Cκ, and by κ-presentability

of X (and the construction of filtered colimits in Set), the identity map X → X
must factor through some stage Xi of the colimit, so that X is a retract of Xi. The
κ-presentable objects are closed under κ-small colimits [AR94, Proposition 1.16].
It may be comforting to know that every instance of “filtered colimit” in this

definition may be replaced with “directed colimit” because every κ-filtered category

2Most treatments of accessible categories such as [AR94] work in a slightly different foundational
setup than we do; the “sets” of such treatments should be identified with the small sets in our
treatment.
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admits a cofinal κ-directed poset [AR94, Remark 1.12]. We say finitely accessible
for ℵ0-accessible, and accessible to mean κ-accessible for some (unspecified) κ.

Example 1.17 (Mod(T )). Let T be a first-order theory. The category Mod(T ) of
(small) models of T is accessible with all filtered colimits [BR12, Remark 2.3(4)].3

More precisely, filtered colimits are given by union [BR12, Remark 2.3(4)], for κ ≥
|T |+ the κ-presentable objects Modκ(T ) are precisely the models of cardinality < κ
[BR12, Remark 2.3(4)], and so the Downward Löwenheim-Skolem Theorem implies
that Mod(T ) is κ-accessible for κ ≥ |T |+. Notably, Mod(T ) satisfies AP and, if T
is complete, also JEP (cf. Definition 1.11).

Recollection 1.18 (The Ind Construction). If C is a small category and κ < λ1 is
a regular cardinal (recall from Section 0.1 that λ1 denotes the size of the universe of
small sets), we will denote by Indκ(C) the following category. An object is a small,
κ-filtered diagram (Ci)i∈I in C, and a morphism from (Ci)i∈I to (Dj)j∈J is a natural
transformation lim

−→i
HomC(−, Ci) → lim

−→j
HomC(−, Dj), where the colimit is taken

in the presheaf category Fun(Cop, Set). Composition is as in Fun(Cop, Set). Clearly,
Indκ(C) is equivalent to the full subcategory of the functor category Fun(Cop, Set)
consisting of those functors which are small, κ-filtered colimits of representable func-
tors. Alternatively, Indκ(C) may be regarded as simply a category of diagrams with
homsets given by the formula Hom((Ci)i∈I , (Dj)j∈J) = lim

←−i∈I
lim
−→j∈J

Hom(Ci, Dj).

We write Ind for Indω.
There is a natural fully faithful functor yC : C → Indκ(C) sending C to the one-

object diagram at C (viewing Indκ(C) as a category of presheaves, this corresponds
to the Yoneda embedding), and we will often identify C with its image under this
embedding. The category Indκ(C) has all small, κ-filtered colimits, computed as
in the presheaf category Fun(Cop, Set), and the objects of C are κ-presentable in
Indκ(C). In fact, the κ-presentable objects of Indκ(C) are precisely the retracts of
objects of C. Moreover, every object of Indκ(C) is canonically a small, κ-filtered
colimit of objects of C. Thus Indκ(C) is a κ-accessible category. A central theorem
of the theory of accessible categories says that a category is κ-accessible if and only
if it is equivalent to Indκ(C) for some small category C. The category Indκ(C) has
the universal property that if G : C → D is a functor where D has small, κ-filtered
colimits, then there is a functor G̃ : Indκ(C)→ D preserving small, κ-filtered colimits
such that G̃|C = G; G̃ is unique up to unique natural isomorphism.

Recollection 1.19 (The restricted Ind construction). In Section 5.1, we will use
the following variant of the Indκ construction, as expanded on in [Low]. For regular
cardinals κ ≤ µ < λ1, we define Indµ

κ(C) to be the full subcategory of Indκ(C) on
diagrams which are µ-small. The category Indµ

κ(C) inherits many properties from
the larger category Indκ(C); see [Low] and [Low16] for details. We will only use this
construction in the case κ = ω; we write Indµ(C) for Indµ

ω(C).
In particular, Indκ(C) has κ-small filtered colimits, computed as in Ind(C), so

that if C ∈ C, then Indκ(C)(C,−) commutes with κ-small filtered colimits and every

3In [BR12] a different foundational setup is used. Sets in [BR12] should be identified with our
small sets.
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object of Indκ(C) is a κ-small, filtered colimit of objects of C [Low16, Proposition
1.11, Example 1.8]. If C → D is a functor where C is essentially small and D has
κ-small filtered colimits, then we obtain an induced functor Indκ(C)→ D preserving
κ-small filtered colimits.

Lemma 1.20. Let κ ≤ µ ≤ λ1 be regular cardinals. If C is a category of monomor-
phisms, then Indµ

κ(C) is a category of monomorphisms.

Proof. Let f : Y → Z be a morphism in Indµ
κ(C), and let g1, g2 : X ⇒ Y be

morphisms in Indµ
κ(C). Assume for contradiction that fg1 = fg2 but g1 6= g2. First,

we may assume that X ∈ C. For in general, X is a colimit X = lim−→i
Xi of objects

of C, and so g1 = g2 ⇔ g1|Xi
= g2|Xi

for each leg of the diagram. Now, assuming
that X ∈ C, we may assume that Y ∈ C. For X is κ-presentable and Y = lim

−→j
Yj

is a κ-filtered colimit of objects of C, so there are morphisms ḡ1, ḡ2 : X ⇒ Yj such
that ιj ḡ1 = g1 and ιj ḡ2 = g2, where ιj : Yj → Y is the canonical inclusion, and
thus ḡ1 6= ḡ2. Now, assuming that X, Y ∈ C, we may assume that Z ∈ C. For Y is
κ-presentable and Z = lim−→k

Zk is a κ-filtered colimit of objects of C, so there is some
Zk → Z through which f factors. Thus we may assume that the whole diagram is
in C. But then we obtain a contradiction, since f is a monomorphism in C. �

We thank Zhen Lin Low for pointing out the proof of the following [Low].

Fact 1.21. Let C be a small category, and let κ < λ1 be a regular cardinal. There
is an equivalence of categories F : Indκ(Ind

κ(C))→ Ind(C), natural in C.

Proof. This follows from the results of [Low16]. See Example 1.8, Proposition 3.5,
and Proposition 3.10 in op. cit. Be aware that the use of subscripts and super-
scripts in op. cit., Definition 1.2 clashes with our own notation: the subscripts there
correspond to our superscripts, while our subscripts have no direct analog in their
notation. See [Low] for further discussion. �

1.2. Background in homotopy theory. We recall some basic concepts from the
homotopy theory of categories which are necessary to formulate and prove Theo-
rem 3.4. The discussion here will be terse and lacking in motivation. For general
homotopy theory there are many references available, such as [Hat02]. For simpli-
cial homotopy theory, we recommend [Rie] or [GJ09]. For the homotopy theory of
categories specifically, see [Qui73].

Definition 1.22 (Classifying Space of a Category). Let C be a moderate category.
For n ∈ N, let Cn denote the (moderate) set of paths of length n in C. That is, an
element of Cn consists of a length-n chain

C0 · · · Cn
f0 fn

of composable morphisms in C. Note that C0 is precisely the set of objects in C. The
classifying space of C is the topological space |C| = ∐nCn × ∆n/ ∼, where each Cn
is equipped with the discrete topology. Here ∆n = {(x0, . . . , xn) ∈ R

n+1 | 0 ≤ xi ≤
∑

i xi = 1} is the topological n-simplex, and the equivalence relation ∼ is generated
by the following identifications:
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• ((f1, . . . , fi−1, id, fi+1 . . . , fn), (x0, . . . , xn)) ∼
((f1, . . . , fi−1, fi+1, . . . , fn), (x0, . . . , xi−1 + xi, . . . , xn)).
• ((f1, . . . , fn), (x0, . . . , xi−1, 0, xi+1, . . . , xn)) ∼
((f1, . . . , fi+1fi, . . . , fn), (x0, . . . , xi−1, xi+1, . . . , xn)).

When i = 0 in the second bullet, “fi+1fi” really means “f1”, and likewise “fi+1fi”
really means “fn” when i = n. If F : C → D is a functor, there is an induced map
|F | : |C| → |D|. Thus the classifying space determines a functor | − | : Cat→ Top.4.

Remark 1.23. For any category C, the classifying space |C| is a CW complex. The
vertices of |C| are the objects of C. The edges of |C| are the non-identity morphisms
of C. The 2-faces of |C| correspond to equations gf = h; for such an equation
the three boundary edges of the corresponding face are g, f , and h. Higher faces
correspond to longer equations fn · · · f1 = h; the faces of such a face are obtained
by composing various sub-strings of the list (f1, . . . , fn).
From a more conceptual perspective, the classifying space functor |−| : Cat→ Top

factors through the category of simplicial sets. Specifically, we have |C| = |NC|
where N : Cat → sSet is the nerve functor and | − | : sSet → Top is the geometric
realization functor (note that we use the same notation for geometric realization
as we do for classifying spaces). The object NC is a simplicial set whose set Cn of
length-n chains of composable morphisms as in Definition 1.22. For more on nerves,
geometric realization, and classifying spaces, see [Qui73]. For geometric realization
specifically, see [May92, Chapter 3], and [Mac13, Chapter IX.6] for a conceptual
definition using coends.
In fact, for homotopy theoretic purposes there is really no need to perform the

second step of geometric realization: one can “do homotopy theory” directly at the
level of simplicial sets rather than topological spaces. We have chosen to state our
results in terms of topological spaces because simplicial sets may be less familiar to
model theorists, but the reader who is familiar with simplicial sets is welcome to
interpret our results in that setting instead.

We would like to study the space |C| homotopy-theoretically. To that end, let us
recall some basic definitions.

Definition 1.24 (Homotopy). Let X, Y be topological spaces and f, g : X ⇒ Y
a pair of maps. A homotopy from f to g is a map F : [0, 1] × X → Y such
that F (0, x) = f(x) and F (1, x) = g(x) for all x ∈ X . Two maps are said to
be homotopic if there is a homotopy between them; this is a congruence relation
on Top. The category of CW complexes and homotopy classes of maps is called
the homotopy category. A homotopy equivalence from X to Y consists of maps
f : X → Y , g : Y → X , and homotopies gf ∼ 1, fg ∼ 1. In this case we say that
X and Y are homotopy equivalent, and we write X ≃ Y if X and Y are homotopy
equivalent CW complexes. This is an equivalence relation on CW complexes, and
we say that two CW complexes have the same homotopy type if they are homotopy
equivalent.

4For technical reasons, one often restricts attention to some subcategory of all topological spaces,
such as compactly-generated spaces. But nothing in this paper depends strongly on this distinction.
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Fact 1.25.

(1) A natural transformation α : F ⇒ G : C → D induces a homotopy |F | ∼ |G|.
(2) An equivalence of categories F : C → D induces a homotopy equivalence
|F | : |C| ≃ |D|.

(3) More generally, an adjunction F : C → D : G induces a homotopy equiva-
lence |C| ≃ |D|.

(4) More generally still, if F : C → D : G are functors and there are natural
transformations between idC and GF and idD and FG (the direction doesn’t
matter), then |C| ≃ |D|.

Proof. One may think of a natural transformation α : F ⇒ G : C → D as a functor
[1]×C → D, where [1] is the “arrow category,” with two objects and one nonidentity
morphism between them. Similarly, a homotopy between maps X ⇒ Y is a map
∆1 ×X → Y . From this, and the fact that the classifying space functor preserves
finite products (cf. Fact 1.45 below), (1) follows. Then (4) is immediate; (2) and
(3) are consequences of (4). �

We next consider the simplest type of space up to homotopy:

Definition 1.26 (Contractible). A topological space X is contractible if it is homo-
topy equivalent to the 1-point space ∆0. A category C is contractible if its classifying
space |C| is contractible. In particular, a groupoid is contractible if and only if it is
trivial (cf. Recollection 1.13).

Definition 1.27 (Fundamental Groupoid of a Topological Space). Let X be a
topological space. The fundamental groupoid Π1(X) is the groupoid with objects
the points of X and morphisms given by homotopy classes (relative to endpoints)
of paths, with composition given by concatenation of paths; inverses are given by
reversing paths. If x ∈ X is a point, the fundamental group π1(X, x) is the group of
automorphisms of x considered as an object of Π1(X). When X is path-connected
and nonempty, π1(X, x) is independent of x up to isomorphism, so we may refer to
π1(X) loosely.

Fact 1.28.

(1) Let C be a moderate category. Then C is connected if and only if |C| is
connected.

(2) Let C be a moderate category. The natural functor Π1(C) → Π1(|C|) is an
equivalence of groupoids.

(3) A homotopy equivalence f : X ≃ Y of topological spaces induces an equiv-
alence of groupoids f∗ : Π1(X) ≃ Π1(Y ), and for any x ∈ X induces an
isomorphism of fundamental groups f∗ : π1(X, x) ∼= π1(Y, f(x)).

(4) In particular, if X is a contractible topological space, then Π1(X) is trivial.

Proof. (1) follows directly from the definitions. For (2), note that the fundamental
group of |C| may be computed from the cell structure of its definition using the
van Kampen theorem, and one obtains precisely the presentation of Π1(C) found in
[GZ12, Chapter I.1]. (3) and (4) may be deduced from the corresponding familiar
facts for the fundamental group. �
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Example 1.29 (Classifying Space of Group). Let G be a discrete group. We denote
by BG := |BG| the classifying space of the groupoid BG, called the classifying space
of the group G. In topology, the space BG is defined more generally for a topological
group G, but in this paper we will only consider it for discrete groups. To emphasize
this, we may write BGδ in cases where G may also carry a topology which we are
ignoring.

Remark 1.30 (Homotopy Groups, Weak Homotopy Equivalence). LetX be a space
and x ∈ X a point. For each n ∈ N, the nth homotopy set of X based at x, denoted
πn(X, x), is defined to be the set of pointed homotopy equivalence classes of maps
Sn → X sending the base-point to x, where Sn is the n-sphere. For n ≥ 1, πn(X, x)
is a group (recovering the fundamental group for n = 1) and for n ≥ 2 it is abelian.
As for the fundamental group, choices of base-point in the same path component
yield isomorphic homotopy groups, so if X is connected we may speak loosely of
πn(X). The construction πn(X, x) is functorial in base-point-preserving maps. A
weak homotopy equivalence is a map which induces bijections on all homotopy sets for
all base-points. Every homotopy equivalence is a weak homotopy equivalence. Every
space is weak homotopy equivalent to a CW complex, and Whitehead’s theorem says
that a map between CW complexes is a homotopy equivalence if and only if it is
a weak homotopy equivalence. We write X ≃ Y if there is a diagram of weak
homotopy equivalences X → Z ← Y , and say that X and Y are weakly homotopy
equivalent. This is an equivalence relation on spaces [Hat02, Proposition 4.13 and
Corollary 4.19], and when X, Y are CW complexes we have X ≃ Y if and only if X
and Y are homotopy equivalent, agreeing with the notation introduced in Definition
1.24. The only spaces considered in this paper which are not CW complexes are
certain infinite products of CW complexes in Section 4, so most of the time the
distinction between homotopy equivalence and weak homotopy equivalence is not
important for us.
We also say that a functor F : C → D is a weak homotopy equivalence if it induces

a homotopy equivalence (equivalently: a weak homotopy equivalence) of classifying
spaces.

Remark 1.31 (Aspherical). In general, there exist CW complexes with isomorphic
homotopy groups which are not homotopy equivalent. However, there is a special
case of interest: we say that X is aspherical if πn(X, x) = 0 for all base-points and
all n ≥ 2. It is a fact that if X and Y are aspherical CW complexes, then any
equivalence of fundamental groupoids Π1(X) ≃ Π1(Y ) is induced by a homotopy
equivalence X ≃ Y [Hat02, Chapter 4.2]. In particular, if X is aspherical, then
X ≃ |Π1(X)|, and in particular ifX is connected and aspherical, thenX ≃ Bπ1(X).5

5There is a generalization to higher homotopy groups: if n ≥ 1 and A is a group (required to
be abelian if n ≥ 2), then there is a unique space up to homotopy equivalence, called the nth

Eilenberg-MacLane space for the group A, and denoted K(A, n) or BnA, satisfying the property

that πk(B
nA) =

{

A n = k

0 else
.



16 TIM CAMPION, GREG COUSINS, AND JINHE YE

Deeper tools in homotopy theory include Quillen’s celebrated theorems A and
B.6 For the notions of opfibrations, slice categories, and reindexing functors, see
Recollection 1.7.

Theorem 1.32 (Quillen’s Theorem A [Qui73, Theorem A and Corollary immedi-
ately following]). Let F : C → D be a Grothendieck opfibration in Cat. Suppose that
for all D ∈ D, the fiber F−1(D) is contractible. Then |F | : |C| → |D| is a homotopy
equivalence.
Let F : C → D be any functor in Cat. Suppose that for all D ∈ D, the slice

category F ↓ D is contractible. Then |F | : |C| → |D| is a homotopy equivalence.

Theorem 1.33 (Quillen’s Theorem B [Qui73, Theorem B and Corollary immedi-
ately following], see also [GJ09, Chapter IV.5]). Let F : C → D be a Grothendieck
opfibration in Cat. Suppose that for every morphism D → D′ in D, the reindexing
functor F−1(D) → F−1(D′) induces a homotopy equivalence of classifying spaces.
Then the induced sequence |F−1(D)| → |C| → |D| is a homotopy fiber sequence for
each D ∈ D.

Because |C| ∼= |Cop| naturally, these theorems also have dual forms. Theorem B
also has a form using coslice categories analogous to Theorem A, but we will not
need it.
In the statement of Theorem B, a homotopy fiber sequence is a sequence of maps

X → Y → Z such that the composite X → Z is constant and the induced square

X Y

1 Z

is homotopy cartesian in the sense of [Qui73, p. 96]. For our purposes, it is not
important to know precisely what this means. We simply need to know the following
facts:

Fact 1.34. Let F : C → D be a Grothendieck opfibration in Cat, where D is a
groupoid. Then for any D ∈ D, the induced sequence |F−1(D)| → |C| → |D| is a
homotopy fiber sequence.

Proof. Any morphism in D is an isomorphism, and so any cocartesian morphism
of C is an isomorphism. Thus the reindexing functors F−1(D) → F−1(D′) are
all equivalences of categories, and in particular induce homotopy equivalences of
classifying spaces by Fact 1.25. Thus by Quillen’s Theorem B (Theorem 1.33), the
sequence |F−1(D)| → |C| → |D| is a homotopy fiber sequence. �

Fact 1.35 ([Hat02, Theorem 4.41]). Let F → E → B a homotopy fiber sequence.
Assume for simplicity that F,E,B are path-connected, and choose a basepoint for
F (which maps forward to choices of basepoint for E and B.) Then there is an
induced long exact sequence of homotopy groups · · · → πn(F )→ πn(E)→ πn(B)→

6We would like to stress that although Quillen’s Theorem A and B are often considered relatively
deep theorems in homotopy theory, in this paper their use is merely a convenience until Section 5,
and all of our results up to that point can be proved directly by more elementary methods.
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πn−1(F ) → . . . , which is natural with respect to basepoint-preserving maps of fiber
sequences.

Fact 1.36. Let

F E B

F ′ E ′ B′

be a commutative diagram of connected CW complexes, and suppose that both rows
are homotopy fiber sequences. Then if any two of the downward maps are homotopy
equivalences, so is the third.

Proof. After choosing a basepoint for F and mapping it forward to basepoints for the
5 other spaces, Fact 1.35 supplies two long exact sequences homotopy groups with
natural maps between them. The hypotheses imply that all but every third map is
an isomorphism. Therefore by the five lemma, all the maps are isomorphisms. By
Whitehead’s theorem (cf. Remark 1.30), all three maps are homotopy equivalences.

�

Fact 1.37. Let 1 → G → H → K → 1 be a short exact sequence of groups. Then
BG→ BH → BK is a homotopy fiber sequence.

Proof. The functor BH → BK is a Grothendieck opfibration because both BH and
BK are groupoids and the functor is full and surjective on objects. Then this follows
from from Fact 1.34. �

The following statements are useful tools when computing examples in Section 4,
and go back at least to [Qui73].

Proposition 1.38. Let C be a category. Then C is contractible in all of the following
cases:

(1) C has an initial or terminal object.
(2) In particular, if C = C′ ↓ C is a slice category.
(3) C is nonempty and admits a functor F : C × C → C and natural transfor-

mations ι1 : π1 ⇒ F and ι2 : π2 ⇒ F , where π1, π2 : C × C → C are the
projection functors.

Proof. (1) Suppose that C has an initial object. Then the unique functor C → 1
to the terminal category (cf. Example 1.10) has a left adjoint, given by the
inclusion of the initial object. Then by Fact 1.25(3), |C| is contractible. The
case of a terminal object is dual.

(2) If C = C′ ↓ C is a slice category, then (C, idC) is a terminal object in C.
(3) Suppose that C is nonempty, pick some C0 ∈ C, and define a functor F (C0,−) :
C → C, C 7→ F (C0, C). There is a natural transformation idC ⇒ F (C0,−)
whose components are given by ι2 : C → F (C0, C). There is also a natural
transformation ι1 : constC0

⇒ F (C0,−) from the constant functor at C0 to
F (C0,−). By transitivity of the homotopy relation, |idC| is homotopic to
|constC0

|, and so C is contractible. �
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Remark 1.39. Note that Mod(T ) has a terminal object only when T has only one
finite model without nontrivial automorphisms. And Mod(T ) has an initial object
if and only if the definable closure of the empty set is a model (this is much stronger
than the existence of a prime model, for example ACF has a prime model but no
initial model).

Definition 1.40. In the situation of Proposition 1.38(3) we will say that C has
functorial joint embedding. A motivating example comes when F : C × C → C is a
binary coproduct functor.

We close this preliminary section with a few more miscellaneous facts we will need
later.

Fact 1.41 ([Tho80, Proposition 5.7]). Let X be a CW complex. Then X is homotopy
equivalent to the classifying space of a poset.

Proof. As shown in [Tho80], there is a model structure (the Thomason model struc-
ture) in the sense of [Qui67] on Cat where the weak equivalences of the model cate-
gory structure are those functors which are carried to homotopy equivalences by the
classifying space functor | − | : Cat→ Top. Moreover the classifying space functor is
a Quillen equivalence. In the Thomason model structure every cofibrant object is a
poset. Direct from the definition of a model category, every object is weakly equiva-
lent to a cofibrant object. Quillen equivalences induce bijections of weak equivalence
classes of objects. Every topological space is weakly equivalent to CW complex. �

Fact 1.42 (cf. [Qui67]). A pushout of contractible spaces along injective cellular
maps is contractible.

Proof. The fundamental group and homology of the pushout may be computed using
the van Kampen theorem and the usual Mayer-Vietoris sequence for homology, and
the conclusion then follows from the Homology Whitehead Theorem (which says
that a map between simply-connected spaces inducing an isomorphism on integral
homology is a weak homotopy equivalence – see [May83] for a nice proof). �

Fact 1.43. (Weak) homotopy equivalences of geometric realizations of simplicial
sets are stable under filtered colimits of simplicial maps. In particular, if C = lim−→i

Ci
is a filtered colimit of categories Ci with contractible classifying spaces, then C also
has a contractible classifying space.

Proof. This is recovered from the stronger results of [RR15] or [BS15], or alterna-
tively may be deduced from the classical theory of Kan’s Ex∞ functor [Kan57]. �

Fact 1.44. The geometric realization functor | − | : sSet→ Top preserves colimits.

Proof. In fact, the geometric realization functor is a left adjoint [GJ09, Proposition
I.2.2]. �
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Fact 1.45. Let C,D be categories. Then the canonical continuous bijection |C×D| →
|C| × |D| is a weak homotopy equivalence. Moreover, if C or D is finite, then this
map is a homeomorphism.7

Proof. More generally, if X, Y are simplicial sets (cf. Remark 1.23), then (i) the
continuous bijection |X × Y | → |X| × |Y | is a weak homotopy equivalence, and (ii)
this map is a homeomorphism if either X or Y is locally finite, meaning that it has
finitely many simplices in each degree (note that the nerve of a finite category is
locally finite). The proof of (ii) is due to [Mil57, Theorem 2]. For (i), observe that if
Sk → |X| × |Y | represents an element of πk(|X| × |Y |), then because Sk is compact,
the projection Sk → |X|×|Y | → |X| factors through a finite subcomplex |X ′| ⊆ |X|.
Similarly, the other projection factors through a finite subcomplex |Y ′| ⊆ |Y |. Thus
the whole map factors through |X ′|×|Y ′| which, by (i), is homeomorphic to |X ′×Y ′|.
Since |X ′× Y ′| is a subcomplex of |X × Y |, we obtain a lift Sk → |X × Y |, showing
that the map πk(|X × Y |)→ πk(|X| × |Y |) is surjective. Similarly, we may lift any
nullhomotopy Dk → |X| × |Y | to a nullhomotopy Dk → |X × Y |, so that the map
πk(|X×Y |)→ πk(|X|×|Y |) is injective. Thus the map πk(|X×Y |)→ πk(|X|×|Y |)
is bijective for all k, and so |X×Y | → |X|×|Y | is a weak homotopy equivalence. �

Fact 1.46. The geometric realization functor commutes with arbitrary products of
groupoids up to weak homotopy equivalence. The functor B : Grp → Gpd also
commutes with arbitrary products.

Proof. The second statement is trivial. For the first, observe that homotopy groups
of spaces commute with infinite products and groupoids are closed under products in
Cat, so that Π1(

∏

|Γi|) =
∏

Π1(|Γi|) =
∏

Γi = Π1(|
∏

Γi|) and all other homotopy
groups vanish. �

2. Model theoretic preliminaries

In this section, we introduce the notion of a the Lascar group of a theory. Most
of the materials can be found in [Cas+01] and [Zie02]. For basic notions in model
theory, refer to [TZ12]. We fix some conventions for this section.

• T is a complete first-order theory in some language L.
• κ is a infinite cardinal, κ > |T |.
• Mod(T ) is the category of models of T , with elementary embeddings as
morphisms. Recall that in this paper, all the models are assumed to be
small, see Section 0.1.
• Modκ(T ) is the full subcategory of κ-small models of T , i.e. models of
cardinality < κ.

7In practice, for homotopy theorists today the classifying space functor is usually modified to
take values, not in Top, but in a convenient category of topological spaces [Ste+67] such as the
category of compactly-generated weak Hausdorff spaces. With this modification, the map |C×D| →
|C| × |D| becomes a homeomorphism for all categories C,D, so that we may simply say that
| − | preserves finite products. We have endeavored to suppress reliance on modern tools such as
simplicial sets and convenient categories of spaces for the convenience of the reader who is not a
topologist.
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Definition 2.1. Let U ∈ Mod(T ) be a model of T .

(1) U is κ-universal if for every M ∈ Modκ(T ), there exists a morphism M → U

in Mod(T ).
(2) U is strongly κ-homogeneous if for every M ∈ Modκ(T ) and every pair of

morphisms f, g :M U there exists an automorphism α : U → U

such that αf = g.
(3) U is κ-saturated if for every type p ∈ Sn(A), where |A| < κ and |A| ⊆ U,

there is a ∈ U such that a |= p. Note that κ-saturated implies κ-universal.
(4) U is a monster model if U is κ-saturated and strongly κ-homogeneous. Note

that monster models exists for any theory T and any κ, see [CK90, Chapter
5.1] or [TZ12, Chapter 6.1] for details.

Remark 2.2. Note that the definition of κ-universal/strongly κ-homogeneous makes
sense even in an accessible category. In an accessible category C, we say that an
object U is κ-universal if for any κ-presentable M , there is a morphism M → U and
we say it is strongly κ-homogeneous if if for every κ-presentable M and every pair of

morphisms f, g :M U there exists an automorphism α : U → U such that

αf = g.

Remark 2.3. Our notion of strong κ-homogeneity might more precisely be called
strong model κ-homogeneity since we do not ask for homogeneity over arbitrary
subsets. However, for a κ-universal model M , the two notions above coincide. We
thank the referee for the following proof.

Proof. Given two subsets A1, A2 ⊂ M that are isomorphic. We need to find σ ∈
Aut(M) such that σ(A1) = A2. By Downwards Löwenheim-Skolem, one can find
Mi �M such that Ai ⊆Mi for i = 1, 2. Take N to be a small model (not necessarily
contained in M) containing M1,M2 such that A1, A2 are conjugates in N . By κ-
universality of M , let N ′ denote an embedded copy of N in M , we call the image
of M1,M2 under this embedding M ′1,M

′
2. Similarly, we denote the image of A1, A2

by A′1, A
′
2. By strong model κ-homogeneity ofM , we have σ1, σ2, σ3 ∈ Aut(M) such

that σ1(M1) = M ′1, σ2 fixes N ′ set-wise and sends σ2(A
′
1) = A′2 and σ3(M

′
2) = M2.

Then for σ = σ3σ2σ1, we have σ(A1) = σ3σ2σ1(A1) = A2. �

Definition 2.4. Let A ⊆ U be a set of parameters, where U is a model of T , and
|A| < κ as in the previous definition. We define

Lst(T,A, U) = 〈Aut(U/N) : A ⊆ N ≺ U, |N | < κ〉

i.e. the group generated by the groups Aut(U/N), the automorphisms of U that
stabilize N pointwise, where N ranges over small elementary substructures of U
which contain A. It is immediate from the definition that the above group is a
normal subgroup of Aut(U/A), the pointwise stabilizer of A. The Lascar Group of
T over A based at U is defined to be

GalL(T, U/A) := Aut(U/A)/Lst(T,A, U).(1)

For a, b ∈ U , we write Lstp(a/A) = Lstp(b/A) if there is some σ ∈ Lst(T,A, U)
such that σ(a) = b. When A = ∅, we write GalL(T, U) to mean GalL(T, U/∅).
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In the language of Definition 0.1, GalL(T, U) = GalL(Mod(T ),Modκ(T ), U). Our
definition agrees with the classical definition when U is sufficiently homogeneous
and saturated.

Remark 2.5. It is well-known that GalL(T, U) is independent of the choice of U up
to isomorphism so long as certain conditions on U are met. In particular, although
stronger hypotheses on U were originally required in [Las82], it is shown in [CP05,
Theorem 4.3] that GalL(T, U) is independent of T up to isomorphism so long as
U is |T |+-universal and strongly |T |+-homogeneous. We will denote this group by
GalL(T ), and it is also easy to see that GalL(T ) has cardinality at most 2|T |. We
will provide new proofs of the above facts in the course of Section 3, Corollary 3.5
and Corollary 3.8.

Remark 2.6. Note that the Lascar group has a different definition via the Las-
car strong types. For each sort S, there is a finest bounded invariant equiva-
lence relation ES

L on the sort S. Take U to be a monster model, then the Lascar
strong automorphisms Lst(U) are the ones that fixes each such class of ES

L , and
GalL(U) = Aut(U)/Lst(U). However, in this paper, we use Definition 2.4.

3. The Lascar Group as a Fundamental Group

In this section, let T be a complete first-order theory, let κ > |T | be a regular
cardinal, and let U ∈ Mod(T ) be a model which is κ-universal and strongly κ-
homogeneous. The results of this section extend, with the same proofs, to any
κ-accessible category containing a κ-universal, strongly κ-homogeneous object in
the sense of Remark 2.2. We need the following facts.

Proposition 3.1.

(1) Let M ∈ Mod(T ). Then the slice category Modκ(T ) ↓M is κ-filtered.
(2) The inclusionModκ(T )→ Mod(T ) induces a homotopy equivalence |Modκ(T )|
→ |Mod(T )|.

(3) Mod(T ) and Modκ(T ) are connected.
(4) The homomorphism of groupoids induced by inclusion of Modκ(T )→ Mod(T ),

Π1(Modκ(T ))→ Π1(Mod(T )) is an equivalence.

Proof. Note that (1) follows from the Downward Löwenheim-Skolem Theorem. So
by Fact 1.43, Modκ(T ) ↓ M is contractible. By Quillen’s Theorem A (Theorem
1.32), the map |Modκ(T )| → |Mod(T )| is a homotopy equivalence, yielding (2).
(3) follows from the joint embedding property (1.12). (4) follows from (2) by Fact
1.28(3). �

Remark 3.2. Proposition 3.1(1), (2), and (4) continue to hold in greater generality:
in place of Mod(T ) we may take any connected κ-accessible category C, while in place
of Modκ(T ) we may take the full subcategory Cκ of κ-presentable objects. In the
case of (1), see for example [AR94, Proposition 2.8(ii)]. In the case of (2) and (4)
the argument is essentially the same as above.

Proposition 3.3. For any U ∈ Mod(T ), there is a canonical homomorphism φ :
GalL(T, U)→ π1(Mod(T ), U) sending [α] 7→ JαK.
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In the statement of the proposition, we have α ∈ Aut(U). The notation [α]
denotes the class of α in GalL(T, U). The notation JαK, introduced in Recollec-
tion 1.15, denotes the class of α in Π1(Mod(T )), and we are abusively identifying
π1(Mod(T ), U) with its image under the inclusion Bπ1(Mod(T ), U) ⊆ Π1(Mod(T )).

Proof. The map φ : α 7→ JαK clearly defines a homomorphism Aut(U)→ π1(Mod(T ),
U); we just have to show that this descends through the quotient map Aut(U) →
GalL(T, U) defining the Lascar group. For this, it suffices to show that if α is an
automorphism of U fixing a κ-small elementary sub-model M ⊆ U , then JαK is triv-
ial in π1(Mod(T ), U). This is true because if i : M → U is the inclusion, we have
αi = i. This equation still holds in Π1(Mod(T )), but here JiK is invertible, more
explicitly, JidK = JiKJiK−1 = JαiKJiK−1 = JαKJiKJiK−1 = JαK. �

Theorem 3.4. The Lascar group GalL(T ) is isomorphic to the fundamental group
π1(Mod(T )). Specifically, if U is κ-universal and strongly κ-homogeneous, then the
homomorphism φ : GalL(T,U) → π1(Mod(T ),U) of Proposition 3.3 is an isomor-
phism.

Proof. The inclusion F : Π1(Modκ(T ))→ Π1(Mod(T )) is an equivalence by Propo-
sition 3.1. Let G : Π1(Mod(T ))→ Π1(Modκ(T )) be a weak inverse to F . Following
the general construction of weak inverses to equivalences of categories from Recol-
lection 1.1, G depends on an arbitrary choice, for each V ∈ Mod(T ), of an object
G(V ) ∈ Modκ(T ) and an isomorphism iV : F (G(V )) → V in Π1(Mod(T )). For
convenience, we assume that we have chosen G(U) to be a κ-small sub-model M∗
with inclusion map iM∗

:M∗ ⊆ U and that we have chosen iU = JiM∗
K.

We define a functor φ̃ : BGalL(T,U)→ Π1(Modκ(T )) to be the following compos-
ite:

φ̃ : BGalL(T,U)
Bφ
→ Bπ1(Mod(T ),U)

∼
→ Π1(Mod(T ))

G
∼
→ Π1(Modκ(T ))

The first functor is induced by φ as in Recollection 1.13. The second functor is
the canonical inclusion, which is an equivalence as discussed in Recollection 1.14
because Mod(T ) is connected (Proposition 3.1), and hence Π1(Mod(T )) is connected
(Recollection 1.15). The third functor is the weak inverse just constructed. Using

the description of G from Recollection 1.1, we see that φ̃ is defined by the formula
φ̃([α]) = JiM∗

K−1JαKJiM∗
K.

The statement of the theorem (that φ is an isomorphism) equivalent to the state-

ment that Bφ is an equivalence (Recollection 1.13). Because φ̃ is the composite of

Bφ with an equivalence, this in turn is equivalent to the statement that φ̃ is an
equivalence, which we now show by constructing an explicit weak inverse.
Construction of inverse. We construct a weak inverse ψ : Π1(Modκ(T )) →
BGalL(T,U) to φ̃. By the universal property of Π1, we take ψ to be the unique
functor extending a functor Ψ : Modκ(T ) → BGalL(T,U) defined as follows. Use
the κ-universality of U to fix embeddings iM : M → U for each κ-small model
M , noting that the morphism iM∗

was fixed earlier in the proof. For convenience
we take iM to be a sub-model inclusion M ⊆ U whenever M is a sub-model of
U, but the embeddings iM are otherwise arbitrary. For f : M → N ∈ Modκ(T )
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and α ∈ Aut(U), we say that α is a compatible lift of f if αiM = iNf . By strong
κ-homogeneity of U, for every morphism of f :M → N ∈ Modκ(T ) we may choose
a compatible lift αf . We define Ψ(f) := [αf ]. Note that if α, β are two compatible
lifts of f : M → N , then β−1α fixes the model iM(M), and therefore [β] = [α] by
definition of GalL(T ). Thus we have Ψ(f) = [α] for any compatible lift of f , and
when computing Ψ(f) we have the freedom to use whichever compatible lift is most
convenient. For example, we show that Ψ is a functor as follows. If f = idM is
an identity, then idU is a compatible lift, so Ψ(idM) = [idU] is the identity. And if

M
f
→ N

g
→ P is a composable pair and α, β are compatible lifts of f, g respectively,

then βα is a compatible lift of gf , so that Ψ(gf) = [βα] = [β][α] = Ψ(g)Ψ(f).

Verification of inverse. It remains to check that ψ is a weak inverse to φ̃.
First we check that φ̃ψ is naturally isomorphic to the identity on Π1(Modκ(T )).

As noted in Recollection 1.15, it suffices to show that φ̃Ψ ∼= J−K, where J−K :
Modκ(T ) → Π1(Modκ(T )) is the canonical functor f 7→ JfK. For this, define

ι : J−K ⇒ φ̃Ψ by the formula ιM = G(JiM∗
K−1JiM K). Note here that JiM∗

K−1 is
well-defined because Π1(Mod(T )) is a groupoid, and for the same reason ιM is an
isomorphism. It is easy to check that ι is a natural isomorphism.
Now we check that ψφ̃ is equal to the identity on BGalL(T ), i.e. that for each

α ∈ Aut(U) we have ψ(φ̃([α])) = [α]. We have φ̃([α]) = JiM∗
K−1JαiM∗

K, where the
composition takes place in Π1(Mod(T )). By Downward Löwenheim-Skolem, there is

a κ-small sub-model N
iN→ U containing both M∗ and αM∗. Let j :M∗ → N denote

the inclusion and k = αj :M∗ → N . Then we have

φ̃([α]) = JiM∗
K−1JαiM∗

K

= JiNjK
−1JiNkK

= JjK−1JiNK−1JiNKJkK

= JjK−1JkK

Now the composition takes place in Π1(Modκ(T )), so we have

ψ(φ̃([α])) = ψ(JjK)−1ψ(JkK)

by functoriality of ψ, which is equivalently Ψ(j)−1Ψ(k). To compute this, we may
choose idU as a compatible lift for j and α as compatible lift for k to see that
ψ(φ̃([α])) = [idU]

−1[α] = [α]. �

From Theorem 3.4, we recover some known facts about the Lascar group:

Corollary 3.5 ([CP05, Theorem 4.3]). GalL(T,U) is independent, up to isomor-
phism, of the choice of a |T |+-universal and strongly |T |+-homogeneous model U.

Proof. By Theorem 3.4, GalL(T,U) ∼= π1(Mod(T ),U) by taking κ = |T |+. More-
over, T is complete, so Mod(T ) is a connected category (Proposition 3.1(3)), hence
Π1(Mod(T )) is a connected groupoid (as noted in Recollection 1.15). As remarked
in Recollection 1.14, this implies that the groups π1(Mod(T ),U) are all isomorphic
for different U. �
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Remark 3.6. Note that in our theorem, the homogeneity condition on U is that
it needs to be |T |+-homogeneous with respect to sub-models, but as pointed out in
Remark 2.3 by the referee, the two notions coincide when U is |T |+-universal. Thus
our hypotheses are equivalent to the hypotheses found in [CP05, Theorem 4.3].

Remark 3.7. Here is a slight variation of the proof of Corollary 3.5. Again by The-
orem 3.4 we have GalL(T,U) ∼= π1(Mod(T ),U). In turn we have π1(Mod(T ),U) ∼=
π1(|Mod(T )|,U). Because Mod(T ) is connected, |Mod(T )| is path-connected. There-
fore π1(|Mod(T )|,U) is independent of U up to isomorphism, and the result follows.
Thus we deduce the independence of GalL(T,U) from U directly from the fact

that for a path-connected space X , the fundamental group π1(X, x) is independent
of the base-point x up to isomorphism. Of course, this standard topological fact is
essentially equivalent to the fact from Recollection 1.14 used above, namely that if
Γ is a connected groupoid, then π1(Γ, x) is independent of x up to isomorphism.

Corollary 3.8 ([Las82, Theorem 43]). GalL(T ) has cardinality less than or equal
to 2|T |.

Proof. By Theorem 3.4 and Proposition 3.1, we have BGalL(T ) ≃ Π1(Modκ(T )) ≃
skΠ1(Modκ(T )) ≃ Π1(skModκ(T ). Therefore it suffices to bound the size of a skele-
ton of the category Modκ(T ). Taking κ to be |T |+, it is clear that a skeleton of
Modκ(T ) is has at most 2|T | many objects, namely the non-isomorphic models of
cardinality at most |T |. And the Hom sets are bounded by 2|T | as well. Thus we
have #(skΠ1(Modκ(T ))) ≤ max(ℵ0,#(Modκ(T ))). Hence the corollary follows. �

Remark 3.9. Let T be an incomplete first-order theory. The results of this sec-
tion may be applied as follows. The category Mod(T ) is the disjoint union of the
categories Mod(T ′) for each completion T ′ of T . Then likewise Π1(Mod(T )) =
∐T ′Π1(Mod(T ′)). We have that Π1(Mod(T )) ≃ ∐T ′GalL(T

′).

Remark 3.10. Theorem 3.4 suggests that we may define the Lascar groupoid of
an arbitrary category C to simply be its fundamental groupoid Π1(C). Note that
by Theorem 3.4, the Lascar group agrees with π1(C,M) for any M ∈ C when C =
Mod(T ). The same proof also yields a description of Π1(C) similar to the usual
description of the Lascar group as in Definition 0.1 when C is an Abstract Elementary
Class with joint embedding, amalgamation, and no maximal models [She09].

4. Examples

In this section, we illustrate the shift in perspective afforded by Theorem 3.4 by
computing GalL(T ) for some familiar theories T . In fact, we do a bit more: we show
that in all of these examples, |Mod(T )| is aspherical and thus, as discussed in Remark
1.31, the entire homotopy type of |Mod(T )| is characterized by its fundamental group
π1(|Mod(T )|) ∼= GalL(T ).

Example 4.1 (Sets). Let T be a complete theory in the empty language. Then T is
the theory of a set with n-many elements, for some n ∈ N∪{∞}. In the finite case,
Mod(T ) is a groupoid equivalent to BΣn where Σn is the the nth symmetric group;
see Example 1.29, its classifying space is BΣn and in particular GalL(T ) ∼= Σn. In
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the infinite case, Mod(T ) has functorial joint embedding given by disjoint union (see
Definition 1.40), so Mod(T ) is contractible by Proposition 1.38(3). Thus, in general
Mod(T ) ≃ BΣn and GalL(T ) ∼= Σn, where we adopt the convention that Σn is trivial
when n =∞.
More precisely, there is a functor F : Mod(T )→ BΣn such that |F | is a homotopy

equivalence, defined as follows. If n =∞ there is a unique such functor as we have
the convention that Σ∞ is trivial. If n <∞ we arbitarily label each model of T with
the elements {1, . . . , n}. Each elementary embedding φ permutes the labels, thus
yielding a well-defined element F (f) ∈ Σn, and this assignment is functorial.

Example 4.2 (κ-sorted Sets). Let T be a complete theory in the empty language
over κ-many sorts. Then for each sort α, there is some nα ∈ N ∪ {∞} such that T
says there are nα-many elements of sort α. The category Mod(T ) is just a product
of the categories of models of each sort individually. Taking classifying spaces pre-
serves finite products up to weak homotopy equivalence (Fact 1.45), but not infinite
products in general. But we have Mod(T ) ≃ (

∏

nα<∞
BΣnα

) × (
∏

nα=∞
Mod(T ′))

where T ′ is the theory of an infinite set, and so |Mod(T )| ≃ |
∏

nα<∞
BΣnα

| ×
|
∏

nα=∞
Mod(T ′)|. On the one hand, taking classifying spaces does preserve infinite

products of groupoids up to weak homotopy equivalence (Fact 1.46), so the first
factor is weak homotopy equivalent to

∏

nα<∞
BΣnα

. On the other hand, a product
of categories with functorial joint embedding (cf. Example 4.1) again has functorial
joint embedding, so the second factor is contractible. Thus |Mod(T )| ≃

∏

αBΣnα
;

in particular GalL(T ) ∼=
∏

αΣnα
(recall our convention from Example 4.1 that Σk is

trivial when k =∞).
More precisely, there is a functor F : Mod(T ) →

∏

α BΣnα
such that |F | is a

homotopy equivalence, defined by arbitrarily labeling each finite sort α with the set
{1, . . . nα}, for each M ∈ Mod(T ), and taking the induced maps on labelings.

For the next example, we first recall the classification of complete theories T of
an equivalence relation. For each n ∈ N, there is m(n) ∈ N ∪ {∞} such that T
says there are m(n) many equivalence classes of size n. There are two cases: in case
(a), there are m(n) 6= 0 for arbitrarily large n, while in case (b), we have m(n) = 0
for n sufficiently large. Either way, T admits quantifier elimination once we add
predicates pn(x) saying that the equivalence class of x is of size ≥ n. In case (a)
the number of infinite equivalence classes is arbitrary, while in case (b), T says that
there are m(∞) many infinite equivalence classes for some m(∞) ∈ N ∪ {∞}. An
elementary embedding between models of T is simply an injection preserving the
equivalence relation and the size of each finite equivalence class.

Example 4.3 (An equivalence relation). Let T be the complete theory of an equiv-
alence relation, and define m : N∪ {∞} → N∪ {∞} as above. In case (a) as above,
the inclusion C → Mod(T ), of the full subcategory C of models with no infinite
equivalence classes, has a right adjoint given by deleting all the infinite equivalence
classes. Thus |Mod(T )| ≃ |Mod(C)| by Fact 1.25(3). Therefore in case (a) we will
simply replace Mod(T ) with C and set m(∞) = 0. We will abusively refer to C as
Mod(T ), so from now on there is no need to distinguish between case (a) and case
(b).
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For each M ∈ Mod(T ) and each n ∈ N ∪ {∞} with m(n) < ∞, arbitrarily label
the equivalence classes of size n with the numbers {1, . . . , m(n)}, and if m(n) <∞
and n < ∞ both hold, label also the elements of each equivalence class of size n
with the numbers {1, . . . , n}. Any elementary embedding induces a bijection of
labels, so we obtain a functor F : Mod(T ) →

∏

m(n)<∞ B(Σn ≀ Σm(n)) (recall our

convention from Example 4.1 that when n = ∞, Σn is trivial). Here Σn ≀ Σm(n) is

the wreath product Σ
×m(n)
n ⋊ Σm(n), and the product is over all n ∈ N ∪ {∞} such

that m(n) < ∞. We claim that this functor induces an equivalence of classifying
spaces. To see this, consider the following diagram:

Mod(T ′)×Mod(T ′′) Mod(T )
∏

m(n)<∞ BΣm(n)

∏

m(n)<∞ BΣ
×m(n)
n

∏

m(n)<∞ B(Σn ≀ Σm(n))
∏

m(n)<∞ BΣm(n)

∼

πF

F

π

The bottom row arises from applying the functor B to a short exact sequence of
groups, so it gives rise to a homotopy fiber sequence of classifying spaces by Fact
1.37. The functor F is the one described above, and so the functor πF is the functor
which forgets all but the labelings of the equivalence classes. Its fiber is canonically
isomorphic to Mod(T ′) ×Mod(T ′′). Here T ′ is the theory with a sort Sn,i for each
n ∈ N∪{∞} such that m(n) <∞, and each 1 ≤ i ≤ m(n), which says that Sn,i has
n-many elements. T ′′ is the theory with a sort Sn for each n ∈ N ∪ {∞} such that
m(n) =∞ and an equivalence relation on Sn with infinitely many classes, all with n
elements. The leftmost downward functor is given by first projecting onto Mod(T ′)
and then applying the homotopy-equivalence-inducing functor of Example 4.2. The
category Mod(T ′′) has functorial joint embedding given by disjoint union (cf. Defi-
nition 1.40), and so its classifying space is contractible by Proposition 1.38(3). Thus
the leftmost downward arrow is the composite of two homotopy-equivalence-inducing
functors and so also induces a homotopy equivalence. Since the leftmost and right-
most downward arrows induce homotopy equivalences of classifying spaces, by Fact
1.36 in order to show that F also induces a homotopy equivalence it will suffice to
show that the the rows induce homotopy fiber sequences of classifying spaces. We
have already noted this for the bottom row, so it remains to show that the top row
induces a homotopy fiber sequence of classifying spaces.
To this end, we invoke Quillen’s Theorem B (Theorem 1.33) in the guise of Fact

1.34. The functor πF is a Grothendieck opfibration. For if σ ∈
∏

m(n)<∞ Σm(n) and

M ∈ Mod(T ), then there is an automorphism φ of M which permutes the labels in
the manner described by σ (recall from Recollection 1.7 that a lift of an isomorphism
is (co)cartesian iff it is an isomorphism). By Fact 1.34, Mod(T ′) × Mod(T ′′) →
Mod(T )→

∏

m(n)<∞ BΣm(n) induces a homotopy fiber sequence of classifying spaces.
Thus F induces a homotopy equivalence of classifying spaces.
Finally, the classifying space functor commutes with arbitrary products of groupoids

up to weak homotopy equivalence (Fact 1.46). Thus we have |Mod(T )| ≃
∏

m(n)<∞B(Σn≀

Σm(n)). In particular, GalL(T ) ∼=
∏

m(n)<∞ Σn ≀ Σm(n) (recall our convention from

Example 4.1 that Σk is trivial when k =∞).
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Example 4.4 (Dense Linear Orders). Let T be the theory of infinite dense linear
orders without endpoints. Then Mod(T ) has functorial joint embedding (see Defini-
tion 1.40). For, given models M and N we can form a new model placing M above
N . This construction is functorial, and admits natural embeddings of M and N .
Hence by Proposition 1.38(3) |Mod(T )| is contractible and in particular GalL(T ) is
trivial.

Example 4.5 (Torsion-free Divisible Abelian Groups). Let T be the theory of
torsion-free divisible abelian groups. Then Mod(T ) has functorial joint embedding
(see Definition 1.40) using the direct sum functor. Hence by Proposition 1.38(3),
|Mod(T )| is contractible and in particular GalL(T ) is trivial.

Example 4.6 (Divisible Ordered Abelian Groups). Let T be the theory of divisible
ordered abelian groups. Then Mod(T ) has functorial joint embedding given by tak-
ing the direct sum under the lexicographic ordering. Hence by Proposition 1.38(3),
|Mod(T )| is contractible and in particular GalL(T ) is trivial.

Example 4.7 (o-minimal expansions of real closed fields). Let T be the theory of
some o-minimal expansion of real-closed fields. Recall that T has ∅-definable Skolem
functions [Dri98]. So the definable closure of the empty set is a model, which is there
fore an initial object in Mod(T ) (cf. 1.39). Hence by Proposition 1.38(1), |Mod(T )|
is contractible and GalL(T ) is trivial.

Example 4.8 (Algebraically Closed Fields). Let T be the theory of algebraically-
closed fields of characteristic p (where p is prime or 0). Let k be the prime field, k̄
its algebraic closure, and G = Gal(k̄/k). Arbitrarily choose an embedding k̄ → M
for eachM ∈ Mod(T ). Each field embedding induces an isomorphism of copies of k̄,
and this induces a functor F : Mod(T )→ BG, which is a Grothendieck opfibration
(recall from Recollection 1.7 that a lift of an isomorphism is (co)cartesian iff it
is an isomorphism). The fiber is equivalent to the the category of algebraically-
closed k̄-algebras, which has an initial object given by the identity k̄ → k̄, and so
has contractible classifying space by Proposition 1.38(1). By Quillen’s Theorem A
(Theorem 1.32), F is a homotopy equivalence. Hence |Mod(T )| ≃ |BG| ∼= BGδ

(where Gδ = G, considered as a discrete group). In particular, GalL(T ) ∼= G.

Example 4.9 (Random Graphs). Let T be the theory of a random graph. Recall
that T may be axiomatized in the graph language by saying that for every two finite
sets S1, S2 of vertices, there is a point v which is connected by an edge to all the
points of S1 and none of the points of S2. In this language, T admits quantifier
elimination and so is model-complete. We will show that |Mod(T )| is contractible;
in particular, GalL(T ) is trivial.
First note that the category G of (loop-free, undirected, simple) graphs and embed-

dings between them has a contractible classifying space; for instance the empty graph
is an initial object. (In general, for any signature Σ, the category of Σ-structures
and embeddings splits as the disjoint union of several components, each of which has
an initial object, so the classifying space is discrete up to homotopy.) We will now
construct functors and natural transformations between G and Mod(T ) satisfying
the hypotheses of Fact 1.25(4), showing that |Mod(T )| ≃ |G| is contractible.
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There is a functor F : G → Mod(T ) which sends a graph Γ to the graph FΓ =
∪∞n=0Γn built up as follows. We take Γ0 = Γ. Given Γn, Γn+1 consists of Γn along
with, for each finite set S of vertices in Γn, a specified vertex v(S), which has edges
connecting it to each element of S, but no other edges in Γn+1. It is clear that FΓ
is a model of T , i.e. a random graph. A graph embedding f : Γ → Γ′ is extended
to an embedding Ff : FΓ → FΓ′ by inductively defining Ff(v(S)) = v(f(S)). By
model completeness, Ff is elementary, and F is clearly functorial. There is also a
forgetful functor U : Mod(T ) → G. Now, F and U are not adjoint, but there are
natural transformations idG ⇒ UF , given by embedding Γ into FΓ in the natural
way, and idMod(T ) ⇒ FU ,also given by embedding Γ into FΓ in the natural way;
this embedding is elementary by model completeness.

Remark 4.10. The method of proof in Example 4.9 is very suggestive. As the
referee observed, it seems likely that something similar can be done for more general
Fräı ssé classes. We do not pursue this possibility in this paper, although we re-use
the same method in the next example.

Example 4.11 (Triangle-free Random Graphs). Let T be the theory of triangle-free
random graph as in [Hen71]. Recall that T may be axiomatized by saying that the
graph is triangle free and moreover for every finite sets S1, S2 of vertices where the
induced subgraph on S1 is discrete, there is a vertex connected by an edge to each
point of S1 which is not connected to any point of S2. As in the example of random
graphs, T admits quantifier elimination and so is model complete.
Let G be the category of triangle-free graphs and strong embeddings between

them as morphisms. This category G has an initial object hence the classifying
space is contractible. We proceed as the previous example, 4.9, to construct a
functor F : G → Mod(T ). Let Γ be an arbitrary triangle-free graph. Take Γ0 = Γ.
Assume Γn has been constructed, Γn+1 consists of Γn along with, for each finite set
S ⊆ Γn such that the induced subgraph on S is discrete, a specified vertex v(S) with
the property that for any vertex w, there is an edge between w and v(S) iff w ∈ S.
It is routine to check that the final construction yields a triangle-free random graph.
One can similarly define extensions of embeddings as in 4.9. Let U be the forgetful
functor from Mod(T ) to G. The same argument as in 4.9 shows that U, F induce
homotopy equivalences, hence |Mod(T )| is contractible.

Remark 4.12. In Example 4.11, Mod(T ) fails to have 3-amalgamation. As men-
tioned in the Introduction, this illustrates that the failure of higher amalgamation
does not imply that |Mod(T )| has interesting higher homotopy groups.

Example 4.13 (Algebraically Closed Valued Fields). Let T be ACVFq,p, where q, p
stands for the characteristic of the valued field and residue field respectively. There
is a forgetful functor U : Mod(T ) → Mod(T1) × Mod(T2) where T1 is the theory
of algebraically closed fields of characteristic p and T2 is the theory of divisible
ordered abelian groups, given by taking the residue field and the valuation group,
respectively. Note that ACVF has quantifier elimination, hence there is a functor
in the other direction F : Mod(T1)×Mod(T2)→ Mod(T ) which takes Hahn series,
when T is the equicharacteristic case and in the mixed characteristic case, take
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the p-adic Mal’cev series as in [Poo93]. Again, these functors are not adjoint, but
UF is the identity, and by [Kap42, Theorems 5 and 6] and [Poo93, Theorem 2],
there is a embedding M → FU(M) for M ∈ Mod(T ), which corresponds to taking
the maximal immediate completion. Moreover, the embedding is natural as the
algebraically closed valued fields satisfies Kaplansky’s “hypothesis A” [Kap42], hence
the maximal immediate completion is natural. So by Fact 1.25(4), |Mod(T )| ≃
|Mod(T1)| × |Mod(T2)|, so that GalL(T ) ∼= GalL(T1) × GalL(T2). We have seen in
Example 4.6 that |Mod(T2)| is trivial and in Example 4.8 that |Mod(T1)| ≃ BGδ,
where G is the Galois group of the prime model. So |Mod(T )| ≃ BGδ and GalL(T ) ∼=
G.

Example 4.14 (G-torsors). Let G be a compact Lie group and let T0 be an ex-
pansion of the theory of real-closed fields by finitely many real-analytic functions on
bounded rectangles such that G can be defined over T0, note that T0 is o-minimal
and has definable Skolem functions, hence admits an initial model. Let T denote
the theory of a structure (R,X) where R is a model of T0 and X is a set equipped
with a G(R)-action such that X is a G(R)-torsor. Ziegler [Zie02] showed that
GalL(T ) = G(R). We will recover this result (at the level of discrete groups, of
course). However, in this case, we do not identify the higher homotopy groups of
Mod(T ).
For (R,X) ∈ Mod(T ). We define and equivalence relation ∼ on G(R) by x ∼ y if

x, y differs by an element in the infinitesimal subgroup of G. Then by the fact that
G is definably compact, (G(R)/ ∼)∧ ∼= G(R), where (−)∧ denotes the completion.
Similarly, let X(R) = (X/ ∼)∧ where x ∼ y if there is an infinitesimal g ∈ G(R)
such that gx = y, and (−)∧ denotes taking the completion. This construction yields
a functor F : Mod(T ) → G(R)-Tor, where G(R)-Tor is the groupoid of torsors
over G(R); note that there is an equivalence of groupoids G(R)-Tor ≃ BG(R)δ. The
functor F has a section sending X 7→ (R, X). Thus the induced map F∗ : GalL(T ) =
π1(|Mod(T )|)→ π1(G(R)-Tor) = G(R) is surjective.
Now we show that F∗ : π1(|Mod(T )|, (R,X(R))) → G(R) is injective, where we

have chosen the base-point (R,X(R)) such that R is the initial model of T0. Consider
an arbitrary group element γ ∈ π1(|Mod(T )|, (R,X(R)). Then by Theorem 3.4,
we have GalL(T,U) ∼= π1(Mod(T ),U) ∼= π1(Mod(T ), (R,X)), we may represent
γ = [j]−1[i] where i : (R,X(R))→ U is a standard embedding into a monster model
U, and j : (R,X(R)) → U differs by an automorphism. Let x, y be the images
of a named base-point of the torsor parts of i(R,X(R)), j(R,X(R)) respectively.
Assume that γ ∈ kerF∗. Then x and y differ by an infinitesimal element of G(U).
It is easy to see that for two elements in the torsor sort, their type is determined
by the type of the group element they differ by. Thus we may find z in the torsor
part of U such that tp(x, z) = tp(y, z), and so there is an automorphism α of U
taking y to x and fixing z. To find such z, it suffices to show the following: given
ǫ ∈ G an infinitesimal, we can find g ∈ G such that tp(gǫ) = tp(g). Take g to be
a realization of a f -generic type on G, note that ǫ ∈ G00, hence by [Sim15, Lemma
8.18], we have tp(gǫ) = tp(g) and we can simply take ǫy = x and gx = z. Let
k : (R,X(R)) → U be an embedding with z in its image. Then γ = [j]−1[i] =
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[αi]−1[i] = [i]−1[α]−1[k][k]−1[i] = [i]−1[α−1k][k]−1[i] = [i]−1[k][k]−1[i] = 1. So F∗ is
injective as well as surjective, and so an isomorphism, and GalL(T ) ∼= G(R).

5. Higher Homotopy groups

We do not know in general the answer to the following

Question 5.1. Which homotopy types can be realized as |Mod(T )| for some complete
theory T?

If the class of such homotopy types is relatively “diverse” (in particular, if it
includes some non-aspherical spaces), it would introduce new invariants to model
theory, such as the higher homotopy groups, homology and cohomology groups of
|Mod(T )|, and it would be worth investigating their model theoretic meaning.
We temper our enthusiasm for this possibility with the reality that we don’t even

know an example of a theory T for which |Mod(T )| is not aspherical. In Subsection
5.2 we consider more restrictive categorical properties that we obtain in Mod(T )
for certain theories T which imply that |Mod(T )| is aspherical. In Subsection 5.1,
we formulate Question 5.4, an easier, purely categorical analog of Question 5.1, and
find some partial answers (Observation 5.6, Observation 5.7, Theorem 5.5).

5.1. Realizing arbitrary homotopy types. In our work thus far we have used
the following properties of the category Mod(T ):

Remark 5.2. The following are several properties that a category C may satisfy
(and which are satisfied in the case C = Mod(T )):

(1) C has the joint embedding property (JEP) (cf. Definition 1.11).
(2) C has the amalgamation property (AP) (cf. Definition 1.11).
(3) C has no maximal models. That is, for every object X ∈ C, there is an object

Y in C and a morphism X → Y which is not an isomorphism.
(4) Every morphism is a monomorphism (cf. Recollection 1.6).
(5) C is an accessible category (cf. Definition 1.16).
(6) C has filtered colimits.
(7) C is equivalent to an Abstract Elementary Class (AEC) in the sense of

[She09].
(8) C has a κ-universal and κ-homogeneous object for some κ (in the sense of

Definition 2.1 and Remark 2.2 ).

Note that JEP (1) implies that C is connected. As a sort of converse, if AP (2)
holds, then each connected component of C satisfies JEP (1). It may seem that
(8) is the most powerful condition, but any category satisfying (1),(2),(5), and (6)
actually satisfies (8) as well, at least under mild set-theoretical hypotheses [LR16,
Statement 2.2]. Note that (7) is equivalent to the conjunction of (4),(5),(6) and the
existence of a faithful, nearly full, full-on-isomorphisms, monomorphism-preserving
and filtered-colimit-preserving functor C → D for some finitely accessible category
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D [BR12, Corollary 5.7].8 We have not defined what a nearly full functor is, but the
following will suffice for our purposes.

Fact 5.3. Every finitely accessible category of monomorphisms C is equivalent to an
AEC.

Proof. By [BR12, Corollary 5.7], it suffices to define a full with respect to isomor-
phisms and nearly full embedding from C to some finitely accessible category D
which preserves filtered colimits and monomorphisms. The identity functor idC is
such an embedding. �

Our categorical analog of Question 5.1 thus takes the following form:

Question 5.4. Let X be a CW complex. For which subsets of the properties (1-8)
of Definition 5.2 can we find categories C with |C| ≃ X?

We obtain a partial solution:

Theorem 5.5. Let κ be a small regular cardinal. Then every CW complex X is
homotopy equivalent to the classifying space of a finitely accessible category E of
monomorphisms with amalgamation for κ-presentable objects. In particular, E is an
AEC with amalgamation for κ-presentable objects.

The category E is different from Mod(T ) in general since Mod(T ) is rarely finitely
accessible when T has an infinite model. However, Mod(ACF) is indeed finitely
accessible.
We provide below a construction (Construction 5.8) validating Theorem 5.5. Thus

we attain, for an arbitrary homotopy type, property (7), and a fortiori properties
(4), (5), (6), and (at least under set-theoretical hypotheses) (8) of Remark (5.2), but
only a weakened form of properties (1) and (2). We do not know whether property
(3) will always hold in Construction 5.8. It should be noted that in the present
construction, we will have E = Ind(D) for a category D with #D ≥ κ.
In a separate paper [CY21], the first and third author have provided an alternate

construction yielding a category E which is canonically isomorphic to an AEC with
amalgamation for all objects and no maximal models, thus attaining all 8 properties
of Remark 5.2 for an arbitrary homotopy type (with the caveat, of course, that (1)
is attained only for connected homotopy types).
Before embarking on the proof of Theorem 5.5, we make some easier observations.

Observation 5.6. Every homotopy type is realized as |C| where C is an AEC with
no maximal models. In particular, C satisfies (3),(4),(5),(6),(7) above. For by sub-
division, every homotopy type X is the classifying space of a (small) poset P (Fact
1.41). Then Ind(P ) is again a small poset and so Ind(P ) × Set

≥ω
inj is again a cate-

gory of monomorphisms (by Lemma 1.20) and no maximal models, where Set
≥ω
inj is

8The relationship to the definition of [She09] is that the objects of C are the models of the AEC
and the morphisms of C are composites of isomorphisms and inclusions of “abstract elementary
substructures”; the category D is essentially the category of structures for the language and all
embeddings, and the functor C → D is the forgetful functor.
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the category of small infinite sets and injections. Ind(P )× Set
≥ω
inj is finitely accessi-

ble since a finite product of accessible categories is again finitely accessible [SK06,
Proposition 6.1.12]. Hence (3),(4),(5),(6),(7) in Remark 5.2 are satisfied. We have
| Ind(P )× Set≥ωinj | ≃ | Ind(P )| × |Set

≥ω
inj | ≃ |P | × |∆

0| ≃ X .

Observation 5.7. It is not difficult to formally adjoin amalgamation to a category
C: for each amalgamation problem B ← A → C, adjoin an object B ∗A C with
Hom(X,B ∗A C) = Hom(X,B) ∪Hom(X,A) Hom(X,C) for X ∈ C and no other non-
identity morphisms besides those in C. Apply this construction iteratively. This
construction does not change the homotopy type if C is a category of monomor-
phisms – the argument is similar to the one found in the proof of Theorem 5.5
below. Thus any homotopy type X is realized by a category C satisfying (2),(3), (4)
of Remark 5.2, and if X is connected, then C also satisfies (1).
Unfortunately, the Ind construction does not preserve the amalgamation property

[Kru18], and so although Ind(C) is an AEC, it may fail to have amalgamation.

We now introduce a construction which will validate Theorem 5.5.

Construction 5.8. Let C be a small category and κ be a small regular cardinal.
Let K be the poset 2× (κ+1). By induction on (i, α) ∈ K, we construct a diagram
of small categories (Ck)k∈K indexed by K; we will write Dα = C(0,α) and Cα = C(1,α).
The construction is as follows:
Initial Step: D0 = C
First Successor Step: In this step of the construction, we use the facts stated in
Recollection 1.18 about Ind constructions. Given Dα, we define Cα = Indκ(Dα), and
Dα → Cα the canonical inclusion yDα. For β ≤ α, the functor Cβ → Cα is induced
functorially from Dβ → Dα.
Second Successor Step: Given Cα, we define Dα+1 as follows.
AnObject ofDα+1 is either an object ofDα, or else consists of a span B ← A→ C

in Cα. In the latter case, the object will be denoted B ∗A C.
Morphisms of Dα+1 are as follows:

Dα+1(X, Y ) =



















Dα(X, Y ) X, Y ∈ Dα

{idX} X = Y = B ∗A C

∅ X = B ∗A C,X 6= Y

Cα(X,B) ∪Cα(X,A) C
α(X,C) X ∈ Dα, Y = B ∗A C

Composition in Dα+1 is defined in the obvious way.
Limit Step: If α is a limit ordinal, we define Dα = ∪β<αD

β (recall that Cα =
Indκ(Dα) even when α is a limit).
This completes Construction 5.8.

Notation 5.9. We fix some notation for referring to objects and morphisms of the
categories (Ck)k∈K.

(1) Let α < κ, note that if X, Y ∈ Cα, then X = lim
−→p

Xp and Y = lim
−→q

Yq for

some filtered diagrams (Xp)p∈P , (Yq)q∈Q in Dα. Recall from Recollection 1.18
that we have Hom(X, Y ) = lim←−p∈P

(lim−→q∈Q
Hom(Xp, Yq)), so that a morphism
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f : X → Y consists of a P -tuple of equivalence classes of diagrams (fp)p∈P ,
where fp : Xp → Yq, for some q (dependent on p).

(2) Let α < κ. If X ∈ Dα and Y ∈ Dα+1 \ Dα, then Y = B ∗A C for some

B
f
← A

g
−→ C ∈ Cα. If h ∈ Dα+1(X, Y ) = Cα(X,B) ∪Cα(X,A) C

α(X,C), then
we may write h = (B, h′) for some h′ ∈ Cα(X,B), or h = (C, h′) for some
h′ ∈ Cα(X,C), or h = (A, h′) for some h′ ∈ Cα(X,A). These expressions are
unique up to the equivalence relation generated by the fact that if k : Z → A
is a morphism in Cα, then (A, k) = (B, fk) = (C, gk) : Z → B ∗A C.

(3) We denote the various structure functors between the Ck as Γ : Cβ → Cα,
∆ : Dβ → Dα, and y : Dα → Cα.

Lemma 5.10. Let κ be a small regular cardinal and C a small category of monomor-
phisms. Consider the categories (Ck)k∈K of Construction 5.8.

(1) Cβ has κ-small filtered colimits, preserved by the functor Γ : Cβ → Cα for
β ≤ α.

(2) If X ∈ Dα, then Cα(X,−) commutes with colimits of κ-small directed systems
in Cα.

(3) Every object X ∈ Cα is a colimit of a κ-small directed system of objects of
Dα.

(4) Every morphism of C(i,α) is monic.
(5) The inclusion Ck → Cl induces a homotopy equivalence |Ck| → |Cl| for all

k ≤ l ∈ K.
(6) Any span in Cα has an amalgam in Cα+1.

In particular, Cκ is a category of monomorphisms with amalgamation and colimits
of κ-small directed systems and C → Cκ is a homotopy equivalence. Moreover every
object of Cκ is a colimit of a κ-small directed system of objects of Dκ, and for every
X ∈ Dκ, Cκ(X,−) commutes with colimits of κ-small directed systems.

Proof. (1), (2), and (3) follow from the remarks in Recollection 1.19.
We show (4) by induction on (i, α). First, C is a category of monomorphisms

by hypothesis. Next, if Dα is a category of monomorphisms, then so is Cα by
Lemma 1.20. The case of Dα where α is a limit ordinal is trivial. It remains to
show that if Cα is a category of monomorphisms, then so is Dα+1. This necessitates

an analysis of morphisms into B ∗A C, the amalgam of a span B
f
← A

g
−→ C in

Cα. By induction f, g are monic in Cα. It follows that for D ∈ Dα ⊆ Dα+1, the
only identifications between morphisms in Dα+1(D,B ∗A C) are the identifications
(B, fh) = (A, h) = (C, gh) for h : D → A in Cα i.e. these identifications already
form an equivalence relation rather than merely generating an equivalence relation
(see 1.10). Therefore if (B, k) = (B, l) for k, l : D → B in Cα, then either we
may immediately conclude that k = l, or else we have k = fk′ and l = fl′ for
k′, l′ : D → A in Cα, and we have (A, k′) = (A, l′), from which we may conclude that
k′ = l′. Either way, (B, l) = (B, k) implies that l = k. Now we are ready to show
that Dα+1 is a category of monomorphisms. The only nontrivial case to check is a
morphism D → B∗AC forD ∈ Dα; without loss of generality this morphism is of the
form (B, h) for some h : D → B in Cα. To see that this morphism is monic, consider
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two morphisms n,m : E ⇒ D in Dα+1; necessarily we have E ∈ Dα. Suppose that
(B, hn) = (B, hm). Then we have seen that we may conclude that hn = hm in Cα.
By induction, h is a monomorphism in Cα, and so we have n = m in Cα. Because
the inclusion y : Dα → Cα is faithful, this is to say that n = m when viewed as
morphisms in Dα. So by definition, n = m when viewed as morphisms in Dα+1, and
so (B, h) is a monomorphism as desired.
For (5), we proceed by induction on l. First suppose that l = (1, α), so Cl = Cα.

Consider first the inclusion Dα → Cα. As in Remark 3.2, Dα ↓ X is filtered for each
X ∈ Cα and in particular contractible, so by Quillen’s Theorem A (Theorem 1.32),
the inclusion induces a homotopy equivalence. For β < α, the functor Dβ → Dα

induces a homotopy equivalence by induction, and thus by composition the functor
Dβ → Cα, which factors as Dβ → Dα → Cα, also induces a homotopy equivalence.
Finally, for β < α the functor Cβ → Cα becomes the homotopy equivalence Dβ → Cα

after precomposition with the homotopy equivalence Dβ → Cβ, and so is also a ho-
motopy equivalence since homotopy equivalences are isomorphisms in the homotopy
category ( Definition 1.24).
Next suppose that l = (0, α) for α a limit ordinal, so that Cl = Dα. Then for any

β < α, the inclusion Dβ → Dα is a filtered colimit of homotopy equivalences, and
hence induces a homotopy equivalence (Fact 1.43). Finally, suppose that l = (0, α+
1) so that Cl = Dα+1; it will suffice to show that the inclusion Dα → Dα+1 induces a
homotopy equivalence. By Quillen’s Theorem A( Theorem 1.32) it suffices to show
that for each X ∈ Dα+1, the slice category Dα ↓ X is contractible. If X ∈ Dα, (or
more generally if X ∈ Cα) then we have just seen that Dα ↓ X is contractible. If
X = B ∗A C for A,B,C ∈ Cα, then by the considerations given in the proof of (4)
above, we have (Dα ↓ X)n = (Dα ↓ B)n∪(Dα↓A)n (D

α ↓ C)n for each n ∈ N, where An

denotes the set n-chains of composable morphisms of a category A as in Definition
1.22. Moreover, the pushout is along injective maps by (4). Thus we have a pushout
of simplicial sets along injections: N(Dα ↓ X) = N(Dα ↓ B) ∪N(Dα↓A) N(Dα ↓ C)
(hereN denotes the nerve functor – cf. Remark 1.23). Because geometric realization
preserves pushouts (Fact 1.44) and takes injections to injective cellular maps, we
obtain a pushout of spaces along cellular maps: |Dα ↓ X| = |Dα ↓ B| ∪|Dα↓A| |D

α ↓
C|. We have seen that the spaces |Dα ↓ A|, |Dα ↓ B|, |Dα ↓ C| are contractible, so
by Fact 1.42, it follows that |Dα ↓ X| is also contractible.

(6): Note that Γy = y∆. Let B
f
← A

g
→ C be a span in Cα; we would like to

show that Γ(B
f
← A

g
→ C) has an amalgam in Cα+1. We claim that y(B ∗A C)

is such an amalgam. This is not immediately obvious, since there is no functor

Cα → Dα+1, so we check it carefully. First, we define morphisms Γ(y(B))
j
−→ y(B ∗A

C), Γ(y(C))
k
−→ y(B ∗A C) in Cα+1. Write A,B,C as κ-small filtered colimits of

objects of Dα: A = lim−→p
y(Ap), B = lim−→q

y(Bq), C = lim−→r
y(Cr), and write ip :

y(Ap) → A, jq : y(Bq) → B, kr : y(Cr) → C for the canonical inclusions. Because
Γ : Cα → Cα+1 preserves κ-small filtered colimits by (1), these colimit expressions
are equally valid in Cα+1, e.g. Γ(B) = lim−→q

y(∆(Bq)) = lim−→q
Γ(y(Bq)). Consider

the morphisms (B, jq) : ∆(Bq) → B ∗A C for each q. We claim that these form
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a cocone, i.e. that (B, jq)∆(Bθ) = (B, jq′) for each morphism θ : q′ → q. This
follows from the fact that jqBθ = jq′ and the definition of composition in Dα+1.
Thus, we obtain a morphism j := (y(B, jq))q : Γ(y(B)) = y(∆(B)) → y(B ∗A C).
Similarly, there is a morphism k := (y(C, kr))r : Γ(y(C)) = y(∆(C)) → y(B ∗A C).
Now we claim that j, k are an amalgam of Γ(f),Γ(g), i.e. that jΓ(f) = kΓ(g).
By the universal property of the colimit Γ(A) = lim−→p

Γ(y(Ap)) = lim−→p
y(∆(Ap)),

it suffices to check that jΓ(f)Γ(ip) = kΓ(g)Γ(ip) for each p. Now jΓ(f)Γ(ip) =
jΓ(fip). Because the colimit B = lim

−→q
y(Bq) is filtered and κ-small and Ap ∈

Dα, by (2) we have fip = jqy(f̃) for some f̃ : Ap → Bq in Dα. So jΓ(fip) =

jΓ(jqy(f̃)) = jΓ(jq)Γ(y(f̃)). Now by definition of j, we have jΓ(jq) = y(B, jq). Thus

jΓ(jq)Γ(y(f̃)) = y((B, jq))y(∆(f̃)) = y((B, jq)∆(f̃)) = y(B, jqy(f̃)) = y(B, fip) =
y(A, ip). Similarly, we have kΓ(g)Γ(ip) = y(A, ip), so the claim is verified. �

Proof of Theorem 5.5. By Fact 1.41, we may assume that X is the classifying space
of a small poset P . Let C = P in Construction 5.8, obtaining categories Cκ,Dκ. Set
E = Indκ(C

κ) = Indκ(Ind
κ(Dκ)) = Ind(Dκ), where the last equation follows from

Fact 1.21. So E = Ind(Dκ) is a finitely accessible category of monomorphisms, so E
is an AEC by Fact 5.3. Finally, following the discussion in Recollection 1.18, the κ-
presentable objects of E are the retracts of objects in Indκ(Dκ) = Indκ(∪α<κD

α) =
lim
−→α<κ

Indκ(Dα) = lim
−→α<κ

Cα, but because this is a category of monomorphisms,

there are no nontrivial retracts and so these are precisely the κ-presentable objects.
Note that spans in Cα have amalgams in Cα+1 by Lemma 5.10 (6). So Cκ = Indκ(Dκ)
has amalgamation. That is, E has amalgamation for κ-presentable objects. More-
over, by Remark 3.2, E has the same homotopy type as Cκ, which in turn by Lemma
5.10(5) has the same homotopy type as X . �

5.2. Criteria for asphericity. It is worth noting that there are natural conditions
on a category C implying that |C| is aspherical.
One useful criterion comes from the following theorem of Paré:

Theorem 5.11 ([Par90, Theorem 2]). A category has pullbacks if and only if it has
all finite simply-connected limits.
Dually, a category has pushouts if and only if it has all finite simply-connected

colimits.

Here, a simply-connected limit is a limit indexed by a diagram F : D → C where
|D| is simply-connected, and dually for simply-connected colimits.

Corollary 5.12. If C has pullbacks or pushouts, then |C| is aspherical.

In the proof, we freely use the tools of simplicial homotopy theory. For an intro-
duction, see [Rie], and for a textbook account, see [GJ09].

Proof. Let n ≥ 2. An element of πn(|C|) is represented by a cellular map f :
X → |C| from some simplicial complex X weakly homotopy equivalent to Sn. After
subdividing if necessary, we may assume that X is the classifying space of a finite
poset X = |P |, such that f = |F | for some functor F : P → C. Now, |P | ≃ Sn is
simply-connected, and C has all simply connected limits (or colimits) by Theorem
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5.11 so F has a cone or cocone in C, for example the (co)limiting one. This (co)cone
allows us to extend f to the inclusion of X into a cone on X , which is contractible.
So f represents a trivial element in πn(|C|). �

For example, Mod(T ) has pullbacks if the intersection of two elementary sub-
models is always an elementary sub-model. We thank the referee for pointing out
that the above is equivalent to saying that algebraically closed subsets are models.
On the other hand, it seems that Mod(T ) does not have pushouts when T has an
infinite model. We thank the referee for the following argument. Take M � U

to be a model and let f ∈ Aut(U/M) be nontrivial. Then take M1 � M such
that f(M1) 6= M1 and let M2 = f(M1). Now, M1 ← M → M2 admits both U

(with inclusions) and M2 (with f and equality) as cocones, but there is no cocone
embedding into both M2 and U.
Another criterion comes from Dwyer and Kan:

Theorem 5.13 ([DK80, Proposition 7.4]). If C admits a calculus of right fractions,
then |C| is aspherical.

Here C is said to admit a calculus of right fractions if the following two criteria
hold:

(1) For every cospan x→ z ← y, there is a cone.
(2) If fu = fv, then there exists g such that ug = vg.

In the case of Mod(T ), condition (2) is trivial because every morphism f is a
monomorphism. (1) is equivalent to the fact that any intersection of two elementary
sub-models contains an elementary sub-model. And this is equivalent to the fact
that acl(∅) is a model.

Corollary 5.14. Suppose T has the property that acl(∅) is a model, then |Mod(T )|
is aspherical, so that |Mod(T )| ≃ BGalL(T ) and GalL(T ) ∼= Aut(acl(∅)).

Unfortunately, when T has an infinite model, Mod(T ) never has the dual notion
of a calculus of left fractions because, though the dual of condition (1) is just the
amalgamation property, the dual of condition (2) is never satisfied: since all mor-
phisms of Mod(T ) are monomorphisms, the dual of condition (2) would imply that
Mod(T ) was a poset.
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