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MODEL COMPLETIONS FOR UNIVERSAL CLASSES OF ALGEBRAS:

NECESSARY AND SUFFICIENT CONDITIONS

GEORGE METCALFE AND LUCA REGGIO

Abstract. Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of

algebraic structures (algebras) to have a model completion, extending a characterization provided by Wheeler.

For varieties of algebras that have equationally definable principal congruences and the compact intersection

property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by

Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices,

the existence of a model completion implies that the variety has equationally definable principal congruences.

This result is then used to provide necessary and sufficient conditions for the existence of a model completion for

theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-

ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated

lattices has a model completion, it must have equationally definable principal congruences. In particular, the

theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by

Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices

generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be

extended with a binary operation to obtain theories that do have a model completion.

§1. Introduction. The main aim of this paper is to understand what it means in

algebraic terms for the (first-order) theory of a universal class of algebraic structures

(algebras) to have a model completion. For classes that have finite presentations —

including all quasivarieties, but not, for example, ordered abelian groups — a complete

characterization was provided by Wheeler in [38] (see also [39]) using the well-studied

properties of amalgamation and coherence together with a more complicated property

referred to as the conservative congruence extension property. However, as we show

in Section 3, replacing coherence and the conservative congruence extension property

with a variable projection property and conservative model extension property yields

necessary and sufficient conditions for all universal classes of algebras (Theorem 3.2).

Although the mentioned properties can be used to confirm that the theories of ordered

abelian groups and linearly ordered MV-algebras have a model completion [36, 29], the

conservative model extension property is, in general, rather difficult to prove or refute.

We therefore also provide, in Section 4, a more elegant characterization for varieties

(equational classes) of algebras that have equationally definable principal congruences

and the compact intersection property, where the conservative model extension property

is replaced by a more amenable equational variable restriction property (Theorem 4.5).
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2 GEORGE METCALFE AND LUCA REGGIO

This result generalizes slightly a characterization given by Ghilardi and Zawadowski

in [19] (see also [20]) by covering varieties such as lattice-ordered abelian groups for

which there exists no equation that entails all other equations.

In Section 5, we prove that for any congruence distributive variety V that has both

the congruence extension property and a “guarded” deduction theorem, if the theory

of V has a model completion, then V has equationally definable principal congruences

(Theorem 5.7). Our approach is inspired by the work of Glass and Pierce on lattice-

ordered abelian groups in [22] and indeed yields both their result that the theory of this

variety does not have a model completion, and the same result for MV-algebras, first

proved by Lacava in [28]. More generally, in Section 6, we use this theorem to show that

the theory of a Hamiltonian variety of pointed residuated lattices — spanning varieties

of algebras for substructural logics as well as lattice-ordered abelian groups and MV-

algebras (see, e.g., [5, 16, 31]) — has a model completion if, and only if, the variety

is coherent and has equationally definable principal congruences, the amalgamation

property, and the equational variable restriction property (Theorem 6.6).

Finally, in Section 7, we associate with any variety V generated by a class of linearly

ordered pointed residuated lattices, a variety V⊲ of algebras with an additional binary

operation that has equationally definable principal congruences and the same universal

theory as V in the original language. We then show that if V satisfies a certain syntactic

condition, the theory of V⊲ has a model completion (Theorem 7.6). Notably, this is the

case for lattice-ordered abelian groups and MV-algebras, the second case yielding an

alternative proof of the fact that the theory of MV∆-algebras has a model completion,

first announced by X. Caicedo at a conference in 2008.

§2. Algebraic properties. Let us first recall some elementary material on universal

algebra, referring to [7] for proofs and references. For convenience, we will assume

throughout this paper that L is an algebraic language (i.e., a first-order language with

no relation symbols) containing at least one constant symbol c and that an L-algebra A

is an L-structure with universe A, calling A trivial if |A| = 1. We denote by Con A the

congruence lattice of A, and by CgA(S ) the congruence of A generated by S ⊆ A2.

The term algebra TmL(x) for L over a set x is an L-algebra with universe TmL(x)

consisting of L-terms with variables in x, such that for any L-algebra A and map

f : x→ A, there exists a unique homomorphism f̃ : TmL(x)→ A extending f . Atomic

L-formulas are L-equations, written s ≈ t, and L-equations and their negations are

L-literals. Conjunctions, disjunctions, negations, implications, and bi-implications of

L-formulas are built using the symbols &, g, ¬,→, and↔, respectively, with⊤ ≔ c ≈ c

and ⊥ ≔ ¬⊤. An L-quasiequation is an L-formula π→ ε, where π is a conjunction of

L-equations and ε is an L-equation, assuming that the empty conjunction is ⊤. For an

L-term t or L-formula α, we denote by t(x) or α(x) that its free variables belong to the

set x, and for a conjunction of L-literals ξ, we write ξ+ and ξ− for the conjunctions of

L-equations occurring in ξ positively and negatively, respectively.

Let H, I, S, P, and PU denote the class operators of taking homomorphic images,

isomorphic images, subalgebras, products, and ultraproducts, respectively. A class of

L-algebras K is called a variety if it is closed under H, S, and P, and a quasivariety if is

closed under I, S, P, and PU . The class K is a variety if, and only if, it is an equational

class, and a quasivariety if, and only if, it is a quasiequational class. Moreover, K is a
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universal class if, and only if, it is closed under I, S, and PU , and a positive universal

class if, and only if, it is closed under H, S, and PU .

The variety and quasivariety generated by a class of L-algebras K are, respectively,

the smallest variety HSP(K) and quasivariety ISPPU(K) ofL-algebras containing K. An

L-equation is valid in K if, and only if, it is valid in HSP(K), and an L-quasiequation is

valid in K if, and only if, it is valid in ISPPU(K). For future reference, let us note also

that any class of L-algebras K that is closed under taking finite products satisfies the

following disjunction property: for any conjunctions of L-equations ϕ, π1, . . . , πn,

K |= ϕ→g
1≤i≤n

πi ⇐⇒ K |= ϕ→ πi for some i ∈ {1, . . . , n}.

For a variety of L-algebras V, the V-free algebra FV(x) over a set x may be identified

with the quotient TmL(x)/θV(x), where θV(x) ≔
⋂
{θ ∈ Con TmL(x) | TmL(x)/θ ∈ V}.

For any L-equation ε ∈ TmL(x)2, we let ε̂ denote its image under the natural surjection

TmL(x)2
։ FV(x)2. The following useful lemma shows that the validL-quasiequations

of V can be described in terms of congruences of V-free algebras.

Lemma 2.1 (cf. [30, Lemma 2]). For any variety of L-algebras V, conjunction of L-

equations π(x), and L-equation ε(x),

V |= π→ ε ⇐⇒ ε̂ ∈ CgFV(x)({σ̂ | σ is an equation of π}).

A variety V has the congruence extension property if for all A ∈ V, any congruence of

a subalgebra of A extends to a congruence of A. The following lemma provides a useful

equivalent characterization of this property in terms of congruences of V-free algebras.

Lemma 2.2 (cf. [30, Lemma 17]). A variety V has the congruence extension property

if, and only if, for any θ ∈ Con FV(x) and θ′ ∈ Con FV(x, y),

(θ′ ∨ CgFV(x,y)(θ)) ∩ FV(x)2 = (θ′ ∩ FV(x)2) ∨ θ.

In what follows, we will omit mention of the language L, assuming throughout that

a class of algebras K is a class of L-algebras, and that terms, equations, formulas, etc.

are defined over this language.

2.1. The variable projection property and coherence. Let us say that a class of

algebras K has the variable projection property if for any finite set x, y and conjunction

of equations ϕ(x, y), there exists a quantifier-free formula ξ(x) such that K |= ϕ→ ξ and

for any equation ε(x),

K |= ϕ→ ε =⇒ K |= ξ → ε.

If ξ(x) is required to be a conjunction of equations for each ϕ(x, y), we say that K has

the equational variable projection property.

Remark 2.3. Since K satisfies the same quasiequations as the quasivariety ISPPU(K)

that it generates, K has the equational variable projection property if, and only if,

ISPPU(K) has this property.

For varieties, the variable projection property is equivalent both to the equational

variable projection property and to the widely studied algebraic property of coherence.

A variety V is said to be coherent if every finitely generated subalgebra of a finitely

presented member of V is finitely presented.

Proposition 2.4. The following statements are equivalent for any variety V:
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(1) V is coherent.

(2) V has the equational variable projection property.

(3) V has the variable projection property.

Proof. The equivalence of (1) and (2) is established in [27, Theorem 2.3], and (3) is

an immediate consequence of (2). To show that (3) implies (2), we fix a finite set x, y

and a conjunction of equations ϕ(x, y), and let ξ(x) be a quantifier-free formula such that

V |= ϕ → ξ and for any equation ε(x), we have V |= ϕ → ε =⇒ V |= ξ → ε. Since ϕ

is satisfiable in V (e.g., in any trivial algebra), we can assume without loss of generality

that ξ = ξ1 g · · · g ξm, where ξ1, . . . , ξm are conjunctions of literals satisfiable in V.

Since V |= ϕ→ ξ, also V |= ϕ→g1≤i≤m ξ
+
i

. By the disjunction property for varieties,

V |= ϕ→ ξ+
i

for some i ∈ {1, . . . ,m}. Let σ1, . . . , σn be the equations of ξ−
i

and consider

any equation ε(x) such that V |= ϕ → ε. By assumption, V |= ξ → ε, so V |= ξi → ε.

Hence V |= ξ+
i
→ ε gg1≤ j≤n σ j and, by the disjunction property for varieties, either

V |= ξ+
i
→ ε or V |= ξi → ⊥. But ξi is satisfiable in V, so V |= ξ+

i
→ ε. ⊣

Following this last proposition, we will refer to a variety throughout this paper as

coherent whenever it has the (equational) variable projection property.

Remark 2.5. An algebra A is locally finite if every finitely generated subalgebra of

A is finite, and a class of algebras K is locally finite if each A ∈ K is locally finite. Since

any finitely presented algebra of a locally finite variety is finite and any finite algebra of

a locally finite variety is finitely presented, every locally finite variety is coherent.

Below we introduce some well-known classes of algebras that will be employed as

running examples throughout the paper. These algebras all possess definable binary

operations ∧ and ∨ such that a ≤ b :⇐⇒ a ∧ b = a defines a lattice order with binary

meets and joins given by ∧ and ∨, respectively.

Example 2.6. Linear orders with endpoints may be considered as bounded lattices

〈L,∧,∨, 0, 1〉 where the defined lattice order is linear. The class DLc of linear orders

with endpoints is then a positive universal class of algebras that generates the variety DL

of bounded distributive lattices as a quasivariety. Since DL is locally finite, it is coherent,

and, by Remark 2.3, the class DLc has the equational variable projection property.

Example 2.7. A Heyting algebra is an algebra 〈H,∧,∨,⊃, 0, 1〉 such that the reduct

〈H,∧,∨, 0, 1〉 is a bounded distributive lattice and ⊃ is the right residual of ∧; that is,

a ≤ b ⊃ c if, and only if, a ∧ b ≤ c for all a, b, c ∈ H. The fact that the variety HA

of Heyting algebras is coherent is a direct consequence of Pitts’ uniform interpolation

theorem for intuitionistic propositional logic [35].

Example 2.8. A lattice-ordered abelian group is an algebra 〈L,∧,∨,+,−, 0〉 such that

〈L,+,−, 0〉 is an abelian group, 〈L,∧,∨〉 is a lattice, and a ≤ b implies a+c ≤ b+c for all

a, b, c ∈ L. Lattice-ordered abelian groups form a variety LA that is coherent (see [27])

and generated as a quasivariety by the positive universal class LAc of ordered abelian

groups, i.e., the class of linearly ordered members of LA (see, e.g., [1]). It follows from

Remark 2.3 that LAc has the equational variable projection property.

Example 2.9. An MV-algebra is an algebra 〈M,⊕,¬, 0〉 satisfying the equations

(MV1) x ⊕ (y ⊕ z) ≈ (x ⊕ y) ⊕ z (MV4) ¬¬x ≈ x

(MV2) x ⊕ y ≈ y ⊕ x (MV5) x ⊕ ¬0 ≈ ¬0

(MV3) x ⊕ 0 ≈ x (MV6) ¬(¬x ⊕ y) ⊕ y ≈ ¬(¬y ⊕ x) ⊕ x.
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The variety MV of MV-algebras is coherent (see [27]), and generated as a quasivariety

by the positive universal class MVc of MV-algebras that are linearly ordered with respect

to the defined lattice operations x ∧ y ≔ ¬(¬x ⊕ ¬(¬x ⊕ y)) and x ∨ y ≔ ¬(¬x ⊕ y) ⊕ y

(see, e.g., [10]). Again, it follows from Remark 2.3 that MVc has the equational variable

projection property.

Notable varieties that are not coherent include the varieties of lattices, semigroups,

groups, and modal algebras (see [27] for proofs and references).

2.2. The conservative model extension property. Let us say that a class of algebras

K has the conservative model extension property if for any finite set x, y and conjunction

of literals ψ(x, y), there exists a quantifier-free formula χ(x) satisfying

(i) K |= ψ→ χ

(ii) for any A ∈ K generated by a ∈ Ax such that A |= χ(a) and for any equation ε(x),

K |= ψ+ → ε =⇒ A |= ε(a),

there exist an algebra B ∈ K extending A and b ∈ B such that B |= ψ(a, b).

Remark 2.10. In the previous definition, we may assume without loss of generality

that ψ is satisfiable in K. Just observe that if this is not the case, then K |= ψ ↔ ⊥ and

we can let χ ≔ ⊥. Moreover, if there is precisely one definable constant in K (which

is the case, e.g., for lattice-ordered abelian groups), we can assume that x is non-empty.

To see this, suppose that x = ∅ and let χ ≔ ⊤. Then (i) is clearly satisfied and for (ii),

any A ∈ K generated by ∅ is trivial and satisfies all equations, so, since ψ is satisfiable

in K, we can choose an algebra B ∈ K extending A and b ∈ B such that B |= ψ(b).

In the case where K is a universal class of algebras admitting finite presentations

(in particular, any quasivariety), the conservative model extension property is implied

by the conservative congruence extension property introduced by Wheeler in [38] (see

Proposition A.3 of Appendix A). The following proposition, proved here for the sake of

completeness, is then a direct consequence of [38, Corollary 1, p. 319].

Proposition 2.11. Every locally finite variety has the conservative model extension

property.

Proof. Let V be a locally finite variety and consider a finite set x, y and conjunction

of literals ψ(x, y). We can assume that ψ is satisfiable in V. Since V is locally finite,

the finitely generated free algebra FV(x) is finite and has finitely many congruences

θ1, . . . , θm. For each w ∈ FV(x)2, choose an equation εw such that ε̂w = w. Now, for each

j ∈ {1, . . . ,m}, let ψ j(x) be the conjunction of literals in the set {εw | w ∈ θ j}∪{¬εw | w <

θ j}. Then, for any algebra A ∈ V generated by a tuple a ∈ Ax, we have A |= ψ j(a) if, and

only if, the homomorphism FV(x)/θ j → A mapping x j to a, where x j is the image of

the tuple x under the composite map Tm(x)։ FV(x)։ FV(x)/θ j, is an isomorphism.

Let S be the set of all j ∈ {1, . . . ,m} such that there exist B ∈ V extending FV(x)/θ j

and b ∈ B satisfying B |= ψ(x j, b). Since ψ is satisfiable in V, there exist B ∈ V and

(a, b) ∈ Bx,y such that B |= ψ(a, b). The following claim then implies that S , ∅.

Claim. Suppose that B ∈ V and B |= ψ(a, b) for some (a, b) ∈ Bx,y. Then there exist

j ∈ {1, . . . ,m} and an embedding FV(x)/θ j →֒ B mapping x j to a, and hence j ∈ S .
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Proof of Claim. By the homomorphism theorem for universal algebra (see, e.g., [7]),

it suffices to observe that the image of the homomorphism FV(x) → B mapping the

equivalence class of x to a is isomorphic to FV(x)/θ j for some j ∈ {1, . . . ,m}. ⊣

We now prove that the quantifier-free formula

χ(x) ≔g
k∈S

ψk

satisfies conditions (i) and (ii) in the definition of the conservative model extension

property. For (i), we must show V |= ψ → χ. By the Claim, if B ∈ V and (a, b) ∈ Bx,y

satisfy B |= ψ(a, b), then there exist j ∈ {1, . . . ,m} and an embedding FV(x)/θ j →֒ B

mapping x j to a. So B |= ψ j(a), which implies B |= χ(a). For (ii), suppose that A ∈ V is

generated by a tuple a ∈ Ax satisfying A |= χ(a). Let k ∈ S be such that A |= ψk(a), and

recall that there is an isomorphism FV(x)/θk → A mapping xk to a. By the definition of

S , there exist B ∈ V extending A and b ∈ B such that B |= ψ(a, b). ⊣

Example 2.12. The class of ordered abelian groups LAc has the conservative model

extension property. Consider a finite set x, y and a conjunction of literals ψ(x, y). We

first assume that y appears in each literal of ψ and then settle the general case. For any

two terms s, t, write s < t for the formula (s ≤ t) & ¬(s ≈ t), where ≤ is the definable

lattice order. In view of Remark 2.10, we can assume that x , ∅. Moreover, without

loss of generality (because the members of LAc are linearly ordered), we can assume

that ψ = ψ1 g · · · g ψm and that each disjunct is a conjunction of formulas of the form

py ≤ t, py ≥ t, py < t, py > t,

where each t is a group term with variables in x = x1, . . . , xn, and p is a fixed non-zero

natural number (e.g., the least common multiple of the coefficients of y in the conjuncts).

Let t j1 (x), . . . , t ju(x) be the terms appearing in ψ j and let χ(x) be the formula

& { g
1≤ j≤m

t ji△t jk | ji, jk ∈ { j1, . . . , ju},△ ∈ {<,≤}, and LA
c |= ψ→ g

1≤ j≤m

t ji△t jk } &

& {g
i∈I

¬(xi ≈ 0) | I ⊆ {1, . . . , n} and LA
c |= ψ→g

i∈I

¬(xi ≈ 0)}.

Clearly, LAc |= ψ→ χ, so condition (i) of the conservative model extension property is

satisfied. For (ii), consider A ∈ LA
c together with a tuple a ∈ Ax such that A |= χ(a).

If A is the one-element group and there is no B ∈ LAc satisfying (ii), then LAc |= ψ →

g
n
i=1 ¬(xi ≈ 0). So LAc |= χ→g

n
i=1 ¬(xi ≈ 0) by the definition of χ, contradicting the

fact that A |= χ(a). If A is non-trivial, let B be the divisible hull of A and note that B is an

infinite member of LAc. We claim that there is a b ∈ B such that B |= ψ(a, b). If no such b

exists, then, for each 1 ≤ j ≤ m, a pair of inequations t ji (a)△py and py△t jk (a) of ψ j(a, y)

is unsatisfiable, for △ ∈ {<,≤}. We settle the case where all these inequations are of the

form t ji (a) < py and py < t jk (a), the other cases being very similar. Since B is divisible

and every divisible ordered abelian group is densely ordered, we get t jk (a) ≤ t ji (a).

Moreover, t ji < py and py < t jk entail t ji < t jk , and hence LAc |= χ →g1≤ j≤m t ji < t jk .

But then A |= χ(a) implies t ji(a) < t jk (a) for some 1 ≤ j ≤ m, a contradiction.

Finally, if we have a conjunction of literals of the form ψ(x, y) & ψ′(x), where ψ′ is

any conjunction of literals, the quantifier-free formula χ&ψ′ satisfies the conditions for

the conservative model extension property.

Example 2.13. The positive universal class DLc of linear orders with endpoints, in the

language of bounded lattices, has the conservative model extension property. Consider a
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finite set x, y and a conjunction of literals ψ(x, y) satisfiable in DLc. Suppose that x = ∅.

If there is a non-trivial member of DLc satisfying ψ, then the formula χ ≔ ¬(0 ≈ 1)

satisfies the conditions for the conservative model extension property. On the other

hand, if ψ is satisfied only by the trivial algebra, we can set χ ≔ 0 ≈ 1.

Hence, let x , ∅. We assume that y appears in all literals of ψ; the general case

then follows by reasoning as in Example 2.12. Since the members of DL
c are linearly

ordered, ψ is equivalent to a formula ψ1 g · · · g ψm, where each ψ j is a conjunction of

formulas of the form y ≤ x, y ≥ x, y < x, or y > x with x ∈ x = x1, . . . , xn.

Assume first that the trivial algebra satisfies ψ and let χ(x) be the formula

& { g
(i, j)∈J

xi△x j | J ⊆ {1, . . . , n}
2,△ ∈ {<,≤}, and DL

c |= ψ→ g
(i, j)∈J

xi△x j}.

Reasoning as in Example 2.12, it is not difficult to see that χ satisfies the conditions for

the conservative model extension property. Just replace the divisible hull of an ordered

abelian group with any dense linear order with endpoints that extends the given linear

order with endpoints A ∈ DLc (e.g., there is an embedding of A into the lexicographic

product of A and [0, 1] which preserves the bounds).

In the case where ψ is not satisfied in the trivial algebra, we replace χ by χ&¬(0 ≈ 1).

§3. Model completions. Let us first recall some relevant model-theoretic notions,

referring to [9, Section 3.5] for further details. By a theory we will always mean a

first-order theory, i.e., a set of sentences over some first-order language L. We let

Th(K) denote the theory of a class K ofL-structures, i.e., the set of L-sentences that are

satisfied by all members of K. Two theories T and T ′ are called co-theories if they entail

the same universal sentences. Semantically, T ′ is a co-theory of T if, and only if, every

model of T embeds into a model of T ′ and vice versa. A theory T ∗ is model complete

if every formula is equivalent over T ∗ to an existential formula; that is, model complete

theories are those in which alternations of quantifiers can be eliminated. Semantically,

a theory T ∗ is model complete if, and only if, every embedding between models of T ∗

is elementary. A theory T ∗ is a model companion of a theory T if it is a model complete

co-theory of T . A model completion of a theory T is a model companion T ∗ of T such

that for any model M of T , the theory of T ∗ together with the diagram of M is complete.

Let us also recall that a class K of L-structures has the amalgamation property if

given any A,B,C ∈ K and embeddings f : A → B and g : A → C, there exist D ∈ K

and embeddings h : B→ D and k : C→ D satisfying h f = kg.

Below, we collect some useful facts related to model completions.

Proposition 3.1 (cf. [9, Propositions 3.5.13, 3.5.15, 3.5.18, and 3.5.19]).

(a) A theory has at most one model companion up to logical equivalence.

(b) If a ∀∃-theory T has a model companion T ∗, then T ∗ is logically equivalent to the

theory of the existentially closed models of T .

(c) If T ∗ is a model companion of a theory T , then T ∗ is a model completion of T if,

and only if, the class of models of T has the amalgamation property.

(d) A theory T ∗ is a model completion of a universal theory T if, and only if, T ∗ is a

co-theory of T that admits quantifier elimination.

Our aim in this section is to prove the following characterization of universal classes

of algebras whose theories have a model completion.
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Theorem 3.2. Let K be a universal class of algebras. The theory of K has a model

completion if, and only if, K has the amalgamation property, variable projection prop-

erty, and conservative model extension property.

For universal classes of algebras with finite presentations, Theorem 3.2 specializes

to [38, Theorem 5] (see Appendix A). Observe also that for locally finite varieties,

Remark 2.5 and Proposition 2.11 yield the following simpler characterization.

Corollary 3.3 ([38, Corollary 1 p. 319]). Let V be a locally finite variety. Then the

theory of V has a model completion if, and only if, V has the amalgamation property.

We first settle the ‘if’ part of Theorem 3.2.

Proposition 3.4. Let K be a universal class of algebras. If K has the amalgamation

property, variable projection property, and conservative model extension property, then

the theory of K has a model completion.

Proof. Fix a countably infinite set of variables z and let

J ≔ {(ψ, y) | ψ is a conjunction of literals with variables in z, and y ∈ z}.

Consider j = (ψ, y) ∈ J. Let x be the set of variables occurring in ψ different from y.

Since K has the variable projection property, there exists a quantifier-free formula ξ j(x)

such that K |= ψ+ → ξ j and for every equation ε(x),

K |= ψ+ → ε =⇒ K |= ξ j → ε. (1)

Since K has the conservative model extension property, there also exists a quantifier-free

formula χ j(x) satisfying the following conditions:

(i) K |= ψ→ χ j

(ii) for any A ∈ K generated by a ∈ Ax such that A |= χ j(a) and for any equation ε(x),

K |= ψ+ → ε =⇒ A |= ε(a),

there exist an algebra B ∈ K extending A and b ∈ B such that B |= ψ(a, b).

We define the first-order sentence

τ j ≔ ∀x [(ξ j & χ j)→ ∃y.ψ].

Let T ≔ Th(K) be the theory of K and set T ∗ ≔ T ∪ {τ j | j ∈ J}. We claim that T ∗ is

a model completion of T . In view of Proposition 3.1.(d), it suffices to show that T ∗ has

quantifier elimination and is a co-theory of T .

T ∗ has quantifier elimination. We prove that for any (ψ, y) ∈ J,

T ⊢ ∀x [(∃y.ψ)→ (ξ j & χ j)]. (2)

It follows then from the definition of T ∗ and (2) that T ∗ entails that any formula ∃y.ψ,

where ψ is a conjunction of literals with variables in z and y ∈ z, is equivalent to a

quantifier-free formula. So T ∗ has quantifier elimination (see, e.g., [37, Lemma 3.2.4]).

For the proof of (2), fix an arbitrary j = (ψ, y) ∈ J. It suffices to show that for any

algebra A ∈ K and map g : x → A,

A, g |= ∃y.ψ =⇒ A, g |= ξ j & χ j.

Suppose that A, g |= ∃y.ψ. Then A, f |= ψ for some map f : x, y → A extending g.

Moreover, since K |= ψ+ → ξ j and K |= ψ→ χ j, it follows that A, f |= ξ j and A, f |= χ j.

But ξ j and χ j have variables in x, so A, g |= ξ j and A, g |= χ j, yielding A, g |= ξ j & χ j.
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T ∗ is a co-theory of T . Since T ⊆ T ∗, it suffices to show that any universal sentence

entailed by T ∗ is entailed by T . First we show that for any j = (ψ, y) ∈ J, algebra A ∈ K,

and map g : x → A,

A, g |= ξ j & χ j =⇒ there exist B ∈ K and ι : A →֒ B such that B, ιg |= ∃y.ψ. (3)

Suppose that A, g |= ξ j & χ j. We will assume first that the unique homomorphism

g̃ : Tm(x) → A extending g is surjective, and hence that A is generated by the image

a of x under g. Note that A |= χ j(a). Moreover, if ε(x) is any equation such that

K |= ψ+ → ε, then (1) yields K |= ξ j → ε and, since A |= ξ j(a), also A |= ε(a). Hence,

by (ii), there exist an algebra B in K extending A and b ∈ B such that B |= ψ(a, b). So

B, ιg |= ∃y.ψ, where ι : A →֒ B is the inclusion map.

For the general case of (3), let A′ be the image of Tm(x) under g̃ in A. Since K is

a universal class and A′ embeds into A, also A′ ∈ K. By the previous argument, there

exist B′ ∈ K and ι′ : A′ →֒ B′ such that B′, ι′g |= ∃y.ψ, witnessed by b ∈ B′, say.

Since K has the amalgamation property, we obtain for the injection ι′ and the inclusion

A′ →֒ A, an extension ι : A →֒ B with B ∈ K and an embedding λ : B′ →֒ B such that

the following diagram commutes:

A′ B′

A B

ι′

λ

ι

Since ψ is quantifier-free, we have B, ιg |= ∃y.ψ witnessed by λ(b).

To conclude the proof, let α be a universal sentence such that T ∗ ⊢ α. By the

compactness theorem of first-order logic, there exists a finite subset F ⊆ J such that

T ∪ {τ j | j ∈ F} ⊢ α. We prove that, in fact, T ⊢ α. Consider any A ∈ K. Let w be the

set of variables appearing in the scope of the universal quantifier in one of the sentences

{τ j | j ∈ F} and let g : w→ A be any map. By repeatedly applying (3), we obtain B ∈ K

and ι : A →֒ B such that B, ιg |= τ j for each j ∈ F. Now, since T ∪ {τ j | j ∈ F} ⊢ α,

we have B, ιg |= α. But A is a subalgebra of B and α is universal, so A, g |= α. Hence

T ⊢ α as required. ⊣

Example 3.5. The positive universal class LAc of ordered abelian groups, defined

over the algebraic language with operation symbols ∧,∨,+,−, 0, has the amalgamation

property [34], variable projection property (see Example 2.8), and conservative model

extension property (see Example 2.12). Hence Proposition 3.4 yields the well-known

fact that the theory of LAc has a model completion [36].1 Similarly, the class MVc of

linearly ordered MV-algebras satisfies the conditions of Proposition 3.4 and its theory

therefore has a model completion [29].

Example 3.6. The positive universal class DLc of linear orders with endpoints, de-

fined over the algebraic language of bounded lattices, has the amalgamation property,

variable projection property (see Example 2.6), and conservative model extension prop-

erty (see Example 2.13). Hence Proposition 3.4 yields the well-known fact that the

theory of DLc has a model completion (see, e.g., [9]). It also follows easily that the

theory of the positive universal class HAc of linearly ordered Heyting algebras has a

1Note that although the class of ordered abelian groups is often defined using other first-order languages

(e.g., with + and the relation ≤), this difference is immaterial for the existence of a model completion.
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model completion. Note that any linear order with endpoints A ∈ DLc can be expanded

to a linearly ordered Heyting algebra by defining a ⊃ b ≔ 1 if a ≤ b and a ⊃ b ≔ b

otherwise. Indeed, the theory of HAc is a definitional extension of the theory of DLc (in

the sense of, e.g., [24]), where the binary function symbol ⊃ is defined by the formula

ξ(x, y, z) ≔ (x ≤ y & z ≈ 1) g (y < x & z ≈ y).

Using the fact that ξ is quantifier-free, the existence of a model completion for the theory

of HA
c follows directly from the existence of a model completion for the theory of DL

c.

We now prove the ‘only if’ part of Theorem 3.2. Note first that if K is a universal

class of algebras whose theory has a model completion, then K has the amalgamation

property by Proposition 3.1.(c). Next, we consider the variable projection property.

Proposition 3.7. Let K be a universal class of algebras. If the theory of K has a model

completion, then K has the variable projection property.

Proof. Let T ≔ Th(K) be the theory of K, and let T ∗ be a model completion of T . Fix

a finite set x, y and conjunction of equations ϕ(x, y). Since T ∗ has quantifier elimination,

there exists a quantifier-free formula ξ(x) such that

T ∗ ⊢ ∀x [(∃y.ϕ)↔ ξ]. (4)

It follows from (4) that T ∗ ⊢ ∀x, y (ϕ→ ξ) and, since T and T ∗ have the same universal

consequences, T ⊢ ∀x, y (ϕ → ξ). That is, K |= ϕ → ξ. It remains to show that for any

equation ε(x) satisfying K |= ϕ→ ε, also K |= ξ → ε.2

Suppose that K 6|= ξ → ε. Then there is an algebra A in K and a tuple a ∈ Ax such that

A |= ξ(a) and A 6|= ε(a). Since T and T ∗ are co-theories and T is universal, there exists

a model B of T ∗ extending A such that B ∈ K. Moreover, A |= ξ(a) implies B |= ξ(a),

and hence B |= ∃y.ϕ(a, y) by (4). Pick b ∈ B such that B |= ϕ(a, b). Since A 6|= ε(a), we

get B 6|= ε(a). Hence K 6|= ϕ→ ε as required. ⊣

To complete the proof of Theorem 3.2, it remains to prove that whenever the theory

of a universal class of algebras has a model completion, this class has the conservative

model extension property. In fact, we will show below that the existence of a model

completion is equivalent to a stronger property that directly implies the conservative

model extension property. This stronger property is difficult to check in concrete cases,

but will be useful in Section 5 for establishing consequences of the existence of a model

completion for the definability of principal congruences.

Proposition 3.8. Let K be a universal class of algebras. The theory of K has a model

completion if, and only if, for any finite sets x, y and conjunction of literals ψ(x, y), there

is a quantifier-free formula χ(x) satisfying the following conditions:

(i) K |= ψ→ χ

(ii) for any A ∈ K and tuple a ∈ Ax satisfying A |= χ(a), there exist B ∈ K extending

A and b ∈ By such that B |= ψ(a, b).

In particular, if the theory of K has a model completion, then K has the conservative

model extension property.

2As pointed out by the referee, this implication is satisfied in fact for any quantifier-free formula ε(x).
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Proof. Let T ≔ Th(K) be the theory of K, and suppose that T ∗ is a model completion

of T . Fix finite sets x, y and a conjunction of literals ψ(x, y). Since T ∗ admits quantifier

elimination, there exists a quantifier-free formula χ(x) such that

T ∗ ⊢ ∀x [(∃y.ψ)↔ χ]. (5)

It follows that T ∗ ⊢ ∀x, y (ψ→ χ), and since T and T ∗ are co-theories,

T ⊢ ∀x, y (ψ→ χ). (6)

We show now that χ satisfies (i) and (ii).

Condition (i) is an immediate consequence of (6). For (ii), fix an algebra A ∈ K and

a tuple a ∈ Ax such that A |= χ(a). Since T and T ∗ are co-theories and T is universal,

there exists a model B ∈ K of T ∗ that extends A. Since B |= χ(a), it follows by (5) that

there is a tuple b ∈ By such that B |= ψ(a, b). This settles (ii).

For the converse direction, we only sketch the proof, as it is an easy modification of

the proof of Proposition 3.4. As before, we consider the theory T ∗ ≔ T ∪ {τ j | j ∈ J},

but in this case τ j is defined as ∀x (χ j → ∃y.ψ), where the quantifier-free formula χ j

satisfies (i) and (ii). To show that T ∗ has quantifier elimination, it suffices to show that

T ⊢ ∀x (∃y.ψ → χ j) for all j = (ψ, y) ∈ J, which follows by (i) (cf. the proof of

Proposition 3.4). On the other hand, (ii) yields the following property similar to (3): if

A, g |= χ j, then there exist B ∈ K and ι : A →֒ B such that B, ιg |= ∃y.ψ. Reasoning as in

the last part of the proof of Proposition 3.4, we conclude that T and T ∗ are co-theories.

It follows then by Proposition 3.1.(d) that T ∗ is a model completion of T . ⊣

Remark 3.9. The first part of Proposition 3.8 admits the following reformulation. Let

K be a universal class of algebras and let T ≔ Th(K) be its first-order theory. Then the

following statements are equivalent:

(1) T has a model completion.

(2) For any finite sets x, y and conjunction of literals ψ(x, y), there is a quantifier-free

formula χ(x) with the same universal consequences, with respect to T , as ∃y.ψ.

This equivalence was established (for arbitrary first-order languages) by Millar in [32,

Theorem 3.1] (see also [9, Theorem 3.5.20] for a related result) and has recently been

considered in the context of the verification of data-aware processes [8, Theorem 3.2].

§4. Compact congruences. In this section, we show that for varieties of algebras

satisfying certain congruence lattice conditions, the rather complicated conservative

model extension property appearing in Theorem 3.2 can be replaced by a more amenable

equational variable restriction property. The resulting characterization is a slightly more

general version of a theorem proved by Ghilardi and Zawadowski in [19, Theorem 4].

Recall that the compact (equivalently, finitely generated) congruences of an algebra

A ordered by set-theoretic inclusion always form a join-semilattice. A class of algebras

K is said to have the compact intersection property if the join-semilattice of compact

congruences of each A ∈ K forms a lattice, i.e., the intersection of any two compact

congruences of A is compact. Recall also that K is said to be congruence distributive if

the congruence lattice of each A ∈ K is distributive. The following lemma describes a

useful syntactic consequence of these two properties.

Lemma 4.1. Let V be a congruence distributive variety that has the compact intersec-

tion property. For any finite set x and conjunctions of equations ϕ1(x), ϕ2(x), there exists
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a conjunction of equations π(x) such that for any equation ε(x, y),

V |= (ϕ1 g ϕ2)→ ε ⇐⇒ V |= π→ ε.

Proof. Let x be any finite set and let ϕ1(x), ϕ2(x) be conjunctions of equations. We

fix z to be any countably infinite set with x ∩ z = ∅ and define θi ≔ CgFV(x,z)({σ̂ |

σ is an equation of ϕi}) for i ∈ {1, 2}. Since θ1 and θ2 are compact, so, by assumption, is

their intersection; that is, there exist a finite set w ⊆ z and equationsσ1(x,w), . . . , σn(x,w)

such that {σ̂1, . . . , σ̂n} generates θ1 ∩ θ2. Let f : x, z → FV(x, z) be a map sending each

x ∈ x to x and each w ∈ w to some u ∈ FV(x), such that the image of f contains x, z.

Clearly, the unique homomorphism g : FV(x, z) → FV(x, z) extending f is surjective.

Define g∗ : Con FV(x, z) → Con FV(x, z) by g∗(θ) ≔ CgFV(x,z)({(g(a), g(b)) | (a, b) ∈ θ}).

Since V is congruence distributive and g is surjective, g∗ is a lattice homomorphism

(cf. [2, Lemma 1.11]) and, in particular, g∗(θ1 ∩ θ2) = g∗(θ1) ∩ g∗(θ2) = θ1 ∩ θ2. Hence

also {g(σ̂1), . . . , g(σ̂n)} generates θ1 ∩ θ2, where g(σ̂ j) ≔ (g(s), g(t)) for each σ̂ j = (s, t),

and we let π(x) be the conjunction of the equations σ1(x, u, . . . , u), . . . , σn(x, u, . . . , u).

For any equation ε(x, y), we may assume without loss of generality that y ⊆ z and use

Lemma 2.1 to obtain

V |= (ϕ1 g ϕ2)→ ε ⇐⇒ V |= ϕ1 → ε and V |= ϕ2 → ε

⇐⇒ ε̂ ∈ θ1 and ε̂ ∈ θ2

⇐⇒ ε̂ ∈ θ1 ∩ θ2

⇐⇒ V |= π→ ε. ⊣

Remark 4.2. The previous lemma can also be deduced from the fact that a variety is

congruence distributive and has the compact intersection property if, and only if, it has

equationally definable principal meets (cf. [4, Theorem 1.5]).

Recall next that a class of algebras K has first-order definable principal congruences

if there exists a formula α(x1, x2, y1, y2) satisfying for all A ∈ K and a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ A |= α(a1, a2, b1, b2),

where CgA(b1, b2) ≔ CgA({(b1, b2)}) is the smallest congruence of A containing the pair

(b1, b2). If α can be chosen to be a quantifier-free formula or conjunction of equations,

then K is said to have, respectively, quantifier-free definable principal congruences or

equationally definable principal congruences. For a variety V, it is known that having

equationally definable principal congruences corresponds to a property of the associated

consequence relation of V (often referred to as a deduction theorem) and a property of

the join-semilattices of compact congruences of members of V.

Proposition 4.3 ([26, Theorems 5, 8] and [3, Theorem 1.7]). The following statements

are equivalent for any variety V:

(1) V has equationally definable principal congruences.

(2) There exists a conjunction of equations ϕ(x1, x2, y1, y2) such that for any terms

s1, s2, t1, t2 and conjunction of equations π,

V |= (π & (s1 ≈ s2))→ (t1 ≈ t2) ⇐⇒ V |= π→ ϕ(s1, s2, t1, t2).
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(3) The join-semilattice of compact congruences of each A ∈ V is dually Brouwerian,

i.e., for any compact congruences θ1, θ2 of A, there exists a compact congruence

θ1 − θ2 of A such that for every compact congruence θ3 of A,

θ1 − θ2 ⊆ θ3 ⇐⇒ θ1 ⊆ θ1 ∨ θ2.

Equationally definable principal congruences imply two further useful properties.

Proposition 4.4 ([12, Corollary 2] and [26, Corollary 6]). If a variety has equation-

ally definable principal congruences, then it has the congruence extension property and

is congruence distributive.

We say next that a class of algebras K has the equational variable restriction property

if for any finite set x, y and conjunction of equations γ(x, y), there exists a formula

π(x) that is either ⊥ or a conjunction of equations such that K |= π → γ and for any

conjunction of equations ϕ(x),

K |= ϕ→ γ =⇒ K |= ϕ→ π.

The main result of this section is the following characterization theorem.

Theorem 4.5. Let V be a variety that has the compact intersection property and equa-

tionally definable principal congruences. The theory of V has a model completion if,

and only if, V is coherent and has the amalgamation property and equational variable

restriction property.

Remark 4.6. Theorem 4.5 provides a slightly more general algebraic reformulation

of [19, Theorem 4], which requires that the join-semilattice of compact congruences of

each algebra A ∈ V has a bottom element, or, equivalently, that there is a variable-free

conjunction of equations π such that V |= π → ε for every equation ε. This condition

is not satisfied by all the varieties of interest in this paper, in particular, the variety of

lattice-ordered abelian groups.

We show first that the right-to-left direction of Theorem 4.5 holds even in the absence

of the compact intersection property.

Proposition 4.7. Let V be a variety that has equationally definable principal congru-

ences. If V is coherent and has the amalgamation property and the equational variable

restriction property, then the theory of V has a model completion.

Proof. Using Theorem 3.2, it suffices to prove that V has the conservative model

extension property. Consider a finite set x, y and conjunction of literals ψ(x, y), assuming

without loss of generality that ψ is satisfiable in V (cf. Remark 2.10). By coherence,

there exists a conjunction of equations ϕ(x) such that V |= ψ+ → ϕ and for any equation

ε(x),

V |= ψ+ → ε =⇒ V |= ϕ→ ε.

Let σ1, . . . , σm be the equations of ψ−. Since V has equationally definable principal

congruences, it follows by Proposition 4.3 that for each i ∈ {1, . . . ,m}, there exists a

conjunction of equations πi(x, y) such that for any conjunction of equations γ(x, y),

V |= (γ & ψ+)→ σi ⇐⇒ V |= γ→ πi. (7)
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The equational variable restriction property yields a formula π′
i
(x) for each i ∈ {1, . . . ,m}

that is either ⊥ or a conjunction of equations such that V |= π′
i
→ πi and for any

conjunction of equations ϕ′(x),

V |= ϕ′ → πi =⇒ V |= ϕ′ → π′i . (8)

We claim that the quantifier-free formula χ ≔ ϕ&¬π′1&· · ·&¬π′m satisfies the conditions

in the definition of conservative model extension property.

Note first that, since V |= ψ → ψ+ and V |= ψ+ → ϕ, also V |= ψ → ϕ. To conclude

that V |= ψ → χ, it remains to show that V |= ψ → ¬π′
i

for each i ∈ {1, . . . ,m}. Let

i ∈ {1, . . . ,m}. Since V |= π′
i
→ πi and V |= (πi & ψ+) → σi, also V |= (π′

i
& ψ+) → σi.

But then V |= (¬σi & ψ+)→ ¬π′
i

and hence V |= ψ→ ¬π′
i

as required.

Now, consider an algebra A ∈ V generated by a ∈ Ax such that A |= χ(a) and for any

equation ε(x),

V |= ψ+ → ε =⇒ A |= ε(a). (9)

Let f : FV(x)։ A be the surjective homomorphism mapping the generators of FV(x) to

the elements of a. Considering FV(x) as a subalgebra of FV(x, y), we define

θ′ ≔ CgFV(x,y)({σ̂ | σ is an equation of ψ+}) and θ ≔ θ′ ∨ CgFV(x,y)(ker f ).

Let B ≔ FV(x, y)/θ and let g be the natural homomorphism from FV(x, y) onto B. Since

ker f ⊆ θ ∩ FV(x)2, the inclusion FV(x) →֒ FV(x, y) yields a homomorphism A → B

mapping f (x) to g(x) for each x ∈ x, as illustrated by the following diagram:

FV(x) FV(x, y)

A B

f g

To prove that this homomorphism is an embedding, it suffices to show that θ∩FV(x)2 ⊆

ker f . Since V has equationally definable principal congruences, by Proposition 4.4, it

has the congruence extension property. Hence, by Lemma 2.2,

θ ∩ FV(x)2 = (θ′ ∨ CgFV(x,y)(ker f )) ∩ FV(x)2 = (θ′ ∩ FV(x)2) ∨ ker f .

It therefore suffices to prove that θ′ ∩ FV(x)2 ⊆ ker f . Consider any equation ε(x) such

that ε̂ ∈ θ′ ∩ FV(x)2. An application of Lemma 2.1 yields V |= ψ+ → ε and, by (9), we

obtain A |= ε(a). Hence ε̂ ∈ ker f as required.

To conclude the proof, we show that B |= ψ(a, b), where b is the image under g of

the equivalence class of y. Since θ′ ⊆ θ = ker g, we have B |= ψ+(a, b). Suppose

towards a contradiction that B |= σi(a, b) for some i ∈ {1, . . . ,m}. Then σ̂i ∈ θ, and so

V |= (ψ+ & γ) → σi for some conjunction γ(x) of equations in ker f . By (7), we have

V |= γ → πi and hence, by (8), also V |= γ → π′
i
. Together with A |= γ(a), this entails

A |= π′
i
(a), contradicting the fact that A |= χ(a). ⊣

We now complete the proof of Theorem 4.5 by establishing the necessity of the stated

conditions, recalling that a variety that has equationally definable principal congruences

is congruence distributive (Proposition 4.4).

Proposition 4.8. Let V be a congruence distributive variety that has the compact in-

tersection property. If the theory of V has a model completion, then V is coherent and

has the amalgamation property and equational variable restriction property.
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Proof. If the theory of V has a model completion, then V is coherent and has the

amalgamation property by Theorem 3.2. Hence, it remains to settle the equational vari-

able restriction property. To this end, consider a finite set x, y and conjunction of equa-

tions γ(x, y). We must find a formula π(x) that is either ⊥ or a conjunction of equations

such that V |= π→ γ and for any conjunction of equations ϕ(x),

V |= ϕ→ γ =⇒ V |= ϕ→ π.

Let T ≔ Th(V) be the theory of V, and let T ∗ be a model completion of T . Since T ∗ has

quantifier elimination, there exists a quantifier-free formula ξ(x) satisfying

T ∗ ⊢ ∀x [(∀y.γ)↔ ξ].

So T ∗ ⊢ ∀x, y (ξ → γ) and, since T and T ∗ are co-theories, T ⊢ ∀x, y (ξ → γ). Assume

without loss of generality that ξ = ξ1g · · ·gξm where each ξi is a conjunction of literals.

For each i ∈ {1, . . . ,m}, we have V |= ξi → γ and so, by the disjunction property for

varieties, either V |= ξ+
i
→ γ or V |= ¬ξi.

Now let J ≔ {i ∈ {1, . . . ,m} | ξi is satisfiable in V}. Then V |= gi∈J ξ
+
i
→ γ, noting

thatgi∈J ξ
+
i
= ⊥ for J = ∅. By Lemma 4.1, or taking ⊥ if J = ∅, there exists a formula

π(x) that is either ⊥ or a conjunction of equations such that for any equation ε(x, z),

V |=g
i∈J

ξ+i → ε ⇐⇒ V |= π→ ε.

In particular, V |= π → γ. Now let ϕ(x) be any conjunction of equations such that

V |= ϕ → γ. Then T ⊢ ∀x [ϕ → (∀y.γ)] and, since T and T ∗ are co-theories, T ∗ ⊢

∀x [ϕ → (∀y.γ)]. Hence T ∗ ⊢ ∀x (ϕ → ξ) and, again using the fact that T and T ∗ are

co-theories, T ⊢ ∀x (ϕ → ξ), yielding V |= ϕ → ξ. But then V |= ϕ → gi∈J ξ
+
i

and,

since V |=gi∈J ξ
+
i
→ π, by the above equivalence, V |= ϕ→ π as required. ⊣

Finally, in this section, we show that for varieties that have the congruence extension

property, a small generalization of the equational variable restriction property implies

the amalgamation property. Let us first recall the following well-known relationship

between amalgamation and deductive interpolation.

Proposition 4.9 (cf. [30, Theorem 22]). Let V be a variety that has the congruence

extension property. V has the amalgamation property if, and only if, it has the deductive

interpolation property; that is, for any finite sets x, y, z and conjunctions of equations

ϕ(x, y), γ(x, z) satisfying V |= ϕ → γ, there exists a conjunction of equations π(x) such

that V |= ϕ→ π and V |= π→ γ.

It follows easily that the amalgamation property and equational variable restriction

property can be combined into a single “uniform interpolation” property.

Corollary 4.10. Let V be a variety that has the congruence extension property. Then

the following statements are equivalent:

(1) V has the amalgamation property and the equational variable restriction property.

(2) For any finite set x, y and conjunction of equations γ(x, y), there exists a formula

π(x) that is either ⊥ or a conjunction of equations such that V |= π → γ and for

any conjunction of equations ϕ(x, z),

V |= ϕ→ γ =⇒ V |= ϕ→ π.
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Proof. (1) ⇒ (2) Suppose that V has the amalgamation property and the equational

variable restriction property, and consider a finite set x, y and conjunction of equations

γ(x, y). By the equational variable restriction property, there exists a formula π(x) that

is either ⊥ or a conjunction of equations such that V |= π → γ and for any conjunction

of equations ϕ(x),

V |= ϕ→ γ =⇒ V |= ϕ→ π.

Now consider a conjunction of equations ϕ(x, z) satisfying V |= ϕ → γ. Since V has

the congruence extension property and the amalgamation property, by Proposition 4.9,

there exists a conjunction of equations π′(x) such that V |= ϕ→ π′ and V |= π′ → γ. By

the above implication, V |= π′ → π and hence also V |= ϕ→ π as required.

(2)⇒ (1) The amalgamation property and the equational variable restriction property

both follow directly from condition (2) and Proposition 4.9. ⊣

Relationships between uniform interpolation and the existence of model completions

have been investigated in some depth by Ghilardi and Zawadowski in the setting of

intermediate and modal logics [19, 20]. In particular, Pitts’ uniform interpolation the-

orem for intuitionistic propositional logic [35] is used to deduce that the variety HA

of Heyting algebras satisfies certain categorical conditions and therefore has a model

completion. In the terminology of this section: it follows from Pitts’ theorem that HA

is coherent and satisfies condition (2) of Corollary 4.10 and hence has the amalgama-

tion property and the equational variable restriction property; the result then follows

by Theorem 4.5 (a slight generalization of [19, Theorem 4]), since HA has the compact

intersection property and equationally definable principal congruences. More generally,

the theories of precisely eight varieties of Heyting algebras (those that have the amalga-

mation property) have a model completion [20]; finite axiomatizations of these model

completions for the six locally finite cases are provided in [11].

§5. Parametrically definable principal congruences. In this section, we show that

if a variety satisfies certain congruence lattice conditions and has a model completion,

then it must have equationally definable principal congruences. Our main technical tool

is a weaker condition for defining principal congruences that is inspired by work of

Glass and Pierce on existentially complete lattice-ordered abelian groups [22].

We say that a class of algebras K has parametrically definable principal congruences

if there exists a quantifier-free formula ξ(x1, x2, y1, y2, z) such that for each A ∈ K and

all a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ any B ∈ K extending A satisfies B |= ∀z.ξ(a1, a2, b1, b2, z).

Clearly, if a class of algebras has equationally definable principal congruences, it has

parametrically definable principal congruences. However, there are classes of algebras

that have parametrically definable principal congruences but do not even have first-order

definable principal congruences (see Example 5.8). The following proposition shows

that this cannot be the case for a universal class of algebras whose theory has a model

completion.

Proposition 5.1. Let K be a universal class of algebras with parametrically definable

principal congruences. If the theory of K has a model completion, then K has quantifier-

free definable principal congruences.
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Proof. Suppose that K has parametrically definable principal congruences, witnessed

by a quantifier-free formula ξ(x1, x2, y1, y2, z), and that the theory of K has a model

completion. We can assume that ¬ξ = ψ1 g · · · g ψn, where each ψi is a conjunction of

literals. By Proposition 3.8, for each i ∈ {1, . . . , n}, there exists a quantifier-free formula

χi(x1, x2, y1, y2) such that

(i) K |= ψi → χi

(ii) for any A ∈ K, and a1, a2, b1, b2 ∈ A satisfying A |= χi(a1, a2, b1, b2), there exists

an extension B ∈ K of A such that B |= ∃z.ψi(a1, a2, b1, b2, z).

We claim that for each A ∈ K and all a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ A |= &
1≤i≤n

¬χi(a1, a2, b1, b2),

and hence that K has quantifier-free definable principal congruences. Suppose first

that (a1, a2) ∈ CgA(b1, b2). By assumption, any B ∈ K extending A satisfies B |=

∀z.ξ(a1, a2, b1, b2, z) and hence B 6|= ∃z.ψi(a1, a2, b1, b2, z) for each i ∈ {1, . . . , n}. But

then, by (ii), also A |= ¬χi(a1, a2, b1, b2) for each i ∈ {1, . . . , n}. Now suppose that

(a1, a2) < CgA(b1, b2). By assumption, there exists an extension B ∈ K of A such that

B 6|= ∀z.ξ(a1, a2, b1, b2, z), and hence B |= ∃z.ψi(a1, a2, b1, b2, z) for some i ∈ {1, . . . , n}.

But then, since K |= ψi → χi, by (i), also B |= χi(a1, a2, b1, b2). Finally, as χi is

quantifier-free, it follows that A |= χi(a1, a2, b1, b2). ⊣

Example 5.2. It is easy to see that the variety of abelian groups does not have first-

order definable principal congruences. If this were the case, there would be a first-order

formula α(x, y) such that for any abelian group G, an element a ∈ G belongs to the

subgroup of G generated by an element b ∈ G if, and only if, G |= α(a, b). But then

the sentence ∃y∀x.α(x, y) would define the class of cyclic groups, contradicting the fact

that this class is not elementary. On the other hand, the theory of abelian groups does

have a model completion (cf. [13]). Proposition 5.1 therefore tells us that the variety of

abelian groups does not have parametrically definable principal congruences.

We strengthen Proposition 5.1 by exploiting the following fact, due to Fried, Grätzer,

and Quackenbush [14].

Proposition 5.3 ([14, Theorems 4.5 and 6.9]). Let V be a congruence distributive va-

riety that has the congruence extension property. V has first-order definable principal

congruences if, and only if, it has equationally definable principal congruences.

Combining this fact with Proposition 5.1 yields the following result.

Proposition 5.4. Let V be a congruence distributive variety that has the congruence

extension property and parametrically definable principal congruences. If the theory of

V has a model completion, then V has equationally definable principal congruences.

We now provide a sufficient syntactic condition for a variety with the congruence

extension property to have parametrically definable principal congruences that is easier

to establish in certain cases. We say that a variety V has a guarded deduction theorem

if there exist conjunctions of equations γ(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z) such that

for any finite set w with w ∩ z = ∅, terms s1(w), s2(w), t1(w), t2(w), and conjunction of

equations π(w),

(i) V |= (π& (t1 ≈ t2))→ (s1 ≈ s2) ⇐⇒ V |= π→ ∀z.(γ→ ϕ)(s1, s2, t1, t2, z)
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(ii) V |= (π& γ(s1, s2, t1, t2, z))→ σ ⇐⇒ V |= π→ σ for any equation σ(w).

This property has the following algebraic characterization:

Proposition 5.5. The following statements are equivalent for any variety V:

(1) V has a guarded deduction theorem.

(2) There exist conjunctions of equations γ(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z) such

that for any finitely generated algebra A ∈ V and a1, a2, b1, b2 ∈ A, there exists an

embedding of A into some member of V satisfying ∃z.γ(a1, a2, b1, b2, z), and

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ B |= ∀z.(γ→ ϕ)(h(a1), h(a2), h(b1), h(b2), z)

for any B ∈ V and homomorphism h : A→ B.

Proof. (1) ⇒ (2) Let γ(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z) be conjunctions of

equations satisfying the conditions for a guarded deduction theorem, and fix a finitely

generated algebra A ∈ V and a1, a2, b1, b2 ∈ A. We claim that γ and ϕ satisfy the

equivalence given in (2).

Note first that since A is finitely generated, there exists a surjective homomorphism

f : Tm(w) ։ A for some finite set w with w ∩ z = ∅. Let s1, s2, t1, t2 be terms in the

preimages under f of a1, a2, b1, b2, respectively. Now consider (a1, a2) ∈ CgA(b1, b2).

Since A is isomorphic to Tm(w)/ ker f , by the correspondence theorem for universal

algebra, (s1, s2) ∈ ker f ∨CgTm(w)(t1, t2). Moreover, since any congruence is the directed

union of the compact congruences below it, there exists a finite subset S ⊆ ker f such

that (s1, s2) ∈ CgTm(w)(S )∨CgTm(w)(t1, t2). Let π(w) be the conjunction of the equations

in S . It follows easily from Lemma 2.1 that V |= (π & (t1 ≈ t2)) → (s1 ≈ s2). Hence

V |= π → ∀z.(γ → ϕ)(s1, s2, t1, t2, z), by condition (i) in the definition of a guarded

deduction theorem. But A |= π( f (w)), so for any B ∈ V and homomorphism h : A→ B,

B |= ∀z.(γ→ ϕ)(h(a1), h(a2), h(b1), h(b2), z).

Now suppose that B |= ∀z.(γ → ϕ)(h(a1), h(a2), h(b1), h(b2), z) for any B ∈ V and

homomorphism h : A → B. Let D+(A) be the positive diagram of A, i.e., the set of all

atomic sentences in the language extended with names for the elements of A that are

satisfied in A. Then

Th(V) ∪D+(A) ⊢ ∀z.(γ→ ϕ)(a1, a2, b1, b2, z),

and hence, by the compactness theorem for first-order logic, there exists a finite subset

Σ ⊆ D+(A) such that Th(V) ∪ Σ ⊢ ∀z.(γ → ϕ)(a1, a2, b1, b2, z). For each member of Σ,

consider an equation in its preimage under the surjection Tm(w)2
։ A2. This yields a

finite subset of ker f , and letting π(w) denote the conjunction of the equations in this set,

we obtain V |= π → ∀z.(γ → ϕ)(s1, s2, t1, t2, z). By condition (i) in the definition of a

guarded deduction theorem, we obtain V |= (π&(t1 ≈ t2))→ (s1 ≈ s2). Now let q : A։

A/CgA(b1, b2) be the natural quotient map. Since A/CgA(b1, b2), q f |= π& (t1 ≈ t2), we

have A/CgA(b1, b2), q f |= s1 ≈ s2, i.e., (a1, a2) ∈ CgA(b1, b2).

To conclude, it remains to show that A embeds into some member of V satisfying

∃z.γ(a1, a2, b1, b2, z). Let B be the quotient of FV(w, z) with respect to the congruence

CgFV(w,z)({̂ε | ε ∈ ker f } ∪ {σ̂ | σ is an equation of γ(s1, s2, t1, t2, z)}). Then B satisfies

∃z.γ(a1, a2, b1, b2, z) and it is not difficult to see, using condition (ii) in the definition of

a guarded deduction theorem, that B extends A.
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(2) ⇒ (1) Let γ(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z) be conjunctions of equations

satisfying the conditions in (2). Let w be any finite set satisfying w∩ z = ∅ and consider

terms s1(w), s2(w), t1(w), t2(w) and a conjunction of equations π(w).

Let A be the quotient of FV(w) with respect to CgFV(w)({̂ε | ε is an equation of π}),

with quotient map f : FV(w) ։ A. Let q : Tm(w) ։ FV(w) denote the natural quotient

map and define a1 ≔ f (q(s1)), a2 ≔ f (q(s2)), b1 ≔ f (q(t1)), and b2 ≔ f (q(t2)). By

Lemma 2.1, (a1, a2) ∈ CgA(b1, b2) if, and only if, V |= (π & (t1 ≈ t2)) → (s1 ≈ s2).

Hence, in order to settle condition (i) in the definition of a guarded deduction theorem,

it remains to show that V |= π→ ∀z.(γ→ ϕ)(s1, s2, t1, t2, z) if, and only if, for any B ∈ V

and homomorphism h : A→ B,

B |= ∀z.(γ→ ϕ)(h(a1), h(a2), h(b1), h(b2), z).

This follows by reasoning as in the proof of (1)⇒ (2).

With respect to condition (ii) in the definition of a guarded deduction theorem, let B

denote the quotient of FV(w, z) with respect to

CgFV(w,z)({̂ε | ε is an equation of π(w)} ∪ {σ̂ | σ is an equation of γ(s1, s2, t1, t2, z)}).

Note that there is a canonical homomorphism k : A → B. By assumption, there is an

embedding j : A →֒ B′ with B′ ∈ V and B′ |= ∃z.γ(a1, a2, b1, b2, z). It follows easily

that there is a homomorphism h : B → B′ such that j = hk. Since j is injective, so

is k. Hence, by Lemma 2.1, we have that V |= (π & γ(s1, s2, t1, t2, z)) → σ′ implies

V |= π→ σ′ for any equation σ′(w). ⊣

Proposition 5.6. Let V be a variety that has the congruence extension property and a

guarded deduction theorem. Then V has parametrically definable principal congruences.

Proof. It suffices to show that V has parametrically definable principal congruences

whenever the property in condition (2) of Proposition 5.5 holds for some γ and ϕ. Let

ξ(x1, x2, y1, y2, z) ≔ γ→ ϕ. We claim that for all A ∈ V and a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ each B ∈ V extending A satisfies B |= ∀z.ξ(a1, a2, b1, b2, z).

Suppose first that (a1, a2) ∈ CgA(b1, b2). By the congruence extension property, (a1, a2) ∈

CgA′ (b1, b2), where A′ is the subalgebra of A generated by a1, a2, b1, b2. Since A′ is a

finitely generated member of V, it follows from condition (2) of Proposition 5.5 that

B |= ∀z.ξ(a1, a2, b1, b2, z) for every B ∈ V extending A′, and hence, in particular, for

every B ∈ V extending A.

Now suppose that (a1, a2) < CgA(b1, b2). We assume first that A is finitely generated,

and then deduce the general case. Let w be a finite set such that w ∩ z = ∅ and there

exists a surjective homomorphism f : Tm(w) ։ A. We can assume without loss of

generality that x1, x2, y1, y2 ∈ w, and also f (x1) = b1, f (x2) = b2, f (y1) = a1, f (y2) = a2.

Let B ≔ FV(w, z)/θ, where

θ ≔ CgFV(w,z)({̂ε | ε ∈ ker f } ∪ {σ̂ | σ is an equation of γ}).

We claim that B extends A. Let j : A → B be the canonical homomorphism mapping

a1, a2, b1, b2 to the equivalence classes of x1, x2, y1, y2, respectively. By assumption,

there exist B′ ∈ V and an embedding i : A → B′ such that B′ |= ∃z.γ(a1, a2, b1, b2, z). It

is not difficult to see that i factors through j, and since i is injective, so is j.

Now, by assumption, there exist C ∈ V and a homomorphism h : A → C satisfying

C |= ∃z.(γ & ¬ϕi)(h(a1), h(a2), h(b1), h(b2), z) for some equation ϕi of ϕ. It follows that
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there exists a homomorphism k : Tm(w, z)→ C which factors through the composition

g : Tm(w, z)։ FV(w, z)։ B and satisfies ϕi < ker k, as depicted in the diagram:

Tm(w) Tm(w, z)

A B

C

f g

k

h

j

So ϕi < ker g, showing that B is an extension of A satisfying B 6|= ∀z.ξ(a1, a2, b1, b2, z).

To conclude, consider any A ∈ V and suppose that B |= ∀z.ξ(a1, a2, b1, b2, z) for all

B ∈ V extending A. Then Th(V) ∪ D(A) ⊢ ∀z.ξ(a1, a2, b1, b2, z), where D(A) is the

diagram of A, i.e., the collection of all atomic sentences and negated atomic sentences

in the language extended with names for the elements of A that are satisfied in A. By

the compactness theorem for first-order logic, there is a finite subset Σ ⊆ D(A) such

that Th(V) ∪ Σ ⊢ ∀z.ξ(a1, a2, b1, b2, z). Let A′ be the subalgebra of A generated by

a1, a2, b1, b2 and the elements named by Σ. As the diagram of A′ contains Σ, every B′ ∈

V extending A′ satisfies B′ |= ∀z.ξ(a1, a2, b1, b2, z). Note that A′ is a finitely generated

member of V and so, by the argument above, (a1, a2) ∈ CgA′ (b1, b2) ⊆ CgA(b1, b2). ⊣

Combining Propositions 5.4 and 5.6 yields the main result of this section.

Theorem 5.7. Let V be a congruence distributive variety that has the congruence ex-

tension property and a guarded deduction theorem. If the theory of V has a model

completion, then V has equationally definable principal congruences.

Example 5.8. As first proved by Glass and Pierce in [22], the theory of the variety LA

of lattice-ordered abelian groups does not have a model completion. It is well-known

that LA is congruence distributive and has the congruence extension property, but does

not have equationally (or even first-order) definable principal congruences. Hence it

suffices, by Theorem 5.7, to observe that the formulas

γ ≔ (x1 − x2) ∧ (x2 − x1) ∧ 0 ≤ z & ((y1 − y2) ∧ (y2 − y1) ∧ 0) ∨ z ≈ 0 and ϕ ≔ z ≈ 0

satisfy conditions (i) and (ii) in the definition of a guarded deduction theorem for LA.

§6. Varieties of pointed residuated lattices. In this section, we apply the results of

the last two sections to a family of varieties of algebras that provide algebraic semantics

for substructural logics, including (up to term-equivalence) lattice-ordered groups, MV-

algebras, and Heyting algebras (see, e.g., [5, 16, 31]).

A pointed residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, e, 0〉 such that 〈A,∧,∨〉

is a lattice, 〈A, ·, e〉 is a monoid, and \, / are left and right residuals, respectively, of · in

the underlying lattice order, i.e., for all a, b, c ∈ A,

b ≤ a\c ⇐⇒ a · b ≤ c ⇐⇒ a ≤ c/b.

It will be useful to define a further binary operation x ≡ y ≔ (x\y) ∧ (y\x) ∧ e, noting

that (a ≡ b) = e for a, b ∈ A if, and only if, a = b. We also define for any a ∈ A

inductively a0
≔ e and an+1

≔ a · an (n ∈ N).

Pointed residuated lattices form a congruence distributive variety [5], and include the

subvariety CPRL of commutative pointed residuated lattices satisfying x · y ≈ y · x.
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In particular, a Heyting algebra is term-equivalent to a commutative pointed residuated

lattice satisfying x · y ≈ x ∧ y and x ∧ 0 ≈ 0, and a Boolean algebra is term-equivalent

to a Heyting algebra satisfying (x\0)\0 ≈ x.

Let V be a variety of pointed residuated lattices. We let Vc denote the class of linearly

ordered members of V, and call V semilinear if V = ISP(Vc). Semilinearity can also

be expressed equationally; in particular, a variety of commutative pointed residuated

lattices is semilinear if, and only if, it satisfies e ≈ ((x\y) ∧ e) ∨ ((y\x) ∧ e) [5].

Example 6.1. The variety LA of lattice-ordered abelian groups is term-equivalent to

the variety of commutative pointed residuated lattices satisfying e ≈ 0 and x · (x\e) ≈ e.

More precisely, if 〈L,∧,∨,+,−, 0〉 ∈ LA and we define x · y ≔ x + y, x\y ≔ y − x,

and x/y ≔ x − y, then 〈L,∧,∨, ·, \, /, 0, 0〉 ∈ CPRL satisfies e ≈ 0 and x · (x\e) ≈ e.

Conversely, if L ∈ CPRL satisfies e ≈ 0 and x · (x\e) ≈ e and we define x + y ≔ x · y

and −x ≔ x\e, then 〈L,∧,∨,+,−, 0〉 ∈ LA. Recall also that LA = ISP(LA
c), so the

corresponding variety of pointed residuated lattices is semilinear.

Example 6.2. The variety MV of MV-algebras is term-equivalent to the variety of

commutative pointed residuated lattices satisfying x ∨ y ≈ (x\y)\y and x ∧ 0 ≈ 0. More

precisely, if 〈M,⊕,¬, 0〉 ∈ MV and we define x · y ≔ ¬(¬x ⊕ ¬y), x\y ≔ ¬x ⊕ y,

x/y ≔ x ⊕ ¬y, and e ≔ ¬0, then 〈M,∧,∨, ·, \, /, e, 0〉 ∈ CPRL satisfies x ∨ y ≈ (x\y)\y

and x ∧ 0 ≈ 0. Conversely, if M ∈ CPRL satisfies x ∨ y ≈ (x\y)\y and x ∧ 0 ≈ 0

and we define x ⊕ y ≔ (x\0)\y and ¬x ≔ x\0, then 〈M,⊕,¬, 0〉 ∈ MV. Again, since

MV = ISP(MVc), the corresponding variety of pointed residuated lattices is semilinear.

Let us call a variety V of pointed residuated lattices Hamiltonian3 if for some k ∈ N>0,

V |= (x ∧ e)k · y ≈ y · (x ∧ e)k.

The following proposition collects some useful facts about such varieties.

Proposition 6.3 ([15, Lemma 3.14, Proposition 3.15, and Lemma 3.17]). Let V be a

Hamiltonian variety of pointed residuated lattices.

(a) For any A ∈ V and a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ (b1 ≡ b2)n ≤ a1 ≡ a2 for some n ∈ N.

(b) V has equationally definable principal congruences if, and only if, for some n ∈ N,

V |= (x ∧ e)n ≈ (x ∧ e)n+1.

(c) V has the congruence extension property.

We show now that every Hamiltonian variety of pointed residuated lattices has both

the compact intersection property and a guarded deduction theorem, which, combined

with Theorems 4.5 and 5.7, will allow us to determine which of these varieties have a

theory that has a model completion.

Lemma 6.4. Let V be a Hamiltonian variety of pointed residuated lattices. Then V

has the compact intersection property.

3An algebra A is usually called Hamiltonian if every non-empty subuniverse of A is an equivalence class

of some congruence of A. In [6], it is shown that a variety of pointed residuated lattices satisfying x\e ≈ e/x

consists of Hamiltonian algebras in this sense if, and only if, it has the property given in our definition.
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Proof. Every compact congruence of an algebra A ∈ V is a finite join of principal

congruences of A and hence, by congruence distributivity, the intersection of any two

compact congruences of A is a finite join of intersections of principal congruences of

A. It therefore suffices to show that for all b1, b2, c1, c2 ∈ A,

CgA(b1, b2) ∩ CgA(c1, c2) = CgA(e, (b1 ≡ b2) ∨ (c1 ≡ c2)).

Suppose first that (a1, a2) ∈ CgA(b1, b2) ∩ CgA(c1, c2). Then Proposition 6.3.(a) yields

(b1 ≡ b2)n1 ≤ a1 ≡ a2 and (c1 ≡ c2)n2 ≤ a1 ≡ a2 for some n1, n2 ∈ N. Let n ≔

max (n1, n2). Then (b1 ≡ b2)n ∨ (c1 ≡ c2)n ≤ a1 ≡ a2 and, using some elementary

properties of pointed residuated lattices, also ((b1 ≡ b2) ∨ (c1 ≡ c2))2n ≤ a1 ≡ a2. By

Proposition 6.3.(a) again, (a1, a2) ∈ CgA(e, (b1 ≡ b2) ∨ (c1 ≡ c2)). Now suppose that

(a1, a2) ∈ CgA(e, (b1 ≡ b2) ∨ (c1 ≡ c2)). It follows easily, again using some elementary

properties of pointed residuated lattices, that (a1, a2) ∈ CgA(b1, b2) ∩ CgA(c1, c2). ⊣

Lemma 6.5. Let V be a Hamiltonian variety of pointed residuated lattices. Then V

has a guarded deduction theorem.

Proof. We show that the formulas

γ ≔ (x1 ≡ x2) ≤ z & (y1 ≡ y2) ∨ z ≈ e and ϕ ≔ z ≈ e

satisfy conditions (i) and (ii) in the definition of a guarded deduction theorem for a finite

set w with z < w, terms s1(w), s2(w), t1(w), t2(w), and conjunction of equations π(w).

For (i), suppose first that V |= (π & (t1 ≈ t2)) → (s1 ≈ s2). To show that V |= π →

∀z.(γ → ϕ)(s1, s2, t1, t2, z), consider any A ∈ V and assignment f : w → A such that

A, f |= π, and let g : w, z → A be a map extending f such that A, g |= γ(s1, s2, t1, t2, z).

Then A, g |= (s1 ≡ s2) ≤ z and A, g |= (t1 ≡ t2) ∨ z ≈ e. It follows that also A, g |= z ≤ e

and hence to show that A, g |= ϕ(s1, s2, t1, t2, z), it suffices to prove the following:

Claim. A, g |= e ≤ z.

Proof of Claim. Let g̃ : Tm(w, z) → A be the unique homomorphism extending g,

and define a1 ≔ g̃(s1), a2 ≔ g̃(s2), b1 ≔ g̃(t1), b2 ≔ g̃(t2), and c ≔ g̃(z). We prove first

that e ≤ (b1 ≡ b2)k ∨ c for all k ∈ N>0, proceeding by induction on k. The base case

follows from the fact that A, g |= (t1 ≡ t2) ∨ z ≈ e. For the inductive step, we obtain

e ≤ (b1 ≡ b2)k ∨ c by the induction hypothesis

≤ (((b1 ≡ b2) ∨ c) · (b1 ≡ b2)k) ∨ c since e ≤ (b1 ≡ b2) ∨ c

= ((b1 ≡ b2)k+1 ∨ c · (b1 ≡ b2)k) ∨ c by the distributivity of · over ∨

≤ (b1 ≡ b2)k+1 ∨ c since b1 ≡ b2 ≤ e.

Now let q denote the natural quotient map from A onto A/CgA(b1, b2). By assumption,

V |= (π & (t1 ≈ t2)) → (s1 ≈ s2), so A/CgA(b1, b2), q f |= s1 ≈ s2, i.e., (a1, a2) ∈

CgA(b1, b2). By Proposition 6.3.(a), we obtain (b1 ≡ b2)n ≤ a1 ≡ a2 for some n ∈ N.

But A, g |= (s1 ≡ s2) ≤ z, so also (a1 ≡ a2) ≤ c and (b1 ≡ b2)n ≤ c. Hence we get

e ≤ (b1 ≡ b2)n ∨ c = c; that is, A, g |= e ≤ z. ⊣

Now suppose that V |= π → ∀z.(γ → ϕ)(s1, s2, t1, t2, z). To show that V |= (π & (t1 ≈

t2)) → (s1 ≈ s2), consider any A ∈ V and assignment f : w → A such that A, f |=

π & (t1 ≈ t2). Since z < w, we can extend f to an assignment g : w, z → A by setting

g(z) ≔ f̃ (s1 ≡ s2), where f̃ : Tm(w) → A is the unique homomorphism extending f .
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Clearly, A, g |= π & γ(s1, s2, t1, t2, z) and hence, by assumption, A, g |= z ≈ e. It follows

that A, f |= (s1 ≡ s2) ≈ e, and so A, f |= s1 ≈ s2.

For the non-trivial direction of (ii), suppose that V |= (π & γ(s1, s2, t1, t2, z)) → σ

for some equation σ(w). To show that V |= π → σ, consider any algebra A ∈ V and

assignment f : w → A such that A, f |= π. Extend f to an assignment g : w, z → A

by setting g(z) ≔ e. Then A, g |= π & γ(s1, s2, t1, t2, z) and hence, by assumption,

A, f |= σ. ⊣

Theorems 4.5 and 5.7 then yield the following description of Hamiltonian varieties

of pointed residuated lattices whose theories have a model completion.

Theorem 6.6. Let V be a Hamiltonian variety of pointed residuated lattices. The

theory of V has a model completion if, and only if, V is coherent and has equationally

definable principal congruences, the amalgamation property, and the equational variable

restriction property.

Example 6.7. Since the variety of lattice-ordered abelian groups is Hamiltonian but

does not have equationally definable principal congruences, it follows directly from

Theorem 6.6 that, as already mentioned in Example 5.8 and first proved in [22], its

theory does not have a model completion. Similarly, the variety of MV-algebras does

not have a model completion, as first proved in [28].

An analogous result to Theorem 6.6 was obtained in [27] for Hamiltonian varieties

of pointed residuated lattices that are closed under canonical extensions; for this latter

notion, we refer to [18, 17].

Proposition 6.8 ([27, Theorem 5.11]). Let V be a Hamiltonian variety of pointed resid-

uated lattices that is closed under canonical extensions. If V is coherent, then it has

equationally definable principal congruences.

We use Proposition 6.8 to show that if a Hamiltonian semilinear variety V of pointed

residuated lattices is closed under canonical extensions and the theory of Vc has a model

completion, then V has equationally definable principal congruences.

Lemma 6.9. Let V be a semilinear variety of pointed residuated lattices. If Vc has the

variable projection property, then V is coherent.

Proof. The claim clearly holds if Vc is trivial (contains only trivial algebras), so let

us assume that this is not the case. Suppose that Vc has the variable projection property

and consider a finite set x, y and conjunction of equations ϕ(x, y). By assumption, there

exists a quantifier-free formula ξ(x) such that Vc |= ϕ→ ξ and for any equation ε(x),

V
c |= ϕ→ ε =⇒ V

c |= ξ → ε.

We may assume without loss of generality that ξ is a conjunction of formulas of the

form π → δ where π is a (possibly empty) conjunction of equations and δ is a non-

empty disjunction of equations. Using some elementary properties of pointed residuated

lattices, we may also assume that δ is of the form e ≤ s1 g · · · g e ≤ sn. But also, using

the fact that V
c consists of linearly ordered pointed residuated lattices,

V
c |= (e ≤ s1 g · · · g e ≤ sn)↔ (e ≤ s1 ∨ · · · ∨ sn).

Hence we may further assume that ξ is a conjunction of quasiequations. But then, since

V and Vc satisfy the same quasiequations, V also has the variable projection property

and, by Proposition 2.4, is coherent. ⊣
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Proposition 6.10. Let V be a Hamiltonian semilinear variety of pointed residuated

lattices that is closed under canonical extensions. If the theory of Vc has a model com-

pletion, then V has equationally definable principal congruences.

Proof. Suppose that the theory of Vc has a model completion. By Proposition 3.7,

the class Vc has the variable projection property. Hence, by Lemma 6.9, the variety V is

coherent and, by Proposition 6.8, has equationally definable principal congruences. ⊣

Example 6.11. Consider the class CRLc of linearly ordered commutative pointed

residuated lattices. The variety generated by CRLc is closed under canonical extensions

(cf. [16, Chapter 6]) and does not have equationally definable principal congruences.

So, by Proposition 6.10, the theory of CRLc does not have a model completion.

Note that the Hamiltonian semilinear varieties LA and MV are coherent and do not

have equationally definable principal congruences, but are not closed under canonical

extensions. Moreover, as we have already seen, the theories of LAc and MVc have a

model completion, but this is not the case for LA and MV.

§7. Extending the language. Let L be the language of pointed residuated lattices

and let L⊲ be L extended with an additional binary operation symbol ⊲. In this section,

we show how to associate with any semilinear variety V of pointed residuated lattices,

a variety V⊲ of L⊲-algebras that has equationally definable principal congruences and

satisfies the same universal L-sentences as V. We then show that if V satisfies a certain

syntactic property, the theory of V⊲ has a model completion. In particular, this is the

case for the varieties of lattice-ordered abelian groups and MV-algebras.

Given any semilinear variety V of pointed residuated lattices, let Vc
⊲

denote the class

of linearly ordered members of V expanded with a binary operation ⊲ defined by

x ⊲ y ≔


y if e ≤ x

e otherwise.

That is, Vc
⊲

is the positive universal class consisting of L⊲-algebras that satisfy the

equational theory of V and the universal sentences

∀x, y (x ≤ y g y ≤ x) and ∀x, y [(e ≤ x → x ⊲ y ≈ y) & (e � x → x ⊲ y ≈ e)].

Let V⊲ be the variety generated by Vc
⊲
. Since Vc

⊲
is a positive universal class, it follows

from Jónsson’s Lemma [25] that V⊲ = ISP(V
c
⊲
). Moreover, we obtain the following

conservative extension result.

Proposition 7.1. Let V be any semilinear variety of pointed residuated lattices. Then

for any quantifier-freeL-formula χ,

V⊲ |= χ ⇐⇒ V |= χ.

Proof. Since V and V⊲ are both varieties, they satisfy the disjunction property (see

Section 2), and it therefore suffices to establish the equivalence for the case where χ

is an L-quasiequation. Suppose first that V⊲ 6|= χ. Since the L-reduct of any member

of V⊲ belongs to V, also V 6|= χ. Now suppose that V 6|= χ. Since V is semilinear,

V = ISP(Vc), and hence Vc 6|= χ. But every member of Vc is the L-reduct of a member

of V⊲, and therefore also V⊲ 6|= χ. ⊣
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For convenience of notation, let us define for any class K of algebras with a pointed

residuated lattice reduct and a finite set of L-terms or L⊲-terms Γ ∪ {t},

Γ |=K t :⇐⇒ K |=&{e ≤ s | s ∈ Γ} → e ≤ t.

It follows easily that for any conjunction of equations π and equation u ≈ v,

K |= π→ u ≈ v ⇐⇒ {s ≡ t | s ≈ t is an equation of π} |=K u ≡ v.

We now use this notation to describe a deduction theorem for V⊲.

Proposition 7.2. Let V be any semilinear variety of pointed residuated lattices. Then

for any finite set x and finite Γ ∪ {s, t} ⊆ TmL⊲(x),

Γ ∪ {s} |=V⊲ t ⇐⇒ Γ |=V⊲ s ⊲ t.

Proof. Using the fact that V⊲ = ISP(V
c
⊲
), it suffices to prove that for any finite set x

and finite Γ ∪ {s, t} ⊆ TmL⊲(x),

Γ ∪ {s} |=Vc
⊲

t ⇐⇒ Γ |=Vc
⊲

s ⊲ t.

Suppose first that Γ ∪ {s} |=Vc
⊲

t and consider any A ∈ Vc
⊲

and assignment f : x → A

satisfying e ≤ f̃ (u) for all u ∈ Γ. If f̃ (s) < e, then e = f̃ (s) ⊲ f̃ (t) = f̃ (s ⊲ t); otherwise

e ≤ f̃ (s) and, by assumption, e ≤ f̃ (t) = f̃ (s) ⊲ f̃ (t) = f̃ (s ⊲ t). Hence Γ |=V
c
⊲

s ⊲ t.

Suppose now that Γ |=Vc
⊲

s ⊲ t and consider any A ∈ Vc
⊲

and assignment f : x → A

satisfying e ≤ f̃ (s) and e ≤ f̃ (u) for all u ∈ Γ. Then, by assumption, e ≤ f̃ (s ⊲ t) =

f̃ (s) ⊲ f̃ (t) = f̃ (t). Hence Γ ∪ {s} |=Vc
⊲

t. ⊣

The next result is then a direct consequence of Proposition 4.3.

Corollary 7.3. Let V be any semilinear variety of pointed residuated lattices. Then

V⊲ has equationally definable principal congruences.

We also obtain a uniform method for transforming a disjunct in the conclusion of a

consequence into a premise. For a finite set x = {x1, . . . , xn} and s ∈ TmL⊲(x), let

∇s ≔ s ⊲ ((0 ≡ e) ∧
∧

1≤ j≤n

(x j ≡ e)).

Lemma 7.4. Let V be any semilinear variety of pointed residuated lattices. Then for

any finite set x and finite Γ ∪ {s, t} ⊆ TmL⊲(x),

Γ |=V⊲ s ∨ t ⇐⇒ Γ ∪ {∇s} |=V⊲ t.

Proof. Using the fact that V⊲ = ISP(V
c
⊲
), it suffices to prove that for any finite set

x = {x1, . . . , xn} and finite set Γ ∪ {s, t} ⊆ TmL⊲(x),

Γ |=Vc
⊲

s ∨ t ⇐⇒ Γ ∪ {∇s} |=Vc
⊲

t.

Suppose first that Γ |=Vc
⊲

s ∨ t and consider any A ∈ Vc
⊲

and assignment f : x → A such

that e ≤ f̃ (∇s) and e ≤ f̃ (u) for all u ∈ Γ. Then, by assumption, e ≤ f̃ (s∨ t). If e ≤ f̃ (s),

then e ≤ f̃ (∇s) = f̃ ((0 ≡ e) ∧
∧

1≤ j≤n(x j ≡ e)), yielding 0 = f̃ (x1) = · · · = f̃ (xn) = e

and, inductively, f̃ (t) = e. Otherwise, e ≤ f̃ (t). Hence Γ ∪ {∇s} |=Vc
⊲

t.

Suppose next that Γ∪ {∇s} |=V
c
⊲

t and consider any A ∈ V
c
⊲

and assignment f : x → A

such that e ≤ f̃ (u) for all u ∈ Γ. If e ≤ f̃ (s), then e ≤ f̃ (s ∨ t). Otherwise, f̃ (∇s) = e

and, by assumption, e ≤ f̃ (t), yielding e ≤ f̃ (s ∨ t). Hence Γ |=V
c
⊲

s ∨ t. ⊣
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The next lemma provides a uniform method for eliminating occurrences of ⊲ from

L⊲-quasiequations while preserving validity in V⊲. To avoid multiple case distinctions,

we introduce a new symbolΛ, fixing s∨Λ ≔ s, Λ∨ s ≔ s, ∇Λ ≔ e for any L⊲-term s.

Lemma 7.5. Let V be any semilinear variety of pointed residuated lattices. For any

finite set x, s ∈ TmL⊲(x), and t ∈ TmL⊲(x)∪ {Λ}, there exist a finite non-empty set I and

s′
i
∈ TmL(x), t′

i
∈ TmL(x) ∪ {Λ} for each i ∈ I such that for any u, v ∈ TmL⊲(x, y),

{u ∧ s} |=V⊲ t ∨ v ⇐⇒ ∀i ∈ I : {u ∧ s′i } |=V⊲ t′i ∨ v.

Proof. Let s′[t′] denote the result of replacing some distinguished occurrence of a

variable in a term s′ by a term t′. For s = s′[s1 ⊲ s2] and any u, v ∈ TmL⊲(x, y),

{u ∧ s} |=V⊲ t ∨ v ⇐⇒ {u ∧ s′[s2] ∧ s1} |=V⊲ t ∨ v and {u ∧ s′[e]} |=V⊲ t ∨ s1 ∨ v.

Similarly, for t = t′[t1 ⊲ t2] and any u, v ∈ TmL⊲(x, y),

{u ∧ s} |=V⊲ t ∨ v ⇐⇒ {u ∧ s ∧ t1} |=V⊲ t′[t2] ∨ v and {u ∧ s} |=V⊲ t′[e] ∨ t1 ∨ v.

Iterating these steps yields the required finite set I and s′
i
, t′

i
∈ TmL(x) for each i ∈ I. ⊣

We now provide sufficient conditions for a semilinear variety of pointed residuated

lattices V to ensure that the theory of V⊲ has a model completion.

Theorem 7.6. Let V be any semilinear variety of pointed residuated lattices such that

for any finite set x, y and s(x, y) ∈ TmL(x, y), t(x, y) ∈ TmL(x, y)∪{Λ}, there exist a finite

non-empty set K and s′
k
(x) ∈ TmL(x), t′

k
(x) ∈ TmL(x) ∪ {Λ} for each k ∈ K satisfying

for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=V t(x, y) ∨ v(x, z) ⇐⇒ ∀k ∈ K : {u(x, z) ∧ s′k(x)} |=V t′k(x) ∨ v(x, z).

Then the theory of V⊲ has a model completion.

Proof. From Corollary 7.3, we know that V⊲ has equationally definable principal

congruences. Hence, to conclude using Proposition 4.7 that the theory of V⊲ has a

model completion, it remains to prove that V⊲ is coherent and has the amalgamation

property and equational variable restriction property.

For coherence, it suffices to show that for any finite set x, y and s(x, y) ∈ TmL⊲(x, y),

there exists an s⋆(x) ∈ TmL⊲(x) such that for any v(x) ∈ TmL⊲(x),

{s(x, y)} |=V⊲ v(x) ⇐⇒ {s⋆(x)} |=V⊲ v(x).

By Lemma 7.5 (with t = Λ), there exist a finite non-empty set I and s′
i
(x, y) ∈ TmL(x, y),

t′
i
(x, y) ∈ TmL(x, y) ∪ {Λ} (i ∈ I) such that for any v(x) ∈ TmL⊲(x),

{s(x, y)} |=V⊲ v(x) ⇐⇒ ∀i ∈ I : {s′i (x, y)} |=V⊲ t′i (x, y) ∨ v(x). (10)

By assumption, there exist for each i ∈ I, a finite non-empty set Ki and s′′
i,k

(x) ∈ TmL(x),

t′′
i,k

(x) ∈ TmL(x) ∪ {Λ} (k ∈ Ki) satisfying for any u′(x), v′(x) ∈ TmL(x),

{u′(x) ∧ s′i (x, y)} |=V t′i (x, y) ∨ v′(x)

⇐⇒ ∀k ∈ Ki : {u′(x) ∧ s′′i,k(x)} |=V t′′i,k(x) ∨ v′(x).
(11)

We define now

s⋆(x) ≔
∨

i∈I

∨

k∈Ki

(
s′′i,k(x) ∧ ∇t′′i,k(x)

)
.
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Consider any v(x) ∈ TmL⊲ (x). By Lemma 7.5 (with s = e), there exist a finite non-

empty set J and u′
j
(x) ∈ TmL(x), v′

j
(x) ∈ TmL(x) ∪ {Λ} ( j ∈ J) such that for any

s′(x, y), t′(x, y) ∈ TmL⊲(x, y),

{s′(x, y)} |=V⊲ t′(x, y) ∨ v(x) ⇐⇒ ∀ j ∈ J : {u′j(x) ∧ s′(x, y)} |=V⊲ t′(x, y) ∨ v′j(x).

In particular, for each i ∈ I and k ∈ Ki,

{s′i (x, y)} |=V⊲ t′i (x, y) ∨ v(x) ⇐⇒ ∀ j ∈ J : {u′j(x) ∧ s′i (x, y)} |=V⊲ t′i (x, y) ∨ v′j(x) (12)

{s′′i,k(x)} |=V⊲ t′′i,k(x) ∨ v(x) ⇐⇒ ∀ j ∈ J : {u′j(x) ∧ s′′i,k(x)} |=V⊲ t′′i,k(x) ∨ v′j(x). (13)

Putting these equivalences together, it follows that

{s(x, y)} |=V⊲ v(x)

⇐⇒ ∀i ∈ I : {s′i (x, y)} |=V⊲ t′i (x, y) ∨ v(x) by (10)

⇐⇒ ∀i ∈ I, j ∈ J : {u′j(x) ∧ s′i (x, y)} |=V⊲ t′i (x, y) ∨ v′j(x) by (12)

⇐⇒ ∀i ∈ I, j ∈ J : {u′j(x) ∧ s′i (x, y)} |=V t′i (x, y) ∨ v′j(x) Prop. 7.1

⇐⇒ ∀i ∈ I, j ∈ J, k ∈ Ki : {u′j(x) ∧ s′′i,k(x)} |=V t′′i,k(x) ∨ v′j(x) by (11)

⇐⇒ ∀i ∈ I, j ∈ J, k ∈ Ki : {u′j(x) ∧ s′′i,k(x)} |=V⊲ t′′i,k(x) ∨ v′j(x) Prop. 7.1

⇐⇒ ∀i ∈ I, k ∈ Ki : {s′′i,k(x)} |=V⊲ t′′i,k(x) ∨ v(x) by (13)

⇐⇒ ∀i ∈ I, k ∈ Ki : {s′′i,k(x) ∧ ∇t′′i,k(x)} |=V⊲ v(x) Lem. 7.4

⇐⇒ {s⋆(x)} |=V⊲ v(x).

For the amalgamation property and equational variable restriction property, it suffices

by Corollary 4.10 to show that for any finite set x, y and t(x, y) ∈ TmL⊲(x, y), either

{w(x)} 6|=V⊲ t(x, y) for all w(x) ∈ TmL⊲(x) (taking care of the case in Corollary 4.10

where π(x) is ⊥) or there exists a t⋆(x) ∈ TmL⊲ (x) such that for any u(x, z) ∈ TmL⊲(x, z),

{u(x, z)} |=V⊲ t(x, y) ⇐⇒ {u(x, z)} |=V⊲ t⋆(x).

Suppose then that {w(x)} |=V⊲ t(x, y) for some w(x) ∈ TmL⊲(x). By iteratively replacing

w′[w1 ⊲ w2] with w′[w2] ∧ w1, we may assume without loss of generality that w(x) ∈

TmL(x). Next, by Lemma 7.5 (with s = e), there exist a finite non-empty set I and

s′
i
(x, y), t′

i
(x, y) ∈ TmL(x, y) (i ∈ I) such that for any u(x, z) ∈ TmL⊲(x, z),

{u(x, z)} |=V⊲ t(x, y) ⇐⇒ ∀i ∈ I : {u(x, z) ∧ s′i (x, y)} |=V⊲ t′i (x, y). (14)

Let us temporarily fix i ∈ I. By assumption, there exist a finite non-empty set Ki and

s′′
i,k

(x) ∈ TmL(x), t′′
i,k

(x) ∈ TmL(x) ∪ {Λ} (k ∈ Ki) such that for any u′(x, z), v′(x, z) ∈

TmL(x, z),

{u′(x, z) ∧ s′i (x, y)} |=V t′i (x, y) ∨ v′(x, z)

⇐⇒ ∀k ∈ Ki : {u′(x, z) ∧ s′′i,k(x)} |=V t′′i,k(x) ∨ v′(x, z).
(15)

Since {w(x)} |=V⊲ t(x, y), by (14) and Proposition 7.1, also {w(x) ∧ s′
i
(x, y)} |=V t′

i
(x, y).

Let t′′′
i,k

(x) ≔ t′′
i,k

(x) ∨ w(x) for each k ∈ Ki. Then for any u′(x, z), v′(x, z) ∈ TmL(x, z),

{u′(x, z) ∧ s′i (x, y)} |=V⊲ t′i (x, y) ∨ v′(x, z)

⇐⇒ ∀k ∈ Ki : {u′(x, z) ∧ s′′i,k(x)} |=V⊲ t′′′i,k (x) ∨ v′(x, z).
(16)
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The left-to-right direction of this equivalence is immediate. For the converse direction,

∀k ∈ Ki : {u′(x, z) ∧ s′′i,k(x)} |=V⊲ t′′′i,k (x) ∨ v′(x, z)

=⇒ ∀k ∈ Ki : {u′(x, z) ∧ s′′i,k(x)} |=V t′′′i,k (x) ∨ v′(x, z) Prop. 7.1

=⇒ {u′(x, z) ∧ s′i (x, y)} |=V t′i (x, y) ∨ w(x) ∨ v′(x, z) by (15)

=⇒ {u′(x, z) ∧ s′i (x, y)} |=V t′i (x, y) ∨ v′(x, z) since {w(x) ∧ s′i (x, y)} |=V t′i (x, y)

=⇒ {u′(x, z) ∧ s′i (x, y)} |=V⊲ t′i (x, y) ∨ v′(x, z) Prop. 7.1.

We define now

t⋆(x) ≔
∧

i∈I

∧

k∈Ki

(
s′′i,k(x) ⊲ t′′′i,k (x)

)
.

Consider any u(x, z) ∈ TmL⊲(x, z). By Lemma 7.5 (with t = Λ), there exist a finite

non-empty set J and u′
j
(x, z) ∈ TmL(x, z), v′

j
(x, z) ∈ TmL(x, z) ∪ {Λ} ( j ∈ J) such that

for any s′(x, y), t′(x, y) ∈ TmL⊲(x, y),

{u(x, z) ∧ s′(x, y)} |=V⊲ t′(x, y) ⇐⇒ ∀ j ∈ J : {u′j(x, z) ∧ s′(x, y)} |=V⊲ t′(x, y) ∨ v′j(x, z).

In particular, for each i ∈ I and k ∈ Ki,

{u(x, z) ∧ s′i(x, y)} |=V⊲ t′i (x, y)

⇐⇒ ∀ j ∈ J : {u′j(x, z) ∧ s′i(x, y)} |=V⊲ t′i (x, y) ∨ v′j(x, z)
(17)

{u(x, z) ∧ s′′i,k(x)} |=V⊲ t′′′i,k (x)

⇐⇒ ∀ j ∈ J : {u′j(x, z) ∧ s′′i,k(x)} |=V⊲ t′′′i,k (x) ∨ v′j(x, z).
(18)

Putting these equivalences together, it follows that

{u(x, z)} |=V⊲ t(x, y)

⇐⇒ ∀i ∈ I : {u(x, z) ∧ s′i (x, y)} |=V⊲ t′i (x, y) by (14)

⇐⇒ ∀i ∈ I, j ∈ J : {u′j(x, z) ∧ s′i (x, y)} |=V⊲ t′i (x, y) ∨ v′j(x, z) by (17)

⇐⇒ ∀i ∈ I, j ∈ J, k ∈ Ki : {u′j(x, z) ∧ s′′i,k(x)} |=V⊲ t′′′i,k (x) ∨ v′j(x, z) by (16)

⇐⇒ ∀i ∈ I, k ∈ Ki : {u(x, z) ∧ s′′i,k(x)} |=V⊲ t′′′i,k (x) by (18)

⇐⇒ ∀i ∈ I, k ∈ Ki : {u(x, z)} |=V⊲ s′′i,k(x) ⊲ t′′′i,k (x) Prop. 7.2

⇐⇒ {u(x, z)} |=V⊲ t⋆(x). ⊣

In particular, the conditions of Theorem 7.6 are satisfied when V is the variety LA of

lattice-ordered abelian groups.

Theorem 7.7. The theory of LA⊲ has a model completion.

Proof. Recall that LA is generated as a quasivariety by the lattice-ordered abelian

group R = 〈R,min,max,+,−, 0〉 (see, e.g., [1]). Hence, to show that LA⊲ has a model

completion, it suffices to check the condition of Theorem 7.6 with |=V replaced by |=R.

We proceed in two stages. Suppose first that x, y is a finite set, s(x, y) ∈ TmL(x, y)

is a meet of group terms, and t(x, y) ∈ TmL(x, y) ∪ {Λ} is Λ or a join of group terms.

We prove that there exist s′(x) ∈ TmL(x), t′(x) ∈ TmL(x) ∪ {Λ} satisfying for any

u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=R t(x, y) ∨ v(x, z) ⇐⇒ {u(x, z) ∧ s′(x)} |=R t′(x) ∨ v(x, z).
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It is easily checked in R that for any L-terms u, v,w and k ∈ N>0,

{u ∧ v} |=R w ⇐⇒ {u ∧ kv} |=R w and {u} |=R v ∨ w ⇐⇒ {u} |=R v ∨ kw.

Also, R |= x+(y∧z) ≈ (x+y)∧(x+z) and R |= x+(y∨z) ≈ (x+y)∨(x+z). Hence, reasoning

in R, we may assume that there exist a k ∈ N>0 and s0(x), s1(x), s2(x), t1(x), t2(x) ∈

TmL(x), t0(x) ∈ TmL(x) ∪ {Λ} such that s(x, y) is the meet of s0(x) and some members

(possibly none) of {s1(x) + ky, s2(x) − ky}, and t(x, y) is the join of t0(x) and some

members (possibly none) of {t1(x) + ky, t2(x) − ky}. We construct s′(x) ∈ TmL(x),

t′(x) ∈ TmL(x) ∪ {Λ} as follows. Let s′(x) ≔ s0(x) ∧ (s1(x) + s2(x)) if s1(x) + ky and

s2(x)−ky occur in s(x, y); otherwise s′(x) ≔ s0(x). The term t′(x) is the join of t0(x) and

(i) t1(x) + t2(x) if t1(x) + ky and t2(x) − ky occur in t(x, y); (ii) t1(x) − s1(x) if s1(x) + ky

occurs in s(x, y) and t1(x) + ky occurs in t(x, y); (iii) t2(x) − s2(x) if s2(x) − ky occurs in

s(x, y) and t2(x) − ky occurs in t(x, y).

We check the case where s(x, y) = (s1(x) + ky) ∧ (s2(x) − ky), t(x, y) = (t1(x) + ky) ∨

(t2(x) − ky), s′(x) = s1(x) + s2(x), and t′(x) = (t1(x) + t2(x)) ∨ (t1(x) − s1(x)) ∨ (t2(x) −

s2(x)), other cases being very similar. Let u(x, z), v(x, z) ∈ TmL(x, z) and suppose first

that {u(x, z) ∧ s′(x)} |=R t′(x) ∨ v(x, z). Since {s(x, y)} |=R s′(x) and {s(x) ∧ t′(x)} |=R

t(x, y), it follows that {u(x, z) ∧ s(x, y)} |=R t(x, y) ∨ v(x, z). Now suppose that {u(x, z) ∧

s′(x)} 6|=R t′(x) ∨ v(x, z); that is, some assignment f : x, z → R satisfies 0 ≤ f̃ (u(x, z)),

0 ≤ f̃ (s1(x))+ f̃ (s2(x)), f̃ (t1(x))+ f̃ (t2(x)) < 0, f̃ (t1(x)) < f̃ (s1(x)), f̃ (t2(x)) < f̃ (s2(x)),

and f̃ (v(x, z)) < 0. We extend f to an assignment g : x, y, z→ R by defining

g(y) ≔
min ( f̃ (s2),− f̃ (t1)) +max (− f̃ (s1), f̃ (t2))

2k
.

We obtain 0 ≤ g̃(u(x, z)), 0 ≤ g̃(s1(x)) + g̃(ky), g̃(ky) ≤ g̃(s2(x)), g̃(t1(x)) + g̃(ky) < 0,

g̃(t2(x)) < g̃(ky), and g̃(v(x, z)) < 0. So {u(x, z) ∧ s(x, y)} 6|=R t(x, y) ∨ v(x, z).

We now prove that for any finite set x, y and s(x, y) ∈ TmL(x, y), t(x, y) ∈ TmL(x, y)∪

{Λ}, there exist a finite non-empty set K and s′
k
(x) ∈ TmL(x), t′

k
(x) ∈ TmL(x) ∪ {Λ}

(k ∈ K) satisfying for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=R t(x, y) ∨ v(x, z) ⇐⇒ ∀k ∈ K : {u(x, z) ∧ s′k(x)} |=R t′k(x) ∨ v(x, z).

By the distributivity properties of R, we may assume that s(x, y) is s1(x, y)∨· · ·∨sn(x, y),

where each si(x, y) is a meet of group terms, and that t(x, y) is t1(x, y) ∧ · · · ∧ tm(x, y),

where either each t j(x, y) is a join of group terms or m = 1 and t1(x, y) = Λ. Using the

first part of this proof, for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, there exist s′
i, j

(x) ∈

TmL(x) and t′
i, j

(x) ∈ TmL(x) ∪ {Λ} satisfying for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ si(x, y)} |=R t j(x, y) ∨ v(x, z) ⇐⇒ {u(x, z) ∧ s′i, j(x)} |=R t′i, j(x) ∨ v(x, z).

Hence for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=R t(x, y) ∨ v(x, z) ⇐⇒ ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} :

{u(x, z) ∧ s′i, j(x)} |=R t′i, j(x) ∨ v(x, z). ⊣

The variety MV⊲ of MV-algebras extended with ⊲ is term-equivalent to the variety

MV∆ of MV∆-algebras (see, e.g., [23, 33]), generated by linearly ordered MV-algebras

extended with an additional unary operator ∆ defined by

∆x ≔


1 if x = 1

0 otherwise.
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For any algebra in MV⊲, we let ∆x ≔ (x ⊲ 0) ⊲ 0, and for any algebra in MV∆, we let

x ⊲ y ≔ ¬∆x ⊕ y. The following theorem may therefore be proved along the same lines

as Theorem 7.7, using the fact that MV is generated as a quasivariety by the algebra

〈[0, 1],⊕,¬, 0〉, where x ⊕ y ≔ min (1, x + y) and ¬x ≔ 1 − x (see, e.g., [10]).

Theorem 7.8. The theory of MV∆ has a model completion.

A different proof of this last result (obtained by giving an explicit axiomatization) was

presented by X. Caicedo at the conference Residuated Structures: Algebra and Logic

in 2008. Caicedo also presented a proof (again by giving an explicit axiomatization) at

the Latin American Algebra Colloquium in 2019 that the theory of the class of so-called

“pseudo-complemented” lattice-ordered abelian groups has a model completion, which

seems to bear some relation to our Theorem 7.7.

Acknowledgement. The authors would like to thank the anonymous referee for their

careful reading of the paper and valuable comments.

Appendix A. A comparison with Wheeler’s characterization theorem. In this

appendix, we relate our results in Section 3 to the necessary and sufficient conditions

provided by Wheeler in [38] (see also [39]) for the existence of model completions for

universal theories with finite presentations. Let us note that Wheeler considers arbitrary

first-order languages and, although we restrict ourselves here to algebraic languages, it

is not difficult to see that the results of this appendix can be generalized to any first-order

language by replacing equations with atomic formulas.

Let K be a universal class of algebras. Following [38, Section 3], a finite presentation

of an algebra A ∈ K is a pair (a, π) where a ∈ Ax is a finite set of generators for A and

π(x) is a conjunction of equations such that A |= π(a) and for any equation ε(x),

A |= ε(a) ⇐⇒ K |= π→ ε.

Observe that (a, π) is a finite presentation of A if, and only if, for any B ∈ K generated by

b ∈ Bx satisfying B |= π(b), there is a surjective homomorphism A։ B mapping a to b.

An algebra A ∈ K is said to be finitely presented in K if it admits a finite presentation.

Remark A.1. If K is a variety, then an algebra A ∈ K is finitely presented in K if, and

only if, it is finitely presented in the usual sense, i.e., A is isomorphic to the quotient of a

finitely generated K-free algebra with respect to a compact congruence. Moreover, if K

is a positive universal class and the variety V generated by K is congruence distributive,

then A ∈ K is finitely presented in K if, and only if, it is finitely presented in V. Just

observe that by Jónsson’s Lemma [25], we have in this case V = ISP(K).

A class of algebras K has finite presentations if for every finite set x and conjunction

of equations π(x) that is satisfiable in K, there exist an algebra A ∈ K and a tuple a ∈ Ax

such that (a, π) is a presentation of A. All quasivarieties, and in particular all varieties,

have finite presentations (cf. [38, Corollary 1, p. 315]), but this is not the case for all

universal classes, as shown by the following example.

Example A.2. The positive universal class LAc of ordered abelian groups does not

have finite presentations. To see this, recall that LAc generates the variety LA of lattice-

ordered abelian groups, which is congruence distributive (cf. Example 2.8). Hence, by

Remark A.1, an ordered abelian group is finitely presented in the sense of the above

definition if, and only if, it is finitely presented as a lattice-ordered abelian group in
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the usual sense. However, any finitely presented ordered abelian group is simple (see,

e.g., [21, Theorem 4.A and Corollary 5.2.3]) and there exist finitely generated ordered

abelian groups that are not simple, e.g., the lexicographic product R−→×R generated by

{(1, 0), (0, 1)}. It follows that there cannot be a 2-generated finitely presented ordered

abelian group with presentation ⊤(x1, x2).

Let us now recall Wheeler’s conservative congruence extension property. Given any

algebra A ∈ K, let D+(A) be the positive diagram of A, i.e., the set of atomic sentences

in the language extended with names for the elements of A that are satisfied in A. The

class K has the conservative congruence extension property (for finite presentations)

if, whenever B admits a finite presentation ((a, b), π(x, y)), A is the subalgebra of B

generated by a, the tuple b does not lie in A, and ρ(x, y) is a conjunction of negated

equations such that B |= ρ(a, b), there exists a quantifier-free formula χ(x) satisfying

Th(K) ∪D+(B) ⊢ ρ(a, b)→ χ(a),

and for every surjective homomorphism h : A ։ A′ such that A′ ∈ K and A′ |= χ(h(a))

there exist a B′ ∈ K extending A′ and a surjective homomorphism h′ : B ։ B′ whose

restriction to A coincides with h, and such that B′ |= ρ(h(a), h′(b)).4

The following proposition shows that, for universal classes with finite presentations,

the conservative congruence extension property is equivalent to a strengthening of the

conservative model extension property where the variable y is replaced by a tuple y.

Proposition A.3. Let K be a universal class of algebras with finite presentations.

Then K has the conservative congruence extension property if, and only if, for any

finite sets x, y and conjunction of literals ψ(x, y), there exists a quantifier-free formula

χ(x) satisfying

(i) K |= ψ→ χ

(ii) for every A ∈ K generated by a ∈ Ax such that A |= χ(a) and for any equation ε(x),

K |= ψ+ → ε =⇒ A |= ε(a),

there exist an algebra B ∈ K extending A and b ∈ By such that B |= ψ(a, b).

Proof. Suppose that K has the conservative congruence extension property. Fix finite

sets x, y and a conjunction of literals ψ(x, y). If ψ is not satisfiable in K, we can set

χ ≔ ⊥. Hence, assume that ψ is satisfiable in K. Consider B ∈ K and (a, b) ∈ Bx,y such

that ((a, b), ψ+) is a finite presentation of B and let A be the subalgebra of B generated

by a. If there is a bi ∈ b such that bi ∈ A, then K |= ψ+ → yi ≈ t(x) for some term t.

Replacing yi by t(x) in the formula ψ whenever bi ∈ A, we can assume that no element

of b belongs to A. Further, if B |= σ(a, b) for some equationσ of ψ−, then K |= ψ+ → σ,

contradicting the fact that ψ is satisfiable in K. Hence B |= ρ(a, b), where ρ(x, y) is the

conjunction of the negated equations ¬σ for σ ranging over the equations of ψ− (hence,

ψ = ψ+ & ρ), and so there exists a quantifier-free formula χ(x) satisfying the conditions

for the conservative congruence extension property.

We prove that χ satisfies (i) and (ii). For (i), consider any algebra C ∈ K and tuples

c ∈ Cx and d ∈ Cy such that C |= ψ(c, d). We must prove that C |= χ(c). Let C′ be

the subalgebra of C generated by c, d, and note that C′ |= ψ(c, d) as ψ is quantifier-free.

Since C′ |= ψ+(c, d), there is a surjective homomorphism B ։ C′ mapping a to c and

4Note that Wheeler does not assume that A′ ∈ K, but uses this in the proof of his main result.
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b to d. Hence, with the obvious interpretation of the new constants, C′ |= D+(B). So

Th(K) ∪D+(B) ⊢ ρ→ χ and C′ |= ρ(c, d) entail C′ |= χ(c), and therefore C |= χ(c).

For (ii), consider any algebra A′ ∈ K generated by a tuple a
′
∈ (A′)x such that

A′ |= χ(a′) and, for all equations ε(x), K |= ψ+ → ε entails A′ |= ε(a′). Then there exists

a (unique) homomorphism h : A → A′ mapping a to a
′. Just observe that, whenever

s(a) = t(a) for two terms s(x), t(x), we have B |= s(a) ≈ t(a) and hence also K |= ψ+ →

s(x) ≈ t(x), which implies A′ |= s(a′) ≈ t(a′). Moreover, h is surjective because a′

generates A′. By the conservative congruence extension property, there exist B′ ∈ K

extending A′ and a surjective homomorphism h′ : B ։ B′ that extends h and satisfies

B′ |= ρ(a′, h′(b)). Using the fact that B |= ψ+(a, b) entails B′ |= ψ+(a′, h′(b)), we

conclude that B′ |= ψ(a′, h′(b)), as was to be proved.

For the converse direction, let B ∈ K be an algebra admitting a finite presentation

((a, b), π(x, y)), let A be the subalgebra of B generated by a, and assume that b does not

lie in A. Further, let ρ(x, y) be a conjunction of negated equations such that B |= ρ(a, b).

Define the conjunction of literals ψ(x, y) ≔ π & ρ. Then there exists a quantifier-free

formula χ(x) satisfying the properties in (i) and (ii). Condition (i) entails easily that

Th(K) ∪D+(B) ⊢ ρ(a, b)→ χ(a).

Consider next a surjective homomorphism h : A ։ A′ with A′ ∈ K and A′ |= χ(h(a)).

Note that h(a) generates A′ and, for any equation ε(x), K |= π → ε implies B |= ε(a)

and hence also A |= ε(a) and A′ |= ε(h(a)). By (ii), there exist B′ ∈ K extending A′ and

a tuple b
′
∈ (B′)y such that B′ |= ψ(h(a), b

′
). Let B′′ be the subalgebra of B′ generated

by h(a), b
′

and note that B′′ ∈ K because K is a universal class. Since B′′ |= π(h(a), b
′
),

there exists a surjective homomorphism h′ : B ։ B′′ mapping a to h(a) and b to b
′
. In

particular, h′ extends h. Further, B′′ extends A′ and satisfies B′′ |= ρ(h(a), b
′
). Hence K

has the conservative congruence extension property. ⊣

We are now in a position to compare Wheeler’s characterization of universal theories

that have a model completion with our results from Section 3. Following Wheeler, we

say that a universal class of algebras with finite presentations K is coherent if, whenever

B ∈ K is finitely presented in K and A is a finitely generated subalgebra of B, then A

is finitely presented in K. It is not difficult to see that a universal class of algebras with

finite presentations is coherent if, and only if, it has the variable projection property.

In the case where K is a universal class of algebras, the following main result of [38]

is a direct consequence of Theorem 3.2 and Propositions 3.8 and A.3.

Proposition A.4 ([38, Theorem 5]). Let K be a universal class with finite presenta-

tions. The theory of K has a model completion if, and only if, K is coherent and has the

amalgamation property and conservative congruence extension property.
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