
26 April 2024

Andrews, U., Sorbi, A. (2022). Initial segments of the degrees of ceers. THE JOURNAL OF SYMBOLIC LOGIC,
87(3), 1260-1282 [10.1017/jsl.2022.14].

Initial segments of the degrees of ceers

Published:

DOI:10.1017/jsl.2022.14

Terms of use:

Open Access

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.
For all terms of use and more information see the publisher's website.

Availability:

This version is availablehttp://hdl.handle.net/11365/1205016 since 2022-11-22T11:39:15Z

Original:

This is the peer reviewed version of the following article:



INITIAL SEGMENTS OF THE DEGREES OF CEERS

URI ANDREWS AND ANDREA SORBI

Abstract. It is known that every non-universal self-full degree in the structure of the de-
grees of computably enumerable equivalence relations (ceers) under computable reducibil-
ity has exactly one strong minimal cover. This leaves little room for embedding wide
partial orders as initial segments using self-full degrees. We show that considerably more
can be done by staying entirely inside the collection of non-self-full degrees. We show that
the poset xωăω,Ďy can be embedded as an initial segment of the degrees of ceers with in-
finitely many classes. A further refinement of the proof shows that one can also embed the
free distributive lattice generated by the lower semilattice xωăω,Ďy as an initial segment
of the degrees of ceers with infinitely many classes.

1. Introduction

Computably enumerable equivalence relations appear quite often in mathematical logic
and effective mathematics. For instance they appear as relations of provable equivalence
of formal systems, and as word problems or isomorphism problems of effectively presented
structures. A useful and natural way to compare the relative complexity of ceers is by
computable reducibility (or, simply, reducibility) of equivalence relations on the set ω of
natural numbers: If A,B are equivalence relations on ω, then A is computably reducible
(or, simply, reducible) to B (notation: A ď B) if there is a computable function f such
that x A y if and only if fpxq B fpyq, for all x, y P ω. Most of the initial investigations
of ceers under the reducibility ď were oriented towards identifying universal ceers in logic
and algebra. A ceer A is called universal if B ď A for every ceer B. For instance, provable
equivalence in Peano Arithmetic, or in other related systems, gives a universal ceer [7]. C. F.
Miller III [15] proved that there exists a finitely presented group G such that its equality is
a universal ceer; he also proved that the isomorphism relation between finite presentations
of groups is a universal ceer. A comprehensive survey on universal ceers can be found in [2].
There has also been study of the relationship between ceers and the c.e. algebraic structures
which have the ceer as its domain, see, e.g., [8, 11, 10, 12].

When restricted to ceers, the reducibility ď gives rise to a degree structure called Ceers of
which the degree of the universal ceers is the greatest element. We say that two equivalence
relations A and B on ω are equivalent (denoted by A ” B) if A ď B and B ď A. The
degree of A is the set of the equivalence relations that are equivalent to A. The degrees
are partially ordered by the partial ordering relation induced by computable reducibility. If
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2 ANDREWS AND SORBI

P is a property of equivalence relations, then we say that a degree has property P if some
member of the degree has property P . In the other direction, we will often transfer to ceers
properties that should be more appropriately understood on degrees such as order-theoretic
properties like the property of being a strong minimal cover, etc. In particular, given ceers
A,B, we say that A is a strong minimal cover of B, if B ă A and for every C ď A, either
C ” A, or C ď B.

The first paper explicitly directed to a systematic investigation of the above defined
degree structure Ceers was [9]. Andrews and Sorbi provide in [5] a thorough investigation
of this structure, with emphasis on existence and non-existence of meets and joins, minimal
and strong minimal covers, definable classes of degrees, and automorphisms. They propose
a partition of the ceers into three classes: the finite ceers (i.e. the ceers with finitely many
equivalence classes), the light ceers (i.e. those ceers A such that Id ď A, where Id is the
identity ceer), and the remaining ceers (called dark ceers). They show that no pair of
incomparable dark ceers has join or meet. The same authors show in [4] that the first
order theory of the poset Ceers as well as the theories of the sub-posets Light and Dark,
comprised of the degrees of light and dark ceers, respectively, are computably isomorphic
to true first order arithmetic.

For the convenience of the reader here we collect some definitions about ceers.

Definition 1. ‚ The uniform join operation ‘ is the operation on equivalence rela-
tions defined by: X ‘ Y “ tp2x, 2yq : x X yu Y tp2x` 1, 2y ` 1q : x Y yu.

‚ A ceer A is self-full if whenever f is a reduction of A to A then rangepfq intersects
all A-equivalence classes; otherwise A is non-self-full.

‚ Equivalently ([5, Observation 4.2]), a ceer A is self-full if and only if A‘ Id1 ę A,
where Id1 is the ceer with only one equivalence class.

‚ The ceer Id is defined by equality, i.e. x Id y if and only if x “ y.
‚ A ceer A is finite if it has only finitely many classes.
‚ A ceer A is light if Id ď A.
‚ A ceer A is dark if it is neither finite nor light.
‚ The posets Fin, Light and Dark are the degree structures of the finite, light, and

dark ceers. We write Ceersr Fin for the degree structure of ceers which have
infinitely many classes.

1.1. Non-self-full strong minimal covers: Towards a theory of initial segments
for the structure of ceers. What is still missing is a satisfying theory of initial segments
of Ceers, which leaves our understanding of the structure far behind our understanding
of other familiar degree structures, possessing already well established theories of initial
segments. Very little is indeed known in this regard about Ceers, besides the observations
on minimal covers and strong minimal covers in [5], or the observation [3] that there is an
initial segment I of the light degrees (namely those between the degree of Id, and the degree
of RK , where x RK y if and only if x “ y, or x, y both belong to the halting set K) such
that one can embed every finite distributive lattice as an initial segment I 1 of I. Note that
I is not an initial segment in Ceers, but only in the light degrees, so this does not imply
results about initial segments in Ceers. This follows from the fact that the 1-degrees of
the non-simple c.e. sets can be isomorphically embedded onto I [3, Theorem 2.4] and that
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INITIAL SEGMENTS OF THE DEGREES OF CEERS 3

every finite distributive lattice can be embedded as an initial segment of these c.e. 1-degrees
[13].

This paper aims at giving a first contribution to fill in this gap. For this it is very
important to develop new techniques for building strong minimal covers. In the structure
Ceers we know that every non-universal degree has a strong minimal cover. In particular,
this splits into two cases, based on whether the non-universal degree is self-full.

If a degree d is self-full, then it has a strong minimal cover e such that, for any other degree
x, if x ą d, then x ě e [5, Lemma 4.5]. Thus every self-full degree has exactly one strong
minimal cover. On the other hand, we know [5, Corollary 7.11] that every non-universal non-
self-full degree d has infinitely many incomparable self-full strong minimal covers e1, e1, . . ..
Since these strongly minimal covers are self-full, they each have exactly one strong minimal
cover. With an eye towards understanding the initial segments of Ceers, unfortunately
this does not help us embed wide posets as initial segments of the structure. In particular,
while we have infinitely many strong minimal covers of the degree of Id (which, we recall, is
the ceer defined by equality), each of these only has one strong minimal cover, which allows
an embedding of the tree ωď1, but not of ωď2, where ωďn “ tα P ωăω : |α| ď nu (where |α|
denotes the length of α).

We will show however (Theorem 6) that non-self-full ceers C with the extra property
that C ‘ Id ” C each have infinitely many incomparable strong minimal covers A which
are also non-self-full and A‘ Id ” A.

Thus, we get an embedding of the poset xωăω,Ďy of the finite strings of numbers (where
τ Ď σ if τ is an initial segment of σ) as an initial segment of Ceers r Fin. Note that since
Fin has order type ω and is bounded by every other ceer, classifying the initial segments
in Ceers is equivalent to classifying the initial segments of Ceers r Fin.

Further, in Corollary 33 we extend this embedding to an embedding of the free dis-
tributive lattice generated by ωăω viewed as a lower semilattice as an initial segment J of
Ceers r Fin (see Definition 25). We note in Observation 34 that the embedding we find is
not a lattice-embedding (i.e. the degrees in question do not have joins in the ceers, though
they do in J).

We leave the following questions open:

Question 1. Does every non-self-full ceer have a non-self-full strong minimal cover?

Note that it follows from [1, Corollary 3.3.4] that the assumption used in this paper that
C ‘ Id ” C is strictly stronger than non-self-fullness.

Question 2. If C is non-self-full and C ‘ Id ” C, then does C have incomparable strong
minimal covers A1 and A2 so that Ai‘ Id ” Ai and A0, A1 have supremum in the structure
of ceers?

1.2. Notations and terminology. Our notations and terminology from computability
theory are standard and can be found in [16] or [17]. If A is an equivalence relation on ω
and V Ď ω, then the A-closure of V is rV sA “ tx : Dy P V px A yqu.
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4 ANDREWS AND SORBI

We recall the notion of restriction of a ceer to a c.e. set, see [5, § 2.3]. If A is a ceer and
W is a nonempty c.e. set then fix a computable surjection π : ω ÑW , and define AæW to
be the ceer

x AæW y ô πpxq A πpyq.

It is immediate to see that up to ”, AæW does not depend on the chosen computable
surjection.

Lemma 2. Let A,B be ceers:

(1) For every nonempty c.e. set W , AæW ď A;
(2) A ď B if and only if there exists a nonempty c.e. set W such that A ” BæW ;
(3) If U, V are c.e. sets and for every u P U , there is some v P V so that u A v, then

AæU ď AæV .

Proof. The second follows from the fact that if f is a reduction of A to B then A ” BæW ,
where W “ rangepfq. For the last claim, define a map from AæU to AæV as follows. Fix
π : ω Ñ U and ϕ : ω Ñ V . Then for every V -class X, if the range of π intersects X then so
does the range of ϕ. So, for every n, define gpnq to be the first m seen so that πpnq A ϕpmq.
It is straightforward to check that this is a reduction of AæU (as defined using π) to AæV
(as defined using ϕ). The first condition follows from the third with V “ ω. �

Definition 3. We generalize the uniform join operation to finitely many summands. Let
pXiqiăn be equivalence relations, with n ě 1. For each i ă n, let ωi,n “ tz P ω : z ” i

mod nu, and for x P ωi,n let pxqi,n be x´i
n . Then let

x X0 ‘ ¨ ¨ ¨ ‘Xn´1 y ô pDi ă n q rx, y P ωi,n & pxqi,n Xi pyqi,ns.

If f0, . . . fn´1 are computable functions from ω to ω, then define ‘ifi to be the function
given by ‘ifipxq “ n ¨ fippxqi,nq ` i if x P ωi,n.

For A any ceer and „ any c.e. subset of ω2, define A{„ to be the equivalence relation
generated by A and „. Note that if X (here, X “ A Y „) is a c.e. set of pairs, then the
equivalence relation E generated by X is defined by x E y if and only if

DnDz1, . . . zn

˜

z1 “ x^ zn “ y ^
n´1
ľ

i“1

pzi, zi`1q P X

¸

so E is a ceer.

If A is any ceer and „ any c.e. subset of ω2, we say that „ is A-closed if whenever x „ y
and x A x1 and y A y1, then also x1 „ y1. That is, „ collapses whole A-classes together.

If f is a computable function from ω to ω, and „ is a c.e. subset of ω2, define „f“
tpa, bq : pfpaq, fpbqq P„u.

Lemma 4. If f is a reduction of A to B and „ is a transitive c.e. subset of ω2 which is
B-closed, then A{„f ď B{„.

Proof. We will see that f is a reduction of A{„f to B{„.
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INITIAL SEGMENTS OF THE DEGREES OF CEERS 5

Suppose a A{„f b. Then there are z1, . . . zn so that z1 “ x ^ zn “ y ^
Źn´1
i“1 pzi, zi`1q P

AY„f . Then fpz1q “ fpxq^fpznq “ fpyq^
Źn´1
i“1 pfpziq, fpzi`1qq P BY„. So, fpaqB{„fpbq.

Since „ is transitive and B-closed, B Y „ is an equivalence relation, so B{„ “ B Y „.
So, if fpaq B{„ fpbq, then either fpaq B fpbq or fpaq „ fpbq. In either case, we have
a A{„f b. �

Applying the above to the case of a uniform join, we get:

Lemma 5. If f0, . . . , fn´1 are reductions witnessing Ai ď Bi for i ă n and „ is a transitive
c.e. subset of ω2 which is B0 ‘ ¨ ¨ ¨ ‘Bn´1-closed, then

pA0 ‘ ¨ ¨ ¨ ‘An´1q{„‘ifi
ď pB0 ‘ ¨ ¨ ¨ ‘Bn´1q{„.

2. Non-Self-full Strong Minimal Covers

Since a ceer A is self-full if and only A‘ Id1 ę A, a ceer A satisfying A ” A‘ Id, such
as the one we construct in the next theorem, is non-self-full.

Theorem 6. Given a ceer C so that C ” C ‘ Id and a non-universal ceer B ě C, there
exists a ceer A which is a strong minimal cover of C so that A ” A‘ Id ę B.

Proof. Let C,B be as in the statement of the theorem. We want to build A so as to satisfy
the following requirements:

NSF : A ” A‘ Id,

Di : ϕi is not a reduction from A to B,

R : C ď A,

SMCi : A ď AæWi _AæWi ď C.

As already observed, NSF is a strictly stronger requirement than ensuring that A is non-
self-full. Satisfaction of the D-requirements guarantees that A ę B. The R requirement
in conjunction with the D-requirements ensure that C ă A. In particular, we cannot have
A ď C since C ď B and the D-requirements ensure A ę B. Finally if X ď A, and by
Lemma 2 (2) X ” AæWi for some i, then requirement SMCi guarantees that either A ď X
and thus A ” X, or X ď C. Hence satisfaction of all SMC-requirements yields that A is a
strong minimal cover of C.

As we construct the ceer A, we begin with A0 “ Id and as stages go by, we say we
A-collapse, or often just say collapse, elements n and m. This means that at stage s`1, we
let As`1 be the equivalence relation generated by As along with the pairs that we collapse
during stage s.

2.1. Informal description of the strategies to satisfy requirements.

The NSF strategy . We will fix a computable infinite set Iλ and we will ensure that if x P Iλ,
then rxsA “ txu. This ensures that A ” Id‘pAæIλq, so A‘ Id ” A.
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6 ANDREWS AND SORBI

The Di-strategies. We will have a c.e. set which we will call Dα for some node α, and we
will cause collapse on this set only for the purpose of ensuring that ϕi is not a reduction of
A to B. We will play a diagonalizing strategy which in a finitary way guarantees that ϕi is
not a reduction witnessing A ď B. To do this we carry out a finite amount of A-collapsing
on the elements of Dα.

We now describe the strategy that α runs on the set Dα. We call this strategy the
finitary-diagonalization strategy. We fix ahead of time a universal ceer U , with computable
approximations pUsqsPω (namely, U0 “ Id, Us Ď Us`1, Usr Id is a finite set of pairs of which
we can compute the canonical index uniformly in s). Let also pBsqsPω be a computable
approximation (defined in the same way) for the ceer B. We fix the enumeration Dα “

taj : j P ωu of Dα. The strategy has a parameter nα, which begins as nα “ 0 and acts
at each stage s when α is visited and ϕipajq Bs ϕipakq if and only if aj As ak for each
aj , ak P Dα with j, k ă nα. In this case, we increment nα “ nα` 1 and for each aj , ak P Dα

with j, k ă nα, we collapse aj As`1 ak if and only if j Us k. This is the only cause for
collapse inside Dα. A priori, there are two possible outcomes of this strategy: In the first
case, lims nα is finite, and thus we will never again see that ϕipajq Bs ϕipakq if and only
if aj As ak for each aj , ak P Dα with j, k ă nα. Thus ϕi is not a reduction of A to B. In
the second case, lims nα “ 8. But then aj A ak if and only if j U k. Thus j ÞÑ ϕipajq is a
reduction of U to B. Since B is non-universal by hypothesis of the theorem, this infinitary
outcome is simply impossible. It is to emphasize this fact that we call this strategy the
finitary-diagonalization strategy.

The R-strategy . We will fix a computable set Kλ “ tx : x ” 0 mod 3u and we will directly
encode C onto AæKλ. Then the map fpxq “ 3x will give a reduction of C to A. We note
that, as opposed to the NSF-strategy, it will not be the case that A ” AæKλ ‘ AæKλ. In
fact, many nodes α on the true path will be building their own sets Kα which will necessarily
have representatives of the same A-classes as Kλ. We will need to build these sets Kα in
order to put a copy of C into AæWi for SMCi-strategies. Further, these must represent the
same A-classes as Kλ, because we cannot afford to encode C ‘ C, which might be strictly
above C.

The SMCi-strategies. Here we use the Chinese boxes technique employed by Lachlan in the
proof of [14, Theorem 2]. A node α on the true path will put numbers s into either Sαpf or
Sαp8. When we see a member of Sαpf be A-equivalent to a number in Wi, α will collapse
together every number (aside from those A-equivalent to a member of Kλ) in Sαpf to a
single class with s (the current stage) and put s into Sαp8. In this case, we then make Sαpf
empty.

Under the outcome that only finitely often puts numbers into Sαp8, the effect of this
procedure is that almost every A-class (aside from some copies of Id held by higher-priority
strategies, e.g. the NSF-strategy, or sets Dα being used for Di-strategies, or sets Iβ as
described in the next paragraph) will be represented by members of Sαpf Y Kλ, and Sαpf
has no member equivalent to a number in Wi. Then AæWi will have to reduce to C ‘ Id,
coming from the elements A-equivalent to Kλ along with the finitely many copies of Id, and
C ‘ Id ” C.
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INITIAL SEGMENTS OF THE DEGREES OF CEERS 7

Under the outcome that infinitely often puts numbers into Sαp8, we have that the entire
set Sαp8 is comprised of members which are A-equivalent to numbers in Wi. Thus AæSα ď
AæWi. In this case, the goal is to ensure that A ď AæSα. We do this by having a copy Kα

of Kλ inside Sα and having a copy Iα of Id inside Sα. This suffices to give us a reduction
of A to AæSα. We send each copy of Kλ into Kα (i.e. we send an x in some copy of Kλ to
a representative of its own A-class which is in Kα), and each of the (finitely many) copies
of Id being used by higher-priority strategies and Iα itself into Iα. This uses the immediate
fact that Id‘ Id ” Id.

We now move onto a description of how these strategies fit together into the construction.

2.2. Informal description of the construction. We employ an infinite-injury priority
construction on the priority tree Tr “ t8 ă fuăω. We use standard notations and termi-
nology about strings. In particular if α, β P Tr then we write α ăL β to mean that α is to
the left of β and α ď β to denote that either α ăL β or α Ď β, the latter meaning that α is
an initial segment of β. We write α Ă β if α Ď β and α ‰ β. The empty string is denoted
by the symbol λ. If α ‰ λ then α´ denotes the immediate predecessor of α along α. The
symbol |α| denotes the length of α. As usual in computability constructions that use tree
arguments, the construction will identify the true path Tp through Tr, that is the unique
infinite path through Tr such that for every n, its restriction Tr æn is the leftmost string of
length n which is visited in the construction infinitely many times.

2.2.1. The parameters of α. Each node α P Tr has parameters Sα, Kα, Iα, Dα, Mα. The
values of these sets depend of course on the stage, and should therefore be denoted by Sα,s,
Kα,s, Iα,s, Dα,s, Mα,s, although we will omit specifying the approximating stage unless
strictly necessary. If α is on the true path of the construction then the limit value Sα will
be an infinite computable set consisting of the numbers which have been enumerated in Sα
after the last stage sα at which α has been initialized if there is any such stage, otherwise
sα “ 0. There is yet another parameter, a number nα which pertains only to nodes α ‰ λ
such that α “ pα´qpf , and is used in the finitary-diagonalization strategy.

A node α “ pα´qp8 will be working towards satisfying SMC|α|´1 and will have to ensure
that A ď AæW|α|´1. Such an α will be on the true path only if every element of Sα is A-
equivalent to a member of W|α|´1. By injuring all strategies to the right, α will ensure that
A ” Id‘AæSα ď AæSα ď AæW|α|´1. For the equivalence A ” Id‘AæSα, it will be essential
that each equivalence class of the copy of C which is encoded in A has representatives in
Sα. This is precisely the role of the set Kα. Similarly, it is needed that Id‘AæSα ď AæSα.
This is the role of Iα. On Iα, we will encode a copy of Id which will be unrelated to the rest
of Sα precisely to ensure Id‘AæSα ď AæSα. For α “ pα´qp8, Dα will be empty. Finally,
Mα is the stream of numbers given for αp8 and αpf to work with.

A node α “ pα´qpf will automatically have SMC|α|´1 satisfied (if this α is on the true
path) and will instead work towards satisfying a D-requirement. This will be done by the
finitary-diagonalization strategy on the set Dα. The parameter nα will describe the progress
of the finitary-diagonalization strategy. The sets Kα and Iα are empty, and once again Mα

is the stream of numbers for αp8 and αpf to work with.
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8 ANDREWS AND SORBI

Partitioning Sα. At any stage s, we will have Sλ “ ti : i ď su Y tx : x ” 0 mod 3u, and
partition Sλ into Kλ “ tx : x ” 0 mod 3u, Iλ “ tx ď s : x ” 1 mod 3u, Mλ “ tx ď s :
x ” 2 mod 3u, and Dλ “ H. If α ‰ λ then at stage s, if s P Mα´ then s may enter Sα
(in particular, Sα Ď tx : x ď su). In fact, Sα will be the set of stages at which the node α
is visited since its last initialization. At each stage, if α “ pα´qp8 then Dα “ H and Sα
is partitioned by Kα, Iα, Mα. One out of every three elements which enter Sα will be put
into Kα, one out of every three will be put into Iα, and one out of every three will be put
into Mα. If α “ pα´qpf , we define Kα “ Iα “ H, and Sα is partitioned by Dα,Mα. One
out of every two elements which enter Sα will be put into Dα, and one out of every two
elements which enter Sα will be put into Mα. The limit value Sα will then turn out to be
partitioned by the (limit values of the) sets Kα, Iα, Mα if α “ λ or α “ pα´qp8, or Dα,Mα

if α “ pα´qpf . Moreover, every Sα with α ‰ λ will be contained in Mα´ .

We will also have a single global set K (approximated by Ks at stage s), which is the
set of elements which are A-equivalent to a member of Kλ. That is, K “ rKλsA. This will
include Kα for every node α. This will even include numbers which enter a set Kα before α
is injured. Moreover, K may contain numbers which themselves are never enumerated into
any set Kα. This is a consequence of the fact that when we witness injury to α, we will
collapse all of the numbers in Sα r K to a single class, and a representative of this class
may enter Kβ for some β. In this case, we will place the single representative of the class
into Kβ, but the remainder of the class will be in K, despite never having been enumerated
into any set Kγ .

2.2.2. More formal description of the strategy of a node α in isolation. We now look at the
strategies employed by the nodes on Tr (in fact, to describe the effects of the strategy em-
ployed by α, we assume that α Ă Tp and α works in isolation), describing some procedures
which will be used in the formal construction.

Each node α on the tree will be working with the c.e. set W|α| to choose its outcome.
Also, α builds Sα, Kα, Iα, Dα, Mα, and constructs particular ceers on Kα, Iα, Dα. We
distinguish the three cases α “ λ, α “ pα´qp8, and α “ pα´qpf .

α “ λ: Winning R and NSF. We reserve Kλ and Iλ to meet the overall requirements R
and NSF. Specifically, on Kλ (which will be exactly tx : x ” 0 mod 3u) we place a copy of
C. Thus x ÞÑ 3x will give a reduction witnessing C ď A, and we let Iλ (which will limit to
exactly tx : x ” 1 mod 3u) be a copy of Id:

‚ (Coding C in Kλ) Towards making the reduction C ď A, for every n P ω let xλn “ 3n
be the nth element of Kλ. At every stage s, we will A-collapse xλn A xλm if and only if
xλn, x

λ
m ď s and n Cs m. The construction will guarantee that we cause no additional

A-collapses on Kλ. The notation xλn here refers to the nth element of Kλ. For nodes
α “ α´p8, we will have xαn similarly refer to the nth element of Kα.

‚ We let Iλ be a copy of Id, by never A-collapsing throughout the construction any
pair of distinct elements of Iλ. We will not collapse these elements with any other
elements, so Lemma 19 will guarantee that A ” A‘ Id.
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α “ pα´qp8. If we visit α´ at stage s and do not end the stage, it is because s enters Mα´ .
Suppose that at infinitely many stages, α´ takes outcome 8. At stage s, α´ takes outcome
8 if and only if at that stage W|α´| contains an element x P rSα´pf sA which is not in K. We

will call such stages α´-expansionary. In this case all elements of Sα´pf which are not in K
will collapse together into the class of s, and we enumerate s into Sα. In this case, we will
make Sα´pf “ H as we injure α´pf . This means that the x we found in W|α´| X rSα´pf sA
must be A-equivalent to a number which entered Sα´pf since the last time α was visited.
This s then enters one of Kα, Iα, or Mα. If we take this outcome infinitely often, then Sα
will be an infinite computable set.

‚ K-procedure at α. If s becomes the nth element of Kα (we express this by writing
s “ xαn) then we A-collapse s A xλn. Moreover we will cause no additional A-collapse
on the elements of Kα apart from the ones inherited from C through Kλ.

‚ The equivalence AæIα ” Id. We will cause no additional A-collapse on the elements
of Iα, so they will be pairwise non-A-equivalent as they were when first enumerated
in Iα, and thus AæIα ” Id.

‚ The reduction A ď AæSα. Since every element of Sα is in a class which intersects
W|α´|, a reduction A ď AæSα yields A ď AæW|α´| by Lemma 2(3), thus satisfying
the requirement SMC|α´|. Assuming α is on the true path, ω will be partitioned
into rSβsA rK for β ăL α, rIγsA, rDγsA for γ Ă α, and rSαsA (note that all of K,
and thus rKγsA for all γ is contained in rSαsA as every element of Kγ is collapsed
with an element of Kλ, and Kα, being infinite, contains an element xαn A-equivalent
to xλn for each n). We will show in the Disjointness Lemma below that these blocks
are pairwise A-disjoint. Further, this is a computable partition (note that rSβsArK
for β ăL α is a c.e. set since it contains only finitely many classes, since we are
assuming that α P Tp). So, to reduce A to AæSα comes down to reducing each of
rSβsArK for β ăL α, rIγsA, rDγsA for γ Ă α, and rSαsA A-disjointly into Sα. Each
of rSβsA rK for β ăL α will be finite ceers. Each of rIγsA, rDγsA for γ Ă α will be
either empty or equivalent to Id. Since Iα is a copy of Id, we build a reduction by
reducing rIαsA along with each of rSβsA rK for β ăL α, rIγsA, rDγsA for γ Ă α to
Iα. The rest of rSαsA gets sent to a member of Sα in its own equivalence class.

α “ pα´qpf . Suppose now that α “ α´pf is on the true path.

‚ The finitary-diagonalization strategy at α. Strategy α works towards satisfying Di

where i equals the number of bits f occurring in the string α´ (we let #pαq be this
number). That is, #pαq “ |tβ : βpf Ă α´u|. Strategy α carries out the finitary-
diagonalization strategy described in section 2.1, which we know will cause only
finitely many collapses. Therefore, AæDα will be equivalent to Id.

‚ The reduction AæW|α´| ď C. We see in this case that AæW|α´| ď C ‘ Id, meeting

SMC|α´|. If pα´qpf Ă Tp then W|α´| X rSαsA r K is empty. Once again, ω is
partitioned into rSβsA r K for β ăL α, rIγsA, rDγsA for γ Ă α, and rSαsA. So,
AæW|α´| can be written as a uniform join of AæW|α´| X rSβsA r K for β ăL α,
AæW|α´|XrIγsA, AæW|α´|XrDγsA, for γ Ă α, and AæW|α´|XK, sinceW|α´|XrSαsAr
K is empty. The first of these is a finite ceer, the second reduces to AærIγsA ” Id,
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10 ANDREWS AND SORBI

the third reduces to AærDγsA ” Id, and AæW|α´|XK ď AæKλ ” C. Thus, AæW|α´|

reduces to a uniform join of finitely many copies of Id, some finite ceers, and C,
which reduces to C ‘ Id ” C.

2.3. Formal Construction. Let s be a stage. We proceed by substeps t at stage s. At
substep t of s we define: (1) a string αs,t Ą αs,t´1, such that |αs,t| “ t; (2) the values of the
parameters relative to this string; and (3) a new value As,t of the ceer A. To do this we
may need to know the current values of the parameters relative to other strings β, and of
A as well. We assume that these values are the ones assigned to them at the end of substep
t ´ 1 if t ą 0, or at the end of the previous stage if t “ 0. After completing substep t, we
may end stage s and go on to stage s` 1, or we may move on to substep t` 1.

Remark 7 (Saving on notations). When describing the actions and the parameters at any
substep t of any stage s, for simplicity we will omit specifying the subscript s, t. Thus for
instance, we refer to Sα instead of Sα,s,t (being clear from the context whether we mean the
value at the beginning of the substep, or the value which we define at the end of the substep),
and for any set X, rXsA will stand for rXsAs,t, etc.

A stage s` 1 is α-expansionary if α is visited at that stage, does not end the stage, and
W|α| contains an element x P rSαpf sA r K. Note that in this case, we will injure αpf , in
particular setting Sαpf “ H. Thus, x must be A-equivalent to an element which entered
Sαpf since the last α-expansionary stage.

Stage 0. Let α0 “ λ. Let Sλ “ Kλ “ tx : x ” 0 mod 3u. Define xλn “ 3n for every n. All
other sets are empty. Let A0 “ Id.

Initialize all β ‰ λ by setting Sβ “ Kβ “ Iβ “ Dβ “Mβ “ H, and nβ “ 0.

Stage s ` 1. Substep 0: Let αs`1,0 “ λ. If s ` 1 ” 0 mod 3, then we update Kλ by A-
collapsing 3x with 3y if and only if 3x, 3y ď s` 1 and x Cs`1 y. We then end the stage. If
s`1 ” 1 mod 3, then put s`1 into Sλ and Iλ. We then end the stage. Finally, if s`1 ” 2
mod 3, we put s` 1 into Sλ and Mλ. We then proceed to the next substep.

Substep t ` 1: After completing stage s ` 1 substep t, having defined α “ αs`1,t and
the relevant parameters for α without having stopped the stage at t, we distinguish the
following two cases:

‚ If s ` 1 is α-expansionary, then: Let αs`1,t`1 “ αp8. Carry out the following
procedures:

– Perform the dumping procedure. A-collapse Sαpf rK into the equivalence class
of s ` 1. Enumerate s ` 1 into Sαp8. We initialize all requirements ąL αp8,
and in particular we set Sβ “ Kβ “ Iβ “ Dβ “ Mβ “ H and nβ “ 0 for all
β Ě αpf .

– Perform the partition procedure. If the cardinality |Sαp8| ” 1 mod 3 then we
enumerate s` 1 into Kαp8. If |Sαp8| ” 2 mod 3 then we enumerate s` 1 into
Iαp8. If |Sαp8| ” 0 mod 3 then we enumerate s` 1 into Mαp8.

– Perform the K-procedure. If s` 1 was enumerated into Kαp8 and it is the nth
element of Kαp8, then we write s` 1 “ xαp8n and we collapse s` 1 A xλn.
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– If we put s ` 1 into Kαp8 or Iαp8, end the stage. If we put s ` 1 into Mαp8,
then proceed to the next substep.

‚ If s`1 is not α-expansionary then let αs`1,t`1 “ αpf and enumerate s`1 into Sαpf .
– Perform the partition procedure. If |Sαpf | is odd, then we put s ` 1 into Dαpf .

Otherwise, we place s` 1 into Mαpf .
– Perform the finitary-diagonalization-procedure. For this, we refer to the in-

formal description of the strategy given earlier as regards notations and ter-
minology. In particular, aj refers to the jth element in Dα. The finitary-
diagonalization strategy at αpf requires attention if |Dα| ě nα and

ϕ#α,spajq Bs ϕ#α,spakq ô aj A ak,

for each aj , ak P Dα with j, k ă nα. If this happens then we act by incrementing
nα “ nα ` 1 and by A-collapsing aj A ak if and only if j Us k, for each
aj , ak P Dα with j, k ă nα.

– If we put s`1 into Dαpf , end the stage. If we put s`1 into Mαpf , then proceed
to the next substep.

Finally let αs`1 “ α
s`1,t

Ź and As`1 “ A
s`1,t

Ź, where t
Ź

is the last substep of stage s ` 1

(which we show exists in Lemma 8).

2.4. Verification. We first observe that every stage terminates. This is because every node
ends the stage when it is visited for the first time.

Lemma 8. Every stage has a last substep.

Proof. By induction, we may assume that all previous stages have terminated, thus there
are only finitely many α so that Sα is non-empty. Suppose towards a contradiction that
stage s does not terminate. Then there is some t so that Sαs,t is empty at the beginning of
the substep of the stage. Then we make |Sαs,t | “ 1, and therefore s is placed into Kα or
Dα and the stage terminates. �

We say that α is on the true path at stage s, or s is an α-true stage if α Ď αs.

Next we verify that we do not accidentally cause more collapse than intended. This will
be necessary for instance to show that AæKλ ” C.

Lemma 9. (1) At every substep t of every stage s and nodes γ ‰ β, if x A y for x P Sγ,
y P Sβ then either γ Ď β and x PMγ, β Ď γ and y PMβ, or x, y P K.

(2) At the beginning of stage s ` 1 substep t, if s ` 1 P Mαs`1,t, and y P Sβ for any β
and s` 1 A y, then β Ď αs`1,t and y PMβ.

(3) For each α, rIαsA, rDαsA, rMαsA rK, K are always disjoint sets.

Proof. We prove all three claims by simultaneous induction on substeps of stages. They are
clearly true at stage 0 since the only α with Sα ‰ H is λ and no collapse has happened at
stage 0.

We consider each of the actions taken during the construction and see that they main-
tain these conditions. At each step, the substep 0 only introduces a fresh number to the
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12 ANDREWS AND SORBI

construction and can only cause collapse if both numbers are in Kλ. Thus it maintains all
three conditions. We consider α “ αs`1,t as we take the t ` 1th substep and look at each
case. First suppose that s` 1 is an α-expansionary stage.

During the dumping procedure, we put s`1 into Sαp8 and collapse all elements of SαpfrK
to be A-equivalent with s ` 1. We also make Sδ “ H for every δ Ě αpf . By inductive
hypothesis, each element of Sαpf rK could only be A-equivalent to a y P Sδ if δ Ě αpf or
δ Ă αpf and y PMδ. Also, by the inductive hypothesis on the second condition, s` 1 itself
is only A-equivalent to y P Sδ if δ Ď α and y P Mδ. Thus the first condition is maintained
by the dumping procedure. The third condition is also preserved since no set Iα, Dα, Mα

or K has been increased, and the collapse we caused did not cause collapse between any
of these sets by the inductive hypothesis on the first condition. The second condition is
changed slightly. Since now s ` 1 itself has entered Sαp8, but is the only representative of
its class in Sαp8, we have the additional possibility that y “ s` 1 itself and δ “ αp8. The
condition only talks about the beginning of the substep, so this is not a direct violation of
the second condition, but this effects the possibilities we must consider if s` 1 enters Mαp8

during the partition procedure.

Next, during the partition procedure, no collapse is caused and no Sβ is changed, so the
first condition is preserved. If s`1 is not placed into Mαp8, then the second condition holds
vacuously. If it is placed in Mαp8, then we had s ` 1 only A-equivalent to y P Sδ if δ Ď α
and y P Mδ or if y “ s ` 1 and δ “ αp8. In the latter case, since s ` 1 entered Mαp8, the
condition still holds. Finally, the only new class in rIβsA, rDβsA, rMβsA rK is the class of
s` 1 itself, by the second condition, s` 1 is not A-equivalent to any other member of Sαp8,
so the third condition is preserved.

The K-procedure only occurs if s ` 1 entered Kαp8. In this case, the second condition
holds vacuously after this as s` 1 RMαp8. In this case, s` 1 collapses with an element of
Kλ. Thus the first statement is preserved because this only collapses a class into K and the
statement allows for two elements of K. The third statement is preserved as well, since the
inductive hypotheses imply that both s ` 1 and each member of Kλ are A-non-equivalent
to any member of rIγsA, rDγsA, rMγsA rK for any γ.

Now we suppose that s`1 is not an α-expansionary stage. All three statements are clearly
preserved by adding s` 1 to Sαpf . During the partition procedure no collapse or entry into
any Sβ happens, so the first statement is preserved. Since s` 1 is not A-equivalent to any
member of Sαpf except s` 1 itself by the inductive hypothesis on the second condition, the
third condition is also preserved. Again the second condition has the new possibility that
y “ s` 1 itself and δ “ αpf , which maintains the second condition if s` 1 enters Mαpf . If
s` 1 enters Dαpf , the condition holds vacuously.

During the finitary-diagonalization-procedure, collapse can happen only between members
of Dαpf . Since the inductive hypothesis shows that each of these numbers can only be A-
equivalent to x P Sδ for δ ‰ αpf if δ Ă αpf and x PMδ, the first statement is preserved. This
collapse can only involve s`1 if s`1 has entered Dαpf , in which case the second statement
holds vacuously. Similarly, since each of these elements of Dαpf are not A-equivalent to any
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member of Iαpf or K or Mαpf by inductive hypothesis, the third condition is maintained as
well. �

We introduce some convenient notation:

Definition 10. For every α such that there is a biggest stage sα at which α is initialized
(taking sα “ 0 if α “ λ) , if Pα P tSα,Kα, Iα, Dα,Mαu then let

Pα “
ď

těsα

Pα,t.

For every string α, at any stage and substep, let

Rα “

#

Iα, if α “ λ or α “ pα´qp8,

Dα, if α “ α´pf,

S´ăLα “
ď

tSβ rK : β ăL αu.

Lemma 11 (Disjointness Lemma). For any α Ă Tp, the (limiting values of the) following
sets are pairwise disjoint: rRαsA, rS´ăLαsA, K, rMαsA rK. Further, for any β Ă α, these
sets are all disjoint from rRβsA.

Proof. This follows immediately from Lemma 9 since each of these sets are disjoint at each
stage. �

Lemma 12. For every α on the true path, and for every x,

x P K Y rS´ăLαsA Y r
ď

βĎα

RβsA Y prMαsA rKq .

Proof. For α “ λ, the claim is trivial because every x lies in Kλ Y Iλ YMλ.

Suppose by induction that the claim is true of α on the true path. We distinguish as
usual the two possible cases αp8 Ă Tp or αpf Ă Tp.

Assume first that αp8 is on the true path, and let x be any number. If x P K Y

rS´ăLαsA Y r
Ť

βĎαRβsA then the claim is trivial. Note that S´ăLα “ S´
ăLpαqp8

. So suppose

that x P rMαsA r K. Then by the dumping procedure, x P rSαp8sA, which gives x P
rRαp8sA Y rMαp8sA.

Assume now that αpf is on the true path, and let x be any number. Again, the case which
deserves some attention is when x P rMαsA rK. Then either x P rSαp8sA or x P rSαpf sA.

In the former case, x P rS´
ăLαpf

sA. In the latter, x P rRαpf sA or x P rMαpf sA. In any case,

the statement is true for αpf . �

Lemma 13. For every m,n, β, γ, if xβmrss and xγnrts are defined, then xβmrss A xγnrts if and
only if m C n.
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Proof. We A-collapse xβmrss A xλm and xβnrts A xλn. Thus we cause the collapse xβmrss A xγnrts
when we update Kλ during substep 0 of some stage if and only if we cause the collapse
xλm A xλn if and only if m C n. Note that we only ever cause A-collapse during the
construction either during a dumping procedure, where we do not collapse elements in K,
or during a finitary-diagonalization strategy, where we collapse elements of Dγ for some γ,
which are not in K by Lemma 9, or during the K-procedure where we collapse an element
which is not yet in K, by the second claim in Lemma 9, to an element of Kλ. Thus we
never unintentionally collapse together distinct members of K. �

Lemma 14. If α ď Tp then each set Sα, Kα, Rα, and Mα are computable (not uniformly).
If α ăL Tp then each of these sets is finite. If α Ă Tp then each of these sets is infinite.

Proof. We check the claim that refers to strings α Ă Tp, as the part that refers to strings
α ăL Tp is obvious.

If α Ă Tp then let s0 be the last stage at which Sα is initialized. Then s ą s0 enters
Sα if and only if it enters at stage s. Thus Sα is computable. It is infinite since s enters
Sα at every stage s where α is visited.1 The rest of the claim is obvious by the way Sα is
partitioned into the other relevant sets. �

Lemma 15. C ď A.

Proof. For each pair n,m, we have ensured that n C mô xλn A xλm by Lemma 13. �

Lemma 16. For every k, there is an α on the true path with #pαq “ k.

Proof. For every α ‰ λ on the true path such that W|α´| “ H we have α “ α´pf . Thus
there are infinitely many fs along the true path, so there is an α on the true path with
#pαq “ k. �

Lemma 17. A ę B. Thus A ę C.

Proof. Given any k, we want to show that ϕk is not a reduction of A to B. Let α be on
the true path with α “ pα´qpf and #pαq “ k. Then Dα is infinite. On the set Dα, α runs
the finitary-diagonalization strategy. As we have argued in the description of the finitary-
diagonalization strategy, the only possible outcome is the finite diagonalization outcome
which ensures that ϕk is not a reduction of A to B. �

Lemma 18. If α Ă Tp then AæRα ” Id and AæpS´ăLα Y
Ť

βĎαRβq ” Id.

Proof. First of all we show that if α Ă Tp then AæRα ” Id. Note that we only ever
cause A-collapse either during substep 0, where we collapse elements in Kλ thus we do not
collapse elements in Rα; during a dumping procedure, where we do not collapse elements
in Rα; or during a finitary-diagonalization strategy, where we collapse elements of Dγ for
some γ, which are not A-equivalent to elements of Rα unless Rα “ Dγ , in which case this
is a collapse for the sake of α’s finitary-diagonalization strategy; or during a K-procedure
where we collapse an element of Kα to an element of Kλ, neither of which can be equivalent

1The non-uniformity is because we cannot uniformly find s0, the last stage at which α is initialized.
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to a member of Rα. Thus we never unintentionally collapse together members of Rα. So,
we can focus on the strategy itself. If Rα “ Iα, then we never collapse any elements, so
Iα is comprised of distinct elements, so AæIα ” Id. In the case of Rα “ Dα, note that
we cause a total of finitely many collapses via the finitary-diagonalization strategy since
limsÑ8 nα,s ă 8. So AæDα ” Id.

For any α, AæpS´ăLα Y
Ť

βĎαRβq is equivalent to AæS´ăLα ‘
À

βĎαAæRβ by the Dis-

jointness Lemma and the fact that S´ăLα is finite (the latter being needed to see that the
partition is computable). Each direct summand is finite or equivalent to Id, and one of
them (AæRα) is equivalent to Id, so AæpS´ăLα Y

Ť

βĎαRβq ” Id. �

Lemma 19. A ” A‘ Id. In particular, A is non-self full.

Proof. It is immediate from the previous Lemma that AæIλ ” Id. Further, since Iλ is
computable, the Disjointness Lemma implies that A ” AæIλ ‘ AæIλ. Thus, A ‘ Id ”

Id‘AæIλ ‘AæIλ ” Id‘ Id‘AæIλ ” Id‘AæIλ ” AæIλ ‘AæIλ ” A �

Lemma 20. If αp8 is on the true path then A ď AæSαp8 ď AæW|α| and the requirement
SMC|α| is satisfied.

Proof. In view of Lemma 18, there exist a computable function providing a reduction from
AæpS´

ăLαp8
Y
Ť

βĎαp8Rβq to Id, and a computable reduction of Id to AæIαp8. This lets us

build a partial computable function f which has domain S´
ăLαp8

Y
Ť

βĎαp8Rβ and range

Iαp8 and for x, y in the domain, x A y if and only if fpxq A fpyq.

To define a reduction g witnessing A ď AæSαp8, consider any number x. We use
Lemma 12, and we search for a y in Kλ Y S´

ăLαp8
Y

Ť

βĎαp8Rβ YMαp8 so that x A y

using simultaneous effective listings of these four sets:

(1) if we first find y “ xλn P Kλ then let gpxq “ xαp8n ;
(2) if we first find y P S´

ăLαp8
Y
Ť

βĎαp8Rβ then let gpxq “ fpyq;

(3) if we first find y PMαp8, then we let gpxq “ y.

We will show that g is a function with domain ω and range Sαp8 so that x A y if and
only if gpxq A gpyq, showing that A ď AæSαp8. By the Disjointness Lemma, the only thing
to check is x0 A x1 ô gpx0q A gpx1q, for a pair x0, x1 P K such that we use (1) to define
gpx0q, but we use (3) to define gpx1q. Note that in both case (1) and (3), we define gpxq to
be A-equivalent to x. So we have gpx0q A gpx1q if and only if x0 A x1.

But if A ď AæSαp8 then by Lemma 2(3) A ď AæW|α| since every member of Sαp8 is A-
equivalent to a member of W|α|, as s` 1 enters Sαp8 only at α-expansionary stages, where
we see s` 1 A x for some x PW|α|. Thus the requirement SMC|α| is satisfied. �

Lemma 21. If αpf is on the true path, then AæW|α| ď C ‘ Id and requirement SMC|α| is
satisfied.

Proof. Suppose now that αpf is on the true path. Since αpf is on Tp, we have that W|α| X

rSαpf sA rK is empty.
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Thus Lemmas 11 and 12 show that AæW|α| is partitioned by:

AæW|α| ” AæpK XW|α|q ‘AæprS
´
ăLαpf

sA XW|α|q ‘Aæpr
ď

βĂαpf

RβsA XW|α|q

But the first summand reduces to AæK, which is equivalent to C, the second is a finite
ceer, the third reduces to Aæ

Ť

βĎαpf Rβ, which is equivalent to Id by Lemma 18. So, the
uniform join of all of these reduces to C ‘ Id. �

Lemma 22. If X ă A, then X ď C.

Proof. Let i be so X ” AæWi by Lemma 2 and let α be so |α| “ i and α is on the true
path. We consider two cases:

Case 1: If αp8 is on the true path, then Lemma 20 shows that A ď AæSαp8 ď AæWi ” X.

Case 2: If αpf is on the true path, then Lemma 21 shows that X ” AæWi ď C ‘ Id ”
C. �

This ends the proof of the theorem. �

3. Initial Segments in the Structure CeersrFin

Let xωăω,Ďy be the poset with universe the set of finite strings of natural numbers
partially ordered by the relation σ Ď τ if σ is an initial substring of τ . In the following we
use notations and terminology about finite strings of numbers, similar to those introduced
at the beginning of Section 2.2 for strings in the tree of strategies Tr. The following corollary
is an application of Theorem 6:

Corollary 23. There is an initial segment of Ceersr Fin isomorphic to xωăω,Ďy.

Proof. We begin with Id, and note that Id ” Id‘ Id. Theorem 6 allows us to build infinitely
many incomparable strong minimal covers each of which satisfies A ” A ‘ Id. Repeating
as such lets us embed ωăω as an initial segment of Ceers r Fin.

In more details, we can refer to a linear ordering ĺ of ωăω of order type ω, so that if
σ Ď τ then σ ĺ τ . For instance define Γn “ tσ P ω

ăω : |σ| ď n&@i ă n pσpiq ă nqu, and
let hpσq be the least n so that σ P Γn. Define σ ĺ τ if hpσq ă hpτq or hpσq “ hpτq and σ is
quasi-lexicographically less than τ .

We start at “step λ” by setting Aλ “ Id. When time comes to build Aσ, with σ ‰ λ
(this happens at “step σ”, i.e. at step n, with σ the nth string in ĺ), then we use Theorem
6 to make Aσ a strong minimal cover of Aσ´ , and Aσ not reducible to

À

tAτ : τ ă σu
(the universal degree is join-irreducible, i.e., there is no pair of incomparable degrees b, c so
that the universal degree is the least upper bound of b and c (see [3, Proposition 2.6]), so
this uniform join is not universal). Remember that all these Aσs satisfy Aσ ‘ Id ” Aσ. In
particular, all these Aσs are non-self-full.

Let us check that the mapping σ ÞÑ Aσ provides in fact an embedding of pωăω,Ďq. If
σ Ď τ then either Aσ “ Aτ or Aτ is built after Aσ so there is a computable function fσ,τ
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which reduces Aσ ď Aτ . More precisely, in the construction of Aτ using Theorem 6 we
encode C “ Aτ´ directly onto Kλ “ tx : x ” 0 mod 3u, so fσ,τ pxq “ 3|τ |´|σ| ¨ x.

Suppose towards a contradiction that there are σ and τ with σ Ę τ and Aσ ď Aτ . Take
such a pair with τ of minimal length. If the length of τ is 0, then Aσ is above Axσp0qy, which
is strictly above Id “ Aλ “ Aτ by Theorem 6. So, we must have the length of τ is ą 0. But
then Aσ ď Aτ implies that either Aσ ” Aτ or Aσ ď Aτ´ . The latter case contradicts the
minimality of the length of τ . In the former case, let ρ be the ĺ-greater of τ and σ. Then
Aρ is constructed so that Aρ ę ‘tAγ : γ ă ρu, contradicting Aσ ” Aτ .

Thus, we have an embedding of ωăω as an initial segment of Ceers r Fin. �

Corollary 24. The partial order ω`ωăω obtained by placing xωăω,Ďy on top of xω,ďy is
embeddable as an initial segment of Ceers.

Proof. The finite ceers have order type ω and are initial in Ceers. Corollary 23 shows that
ωăω is an initial segment on top of that. �

Notice that xωăω,Ďy is in fact a lower semilattice with least element. We now turn
towards extending the embedding given by Corollary 23 to an embedding of the free dis-
tributive lattice generated by the lower semilattice xωăω,^y into Ceers r Fin. To do this,
we identify for each tuple σ0, . . . , σn´1 a ceer Bσ0,...,σn´1 to act as the join of the ceers
Aσ0 , . . . , Aσn´1 . We begin by recalling the definition:

Definition 25. The free distributive lattice generated by the lower semilattice xQ,^y is a
distributive lattice D which has a function i : Q Ñ D which preserves meets, so that D, i
satisfy the universal property: If L is any distributive lattice and f : QÑ L preserves meets,
then there is a unique lattice-homomorphism h : D Ñ L so that f “ h ˝ i.

We will recall a constructive lattice-theoretic characterization of the free distributive
lattice generated by the lower semilattice xωăω,^y below in Definition 30 and Lemma 31.

Fix a sequence of ceers pAσqσPωăω as built in Corollary 23. We define a map which
assigns, to any finite subset σ0, . . . σn´1 of ωăω a ceer Bσ0,...,σn´1 as follows:

Definition 26. For each σ0, . . . , σn´1, we assign the ceer Bσ0,...,σn´1 which is the ceer
generated by Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1 plus the set „ of pairs defined by:

„“ tpx, yq : pDi, j ă n q pDu q rx Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1 fσi^σj ,σipuq

& y Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1 fσi^σj ,σj puqsu,

where fτ,σ for τ Ď σ is the reduction from Aτ into Aσ as defined in the proof Corollary 23.
(In other words, we mod out Aσ0 ‘ ¨ ¨ ¨ ‘ Aσn´1 so that for each i, j ă n, we identify the
copy of Aσi^σj in Aσi with the copy of Aσi^σj in Aσj .)

Remark 27. We will also denote Bσ0,...,σn´1 by the expression pAσ0 ‘ ¨ ¨ ¨ ‘Aσn´1q{„.

Remark 28. If we did not mod out to identify the copies of Aσi^σj in Aσi and in Aσj
in Definition 26, then we would be putting Aσi^σj ‘ Aσi^σj below Bσi,σj , which we are
constructing to be the join of Aσi and Aσj . But it is possible that Aσi^σj ‘Aσi^σj ą Aσi^σj .
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This would mean that we would not be constructing an embedding to an initial segment in
Ceersr Fin.

Obviously, Bσ0,...,σn´1 ” Bσpp0q,...,σppn´1q
for every permutation p of the set t0, . . . , n´ 1u.

Theorem 29. The following hold for m,n ą 0:

(1) If σi Ě σj with i, j ă n and i ‰ j, then Bσ0,...,σn´1 ” Bσ0,...,σj´1,σj`1,...,σn´1.
Hence,

Bσ0,...,σn´1 ” Bσi0 ,...,σik´1
,

where tσi0 , . . . , σik´1
u is the Ď-antichain comprised of the Ď-maximal elements in

tσ0, . . . , σn´1u.
(2) If tσ0, . . . , σn´1u is a Ď-antichain and X ă Bσ0,...σn´1, then there exists i ă n so

that X ď Bσ0,...,σ´i ,...σn´1
. Further, the only degrees of infinite ceers below Bσ0,...σn´1

are degrees of the form Bτ0,...,τm´1 where p@j ă m qpDi ă n qrτj Ď σis.
(3) If tσ0, . . . , σn´1u and tτ0, . . . , τm´1u are Ď-antichains, then

Bτ0,...,τm´1 ď Bσ0,...,σn´1 ô p@j ă m qpDi ă n qrτj Ď σis.

Proof. (1) We have σi Ě σj , with i, j ă n and i ‰ j. In the definition of „, we mod out
the entirety of the copy of Aσj with a part of Aσi . It follows from Lemma 2(2) that

Bσ0,...,σn´1 ” Bσ0,...,σn´1æpω r ωj,nq

” Bσ0,...,σj´1,σj`1,...,σn´1 .

(2) Suppose that X ă Bσ0,...,σn´1 , and f is a reduction from X to Bσ0,...,σn´1 . Let

We “ rrangepfqsBσ0,...,σn´1
. Hence X ”

`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„
æWe by Lemma 2(2).

Let Wei “ tx P We : x ” i mod nu, and αi be the node of length ei on the true
path of the construction of Aσi in Theorem 6.

Case 1: For each i ă n, αip8 is on the true path. Then (use the argument in
the proof that Aσi is a strong minimal cover of Aσ´i

to give the reduction on each

component individually) we get reductions fi witnessing Aσi ď AσiæWei . Thus
`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„‘iănfi
ď

`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„
æWe by Lemma 5 as „ is tran-

sitive and Aσ0 ‘ ¨ ¨ ¨ ‘ Aσn´1-closed. Finally, note that „ includes relations on the
set Kλ in each Aσi . But in the reductions fi, each element in Kλ is sent to an image
in its own equivalence class. Thus „‘iănfi“„. Thus

`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„
“

`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„‘iănfi

ď
`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„
æWe.

That is, Bσ0,...,σn´1 ď X.
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Case 2: There is some i ă n so that αipf is on the true path. So AσiæWei ď Aσ´i
‘Id.

Let f be the reduction as such and note that fpxλnq “ 2n. It follows that

Aσ0æWe0 ‘ ¨ ¨ ¨ ‘Aσn´1æWen´1 ď Aσ0 ‘ ¨ ¨ ¨ ‘Aσ´i
‘ ¨ ¨ ¨ ‘Aσn´1 ‘ Id

” Aσ0 ‘ ¨ ¨ ¨ ‘Aσ´i
‘ ¨ ¨ ¨ ‘Aσn´1 .

We note that in the latter reduction, we are collapsing the copy of Id with the copy
of Id in any one of the Aσi , and that „ does not touch the sets Iλ in any of the Aσj .
Since f sends Kλ in Aσ (which is a copy of Aσ´) exactly to Aσ´ , Lemma 5 yields

`

Aσ0 ‘ ¨ ¨ ¨ ‘Aσn´1

˘

{„
æWe ď

´

Aσ0 ‘ ¨ ¨ ¨ ‘Aσ´i
‘ ¨ ¨ ¨ ‘Aσn´1

¯

{„1
,

where „1 is as in the definition of Bσ0,...,σ´i ,...,σn´1
. That is, X ď Bσ0,...,σ´i ,...,σn´1

.

Now, suppose X is an infinite ceer and X ď Bσ0,...,σn´1 . We can repeatedly apply
the above condition until either we represent X as Bτ0,...,τn´1 or until we get to tuple
of τs which is no longer an anti-chain. In this case, we can use the result of (1) and
then repeat. This process is monotonically decreasing in the sum of the lengths of
the strings, so it must either terminate with X ” Bτ0,...,τm´1 and every τj being an
initial substring of some σi for i ă n, or the sum of the lengths of the strings must
go to 0, in which case we have X ď Bλ “ Aλ ” Id. But since X is infinite, this
latter case gives X ” Id ” Bλ and of course λ is an initial segment of σ0.

(3) Let tσ0, . . . , σn´1u and tτ0, . . . , τm´1u be two Ď-antichains. It is immediate by def-
inition that

p@j ă m qpDi ă n qrτj Ď σis ñ Bτ0,...,τm´1 ď Bσ0,...,σn´1 .

Next, we suppose that Bτ0,...,τm´1 ď Bσ0,...,σn´1 and show τj is an initial segment
of some σi. In particular, we have that Aτj ď Bσ0,...,σn´1 . We use the previous result
to see that Aτj ” Bρ0,...,ρk for some antichain of ρs which are initial segments of the
sequence of σs. But then Aτj ě Aρi for each i, which implies that ρi Ď τj for each
i ă k. Since the sequence of ρs forms an antichain, we conclude that k “ 0 and
ρ0 “ τj . Then τj is an initial substring of some σ. �

We now recall some lattice-theoretic facts that will help us show that we indeed have an
embedding of the free distributive lattice generated by the lower semilattice xωăω,^y.

Definition 30. Given a poset Q “ xQ,ďy, and a subset X Ď Q, let pXs “ ty P Q :
Dx P X py ď xqu.

Let also Pă8pQq be the set of nonempty finite subsets of Q.

Let LpQq “ xtpXs : X P Pă8pQqu,Ďy, and let us use the symbol pPă8pQqs to denote the
universe of this poset.

Lemma 31. If Q is a lower semilattice then LpQq is the free distributive lattice generated
by the lower semilattice Q. If Q is a lower semilattice with least element then LpQq has
least element.
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Proof. Suppose that Q “ xQ,^y is a lower semilattice. Clearly LpQq is an upper semilattice,
with join operation _ given by pXs _ pY s “ pX Y Y s, and having inclusion as the partial
ordering relation. To show that LpQq is also a lower semilattice, it is enough to observe
that it is closed under X, as if X,Y P Pă8pQq then pXs X pY s “ ptx ^ y : x P X, y P Y us.
A straightforward calculation shows that the lattice is distributive.

Next we show that LpQq enjoys the universal property of free objects, making it the
free distributive lattice on the lower semilattice Q. Let i : Q Ñ pPă8pQqs be given by
ipxq “ ptxus. Then i preserves meets. If now L “ xL,_,^, 0y is a distributive lattice,
and f : Q Ñ L preserves meets, then the mapping h : pPă8pQqs Ñ L, given by hppXsq “
Ž

xPX fpxq is easily seen to be the unique lattice-theoretic homomorphism so that f “ h˝ i.
To see that h preserves meets, notice that by distributivity and properties of f ,

hppXsq ^ hppY sq “ p
ł

xPX

fpxqq ^ p
ł

yPY

fpyqq

“
ł

xPX,yPY

pfpxq ^ fpyqq

“
ł

xPX,yPY

fpx^ yq “ hppXs X pY sq.

If Q “ xQ,^, 0y is a lower semilattice with least element 0, then the least element of
LpQq is pt0us. �

Remark 32. Notice that if Q “ xQ,^, 0y is a lower semilattice with least element then
LpQq can be alternatively viewed as the free distributive lattice with least element generated
by the lower semilattice Q with least element. The definition of the free distributive lattice
with least element is defined as in Definition 25, but requiring all maps to preserve least
element. That is, the free distributive lattice with least element generated by the lower
semilattice with least element xQ,^, 0y is a distributive lattice D with least element which
has a function i : Q Ñ D which preserves meets and least element, so that D, i satisfy
the universal property: If L is any distributive lattice with least element and f : Q Ñ L
preserves meets and least element, then there is a unique lattice-homomorphism preserving
least element h : D Ñ L so that f “ h ˝ i.

Corollary 33. The free distributive lattice Lpωăωq on the lower semilattice ωăω “ xωăω,^y
embeds as an initial segment of the degrees Ceersr Fin.

Proof. If Q “ xQ,ďy is a poset, and X P Pă8pQq then there exists a finite ď-antichain X 1

such that pXs “ pX 1s: This X 1 is unique, and we denote it by XM , since it is the set of the
ď-maximal elements in X. It is not difficult to see that if X,Y P Pă8pQq then

pXs Ď pY s ô p@x P XM qpDy P YM qrx ď ys.

Therefore we can use items (1) and (3) of Theorem 29 to show that the mapping

pXs ÞÑ Bσ0,...,σn´1

(where X is a nonempty finite subset of ωăω and XM “ tσ0, . . . , σn´1u) order-theoretically
embeds Lpxωăω,Ďyq to the degrees of ceers. Item (2) of Theorem 29 shows that, up to

https://doi.org/10.1017/jsl.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.14


INITIAL SEGMENTS OF THE DEGREES OF CEERS 21

equivalence, the range of this embedding is an initial segment of Ceers r Fin. The least
element in the embedding is the degree of Id. �

Notice that the embedding of the previous corollary maps meets of Lpωăωq to meets of
Ceers (since the image is an initial segment), but maps joins to joins of the image, which
need not be joins of Ceers. We now show that in fact the embedding distinctly does not
map joins to joins. In fact, even in the simplest case where σ ^ τ ‰ λ, Aσ and Aτ do not
have a join. In the following, if u, v are numbers, then xu, vy denotes the string of length 2
comprised of u, v.

Observation 34. For any i, j, k P ω with j ‰ k, Axi,jy and Axi,ky do not have a join in the
ceers. In particular, Bxi,jy,xi,ky is not a join since Bxi,jy,xi,ky ę Axi,jy ‘Axi,ky

Proof. From Theorem 29, Bxi,jy,xi,ky bounds no other degree which is above both Axi,jy and
Axi,ky, thus if there is a join of Axi,jy with Axi,ky, the join must be Bxi,jy,xi,ky. So, it suffices
to show Bxi,jy,xi,ky ę Axi,jy ‘Axi,ky.

We will show this by taking a supposed reduction g of Bxi,jy,xi,ky to Axi,jy ‘ Axi,ky and

showing that in this case some Sα for α of the form α “ pα´qp8 on the true path in the
construction of Axi,jy must be sent entirely to the evens or entirely to the odds, but it
can’t be the odds as Axi,jy ď Axi,jyæSα and Axi,jy ę Axi,ky. The symmetric argument shows

that some Sα1 for α1 on the true path in the construction of Axi,ky must be sent entirely to
the odds. But then the two copies of Ai which are equivalent in Bxi,jy,xi,ky via „ are not
equivalent in their g-images, yielding a contradiction.

Thus suppose that Bxi,jy,xi,ky reduces to Axi,jy ‘ Axi,ky via the function g. Let X be the
set of x so that gp2xq is odd. That is, X is the pre-image of Axi,ky on the copy of Axi,jy
inside Bxi,jy,xi,ky. Similarly, let Y be the set of x so that gp2xq is even. That is, Y is the
preimage of Axi,jy on the copy of Axi,jy inside Bxi,jy,xi,ky. Since X “ Wa and Y “ Wb for
some a, b P ω give a partition of ω, either the true path in the construction of Axi,jy has 8
as the ath bit or the bth bit. To see this, suppose both the ath bit and the bth bit of the
true path is an f . Then for any β along the true path of length greater than a or b, Sβ rK
(referencing the sets with these names in the construction of Axi,jy) would be disjoint from
both X and Y . But X and Y partition ω, so this is impossible.

If the former is the case (i.e., the ath bit is 8), then by Lemma 20 we have Axi,jy ď
Axi,jyæSα ď Axi,jyæX ď Axi,ky which contradicts Corollary 23, thus the latter must be the
case. But then an entire Sα is contained in Y for some α Ă Tp. Thus every class in K
intersects Y . So, the entire copy of Ai inside Axi,jy must be sent to even numbers. The
symmetric argument (taking X to be the set of x so that gp2x` 1q is even, and Y to be the
set of x so that gp2x` 1q is odd) shows that the entire copy of Ai inside Axi,ky must be sent
to odd numbers. But then g is not a reduction after all, because the two copies of Ai (the
one inside Axi,jy and the one inside Axi,ky) are equivalent in Bxi,jy,xi,ky, but their images are
not equivalent in Axi,jy ‘Axi,ky. �

We now characterize the initial segments of Lpωăωq, giving a characterization of the
countable distributive lattices that we know how to embed as an initial segment of Ceers r Fin.
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Corollary 35. A countable distributive lattice L is isomorphic to an initial segment of
Lpωăωq if and only if

(1) L satisfies the descending chain condition (i.e. there is no infinite descending chain);
(2) the poset of its join-irreducible elements is order-theoretic isomorphic to a subtree

of ωăω.

Therefore, any countable distributive lattice satisfying these conditions can be embedded as
an initial segment of Ceersr Fin.

Proof. Let L satisfy the descending chain condition, and let J be the partially ordered
set of its join-irreducible elements. Then every element a of L can be identified with the
finite antichain of J comprised of the maximal elements of J which are below a, [6, § III.2].
Therefore, (looking at the proof of Lemma 31) it is easy to see that if J is a lower semilattice
then L is isomorphic with LpJq. Suppose in addition that J is (up to isomorphism) a subtree
of ωăω. Then clearly this isomorphism extends to an isomorphism of LpJq with an initial
segment of Lpωăωq. It follows that if L satisfies the two conditions of the corollary then L
is isomorphic to an initial segment of Ceers r Fin.

In the other direction, suppose that L is isomorphic to an initial segment of Lpωăωq.
Then trivially L satisfies the descending chain condition. Moreover the isomorphism must
send the join-irreducible elements of L to an initial segment of join-irreducible elements of
Lpωăωq which are ceers of the form Aσ, so after all J is isomorphic to a subtree of ωăω. �
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