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Abstract

Degree distribution is a fundamental property of networks. While mean degree provides a standard
measure of scale, there are several commonly used shape measures. Widespread use of a single
shape measure would enable comparisons between networks and facilitate investigations about the
relationship between degree distribution properties and other network features. This paper describes
five candidate measures of heterogeneity and recommends the Gini coefficient. It has theoretical
advantages over many of the previously proposed measures, is meaningful for the broad range of
distribution shapes seen in different types of networks, and has several accessible interpretations.
While this paper focusses on degree, the distribution of other node based network properties could
also be described with Gini coefficients.

Keywords: Degree distribution; heterogeneity; centralization; Gini coefficient.

1 Introduction

Standard measures of network properties are important for many types of analysis. A de-
tailed examination of a specific network that investigates the relationship between network
location and influence is likely to report various network measures including size, existence
of cliques, or other features of interest. While these measures are useful in understanding
the specific network, it is not always clear how to compare values between networks so as
to assess whether the network is unusual in some way. Researchers who consider patterns
over multiple networks, such as the relationship between a particular structural feature of
a network and behaviour of the network as a whole, require measures that are valid for any
network of interest and comparable over a broad variety of networks.

For degree, the scale of a network (of given size) can be described and compared using
the degree mean or density. However, degree distributions with the same mean can have
very different shapes. Presenting the cumulative degree distribution in full (such as dis-
played at Newman, 2003, Figure 3.2) is informative for a single network or comparison
between a small number of networks, but is unwieldy for comparing many networks. A
common shape measure would facilitate network comparison, classification of networks
into similar types, and description of the relationship between shape of the degree distri-
bution and other properties of the network.

This paper assesses five commonly used statistics for the shape of distributions. As
the standard statistical measure of central tendency, variance is particularly well known
and its properties with respect to degree distributions have been examined in (Snijders,
1981). Three other statistics are well established in network science; power law exponent
(Barabási & Albert, 1999), centralization (Freeman, 1978) and hierarchization (Coleman,
1964). However, these statistics are popular within specific disciplines; for example, power
law exponent is popular with researchers working with strongly skewed, large, technologi-
cally supported information networks such as world wide web links or email address books
(Newman, 2003), while centralization is included as an available measure in social network
analysis software such as UCINET and the sna R package. The final statistic assessed
is the Gini Coefficient. This is a standard heterogeneity measure for income and wealth
distributions (which are typically strongly skewed) but has received only limited attention
in network science, with the most theoretical analysis focussing on its relationship with the
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power law exponent (Hu & Wang, 2008) and sporadic use for specific applications (such
as in Lopes et al., 2011).

The first section of the paper provides the structure necessary to compare the measures.
The main body of the paper then presents each measure and assesses its performance
against desirable theoretical properties. The final section summarises the theoretical anal-
ysis and compares the measures empirically, using both real world and constructed net-
works. The paper recommends the Gini Coefficient as the most suitable shape measure for
degree distributions, because it has desirable theoretical properties, is appropriate for any
shaped distribution, and has several useful and intuitive interpretations.

2 Analysis Framework

While there has not been a comprehensive examination of degree distribution shape mea-
sures and their properties, individual measures have been assessed on specific properties.
For example, Snijders (1981) preferred degree variance over centralization because the
latter focuses entirely on a single node and is insensitive to other high degree nodes.
Similarly, Hu & Wang (2008, pg 3771) proposes the Gini Coefficient because it ”is superior
to some other parameters in characterizing heterogeneity, such as variance or standard
deviation, since . . . they demand that two networks studies should have the same average
degree.”

A systematic identification of desirable properties and comparison of measures has,
however, been conducted for income inequality (Dalton, 1920; Allison, 1978; Cowell,
2000). Three of these properties are equally relevant for comparing potential degree distri-
bution shape measures: transfer, addition, and replication. These are considered at section
2.1.

In addition, measures must be valid and sensitive over a broad range of distribution
shapes. Several real world networks taken from the literature and artificial networks con-
structed with well established algorithms are used to demonstrate the measures empirically.
These networks were selected for the diversity of their degree distribution shapes and are
described at section 2.2.

2.1 Desirable properties of a shape measure

The first property that should be held by a measure of heterogeneity is that it does indeed
measure heterogeneity. That is, as distributions become more (or less) unequal, the value
of the measure should change in some consistent direction. This idea is captured by the
transfer principle, which states that rewiring edges from a high degree node to a lower
degree node should decrease heterogeneity, provided that the transfer does not lead to a
ranking reversal of the two nodes. In the limit, this also implies that the minimum value is
achieved when all nodes have the same degree (or as close as possible if mean degree is
not an integer).

The addition principle considers the effect of increasing the degree of all nodes by
the same absolute amount. There are two potentially appropriate consequences for the
inequality measure. From the perspective that inequality refers to absolute differences
(or variation about the mean), the measure should be unchanged. Alternatively, from the
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perspective that inequality is relative, the measure should decrease, on the basis that the
differences between degrees are proportionally smaller if the same number of edges is
added to each node.

Finally, the heterogeneity statistic should not be affected by replication. That is, the
value of the shape statistic calculated over multiple instances of the same network should
equal the value for a single instance. This principle extends to noninteger replications by
considering the distribution based on the least common multiple of the two network sizes,
generated by appropriate numbers of replications of each of the initial distributions.

2.2 Empirical and artificial degree distributions

In addition to the theoretical analysis, the heterogeneity measures are compared for four
real world networks taken from the literature, two networks constructed with well estab-
lished algorithms and a star network. The networks were selected to emphasise differences
in the measures, with substantial diversity in size and in shape of degree distribution.

The four real world distributions are:

• Friends: the number of friendship nominations received within a school study (Rapoport
& Horvath, 1961, Table 5), with 859 nodes, mean in-degree of 6.84 and maximum
in-degree of 29.
• Yeast: the yeast protein interaction network described in (Jeong et al., 2001), with

2,114 nodes, mean in-degree of 2.12 and maximum in-degree of 56.
• Collaborators: collaborations between authors on the condensed matter archive from

January to March 2005 (updated version of Newman, 2001), with 40,421 nodes,
mean degree of 8.69 and maximum degree of 278.
• WWW: hyperlinks between domains in the World Wide Web (Albert et al., 1999),

with 325,729 nodes, mean in-degree of 4.60 and maximum in-degree of 10,721.

The three artificial networks are of the same size and two have a common mean degree
so as to emphasise the differences arising from shape. The random graph and preferential
attachment algorithms are well established for generating artificial networks with very
different degree distributions. The three generated distributions are:

• BA1000: a single instance generated with the preferential attachment algorithm de-
scribed in (Barabási & Albert, 1999), with 3 edges per added node and a complete
initial network with 3 nodes. This network has 1,000 nodes, mean degree of 5.99
and maximum degree of 116.
• ER1000: a single instance generated with the fixed number of edges algorithm de-

scribed in (Erdös & Rényi, 1960), matched to the BA1000 network size and number
of edges. This network has 1,000 nodes, mean degree of 5.99 and maximum degree
of 16.
• Star1000: a star network with 1,000 nodes, one central node with a single edge to

the other 999 nodes and no other edges. This network has mean degree of 2.00 and
maximum degree of 999.

The degree distribution for each of these seven networks is shown in Figures 1, with
degree rescaled to a proportion of its network specific maximum and truncated at 20%. The
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ER1000 and Friends networks have a clearly different degree distribution from the other
five networks, with the latter group so skewed that almost all the nodes have been accounted
for by 20% of the maximum degree. The WWW and Star1000 networks substantially
overlap and are more extreme than the other three.

Fig. 1. Cumulative distribution for real world and generated degree distributions, with degree
displayed as proportion of maximum degree. Except for the Friends and ER1000 networks, the
maximum degree is over five times the degree values for almost all other nodes.

2.3 Notation and Assumptions

Network size or number of nodes is denoted N; and k is used as a general indicator of
degree, with ki for the degree of node i, Nk for the number of nodes with degree k, µk

for mean degree and pk = Nk
N for the proportion of nodes with degree k (for empirical

distributions) or probability of a given node having degree k (for ideal distributions). The
notation in equations taken from references is adapted accordingly.2

The networks are assumed to be simple, so self edges and multiple edges are not permit-
ted and the maximum degree is given by N−1. Three of the real world networks (Friends,
Yeast and WWW) are directed, and the in-degree distribution is used for each. Despite

2 Notation adaptation may also include algebraic manipulation, such as where the original equation
uses density rather than mean degree. Derivations are available from the author.
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the use of directed networks to generate example distributions, for those measures where
there is a different calculation method for undirected and directed networks, this paper uses
the undirected method in all cases. That is, these in-degree distributions are interpreted as
degree distributions from undirected networks even if such a network is not realisable. This
is for consistency, so as to provide a basis for comparison and more effectively demonstrate
the properties of the candidate measures over different distribution shapes.

3 Candidate Measures of Distribution Shape

Five broad shape measures are described; each normalised (where applicable) to facili-
tate comparability over networks of different sizes. The first two are hierarchization and
centralization, which were developed specifically for social networks. The next two are
variance and power law exponent, which apply standard statistical techniques to degree
distributions. The final measure is the Gini Coefficient, used predominantly to measure
inequality of income or wealth, but applicable to any distribution.

3.1 Coleman’s hierarchization

Coleman (1964, pp 434-441) developed two related hierarchization indices specifically
for degree distributions. While they were defined only for directed networks, applying
the same equations to undirected networks does not change their qualitative behaviour.
The first compared the network of interest to a multinomial distribution null model and
is not discussed here. The second extends the concept of entropy as a measure of choice
developed in (Shannon, 1948). In the context of networks, such choice is the degree values
realised from a edges ”choosing” two nodes for its ends. The index h2 is entropy normalised
against the maximum possible conditional on the number of nodes and edges. It has a value
between 0 and 1 and is given by:

h2 =
Smax−S

Smax−Smin
where S is entropy (1a)

=

loge N +
N
∑

i=1

ki
Nµk

loge
ki

Nµk

loge N−0
(1b)

=

maxk
∑

k=0
Nkk loge k−Nµk loge µk

Nµk loge N
(1c)

Entropy is not suitable because a transfer may introduce a new degree value in the
distribution and potentially increase the value of entropy even where heterogeneity is re-
duced. Normalising to maximum entropy corrects this problem and h2 respects the transfer
principle. However, this respect is at the expense of breaching the replication principle;
because there is more choice available with additional nodes and edges, the maximum
entropy is larger and the value of h2 is reduced for the replicated distribution.
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3.2 Freeman’s centralization

A different approach was taken by Freeman (1978) in his classic study of different types of
node centrality, including degree. He argued that the network measure of centralization
should describe the extent to which a single node is more central than the others and
dominates the network, normalised with respect to the maximum possible value for a
network of the same size (which occurs for a star network).

One weakness of this measure is that the feasible range of values for any network is con-
ditional also on the mean degree, which makes it difficult to use to compare heterogeneity
between different networks. This was addressed in (Butts, 2006, equation 36) by instead
normalising to the maximum feasible given N and µk, so that centralization has a potential
range of 0 to 1 for any degree distribution:

C =
kmax−dµke

µk +min
[
(N−1)−µk,µk

(N
2 −1

)]
−dµke

(2)

A more significant weakness is that centralization is concerned only with the highest
degree node compared to the average, whereas real world networks can show more subtle
degree heterogeneity with ”a vaguely outlined center, consisting of more than one point; or
there are several centers; or just a gradual transition from more central to more peripheral
points” (Snijders, 1981, pg 164). The consequence of this focus on a single node is that
C breaches the transfer principle, even with the normalisation, because centralization is
unaffected by redistribution of edges within a network provided the maximum degree is
unaffected. C also breaches the addition property; increasing the degree of every node
can actually increase its value in some situations where one of the denominator terms
(N−1−µk) decreases.

3.3 Variance

Variance (σ2
k ) and its square root, standard deviation, are well established statistical mea-

sures of deviation from the average for any distribution. Despite its ubiquity, the application
of variance to degree was not specifically considered until Snijders (1981) proposed it as
a more sensitive measure than Freeman’s centralization index as it takes into account the
full distribution rather than only the maximum and mean. That paper also investigated
properties such as maximum variance and expected value of degree variance for different
types of networks.

Snijders (1981, page 172) proposed the index J, constructed as the standard deviation of
degree normalised to the maximum possible for a network of the given size and density.3

There are two general network structures with maximum degree variance: the star network
(or its complement), where one node has a single edge with each of the other nodes; and
a network with all the edges concentrated into a complete subnetwork with leftover nodes
as isolates. There is no single equation for J because the the need to select between these
two possible maxima and realisability issues. Instead, the maximum standard deviation

3 Other indices proposed in (Snijders, 1981) are not pursued further in this paper as they measured
difference from a null model assuming random distribution of the given number of edges between
the given number of nodes rather than reference to a baseline of all nodes with equal degree.
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of degree for a given number of nodes and edges is calculated using the algorithm (see
Snijders, 1981, pp 167-8 for details):

• Let T1 be the largest integer for which T1(T1−1)≤ Nµk (that is, total degree);
• Let E1 be the leftover edges E1 = [Nµk−T1(T1−1)]/2;
• Let T2 be the largest integer for which T2(T2−1)≤ N(N−1)−Nµk;
• Let E2 be the equivalent leftover edges E2 = [N(N−1)−Nµk−T2(T2−1)]/2;
• Use equation 3 to calculate standard deviation of degree for the two networks con-

structed with a complete subnetwork of size Ti and Ei leftover edges (for i = 1,2)
and the larger value is the maximum standard deviation of degree for the original
network.

With this maximum calculated, J follows:

σmax =

√
Ti(Ti−1)2 +Ei(2Ti +Ei−1)

N
− (Ti(Ti−1)+2Ei)2

N2 (3)

and then normalise:

J =
σk

σmax
(4)

This measure complies with both the transfer and addition properties, with the value of J
changing in the appropriate direction. However, like h2, normalising against the maximum
leads to a breach of the replication property because the maximum variance increases as
there are more nodes and edges available and J consequently decreases.

The simplest standardisation of variance that meets the transfer, addition, and replication
principles is the coefficient of variation, the ratio of the standard deviation to the mean:

Vk =
σk

µk
=

√
1
N

N
∑

i=1
(ki−µk)

2

µk
(5)

Coefficient of variation has a range of 0 (homogenous) to ∞ (though lower for realised
networks). As degree is always non-negative, Vk can be interpreted as relative variability.

3.4 Fitted function parameter

The other common statistical approach to distribution characterisation is to fit the coeffi-
cients or parameters of some function that represents the idealised probability density. In
the literature concerning very large social and information networks such as email address
books, citations, and web page links, degree is treated as continuous and the functional
form fitted to the degree distribution is typically the power law (Brinkmeier & Schank,
2005). That is, the degree for each node is given by the probability:

pk =Ck−α with k > 0 (6)

where α is the parameter of the distribution and referred to as the power exponent. The
constant C is completely determined by α and the requirement that probabilities over all
degrees k sum to 1.
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In practice, the power law is fitted to only the higher degree part of the distribution
because the function diverges as k→ 0 and would substantially overestimate the number
of low degree nodes if applied to all degrees. Identifying an appropriate minimum k from
which to apply the power law is somewhat arbitrary but has little impact on the value of the
power exponent. A more serious flaw is that rigorous tests suggest that at least some of the
network degree (and other) distributions identified in the literature as following power laws
may be better described with some other skewed functional form such as the lognormal
distribution (Newman, 2005; Clauset et al., 2009).

Fitting the correct function limits the usefulness of this approach because coefficients
can be compared only between distributions with the same functional form. Nevertheless,
the derived power law exponent allows degree distributions of other shapes to be compared
if the power law functional form is considered as simply an approximation, though there is
no formal standard for acceptability of a fit. In addition, care must be taken to use a robust
estimator as the ”obvious” logarithmic transformation and least squares regression can
lead to substantial error (Clauset et al., 2009). Typical values for α for degree distributions
range between 1.5 and 3.0 (Newman, 2003, Figure 3.2), with a larger value leading to a
faster reduction in the probability of higher degree nodes and therefore less heterogeneity.

Assuming that a power law function can be fitted to all of the degree distributions
required, the power law exponent satisfies the transfer, addition, and replication properties.
Thus, it can provide meaningful comparisons between the heterogeneity of such distribu-
tions.

3.5 Gini coefficient

The Gini coefficient is a widely used inequality (or heterogeneity) measure developed
for the skewed distributions of income and wealth, with an extensive body of theoretical
support and over 100 years of use (Allison, 1978; Cowell, 2000). However, it has received
limited attention in network science with the exception of Hu & Wang (2008), who pro-
posed its use for degree distributions and examined its relationship with the power law
exponent.

Adapted to degree distributions, the Gini coefficient is formally defined as the nor-
malised expected difference in degree between two randomly selected nodes, given by
(Gini, 1912; Dalton, 1920):

G =
1
µk

1
2N2

N

∑
i=1

N

∑
j=1

∣∣ki− k j
∣∣ (7)

An alternative definition relies on the Lorenz curve, which provides a visual measure of
inequality (Lorenz, 1905). For degree distribution, the Lorenz curve plots the cumulative
proportion of the nodes ordered by degree against the cumulative proportion of the degree
held by those nodes and also includes a (diagonal) reference curve that indicates the Lorenz
curve for a distribution where all nodes have the same degree. A greater ”bend” away from
the reference curve indicates greater inequality. Examples of Lorenz curves for the six
degree distributions described in section 2.2 are displayed at Figure 2.

It can be shown that G is the area bounded by the Lorenz and reference curves divided by
one half (reported at Dalton, 1920, pg 354). The half is a normalisation factor, representing
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Fig. 2. Lorenz curves of degree for real world degree distributions (Friends, Yeast, Collaborators,
WWW) and networks generated with algorithms (ER1000, BA1000, Star1000). The WWW and
ER1000 distributions are the most and least extreme respectively.

the size of the area for a distribution of maximum inequality. This approach allows G to
be calculated for a theoretical degree distribution provided the mean is finite (Dorfman,
1979).

The use of the Lorenz curve also provides an efficient computation method for G for the
degree distribution of an empirical network (Brown, 1994):

G = 1−
maxk

∑
g=mink

(
g

∑
k=1

pk−
g−1

∑
k=1

pk

)(
g

∑
k=1

kpk +
g−1

∑
k=1

kpk

)
(8)

where g and k iterate only through those degrees that exist in the network.4

Compliance with the properties of transfer, addition, and replication is a key reason for
the popularity of the Gini coefficient for describing income and wealth distributions. It was
developed specifically to compare these distributions in different locations and over time.

4 There is no mathematical difference to iterate through all degree values, including those that are
not realised, it is simply less efficient.
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4 Comparison of proposed measures

As discussed in the presentation of each measure, only Coefficient of variation (Vk) and
the Gini coefficient (G) are valid for all distributions and have the desired properties of
consistency over changes in distributions arising from transfer, addition, or replication (see
Table 1). The power law exponent is effective for those distributions that can be reasonably
approximated by the power law functional form, but this is a strong restriction and there
are other measures available. The two measures measures normalised by their theoretical
maximum (h2 and J) breach the replication requirements because replication increases the
number of nodes and the edges that can be distributed between them thereby increasing
maximum heterogeneity.

Table 1. Compliance of potential measures with principles

Measure Transfer Addition Replication
Desirable Decrease Not Increase No change

Normalised Hierachization (h2) Decrease Decrease Decrease
Normalised Centralization (C) Varies Varies Decrease
Coefficient of variation (Vk) Decrease Decrease No change
Normalised (by max) deviation (J) Decrease Decrease Decrease
Power law exponent (α) Decrease* Decrease No change
Gini coefficient (G) Decrease Decrease No change

* The numerical value of α increases with a transfer of degree away from high degree nodes, and
this indicates a decrease in heterogeneity.

There is no theoretical reason to prefer Coefficient of variation (Vk) or Gini coefficient
(G). However, there may be normative reasons and further insight can be gained by exam-
ining the measure values empirically (see Table 2).

The theoretical weakness of h2, C and J is clearly demonstrated by their values for the
larger networks. For all three, the combination of substantial heterogeneity and moderate
size for BA1000 results in values that are much higher than the most heterogeneous WWW
network, because the moderate size limits the potential maximum that is being used for nor-
malisation. These three candidates are therefore insufficiently independent of the network
scale to be useful in comparing shapes of degree distributions from different networks.

If the Lorenz curves do not intersect, ordering will be consistent (Allison, 1978). For the
example networks, the curve for Star1000 crosses many of the other distributions and the
BA1000 and Friends pair also intersect. Table 2 is ordered by decreasing values of Vk and
G, except for Star1000 which ranks inconsistently between the two measures.

Even where the two measures provide the same ranking, they have different patterns of
sensitivity. Using similarity of values in Table 2, Vk groups the BA1000 network with Yeast
and Collaborators, while G groups it with the Friends network. From 1, it is apparent that
the former is the more natural grouping and this supports a preference for Vk. However,
the actual degrees of the highest degree influence Vk much more than G, which could lead
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Table 2. Degree heterogeneity measures for selected networks

Network Size h2 C Vk J α* G

WWW (in) N=325,729 µk=4.6 0.132 0.03 8.5 0.047 2.1 0.71
Collaborators N=40,421 µk=8.7 0.055 0.01 1.5 0.031 - 0.55
Yeast (in) N=2,114 µk=2.1 0.072 0.03 1.4 0.066 2.4 0.51
BA1000 N=1,000 µk=6.0 0.357 0.11 1.2 0.209 3.0 0.37
Friends (in) N=859 µk=6.8 0.034 0.03 0.7 0.090 - 0.37
ER1000 N=1,000 µk=6.0 0.013 0.01 0.4 0.046 - 0.23
Star1000 N=1,000 µk=2.0 0.400 1.00 0.5 1.000 - 0.50

* A missing value for α indicates that it is not available in the literature, which may occur because
the power law functional form is inappropriate or because it may be appropriate but was not reported.
Unlike other measures in the table, a higher value indicates lower heterogeneity.

to difficulties in comparing distributions that are very heterogeneous as these high degree
values may dominate changes in the shape of the bulk of the distribution.

The interpretation of the measure supports a preference for G. The interpretation of G
as the (normalised) expected difference in degree between two randomly selected nodes
is natural in the network context, where edges are connecting two nodes. In contrast, Vk

describes deviation from the centre of the distribution and many degree distributions have
no meaningful centre.

There are many other heterogeneity measures not considered in this paper. However,
they have more fundamental flaws than those included. For example, an intuitive approach
is to measure the distance between the cumulative degree distribution and the (homo-
geneous) delta distribution, with the Kolmogorov-Smirnov statistic providing a distance
measure (Massey Jr, 1951). However, the cumulative probability distribution of the delta
distribution is a step function at mean degree and the maximum distance between the cu-
mulative distributions will occur at the mean degree. Hence, assuming the typical positive
skew and that the network is sufficiently large that degree can be considered continuous,
the Kolmogorov-Smirnov statistic is simply the proportion of nodes with degree less than
or equal to the mean degree. Another approach is to use diversity measures such as the
Herfindahl-Hirschman Index (Hirschman, 1964). For degree distribution, this index is the
sum of the squared contributions from each node to total degree. However, it is sensitive to
the network size, as more nodes dilute the effect of each node’s degree.

5 Conclusions

A measure that describes the shape of the distribution, regardless of the functional form of
the distribution, would facilitate research to examine how the shape of the distribution is
related to other properties of the network or processes occurring over the network. Prop-
erties of a simple network that could reasonably be expected to vary with some measure
of degree heterogeneity include: maximum degree assortativity (Hakimi, 1962), expected
degree assortativity (Newman, 2002) and size of an epidemic occurring on the network
(Diekmann et al., 1990).
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Both the Coefficient of variation (Vk) and Gini coefficient (G) are suitable measures as
they respond to redistribution in ways that facilitate valid comparisons between networks
of different sizes and mean degree. For both, a value of 0 indicates that the all nodes have
equal degree and larger values indicate greater heterogeneity. However, the Coefficient of
variation is difficult to interpret in the context of a highly skewed distribution. In particular,
its conceptual source is the width of the peak in a distribution and such a peak may not
exist for some networks. In contrast, the Gini coefficient represents the difference between
degrees for pairs of nodes, rather than comparing a node’s degree to the mean degree. Thus,
it can be easily interpreted for distributions that are highly non-normal as well as normal
distributions. The Gini coefficient is therefore proposed as the most suitable shape measure
for degree distributions.

While this paper has focussed on degree distribution, there are other network proper-
ties that are calculated by node (or node pairs) but typically reported only as mean over
all nodes. These properties include clustering coefficient, betweenness and shortest path
lengths (Newman, 2003). The shape of these distributions could also be described with Gini
coefficients (with discretisation) and values of this measure could reasonably be expected
to be linked to other network properties.
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